Macchine a responsabilita limitata

Breve Introduzione alla Teoria della Calcolabilita:
| Parte - Linguaggi Formali

Roberto Maieli

Universita degli Studi “Roma Tre”
maieli@uniroma3.it
http://logica.uniroma3.it/~maieli/teachin,
p g g

Mini-Corso di Il Livello per studenti di Informatica e Filosofia

Roberto Maieli Macchine a responsabilita limitata

La teoria della computazione nasce con queste domande: cos'e un
algoritmo? cosa si intende con modello computazionale?

@ in questo breve corso cercheremo di dare una definizione precisa
della nozione intuitiva di algoritmo

@ ci approssimeremo a questa nozione costruendo una gerarchia di
modelli computazionali (classi di algoritmi) basati su automi o
macchine.

@ come con altri modelli nelle scienze, un modello computazionale puo
essere accurato per certi versi e per altri no; ecco perché noi
studieremo differenti modelli a seconda delle specifiche richieste.

@ mostreremo per ciascuna classe/modello dei “limiti* precisi;

@ gli automi, a differenza di altri modelli computazionali (A-calcolo,
funzioni ricorsive,...):
e sono modelli stand-alone: non presuppongono particolari
strumenti matematici (funzioni, riscritture,...)
e sono suffcientemente potenti (equivalenti agli altri modelli),
e quindi i limiti degli automi valgono anche per gli altri modelli
equivalenti.

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular lar es
the pumping lemma for FSA

finite states automata (fsa)

FSA are the simplest computational model: they use an extremely

limited amounts of memory (states).
What can we do with such a small memory? ... many useful things!

Example the controller for an automatic only-entrance door:

REAR FRONT

BOTH REAR
NEITHER ‘ . BOTH
front rear FRONT
pad pad @-

NEITHER

door

o states: OPEN, CLOSED
@ inputs: FRONT, REAR, BOTH (w.r.t. a person standing on a pad)

@ transition: it moves from state to state following the recived input

Observe: it makes use of only one bit of memory

Roberto Maieli Macchine a responsabilita limitata

finite states automata S
emma for FSA

Definition of FSA

A finite automaton is a 5-tuple (Q, X, §, g, F'), where

1. Q is a finite set called the states, 0
2. ¥ is a finite set called the alpbabet, . .

N
3. 6: Q x ©—Q is the transition ﬁmm'on,l e.
4. qo € Q is the start state, and
5. F C Q is the set of accept states.”

input : it receives the symbols from the input string one by one
from left to right,

. after reading each symbol it moves from one state to an

transition :
other following (3),
output : when tit reads the last input symbol, it produces the

Hﬂﬂﬂ output: accept or reject

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular lan

Example of FSA M,

Mo = ({g1,92},{0,1},9, g1, {g=}) with the state diagram of the
transition function §:

0 1

AN A
T ONRO
| qG1 g2

g2 | 1 g2 0

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular lar es
the pumping lemma for FSA

Example of FSA M,

We can describe M formally by writing M; = (Q, £, 8, q1, F'), where
1. Q = {qh q2, QS})

2.%x={01},

3. ¢ is described as

4. ¢y is the start state, and
5. F = {QQ}

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular languages
the pumping lemma for FSA

FSA compute regular languages (RL)

Let M = (VQ, 3,6, ;10, F) be a finite automaton and let w = wyws -+ w, be
a string where each w; is a member of the alphabet £. Then M accepts w if a

sequence of states rg, ry, ..., 7, in Q exists with three conditions:
1. Ty = qo,
2. 8(ri,wie) = 1441, fori=0,...,n—1, and
3.r,€F.

Condition 1 says that the machine starts in the start state. Condition 2 says
that the machine goes from state to state according to the transition function.
Condition 3 says that the machine accepts its input if it ends up in an accept
state. We say that M recognizes langnage A if A = {w| M accepts w}.

A language is called a regular language if some finite automaton
recognizes it.

RL: My recognizes Ay = {w | w ends with 1}
My recognizes A; = {w | w ends with 1 or with an even number of Os}

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular languages
the pumping lemma for FSA

FSA are limited: non regular languages

To understand the power of finite automata you must also understand their lim-
itations. In this section we show how to prove that certain languages cannot be
recognized by any finite automaton.

Let’s take the language B = {0"1"| n > 0}. If we attempt to find a DFA
that recognizes B, we discover that the machine seems to need to remember
how many 0s have been seen so far as it reads the input. Because the number of
Os isn’t limited, the machine will have to keep track of an unlimited number of
possibilities. But it cannot do so with any finite number of states.

THE PUMPING LEMMA FOR REGULAR LANGUAGES

Our technique for proving nonregularity stems from a theorem about regular
languages, traditionally called the presnping lemma. This theorem states that all
regular languages have a special property. If we can show that a language does
not have this property, we are guaranteed that it is not regular. The property
states that all strings in the Janguage can be “pumped” if they are at least as
long as a certain special value, called the puinping length. That means each
such string contains a section that can be repeated any number of times with the
resulting string remaining in the language.

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular language
the pumping Iemma for FSA

Pumping Theorem for FSA

Assume M = (Q, X, 4, g1, F) be a FSA that recognizes the regular
language A and let p be the number or states in Q. If s is a string of A
of lenght at least p (i.e. |s| > p), then s may be divided into three pieces
s = xyz such that:

© foreach i >0,xy'z€ A (y' means i-copies of y with y° = ¢)
Q [y[>0.

Proof Idea: by hypothesis |s| = n > p, then the sequence of states that
M goes through when computing s is (n+ 1) > p, then this sequence
must contain a repeated states (like g9 below):

M

S :Té'l T52153184155TSGT TsnT .

9 93 920 @9 N7 @9 9s q35 Q13

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular language
the pumping Iemma for FSA

the language B = {0"1" | n > 0} is not regular

Assume to the contrary that B is a regular language recognized by M,
and choose s € B s.t. s > p (where p is the number of states in M),
then by the pumping theorem we can split s into xyz such that for any
i > n the string xy’z € B; we consider three cases for i = 2:

@ vy consits only of Os, then xyyz ¢ B since it has more Os than 1s
@ y consits only of 1s, then xyyz ¢ B since it has more 1s than Os

© y consits of both 0s and 1s, then xyyz ¢ B since it may have the
same number of Os and 1s but they will not respect the order
among Os and 1s.

some other non-regular languages:
C = {w | w has an equal number of Os and 1s}
C={ww|we{0,1}}.

Roberto Maieli Macchine a responsabilita limitata

finite states automata regular languages
the pumping lemma for FSA

inductive definition of regular languages

The pumping theorem gives a geometrical characterization of the
class of regular languages against the inductive one below:

© {a} for any a € X (an alfabet) is regular,

@ {e} is regular (e is the empty string),

© 0 is regular (the empty language),

Q@ AUB={x|x¢€ Aorxe B} is regular, if A and B are so,
Q AoB={xy|x€Aandy € B} is regular, if A and B are so,

Q A" ={x1,...,x, | n>0and x; € A} is regular, if Ais so.

Roberto Maieli Macchine a responsabilita limitata

pushdown automata

pushdown automata (PDA)

A PDA is a FSA with an (infinite) stack of memory, such that it can:
@ read from the input,
@ write (push) and read (pop) symbols on the top of the stack,

@ the stack is “last in, first out” storage devise:
if certain information is written on the stack and additional
information is written afterwards, then the earlier information
becomes inaccessible until the later information is removed.

state
control . I - [
Hn Input Push ,/P_:p
X I
|
y | stack [|
z

Roberto Maieli Macchine a responsabilita limitata

lemma for PDA
mmars (CFG)

the PDA that recognizes B = {0"1" | n > 0}

Let M; be the 6-upla (Q,X,T,0d, g1, F) where:
O Q=1{91,9,9,q},
Q@ x ={0,1},
© r={0,%} (9 initially denotes the empty stack)

pushdown automata

@ g is the initial state
© F ={qi1, qs} are the final accepting states,

@ J is the transition function given by the state diagram below:

@ if “a,b— ¢" then PDA reads "“a from the input and replace " b"
from the top of the stack with "c¢"

@ if 3 =¢", it takes transition without reading any input symbal
o if b= ¢", it takes transition without popping/pushing on the stack

e if c = ¢", it takes transition without writing on the stack

Roberto Maieli Macchine a responsabilita limitata

context-free languages
the pumping lemma for PDA

pushdown automata context ammars (CFG)

context-free languages (CFL)

@ a language recognized by a PDA is called context-free

context-free
languages

@ question: is there a “geometrical” characterization of such CFLs?

@ anwer: the pumping theorem for PDA states that every CFL has
a special value called pumping length s.t. all longer strings in the
language can be pumped to other strings (still in the language);

@ question: is D = {w.w | w € {0,1}*} a context-free language?

Roberto Maieli Macchine a responsabilita limitata

onte ee guag
e pumping lemma

pushdown automata ontext-fr e (E0)

Pumping Theorem for PDA

If B is a context-free language, then there exists a number p (the
pumping length) s.t., if s is a string of B of lenght at least p (i.e.
|s| > p), then s may be divided into five pieces s = uvxyz such that:

@ for each i > 0,uvixy’z € B,
Q |w|>0
Proof Idea: via the Chomsky’s Lemma:

any context-free language is generated by a
CONTEXT-FREE GRAMMAR

Roberto Maieli Macchine a responsabilita limitata

pushdown automata

context-free grammar (Chomsky)

A CFG Gj consists of :

@ collection of substitution (or production) rules: a rule comprises
a symbol and a string separated by an arrow “—"

A—>10A1 A—>28 B—)3ﬁ

@ a symbol A or B is called a variable; A is a start variable;

© a string consists of variables and terminal symbols 0, 1, #.

@ the derivation of a string 000#111 is a sequence of substitutions
A =1 0A1 =3 00A11 =3 000A111 =, 0008111 =3 0004111

A
|

B\ \ \\ the parse tree for the string 0004111 in G;

111 G, generates the language B = {0"1" | n > 0}

Roberto Maieli Macchine a responsabilita limitata

the pumpi

pushdown automata context-free‘grammars (CFG)

proof idea of the pumping lemma for PDA

@ if Bis a CFL, by Chomsky's lem., there is a CFG G that generates B

@ let's choose p big enough that the parser tree of s (with |s| > p) is
so tall that it must contain some long path from the start variable
at the root to one of the terminal symbol at a leaf with a repetition
of some variable R

© we replace the subtree rooted at the lower occurrence of R with the
subtree rooted at the higher occurrence of R and get a tree of a
string s’ = uv?xy?z still in B.

Lif p= bIVI*? where b is the maximum number of symbols on the right
hand side of a rule of G and |V/| is the number of variables V' in G, then
hr = |V|+ 2, so there is a R repetead in T.

Roberto Maieli Macchine a responsabilita limitata

conte
the pumpi

pushdown automata context-free grammars (CFG)

a non-context free language

question: is D = {w.w | w € {0,1}*} a context-free language?
answer: NO! (e.g., strings like 0P1P.0P1P cannot pumped)

CFGs can describe certain features that have a recursive structure,
which makes them useful in a variety of applications:

@ LINGUISTICS: they were first used in the study of human languages:
a first attempt of understanding the relationship of terms like noun,
verb, preposition and their respective phrases leads to a natural
recursion because noun phrases may appear inside verb phrases
and viceversa

[(the boy)NP ((sees)VP (a flower)NP)VPIS

@ COMPUTER SCIENCE: most compilers and interprets of
programming languages (C, Java, ...) contain a parser that extracts
the meaning of a program before generating the compiled code or
performing the interepreted execution.

Roberto Maieli Macchine a responsabilita limitata

	finite states automata
	regular languages
	the pumping lemma for FSA

	pushdown automata
	context-free languages
	the pumping lemma for PDA
	context-free grammars (CFG)

