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Abstract. Proof nets are a parallel syntax for sequential proofs of linear
logic, firstly introduced by Girard in 1987. Here we present and intrinsic
(geometrical) characterization of proof nets, that is a correctness crite-
rion (an algorithm) for checking those proof structures which correspond
to proofs of the purely multiplicative and additive fragment of linear
logic. This criterion is formulated in terms of simple graph rewriting
rules and it extends an initial idea of a retraction correctness criterion
for proof nets of the purely multiplicative fragment of linear logic pre-
sented by Danos in his Thesis in 1990.

1 Introduction

Proof nets are a parallel syntax (a graphical presentation) for sequential proofs of
linear logic (LL), firstly introduced by Girard in [3]. An interesting challenge is to
find intrinsic (geometrical) characterizations of proof nets, that is correctness cri-
teria (naively, algorithms) for checking those proof structures which correspond
to LL proofs; this is particularly true for proof nets of the pure multiplicative
and additive fragment of linear logic (MALL).

Our starting idea is that correctness for MALL proof nets should be formu-
lated as simple as possible, following the spirit of correctness for proof nets of
the pure multiplicative fragment of linear logic (MLL, see [3] and [1]). In our
work correctness is formulated by an algorithm which implements simple graph
rewriting rules. In particular, we extend an initial idea of a retraction correctness
criterion for MLL proof nets presented in Danos’s Thesis ([2]) and subsequently
reformulated as a parsing criterion for MELL proof nets by Guerrini and Masini
([6]). Naively, retractility is a way to simulate sequentialization steps: each re-
tracted (sub)graph corresponds to a correct (sequentializable) (sub)proof struc-
ture. Compared with other existing syntaxes for MALL proof nets, like that
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one due to Girard ([4]) or Hughes-van Glabbeek ([7]), our retractile correctness
criterion does not rely on any notion of additive box, slice or jump. This effort
should simplify the complexity of checking correctness. However here we do not
discuss complexity aspects of our criterion; moreover, for simplicity reasons, we
restrict to consider only cut-free proof nets.

After recalling, in next sub-section, some basic notions of the MALL frag-
ment we introduce, in Section 2, a notion of (abstract) proof structure; then, in
Section 3, we characterize correctness in terms of a rewriting algorithm which
is shown confluent, correct (sequentializable) and complete (de-sequentializable)
w.r.t. MALL sequent calculus. Finally, in Section 4, we discuss some directions
in the way we could extend our criterion to proof nets with cuts.

1.1 The MALL Fragment of Linear Logic

MALL formulas A, B, ... are built from literals (propositional variables P, Q, ...
and their negations P⊥, Q⊥, ...) by the binary connectives ⊗ (tensor), � (par),
& (with) and ⊕ (plus). Negation (.)⊥ extends to arbitrary formulas by the de
Morgan laws: (A ⊗ B)⊥ = (A⊥

�B⊥), (A�B)⊥ = (A⊥ ⊗ B⊥), (A&B)⊥ =
(A⊥ ⊕B⊥), and (A⊕B)⊥ = (A⊥&B⊥). A MALL sequent Γ is a non empty set
of formula occurrences A1, ..., An. We omit turnstiles (�) since all sequents are
right-sided. Sequents are proved using the following rules:

ax
A,A⊥ Γ, A Δ, A⊥

cut
Γ, Δ

Γ, A Δ, B ⊗
Γ, Δ, A ⊗ B

Γ, A, B
�

Γ, A�B
Γ, A Γ, B

&
Γ, A&B

Γ, A ⊕1
Γ, A ⊕ B

Γ, B ⊕2
Γ, A ⊕ B

2 Proof Structures

Definition 1 (proof structure). A (cut-free) proof structure, shortly PS, of
MALL is an oriented graph s.t. each edge is labelled by a MALL formula and
built on the set of nodes (or vertices) following the typing constraints of Figure 1.
Pending edges are called conclusions. The orientation is from top to bottom; fixed
a node, an entering edge is called premise while its unique emergent edge is called
conclusion. We call link the graph made by a node together with its premise(s)
and conclusion.

⊗ � & C

A ⊗ B A�B A&B A

A B A A BB A B A A

A ⊕ B

ax

A A⊥

⊕ ⊕

A ⊕ B

Fig. 1. MALL links
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Definition 2 (abstract proof structure). An abstract structure (AS) is a
non oriented graph G equipped with a set C(G) of pairwise disjoint pairs of
coincident edges (two edges are coincident if they share at least a vertex). We
call simply pair a pair of edges of C(G) and base of a pair (possibly one of) its
common vertex(es). A pair is graphically denoted by a crossing arc close to the
base.
An abstract proof structure (APS) is an AS such that:
– each edge is labelled by a MALL formula;
– each pair is denoted by an arc labelled by �, & or C;
– it is build by iterating the rules of Figure 2 (a mapping from PS to APS).

⊗

�

&

C�→

�→

�→

�→

�→

Ai

A ⊗ B A ⊗ B

B

A B

A�B A�B

BA

B

A&BA&B

A B

BA
A A

A A C

&

�

A

A A

A

A⊥A
�→

ax

A A⊥

Ai=1,2

A1 ⊕ A2

⊕

A1 ⊕ A2

Fig. 2. Mapping PS in to APS

Notation: if π is a PS then π∗ denotes its corresponding APS; variables e1, e2, ...
denote edges and v1, v2, ... denote vertices of an APS; a dotted edge incident to
a vertex v and (eventually) labelled by variables a, b, ..., is a compact represen-
tation of possibly several edges incident to v; finally, δ(v) states for the degree
(the number of incident edges) of a vertex v.

Definition 3 (multiplicative retraction). A multiplicative retraction of an
APS π is a rewriting of π into π′ (denoted π � π′) by means of an instance of
the following rules:

R1 (on the left hand side of Figure 3), with the conditions that in π:
– vertices v1 and v2 are distinct;
– the retracted edge e1 does not belong to any pair of C(π).

R2 (on the right hand side of Figure 3), with the conditions that in π:
– vertices v1 and v2 are distinct;
– the two retracted edges e1 and e2 belong to the same �-pair.

Definition 4 (additive retraction)
An additive retraction of an APS π is a rewriting of π into π′ by means of an
instance of the following rules:
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�
�R2

π′ π′

�R1

π π

v1

e1

v2

v1

v1

v2

e1 e2 v1

Fig. 3. Multiplicative retraction rules R1 and R2

R3 (on the left hand side of Figure 4), with the conditions that in π:
– each vertex vi, 1 ≤ i ≤ 4, is distinct;
– the two retracted edges e1 and e2 belong to the same C-pair.

R4 (on the right hand side of Figure 4), with the conditions that in π:
– each vertex vi, 1 ≤ i ≤ 3, is distinct;
– the two retracted edges e1 and e2 belong to the same &-pair.
– δ(v2) = 1 and δ(v3) = 1.

π π

v4

v3

e1 e2

v2 v3

v1

v2

v1

a

a

π′

v1

v2 v3

�R4

π′

v1

& &

�R3

e2

&

C
e1

Fig. 4. Additive retraction rules R3 and R4

Definition 5 (distributive retraction). A distributive retraction rule1 of an
APS π is a rewriting of π into π′ by means of an instance of the rule R5 of
Figure 5, with the conditions that in π:

– each vertex vi, 1 ≤ i ≤ 8, is distinct;
– the two retracted edges e1 and e2 belong to the same C-pair;
– the two retracted edges e3 and e4 belong to the same �-pair;
– δ(v4) = 2, δ(v5) = 2, δ(v6) = 3 and δ(v7) = 3.

Fixed a retraction rule Ri, 1 ≤ i ≤ 5, the subgraph of π (resp., of π′) depicted
on the left (resp., on the right) hand side of the �Ri map is called the retraction
(resp., retracted) graph of Ri.

We say that two instances Ri and Rj , with 1 ≤ i, j ≤ 5, overlap (resp.,
separate) when the intersection of their retraction graphs is not empty (resp.,

1 This rule reflects the distributive linear law (b�c)&(b�d) � b�(c&d).
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v5

v6

v3v2v1

v7

v8

�

&

C

�R5

v8

v6

v3v2v1

�

&

e1

e2

v4

�
e4

e3

e5

e6

e7 e8

e7

e8

e5e6

Fig. 5. Distributive retraction rule R5

empty). Ri and Rj are said independent when they can be applied in any order,
i.e. Ri immediately before Rj or Rj immediately before Ri.

An APS π with conclusions A1, ..., An is retractile when there exists a sequence
of retraction instances starting with π and terminating with a single node (•)
with n incident edges labelled by A1, ..., An.

Definition 6 (proof net). A PS π with conclusions A1, ..., An, with n ≥ 1, is
correct (i.e., it is a proof net) if its corresponding APS π∗ is retractile.

Theorem 1 (confluence). If π is a retractile APS then any sequence of retrac-
tion instances starting from π terminates with a single node with the (possibly)
several incident edges labelled by the conclusions of π.

Proof. Assume Σ is a retractions sequence π � π1 � ... � πn = • with Ri as
first retraction (i.e. π �Ri π1) and assume there exists a σ such that π �Rj σ.
We show that σ is retractile too. We reason by induction on the length l of Σ,
where l is the number of retraction instances of Σ.

Assume l = 1, then π �Ri π1 = • and so Ri and Rj must be the same instance
with σ = π1. This follows from the definition of the retraction rules (if Ri and
Rj are two different instances then the retraction graphs of Ri and Rj can be
disjoint or partially overlapping but not included each other).

Assume l > 1, then we split our reasoning in two sub-cases.

1. Ri and Rj are independent. Since, by assumption π1 is retractile in n − 1
steps, then by hypothesis of induction applied to π1 we conclude that any
π′

1 obtained by π1 �Rj π′
1 must be retractile. This means that σ is retractile

since σ �Ri π′
1 and Ri and Rj are independent (see Figure 6).

2. Ri and Rj are not independent; this means that Ri and Rj must be two
overlapping instances of the R5 rule like in left hand side of Figure 7. Again,
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σ

�R
j

�
R
i

π π′

1 � ... � •

�
R
i

�R
j

π1 � π2 � ... � • : Σ

Fig. 6. Confluence of independent retractions

� �

CC

1

C

1

C 1

&

&

&

�

�

π1

σ

π′

1

�
π

�R
i

�
R
j �R

3
,R

4

�
R
3 ,R

4

Fig. 7. Confluence of non independent retractions

we reason like in the previous case. Since, by assumption π1 is retractile
in n − 1 steps, then we can apply the hypothesis of induction to π1 and
conclude that π′

1 is also retractile since π1 �R3,4 π′
1. This means that σ will

be retractile too, since σ �R3,4 π′
1 (see Figure 6).

3 (De-)Sequentialization

In this section we show that any sequent proof of can be de-sequentialized into
a proof net with the same conclusions (Theorem 2) and vice-versa (Theorem 5).

Theorem 2 (de-sequentialization). A proof π− of the sequent Γ = A1, ...,
An≥1 can be desequentialized in to a proof net π with conclusion Γ .
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Proof. By induction on the height2 of the given sequential proof π−. We only
consider the case when last rule of π is a &-rule (the other cases are very simple
and we omit them). Assume π− like in the left hand side of Figure 8, then by
hypothesis of induction π−

1 and π−
2 desequentialize respectively into two retrac-

tile APS π∗
1 and π∗

2 , like in the middle side of Figure 8. Clearly the resulting
APS π∗ (see the right hand side of Figure 8) will be retracted to • by applying
(iteratively) rule R3 and (an instance of) rule R4.

π−

1

Γ, A

π−

2

Γ, B
π−: &

Γ, A&B

A1

An

&

C

C

A&B

..
.

..
.

A1

An

A

B
A1

An

..
.

π∗

π∗

2

π∗

1

Fig. 8. De-sequentialization of the &-rule

In the following we give an indirect proof of the sequentialization: first we show
that any proof net can be weighted in such a way of becoming a proof net à la
Girard (Section 3.1), then sequentialization follows as a consequence of Girard’s
one (Section 3.2).

3.1 Girard’s Proof Nets

In this section we recall the basic notions of Girard’s proof net; for simplification
reasons we adopt the syntax of [9].

Definition 7 (Girard’s proof structure). A proof structure à la Girard
(GPS) is a PS with weights associated as follows (weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node
(eigen weights are supposed to be different);

2. then we associate a weight, a product of (negation of) boolean variables
(p, p, q, q...) to each node, with the constraint that two nodes have the same
weight if they have a common edge, except when the edge is the premise of a
& or C-node, in these cases we do like in Figure 9:

3. a conclusion node has weight 1;
4. if w is the weight of a &-node, with eigen weight p, and w′ is a weight

depending on p and appearing in the proof structure then w′ ≤ w (we say
that a weight w depends on p when p or p occurs in w).

2 The height, h(π−), of π− is defined inductively as usual. We consider last rule R of
π−: if R = ax then h(π−) = 1 otherwise if R is an unary rule, � or ⊕, (resp., a
binary rule, ⊗ or &) then h(π−) = h(π−

1 )+1 (resp., h(π−) = max(h(π−
1 ), h(π−

2 ))+1)
where π−

1 (resp., π−
1 and π−

2 ) is the immediate sub-proof (resp., are the immediate
sub-proofs) of π−.
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if p does not occur in w

w

w.pw.p

with w1.w2 = 0

w1 w2

w = w1 + w2C

v2 v1 v2v1

&p

Fig. 9. Weights for GPS

A node L with weight w depends on the eigen weight p if w depends on p or
L is a C-node and one of the weights just above it depends on p.

Definition 8 (slice and switchings). A valuation ϕ for a GPS π is a function
from the set of all weights of π into {0, 1}. Fixed a valuation ϕ for π then:

– the slice ϕ(π) is the graph obtained from π by keeping only those nodes with
weight 1 together its emerging edges;

– a multiplicative switching S for π is the non oriented graph built on the
nodes and edges of ϕ(π) with the modification that for each �-node we take
only one premise (left/right �-switch);

– an additive switching (or simply a switching) is a multiplicative switching
where for each &-node we erase the (unique) premise in ϕ(π) and we add
an oriented edge, called jump, from the &-node to an L-node whose weight
depends on the eigen weight of the &-node.

Definition 9 (Girard’s proof net). A GPS π is correct, so it is a proof net
à la Girard (GPN), if any switching, induced by any valuation of π, is acyclic
and connected (ACC).

Theorem 3 (sequentialization). A GPN can be sequentialized into a MALL
sequent proof with same conclusions and vice-versa.

Proof. omitted (see[4]).

3.2 Sequentialization

Definition 10 (GAPS). A Girard abstract proof structure is an APS with
weights associated as follows:

1. first we associate a distinct eigen weight variable to each &-pair (graphically,
the arc of each &-pair is now labelled by a distinct eigen weight variable);

2. then we associate a weight to each node, with the constraint that two nodes
have the same weight if they have a common edge, except when the edge
occurs in a &-pair or C-pair, in these cases we do like in Figure 10:

3. a conclusion node has weight 1;
4. if w is the weight of a node that is the base of an &p-pair and w′ is a weight

depending on p and appearing in the GAPS then w′ ≤ w.
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w

wp C

with w1.w2 = 0

w = w1 + w2

wp w1&p
w2

p does not occur in w

Fig. 10. Weights for GAPS

Remark 1. The notions of valuation and slice are still well defined w.r.t. GAPS.
Only the definition of switching needs a slight modification. Fixed a valuation ϕ
for an GAPS π then:

– a multiplicative switching S for π is the (non oriented) graph built on ϕ(π)
with the modification that for each �-pair we take only one edge (left/right
�-switch);

– an additive switching is a multiplicative switching where for each &p-pair
we erase the (unique) edge in ϕ(π) and we add a jump from the base of this
&p-pair to an L-node whose weight depends on p.

Lemma 1. Assume π is an APS such that π �Ri π′, with 1 ≤ i ≤ 5, and as-
sume there exists a weights assignment making π′ a GAPS, then this assignment
can be extended in such a way to transform π in to a GAPS.

Proof. We reason by cases, according to the retraction Ri.
Cases R1. The weight w associated to node v1 in the retracted graph of R1

in Figure 3 is inherited by both nodes v1 and v2 of the retraction graph. Since
all other weights remain unchanged π is a GAPS. Case R2 is similar.

Case R2 is similar.
Case R3. Assume, in the retracted graph of Figure 4, p is the eigen weight

of the &-pair, w is the weight of node v1, wp is the weight of node v2 and
wp is the weight of node v3. We can easily extend this weight assignment to
the corresponding nodes of the retraction graph: it is easy to verify that this
assignment preserves the property of being a AGPS w.r.t. π, since all pair of
C(π) are pairwise disjoint and all other weights remain unchanged.

Case R4. Assume node v1 has weight w in the retracted graph of Figure 4;
then w is trivially inherited by the corresponding node v1 of the retraction
graph. Now, chosen a new eigen weight p for the &-pair, we can assign weights
wp and wp to nodes, respectively, v2 and v3. Now, since all other weights remain
unchanged, π is a GAPS.

Case R5. Assume a weight assignment for the retracted graph of Figure 5 as
follows: the &p-pair together with nodes v1, v6 and v8 have the same weight w,
while nodes v2 and v3 have weights, respectively, wp and wp. This assignment
can be easily extended to π with a slight modifications: the &-pair with base
in v8 inherits the eigen weight p and v8 inherits the weight w; then weight
wp is assigned to v7, v4 and v2, and weight wp to v6, v5 and v3; finally weight
w = wp + wp is assigned to v1. It is easy to verify that this new assignment
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preserves the property of being a AGPS w.r.t. π, since all pair of C(π) are
pairwise disjoint and all other weights remain unchanged.

What follows is a well known graph theoretical property (see [5], pages 250-251)
we will exploit in the proof of the Lemma 2.

Property 1 (Euler-Poincaré invariance). Given a graph G, then �CC − �Cy =
�V − �E, where �CC, �Cy, �V and �E denotes, respectively, the number of
connected components, cycles, vertices and edges of G.

We use the predicate Gir(π) for saying that a GAPS is correct in the sense of
Definition 9, i.e., any switching S(π), w.r.t. a fixed valuation ϕ(π), is ACC.

Lemma 2. If π is an GAPS and π �Ri π′, 1 ≤ i ≤ 5, then Gir(π) if Gir(π′).

Proof. Let us fix a valuation ϕ for π. First observe that by Lemma 1 we have
only to verify that every switching S(π) is ACC. The proof idea, illustrated
in Figure 11, relies on the fact that if π �Ri π′ then any switching S for π

. . .. . .

σ′σ
χ χ

S(π) S ′(π′)

B1 Bm

A1 An A1 An

B1 Bm

Fig. 11. Recovering S(π) from S′(π′)

is nothing else that a switching S′ for π′ except for the fact we replace the
switched retracted graph σ′ of Ri by a corresponding switched retraction graph
σ. We reason by cases, according to the retraction rule Ri.

1. If π �R1 π′ (see the left hand side of Figure 3) then trivially any switching
S for π can be recovered from a S′ for π′ where we replaced the retracted
graph σ′ with the retraction graph σ of Figure 12. Clearly S(π) is ACC.

σ′σ

S(π′)S(π) e1 v1

v2

v1

Fig. 12. Recovering S(π) from S′(π′) after a retraction R1
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2. If π �R2 π′ (see the right hand side of Figure 3) then any switching S for π
can be recovered from a switching S′ for π′ where we replaced the switched
retracted graph σ′ by a corresponding switched retraction graph σ (resp.,
χ) in case we set a left (resp., right) switch for the �-pair (see Figure 13).
Clearly, S�l

(π) (resp., S�r(π)) is ACC.

σ′σ χ

S ′(π′)

�L

e1 e2

v2v2

v1

v1v1

�R

S�l
(π) S�r

(π)

Fig. 13. Recovering S(π) from S′(π′) after a retraction R2

3. If π �R3 π′ (see the left hand side of Figure 4) then any switching S for π
can be recovered from a switching S′ of π′. We need to consider two cases,
according to the jump emerging from the base v1 of the &p-pair in S′.
First case: assume S′ contains an immediate jump j from the base v1 of the
&p-pair to its (unique) premise v2 (see the right hand side of Figure 14).
Then S for π can be recovered from S′ where we replaced the switched
retracted graph σ′ by the corresponding switched retraction graph σ on the
left hand side of Figure 14. We have to show that S is ACC. First, observe

c c

b
a

j j

σ′σ

S(π) S ′(π′)

v1

b

a

v4

v2 v2

v1

Fig. 14. Recovering S(π) from S′(π′), with an immediate jump, after a retraction R3

that edges a, b and c are connected in S as well in S′, so the number of
connected components in S is 1. Moreover in S the difference �V − �E must
be the same as that one in S′, that is 1, since in S there is only one more
edge and one more vertex than in S′. So by the Euler-Poincaré invariance in
S we have �CC − �Cy = 1, therefore �Cy in S must be 0. So S is ACC.
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Second case: S contains a remote jump j from the base v1 of the &p pair
to a node v depending on p that is different from the (unique) premise of
&p (see the right hand side of Figure 15). Clearly S can be recovered from

a

c

b
a

b

v v
j j

σ σ′

S(π) S ′(π′)

v2

v4

v2

v1

c

v1

Fig. 15. Recovering S(π) from S′(π′), with a remote jump, after a retraction R3

a switching S′ where we replaced the switched retracted graph σ′ by the
switched retraction graph σ on the left hand side of Figure 15. We show that
S is ACC. Although vertices v1 and v2 are connected in S′ by assumption,
they cannot be connected through a, otherwise we could easily set a switching
S

′′
for π′ that is identical to S′ except for the immediate jump from v1 to v2

and get a cycle, contradicting the assumption Gir(π′). This means that the
retraction step R3 preserves backwards the connection of S, so �CC of S is
1. Now, observe that the difference �V −�E of S is the same as that one of S′

(i.e. 1), so by the Euler-Poincaré invariance we have, in S, �CC − �Cy = 1.
This means that, in S, �Cy must be 0. So S is ACC.

4. If π �R4 π′ (see the right hand side of Figure 4) then a switching S for π
can be recovered from a switching S′ for π′ plus a jump j emerging from the
base v1 of the &p pair. Now, observe this jump j in S can only be directed
to its (unique) premise, otherwise: (i) either there would exist in π′ a node
whose weight depends on a variable p that is not an eigen weight of any
&-pair or (ii) there would exist in π two &-pairs with the same eigen-weight
variable p. Both cases contradict that π is an AGPS (Lemma 1).

5. If π �R5 π′ (see Figure 5) then a switching S for π is exactly a switching S′

for π′ except for the the jump emerging from the &p-pair and the switch for
the � pair occurring in the retraction R5. So, let us fix in S′ a left �-switch
and jump from the base v6 of the &p-pair (the case with the right �-switch,
is analogous): there are two possible jumps.
First case: assume in S′(π′) we jump from the base v6 of the &p pair to its
(unique) premise. Then a switching S for π is exactly a switching S′ for π′

except for the fact we replaced the switched retracted graph σ′ with σ of
Figure 16. Clearly S is connected, so via the Euler-Poincaré invariance, we
conclude that S is also acyclic (we reason like in the previous point 3).
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j

j

σ′σ

S(π) S ′(π′)

v1 v2

v7

v8 v8

v6

v2v1

Fig. 16. Recovering S(π) form S′(π′), with immediate jump, after a reduction R5

Second case: assume in S′(π) we jump from the base v6 of the &p pair to a
remote node v depending on p. Then a switching S for π can be recovered
from a switching S′ where we replaced the switched retracted graph σ′ with
σ of Figure 17. Now observe that σ′ does not induce any cycle in S, otherwise

v v

σ σ′

S(π) S ′(π′)

v1 v2 v1 v2

v7

v8 v8

j
j

v6

Fig. 17. Recovering S(π) form S′(π′), with a remote jump, after a reduction R5

this cycle would already occur in S′. Moreover, the number of vertices and
edges in S is the same as in S′ so, via the Euler-Poincaré invariance, we
conclude that S is connected.

Theorem 4 (PN �→GPN). If π is a PN then there exists a weight assignment
transforming π in to a GPN.

Proof. If π is a PN then π∗ retracts to a node v with possibly several incident
edges labelled by the conclusions of π. Trivially v is an AGPS satisfying the
predicate Gir, then by iteration of Lemma 2 we conclude that π is a GPN.
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Theorem 5 (sequentialization). If π is a PN with conclusions Γ then the
sequent Γ is provable in the MALL sequent calculus.

Proof. It follows from Girard’s sequentialization (see [4]) via Theorem 4.

4 Conclusions and Forthcoming Work

We presented a simple system of graph rewriting rules which can be viewed as
a geometrical correction criterion for cut free proof structures of MALL. Each
proof structure that is correct in our sense it will be so also in Girard’s sense
but not vice-versa. In general the other direction of Theorem 4 does not hold:
the proof structure π1, on the left hand side of Figure 18 is not correct for us
(it is not retractile); nevertheless we can find a weight assignment transforming
π1 in to a Girard proof net. Actually we only accept correct the proof structure
π2 depicted on the right hand side of Figure 18 which (in our opinion) better
embeds the two different sequentializations induced by the permutability of the
&-rule w.r.t. the ⊗-rule of the sequent calculus.

v v

σ σ′

S(π) S ′(π′)

v1 v2 v1 v2

v7

v8 v8

j
j

v6

Fig. 18. Examples of PS w.r.t. sequentialization

As future work we aim at comparing the complexity of the retractility cor-
rectness criterion w.r.t. Girard and Hughes-van Glabbeek’s criteria. Moreover
we aim at extending retraction rules in such a way to take in to account proof
nets with cuts. At the moment we are investigating some local (commutative)
cut reduction steps, following the style of the Interaction Nets ([8]). Our idea is
sketched in Figure 19 where the 
 symbol states for a binary MALL connective

1

2

3

4 C

C

C cut ax ax

ax

ax

�

�

�

cut

cut

�→

cut

cut

3

42

1

Fig. 19. Commutative cut step reduction
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or a contraction C. But in that case the correspondence with monomial GPS is
lost: as soon as we replace the 
 symbol with the & connective we are suddenly
faced to proof structures weighted with polynomials.
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sation (principalment du λ-calcul). PhD Thesis, Univ. Paris VII (Juin 1990)

3. Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)
4. Girard, J.-Y.: Proof nets: the parallel syntax for proof theory. In: Logic and Algebra,

Marcel Dekker (1996)
5. Girard, J.-Y.: Le point aveugle. In: Hermann (ed.) Cours de Logique. Vers la Per-

fection, Paris, vol. I (2006)
6. Guerrini, S., Masini, A.: Parsing MELL proof nets. Theoretical Computer Sci-

ence 254, 317–335 (2001)
7. Hughes, D., van Glabbeek, R.: Proof Nets for Unit-free Multiplicative-Additive Lin-

ear Logic. In: Proc. of IEEE Logic in Computer Science, IEEE Computer Society
Press, Los Alamitos (2003)

8. Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Reg-
nier, L. (eds.) Advanced in Linear Logic, pp. 225–247. Cambridge Press, Cambridge
(1995)

9. Laurent, O.: Polarized Proof Nets: Proof Nets for LC (Extended Abstract). In:
Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 213–227. Springer, Heidelberg
(1999)


	Introduction
	The MALL Fragment of Linear Logic

	Proof Structures
	(De-)Sequentialization
	Girard's Proof Nets
	Sequentialization

	Conclusions and Forthcoming Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


