
finite states automata
pushdown automata

Macchine a responsabilità limitata
Breve Introduzione alla Teoria della Calcolabilità:

I Parte - Linguaggi Formali

Roberto Maieli

Università degli Studi “Roma Tre”
maieli@uniroma3.it

http://logica.uniroma3.it/∼maieli/teaching

Mini-Corso di II Livello per studenti di Informatica e Filosofia

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

La teoria della computazione nasce con queste domande: cos’è un
algoritmo? cosa si intende con modello computazionale?

in questo breve corso cercheremo di dare una definizione precisa
della nozione intuitiva di algoritmo

ci approssimeremo a questa nozione costruendo una gerarchia di
modelli computazionali (classi di algoritmi) basati su automi o
macchine.

come con altri modelli nelle scienze, un modello computazionale può
essere accurato per certi versi e per altri no; ecco perchè noi
studieremo differenti modelli a seconda delle specifiche richieste.

mostreremo per ciascuna classe/modello dei “limiti“ precisi;

gli automi, a differenza di altri modelli computazionali (λ-calcolo,
funzioni ricorsive,...):

sono modelli stand-alone: non presuppongono particolari
strumenti matematici (funzioni, riscritture,...)
sono suffcientemente potenti (equivalenti agli altri modelli),
quindi i limiti degli automi valgono anche per gli altri modelli
equivalenti.

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

finite states automata (fsa)

FSA are the simplest computational model: they use an extremely
limited amounts of memory (states).
What can we do with such a small memory? ... many useful things!
Example the controller for an automatic only-entrance door:

states: OPEN, CLOSED

inputs: FRONT, REAR, BOTH (w.r.t. a person standing on a pad)

transition: it moves from state to state following the recived input

Observe: it makes use of only one bit of memory
Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

Definition of FSA

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

Example of FSA M0

M0 = ({q1, q2}, {0, 1}, δ, q1, {q2}) with the state diagram of the
transition function δ:

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

Example of FSA M1

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

FSA compute regular languages (RL)

RL: M0 recognizes A0 = {w | w ends with 1}
M1 recognizes A1 = {w | w ends with 1 or with an even number of 0s}

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

FSA are limited: non regular languages

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

Pumping Theorem for FSA

Assume M = (Q,Σ, δ, q1,F) be a FSA that recognizes the regular
language A and let p be the number or states in Q. If s is a string of A
of lenght at least p (i.e. |s| ≥ p), then s may be divided into three pieces
s = xyz such that:

1 for each i ≥ 0, xy iz ∈ A (y i means i-copies of y with y0 = ε)

2 |y | > 0.

Proof Idea: by hypothesis |s| = n ≥ p, then the sequence of states that
M goes through when computing s is (n + 1) > p, then this sequence
must contain a repeated states (like q9 below):

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

the language B = {0n1n | n ≥ 0} is not regular

Assume to the contrary that B is a regular language recognized by M,
and choose s ∈ B s.t. s ≥ p (where p is the number of states in M),
then by the pumping theorem we can split s into xyz such that for any
i ≥ n the string xy iz ∈ B; we consider three cases for i = 2:

1 y consits only of 0s, then xyyz /∈ B since it has more 0s than 1s

2 y consits only of 1s, then xyyz /∈ B since it has more 1s than 0s

3 y consits of both 0s and 1s, then xyyz /∈ B since it may have the
same number of 0s and 1s but they will not respect the order
among 0s and 1s.

some other non-regular languages:
C = {w | w has an equal number of 0s and 1s}
C = {w .w | w ∈ {0, 1}}.

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

regular languages
the pumping lemma for FSA

inductive definition of regular languages

The pumping theorem gives a geometrical characterization of the
class of regular languages against the inductive one below:

1 {a} for any a ∈ Σ (an alfabet) is regular,

2 {ε} is regular (ε is the empty string),

3 ∅ is regular (the empty language),

4 A ∪ B = {x | x ∈ A or x ∈ B} is regular, if A and B are so,

5 A ◦ B = {xy | x ∈ A and y ∈ B} is regular, if A and B are so,

6 A∗ = {x1, ..., xn | n ≥ 0 and xi ∈ A} is regular, if A is so.

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

pushdown automata (PDA)

A PDA is a FSA with an (infinite) stack of memory, such that it can:

read from the input,

write (push) and read (pop) symbols on the top of the stack,

the stack is “last in, first out” storage devise:

if certain information is written on the stack and additional
information is written afterwards, then the earlier information
becomes inaccessible until the later information is removed.

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

the PDA that recognizes B = {0n1n | n ≥ 0}
Let M1 be the 6-upla (Q,Σ, Γ, δ, q1,F) where:

1 Q = {q1, q2, q3, q4},
2 Σ = {0, 1},
3 Γ = {0, $} ($ initially denotes the empty stack)

4 q1 is the initial state

5 F = {q1, q4} are the final accepting states,

6 δ is the transition function given by the state diagram below:

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

context-free languages (CFL)

.

a language recognized by a PDA is called context-free

question: is there a “geometrical” characterization of such CFLs?

anwer: the pumping theorem for PDA states that every CFL has
a special value called pumping length s.t. all longer strings in the
language can be pumped to other strings (still in the language);

question: is D = {w .w | w ∈ {0, 1}∗} a context-free language?

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

Pumping Theorem for PDA

If B is a context-free language, then there exists a number p (the
pumping length) s.t., if s is a string of B of lenght at least p (i.e.
|s| ≥ p), then s may be divided into five pieces s = uvxyz such that:

1 for each i ≥ 0, uv ixy iz ∈ B,

2 |vy | > 0

Proof Idea: via the Chomsky’s Lemma:

any context-free language is generated by a
context-free grammar

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

context-free grammar (Chomsky)

A CFG G1 consists of :

1 collection of substitution (or production) rules: a rule comprises
a symbol and a string separated by an arrow “→”

A→1 0A1 A→2 B B →3]

2 a symbol A or B is called a variable; A is a start variable;

3 a string consists of variables and terminal symbols 0, 1,#.

4 the derivation of a string 000#111 is a sequence of substitutions

A⇒1 0A1⇒1 00A11⇒1 000A111⇒2 000B111⇒3 000#111

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

proof idea of the pumping lemma for PDA

1 if B is a CFL, by Chomsky’s lem., there is a CFG G that generates B

2 let’s choose p big enough that the parser tree of s (with |s| ≥ p) is
so tall that it must contain some long path from the start variable
at the root to one of the terminal symbol at a leaf with a repetition
of some variable R

3 we replace the subtree rooted at the lower occurrence of R with the
subtree rooted at the higher occurrence of R and get a tree of a
string s ′ = uv2xy2z still in B.

Roberto Maieli Macchine a responsabilità limitata

finite states automata
pushdown automata

context-free languages
the pumping lemma for PDA
context-free grammars (CFG)

a non-context free language

question: is D = {w .w | w ∈ {0, 1}∗} a context-free language?
answer: NO! (e.g., strings like 0p1p.0p1p cannot pumped)

CFGs can describe certain features that have a recursive structure,
which makes them useful in a variety of applications:

linguistics: they were first used in the study of human languages:
a first attempt of understanding the relationship of terms like noun,
verb, preposition and their respective phrases leads to a natural
recursion because noun phrases may appear inside verb phrases
and viceversa

[(the boy)NP ((sees)VP (a flower)NP)VP]S

computer science: most compilers and interprets of
programming languages (C, Java, ...) contain a parser that extracts
the meaning of a program before generating the compiled code or
performing the interepreted execution.

Roberto Maieli Macchine a responsabilità limitata

	finite states automata
	regular languages
	the pumping lemma for FSA

	pushdown automata
	context-free languages
	the pumping lemma for PDA
	context-free grammars (CFG)

