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Abstract12

A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of13

resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those14

sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure,15

through a rewriting system acting both on resource and MELL proof-structures.16
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1 Introduction21

Resource ⁄-calculus and the Taylor expansion Girard’s linear logic (LL, [15]) is a refine-22

ment of intuitionistic and classical logic that isolates the infinitary parts of reasoning in two23

(dual) modalities: the exponentials ! and ?. They give a logical status to the operations of24

memory management such as copying and erasing: a linear proof corresponds—via Curry–25

Howard isomorphism—to a program that uses its argument linearly, i.e. exactly once, while26

an exponential proof corresponds to a program that can use its argument at will.27

The intuition that linear programs are analogous to linear functions (as studied in linear28

algebra) while exponential programs mirror a more general class of analytic functions got a29

technical incarnation in Ehrhard’s work [9, 10] on LL-based denotational semantics for the30

⁄-calculus. This investigation has been then internalized in the syntax, yielding the resource31

⁄-calculus [5, 11, 14]: there, copying and erasing are forbidden and replaced by the possibility32

to apply a function to a bag of resource ⁄-terms which specifies how many times an argument33

can be linearly passed to the function, so as to represent only bounded computations.34

The Taylor expansion associates with an ordinary ⁄-term a (generally infinite) set of35

resource ⁄-terms, recursively approximating the usual application: the Taylor expansion of36

the ⁄-term MN is made of resource ⁄-terms of the form t[u1, . . . , un], where t is a resource37

⁄-term in the Taylor expansions of M , and [u1, . . . , un] is a bag of arbitrarily finitely many38

(possibly 0) resource ⁄-terms in the Taylor expansion of N . Roughly, the idea is to decompose39

a program into a set of purely “resource-sensitive programs”, all of them containing only40

bounded (although possibly non-linear) calls to inputs. The notion of Taylor expansion has41

many applications in the theory of the ⁄-calculus, e.g. in the study of linear head reduction42

[12], normalization [23, 26], Böhm trees [4, 18], ⁄-theories [19], intersection types [21]. More43
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24:2 Glueability of resource proof-structures: inverting the Taylor expansion

generally, understanding the relation between a program and its Taylor expansion renews the44

logical approach to the quantitative analysis of computation started with the inception of LL.45

A natural question is the inverse Taylor expansion problem: how to characterize which46

sets of resource ⁄-terms are contained in the Taylor expansion of a same ⁄-term? Ehrhard and47

Regnier [14] defined a simple coherence relation such that a finite set of resource ⁄-terms is48

included in the Taylor expansion of a ⁄-term if and only if the elements of this set are pairwise49

coherent. Coherence is crucial in many structural properties of the resource ⁄-calculus, such50

as in the proof that in the ⁄-calculus normalization and Taylor expansion commute [12, 14].51

We aim to solve the inverse Taylor expansion problem in the more general context of LL,52

more precisely in the multiplicative-exponential fragment MELL of LL, being aware that for53

MELL no coherence relation can solve the problem (see below).54

Proof-nets, proof-structures and their Taylor expansion: seeing trees behind graphs In55

MELL, linearity and the sharp analysis of computations naturally lead to represent proofs56

in a more general graph-like syntax instead of a term-like or tree-like one.1 Indeed, linear57

negation is involutive and classical duality can be interpreted as the possibility of juggling58

between di�erent conclusions, without a distinguished output. Graphs representing proofs in59

MELL are called proof-nets: their syntax is richer and more expressive than the ⁄-calculus.60

Contrary to ⁄-terms, proof-nets are special inhabitants of the wider land of proof-structures:61

they can be characterized, among proof-structures, by abstract (geometric) conditions called62

correctness criteria [15]. The procedure of cut-elimination can be applied to proof-structures,63

and proof-nets can also be seen as the proof-structures with a good behavior with respect to64

cut-elimination [1]. Proof-structures can be interpreted in denotational models and proof-65

nets can be characterized among them by semantic means [24]. It is then natural to attack66

problems in the general framework of proof-structures. In this work, correctness plays no role67

at all, hence we will consider proof-structures and not only proof-nets. MELL proof-structures68

are a particular kind of graphs, whose edges are labeled by MELL formulæ and vertices by69

MELL connectives, and for which special subgraphs are highlighted, the boxes, representing70

the parts of the proof-structure that can be copied and discarded (i.e. called an unbounded71

number of times). A box is delimited from the rest of a proof-structure by exponential72

modalities: its border is made of one !-cell, its principal door, and arbitrarily many ?-cells,73

its auxiliary doors. Boxes are nested or disjoint (they cannot partially overlap), so as to add74

a tree-like structure to proof-structures aside from their graph-like nature.75

As in ⁄-calculus, one can define [13] box-free resource proof-structures2, where !-cells make76

resources available boundedly, and the Taylor expansion of MELL proof-structures into these77

resource proof-structures, that recursively copies the content of the boxes an arbitrary number78

of times. In fact, as somehow anticipated by Boudes [3], such a Taylor expansion operation can79

be carried on any tree-like structure. This primitive, abstract, notion of Taylor expansion can80

then be pulled back to the structure of interest, as shown in [17] and put forth again here.81

The question of coherence for proof-structures The inverse Taylor expansion problem82

has a natural counterpart in the world of MELL proof-structures: given a set of resource83

proof-structures, is there a MELL proof-structure the expansion of which contains the set?84

Pagani and Tasson [22] give the following answer: it is possible to decide whether a finite set of85

resource proof-structures is a subset of the Taylor expansion of a same MELL proof-structure86

1 A term-like object is essentially a tree, with one output (its root) and many inputs (its other leaves).
2 Also known as di�erential proof-structures [6] or di�erential nets [13, 20, 7] or simple nets [22].
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(and even possible to do it in non-deterministic polynomial time); but unlike the ⁄-calculus,87

the structure of the relation “being part of the Taylor expansion of a same proof-structure”88

is much more complicated than a binary (or even n-ary) coherence. Indeed, for any n > 1, it89

is possible to find n + 1 resource proof-structures such that any n of them are in the Taylor90

expansion of some MELL proof-structure, but there is no MELL proof-structure whose Taylor91

expansion has all the n+1 as elements (see our Example 21 and [25, pp. 244-246]).92

In this work, we introduce a new combinatorial criterion, glueability, for deciding whether93

a set of resource proof-structures is a subset of the Taylor expansion of some MELL proof94

structure, based on a rewriting system on sequences of MELL formulæ. Our criterion is more95

general (and, we believe, simpler) than the one of [22], which is limited to the cut-free case with96

atomic axioms and characterizes only finite sets: we do not have these limitations. We believe97

that our criterion is a useful tool for studying proof-structures. We conjecture that it can be98

used to show that, for a suitable geometric restriction, a binary coherence relation does exist99

for resource proof-structures. It might also shed light on correctness and sequentialization.100

As the proof-structures we consider are typed, an unrelated di�culty arises: a resource101

proof-structure might not be in the Taylor expansion of any MELL proof-structure, not102

because it does not respect the structure imposed by the Taylor expansion, but because its103

type is impossible.3 To solve this issue we enrich the MELL proof-structure syntax with a104

“universal” proof-structure: a special z-cell (daimon) that can have any number of outputs105

of any types, and we allow it to appear inside a box, representing information plainly missing106

(see Section 8 for more details and the way this matter is handled by Pagani and Tasson [22]).107

2 Outline and technical issues108

The rewritings The essence of our rewriting system is not located on proof-structures but109

on lists of MELL formulæ (Definition 9). In a very down-to-earth way, this rewriting system is110

generated by elementary steps akin to rules of sequent calculus read from the bottom up: they111

act on a list of conclusions, analogous to a monolaterous right-handed sequent. These steps are112

actually more sequentialized than sequent calculus rules, as they do not allow for commutation.113

For instance, the rule corresponding to the introduction of a ¢ on the i-th formula, is defined114

as ¢i : (“1, . . . , “i≠1, A ¢ B, “i+1, . . . , “n) æ (“1, . . . , “i≠1, A, B, “i+1, . . . , “n).115

A A‹

ax

¢

A ¢ A‹

¢1
A A‹

axThese rewrite steps then act on MELL proof-structures, coherently116

with their type, by modifying (most of the times, erasing) the cells117

directly connected to the conclusion of the proof-structure. Formally,118

this means that there is a functor qMELLz from the rewrite steps119

into the category Rel of sets and relations, associating with a list of formulæ the set of MELL120

proof-structures with these conclusions, and with a rewrite step a relation implementing it121

(Definition 12). The rules deconstruct the proof-structure, starting from its conclusions. The122

rule ¢1 acts by removing a ¢-cell on the first conclusion, replacing it by two conclusions.123

These rules can only act on specific proof-structures, and indeed, capture a lot of their124

structure: ¢i can be applied to a MELL proof-structure R if and only if R has a ¢-cell in125

the conclusion i (as opposed to, say, an axiom). So, in particular, every proof-structure is126

completely characterized by any sequence rewriting it to the empty proof-structure.127

3 Similarly, in the ⁄-calculus, there is no closed ⁄-term of type X æ Y with X ”= Y atomic, but the
resource ⁄-term (⁄f.f)[ ] can be given that type: the empty bag [ ] kills any information on the argument.
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24:4 Glueability of resource proof-structures: inverting the Taylor expansion

Naturality The same rules act also on sets of resource proof-structures, defining the functor128

PqDiLLz0 from the rewrite steps into the category Rel (Definition 17). When carefully129

defined, the Taylor expansion induces a natural transformation from PqDiLLz0 to qMELLz130

(Theorem 18). By applying this naturality repeatedly, we get our characterization (The-131

orem 20): a set of resource proof-structures � is a subset of the Taylor expansion of a MELL132

proof-structure i� there is a sequence rewriting � to the singleton of the empty proof-structure.133

The naturality property is not only a mean to get our characterization, but also an134

interesting result in itself: natural transformations can often be used to express fundamental135

properties in a mathematical context. In this case, the Taylor expansion is natural with136

respect to the possibility to build a proof-structure (both MELL or resource) by adding a cell137

to its conclusions or boxing it. Said di�erently, naturality of the Taylor expansion roughly138

means that the rewrite rules that deconstruct a MELL proof-structure R and a set of resource139

proof-structures in the Taylor expansion of R mimic each other.140

Quasi-proof-structures and mix Our rewrite rules consume proof-structures from their141

conclusions. The rule corresponding to boxes in MELL opens a box by deleting its principal142

door (a !-cell) and its border, while for a resource proof-structure it deletes a !-cell and143

separates the di�erent copies of the content of the box (possibly) represented by such a !-cell.144

This operation is problematic in a twofold way. In a resource proof-structure, where the145

border of boxes is not marked, it is not clear how to identify such copies. On the other side,146

in a MELL proof-structure the content of a box is not to be treated as if it were at the same147

level as what is outside of the box: it can be copied many times or erased, while what is148

outside boxes cannot, and treating the content in the same way as the outside suppresses149

this distinction, which is crucial in LL. So, we need to remember that the content of a box,150

even if it is at depth 0 (i.e. not contained in any other box) after erasing the box wrapping151

it by means of our rewrite rules, is not to be mixed with the rest of the structure at depth 0.152

fi

· · ·

In order for our proof-structures to provide this information, we need to153

generalize them and consider that a proof-structure can have not just a tree of154

boxes, but a forest: this yields the notion of quasi-proof-structure (Definition 1).155

In this way, according to our rewrite rules, opening a box by deleting its principal door156

amounts to taking a box in the tree and disconnecting it from its root, creating a new tree.157

We draw this by surrounding elements having the same root with a dashed line, open from158

the bottom, remembering the phantom presence of the border of the box, below, even if it159

was erased. This allows one to open the box only when it is “alone” (see Definition 11).160

This is not merely a technical remark, as this generalization gives a status to the mix161

rule of LL: indeed, mixing two proofs amounts to taking two proofs and considering them162

as one, without any other modifications. Here, it amounts to taking two proofs, each with163

its box-tree, and considering them as one by merging the roots of their trees (see the mix164

step in Definition 11). We embed this design decision up to the level of formulæ, which165

are segregated in di�erent zones that have to be mixed before interacting (see the notion of166

partition of a finite sequence of formulæin Section 3).167

Geometric invariance and emptiness: the filled Taylor expansion The use of forests168

instead of trees for the nesting structure of boxes, where the di�erent roots are thought of169

as the contents of long-gone boxes, has an interesting consequence in the Taylor expansion:170

indeed, an element of the Taylor expansion of a proof-structure contains an arbitrary number171

of copies of the contents of the boxes, in particular zero. If we think of the part at depth172

0 of a MELL proof-structure as inside an invisible box, its content can be deleted in some173
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A A‹ A B A B A · · · A A · · · A

X X‹ 1 ‹ A1 . . . Ap

ax
cut

1 ‹
¢

A ¢ B

`

A ` B

?

?A

!

!A

zp

Figure 1 Cells, with their labels and their typed inputs and outputs (ordered from left to right).

elements of the Taylor expansion just as any other box.4 As erasing completely conclusions174

would cause the Taylor expansion not preserve the conclusions (which would lead to technical175

complications), we introduce the filled Taylor expansion (Definition 8), which contains not176

only the elements of the usual Taylor expansion, but also elements of the Taylor expansion177

where one component has been erased and replaced by a z-cell (daimon), representing a178

lack of information, apart from the number and types of the conclusions.179

Atomic axioms Our paper first focuses on the case where proof-structures are restricted to180

atomic axioms. In Section 7 we sketch how to adapt our method to the non-atomic case.181

3 Proof-structures and the Taylor expansion182

MELL formulæ and (quasi-)proof-structures Given a countably infinite set of propositional183

variables X, Y, Z, . . . , MELL formulæ are defined by the following inductive grammar:184

A, B ::= X | X‹ | 1 | ‹ | A ¢ B | A ` B | !A | ?A185

Linear negation is defined via De Morgan laws 1‹ = ‹, (A ¢ B)‹ = A‹ ` B‹ and186

(!A)‹ = ?A, so as to be involutive, i.e. A‹‹ = A. Given a list � = (A1, . . . , Am) of MELL187

formulæ, a partition of � is a list (�1, . . . , �n) of lists of MELL formulæsuch that there are188

0 = i0 < · · · < in = m with �j = (Aij≠1+1, . . . , Aij ) for all 1 6 j 6 n; such a partition of �189

is also denoted by (A1, . . . , Ai1 ; · · · ; Ain≠1+1, . . . , Am), with lists separated by semi-colons.190

We reuse the syntax of proof-structures given in [17] and sketch here its main features. We191

suppose known definitions of (directed) graph, rooted tree, and morphism of these structures.192

In what follows we will speak of tails in a graph: “hanging” edges with only one vertex. This193

can be implemented either by adding special vertices or using [2]’s graphs.194

If an edge e is incoming in (resp. outgoing from) a vertex v, we say that e is a input195

(resp. output) of v. The reflexive-transitive closure of a tree · is denoted by · : the operator196

(·) lifts to a functor from the category of trees to the category of directed graphs.197

I Definition 1. A module M is a (finite) directed graph with:198

vertices v labeled by ¸(v) œ {ax, cut, 1, ‹, ¢,`, ?, !} fi {zp | p œ N}, the type of v;199

edges e labeled by a MELL formula c(e), the type of e;200

an order <M that is total on the tails of |M | and on the inputs of each vertex of type `, ¢.201

Moreover, all the vertices verify the conditions of Figure 1.5202

A quasi-proof-structure is a triple R = (|R|, F , box) where:203

|R| is a module with no input tails, called the module of R;204

F is a forest of rooted trees with no input tails, called the box-forest of R;205

box : |R| æ F is a morphism of directed graphs, the box-function of R, which induces a206

partial bijection from the inputs of the vertices of type ! and the edges in F , and such that:207

4 The dual case, of copying the contents of a box, poses no problem in our approach.
5 Note that there are no conditions on the types of the outputs of vertices of type z (i.e. of type zp for

some p œ N); and the outputs of vertices of type ax must have atomic types.

CSL 2020



24:6 Glueability of resource proof-structures: inverting the Taylor expansion

for any vertices v, vÕ with an edge from vÕ to v, if box(v) ”= box(vÕ) then ¸(v) œ {!, ?}.6208

Moreover, for any output tails e1, e2, e3 in |R| which are outputs of the vertices v1, v2, v3,209

respectively, if e1 <|R| e2 <|R| e3 then it is impossible that box(v1) = box(v3) ”= box(v2).7210

A quasi-proof-structure R = (|R|, F , box) is:211

1. MELLz if all vertices in |R| of type ! have exactly one input, and the partial bijection212

induced by box from the inputs of the vertices of type ! in |R| and the edges in F is total.213

2. MELL if it is MELLz and, for every vertex v in |R| of type z, one has box≠1(box(v)) = {v}214

and box(v) is not a root of the box-forest F of R.215

3. DiLLz0 if the box-forest F of R is just a juxtaposition of roots.216

4. DiLL0 (or resource) if it is DiLLz0 and there is no vertex in |R| of type z.217

For the previous systems, a proof-structure is a quasi-proof-structure whose box-forest is a tree.218

Our MELL proof-structure (i.e. a MELL quasi-proof-structure that is also a proof-structure)219

corresponds to the usual notion of MELL proof-structure (as in [8]) except that we also allow220

the presence of a box filled only by a daimon (i.e. a vertex of type z). The empty (DiLL0 and221

MELL) proof-structure—whose module and box-forest are empty graphs—is denoted by Á.222

Given a quasi-proof-structure R = (|R|, F , box), the output tails of |R| are the conclusions223

of R. So, the pre-images of the roots of F via box partition the conclusions of R in a list of224

lists of such conclusions. The type of R is the list of lists of the types of these conclusions.225

We often identify the conclusions of R with a finite initial segment of N.226

By definition of graph morphism, two conclusions in two distinct lists in the type of a227

quasi-proof-structure R are in two distinct connected components of |R|; so, if R is not a228

proof-structure then |R| contains several connected components. Thus, R can be seen as a229

list of proof-structures, its components, one for each root in its box-forest.230

A non-root vertex v in the box-forest F induces a subgraph of F of all vertices above it231

and edges connecting them. The pre-image of this subgraph through box is the box of v and232

the conditions on box in Definition 1 translate the usual nesting condition for LL boxes.233

In quasi-proof-structures, we speak of cells instead of vertices, and, for a cell of type ¸, of234

a ¸-cell. A z-cell is a zp-cell for some p œ N. An hypothesis cell is a cell without inputs.235

I Example 2. The graph in Figure 2 is a MELL quasi-proof-structure. The colored areas236

represent the pre-images of boxes, and the dashed boxes represent the pre-images of roots.237

‹ 1 Y Y ‹

‹ 1

X 1

X‹

ax

ax

ax

!

!1

!
‹ 1

!

!1

!
?

?‹
?

?!1

¢

X ¢ ?‹

?

?Y

`

?Y ` Y ‹

!

!(?Y ` Y ‹)

!

1

!

!1

! •

•

•

•

• •

Figure 2 A MELL quasi-proof-structure R, its box-forest FR (without dotted lines) and the
reflexive-transitive closure F 

R of FR (with also dotted lines).

6 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?.
7 This is a technical condition that simplifies the definition of the rewrite rules in Section 4. Note that

box(v1), box(v2), box(v3) are necessarily roots in F , since box is a morphism of directed graphs.
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The Taylor expansion Proof-structures have a tree structure made explicit by their box-238

function. Following [17], the definition of the Taylor expansion uses this tree structure: first,239

we define how to “expand” a tree—and more generally a forest—via a generalization of the240

notion of thick subtree [3] (Definition 3; roughly, a thick subforest of a box-forest says the241

number of copies of each box to be taken, iteratively), we then take all the expansions of the242

tree structure of a proof-structure and we pull the approximations back to the underlying243

graphs (Definition 5), finally we forget the tree structures associated with them (Definition 6).244

I Definition 3 (thick subforest). Let · be a forest of rooted trees. A thick subforest of · is a245

pair (‡, h) of a forest ‡ of rooted trees and a graph morphism h : ‡ æ · whose restriction to246

the roots of ‡ is bijective.247

I Example 4. The following is a graphical presentation of a thick subforest (·, h) of the248

box-forest F of the quasi-proof-structure in Figure 2, where the graph morphism h : · æ F249

is depicted chromatically (same color means same image via h).250

· =

•

•

•

• •

• •

•

• • • • •
h≠æ

•

•

•

•

• •
= F

251
252

Intuitively, it means that · is obtained from F by taking 3 copies of the blue box, 1 copy of253

the red box and 4 copies of the orange box; in the first (resp. second; third) copy of the blue254

box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.255

I Definition 5 (proto-Taylor expansion). Let R = (|R|, FR, boxR) be a quasi-proof-structure.256

The proto-Taylor expansion of R is the set T proto(R) of thick subforests of FR.257

Let t = (·t, ht) œ T proto(R). The t-expansion of R is the pullback (Rt, pt, pR) below,258

computed in the category of directed graphs and graph morphisms.259

Rt · t

|R| F R

pt

pR h t
boxR

260

Given a quasi-proof-structure R and t = (·t, ht) œ T proto(R), the directed graph Rt261

inherits labels on vertices and edges by composition with the graph morphism pR : Rt æ |R|.262

Let [·t] be the forest made up of the roots of ·t and ÿ : ·t æ [·t] be the graph morphism263

sending each vertex of ·t to the root below it; ÿ induces by post-composition a morphism264

ht = ÿ ¶ pt : Rt æ [·t] . The triple (Rt, [·t], ht) is a DiLL0 quasi-proof-structure, and it is a265

DiLL0 proof-structure if R is a proof-structure. We can then define the Taylor expansion T (R)266

of a quasi-proof-structure R (an example of an element of a Taylor expansion is in Figure 3).267

I Definition 6 (Taylor expansion). Let R be a quasi-proof-structure. The Taylor expansion of268

R is the set of DiLL0 quasi-proof-structures T (R) = {(Rt, [·t], ht) | t = (·t, ht) œ T proto(R)}.269

An element (Rt, [·t], ht) of the Taylor expansion of a quasi-proof-structure R has much270

less structure than the pullback (Rt, pt, pR): the latter indeed is a DiLL0 quasi-proof-structure271

Rt coming with its projections |R| pRΩ≠ Rt
pt≠æ · t , which establish a precise correspondence272

between cells and edges of Rt and cells and edges of R: a cell in Rt is labeled (via the273

projections) by both the cell of |R| and the branch of the box-forest of R it arose from. But274

(Rt, [·t], ht) where Rt is without its projections pt and pR loses the correspondence with R.275

CSL 2020
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‹ 1 ‹ 1 ‹ 1 Y Y ‹

‹ 1 1 1

X 1 1 1 1

X‹ !1

ax

ax

ax ax ax

!

!1

!

!1

!

‹ 1 1 1

!

!1?

?‹

?

?!1

¢

X ¢ ?‹

?

?Y

`

?Y ` Y ‹

!

!(?Y ` Y ‹)

1 1 1 1

!

!1

• •

Figure 3 The element of the Taylor expansion of the MELL quasi-proof-structure R in Figure 2,
obtained from the element of T proto(R) depicted in Example 4.

I Remark 7. By definition, the Taylor expansion preserves conclusions: there is a bijection276

Ï from the conclusions of a quasi-proof-structure R to the ones in each element fl of T (R)277

such that i and Ï(i) have the same type and the same root (i.e. boxR(i) = boxfl(Ï(i)) up to278

isomorphism). Therefore, the types of R and fl are the same (as a list of lists).279

The filled Taylor expansion As discussed in Section 2 (p. 4), our method needs to “represent”280

the emptiness introduced by the Taylor expansion (taking 0 copies of a box) so as to preserve281

the conclusions. So, an element of the filled Taylor expansion T z(R) of a quasi-proof-structure282

R (an example is in Figure 4) is obtained from an element of T (R) where a whole component283

can be erased and replaced by a z-cell with the same conclusions (hence T (R) ™ T z(R)).284

I Definition 8 (filled Taylor expansion). An emptying of a DiLL0 quasi-proof-structure fl =285

(|fl|, F , box) is the DiLL0 quasi-proof-structure with the same conclusions as fl, obtained from fl286

by replacing each of the components of some roots of F with a z-cell whose outputs are tails.287

The filled Taylor expansion T z(R) of a quasi-proof-structure R is the set of all the288

emptyings of every element of its Taylor expansion T (R).289

1 1

X‹ X ¢ ?‹ ?!1 !(?Y ` Y ‹)

z !

1 1

!

!1

• •

Figure 4 An element of the filled Taylor expansion of the MELL quasi-proof-structure in Figure 2.

4 Means of destruction: unwinding MELL quasi-proof-structures290

Our aim is to deconstruct proof-structures (be they MELLz or DiLL0) from their conclusions.291

To do that, we introduce a category of rules of deconstruction. The morphisms of this category292

are sequences of deconstructing rules, acting on lists of lists of formulæ. These morphisms293

act through functors on quasi-proof-structures, exhibiting their sequential structure.294

I Definition 9 (the category Path). Let Path be the category whose295

objects are lists � = (�1; . . . ; �n) of lists of MELL formulæ;296

arrows are freely generated by the elementary paths in Figure 5.297

We call a path any arrow › : � æ �Õ. We write the composition of paths without symbols and298

in the diagrammatic order, so, if › : � æ �Õ and ›Õ : �Õ æ �ÕÕ, ››Õ : � æ �ÕÕ.299
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(�1; · · · ; �k, c(i), c(i+1), �Õ
k; · · · ; �n) exci≠≠æ (�1; · · · ; �k, c(i+1), c(i), �Õ

k; · · · ; �n)
(�1; · · · ; �k, c(i), c(i+1), �Õ

k; · · · ; �n) mixi≠≠æ (�1; · · · ; �k, c(i); c(i+1), �Õ
k; · · · ; �n)

(�1; · · · ; �k; c(i), c(i+1); �k+2; · · · ; �n) axi≠≠æ (�1; · · · ; �k; �k+2; · · · ; �n) with c(i) = A = c(i+1)‹

(�1; · · · ; �k; · · · ; �n) cuti

≠≠æ (�1; · · · ; �k, c(i), c(i+1); · · · ; �n) with c(i) = A = c(i+1)‹

(�1; · · · ; �k; �k+1, c(i); �k+2; · · · ; �n) zi≠≠æ (�1; · · · ; �k; �k+2; · · · ; �n)
(�1; · · · ; �k; c(i); �k+2; · · · ; �n) 1i≠æ (�1; · · · ; �k; �k+2; · · · ; �n) with c(i) = 1
(�1; · · · ; �k; c(i); �k+2; · · · ; �n) ‹i≠≠æ (�1; · · · ; �k; �k+2; · · · ; �n) with c(i) = ‹

(�1; · · · ; �k, c(i); · · · ; �n) ¢i≠≠æ (�1; · · · ; �k, A, B; · · · ; �n) with c(i) = A ¢ B

(�1; · · · ; �k, c(i); · · · ; �n) `i≠≠æ (�1; · · · ; �k, A, B; · · · ; �n) with c(i) = A ` B

(�1; · · · ; �k, c(i); · · · ; �n) ?ci≠æ (�1; · · · ; �k, ?A, ?A; · · · , �n) with c(i) = ?A

(�1; · · · ; �k, c(i); · · · ; �n) ?di≠æ (�1; · · · ; �k, A; · · · ; �n) with c(i) = ?A

(�1; · · · ; �k; c(i); �k+2; · · · ; �n) ?wi≠æ (�1; · · · ; �k; �k+2; · · · ; �n) with c(i) = ?A

(�1; · · · ; ?�k, c(i); · · · ; �n) Boxi≠≠≠æ (�1; · · · ; ?�k, A; · · · ; �n) with c(i) = !A

Figure 5 The generators of Path. In the source � = (A1, . . . , Ai1 ; · · · ; Aim≠1+1, . . . , Ain ) of each
arrow, c(i) denotes the ith formula in the flattening (A1, . . . , Ai1 , . . . , Aim≠1+1, . . . , Ain ) of �.

I Example 10. `1 `2 `3 ¢1 ¢3 exc1 exc2 mix2 ax1 exc2 mix2 ax1 ax1 is a path of type300 !
(X ¢ Y ‹) ` ((Y ¢ Z‹) ` (X‹ ` Z))

"
≠æ Á, where Á is the empty list of lists of formulæ.301

We will tend to forget about exchanges and perform them silently (as it is customary, for302

instance, in most presentations of sequent calculi).303

The category Path acts on MELLz quasi-proof-structures, exhibiting a sequential struc-304

ture in their construction. For � a list of list of MELL formulæ, qMELLz(�) is the set of305

MELLz quasi-proof-structures of type �. To ease the reading of the rewrite rules acting on a306

MELLz quasi-proof-structures R, we will only draw the parts of R belonging to the relevant307

component; e.g., if we are interested in an ax-cell whose outputs are the conclusions i and308

i+1, and it is the only cell in a component, we will write i i+1

ax

ignoring the rest.309

I Definition 11 (action of paths on MELL quasi-proof-structures). An elementary path a : � æ310

�Õ defines a relation a ™ qMELLz(�) ◊ qMELLz(�Õ) (the action of a) as the smallest311

relation containing all the cases in Figure 6, with the following remarks:312

mix read in reverse, a quasi-proof-structure with two components is in relation with a proof-313

structure with the same module but the two roots of such components merged.314

hypothesis if a œ {axi,zi, 1i, ‹i, ?wi}, the rules have all in common to act by deleting a cell315

without inputs that is the only cell in its component. We have drawn the axiom case in316

Figure 6c, the others vary only by their number of conclusions.317

cut read in reverse, a quasi-proof-structure with two conclusions i and i + 1 is in relation318

with the quasi-proof-structure where these two conclusions are cut. This rule, from left to319

right, is non-deterministic (as there are many possible cuts).320

binary multiplicatives these rules delete a binary connective. We have only drawn the ¢321

case in Figure 6e, the ` case is similar.322

contraction splits a ?-cell with h+k+2 inputs into two ?-cells with h+1 and k+1 inputs,323

respectively.324

dereliction only applies if the ?-cell (with 1 input) does not shift a level in the box-forest.325

box only applies if a box (and its frontier) is alone in its component.326

This definition of the rewrite system is extended to define a relation › ™ qMELLz(�) ◊327

qMELLz(�Õ) (the action of any path › : � æ �Õ) by composition of relations.328
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�k i i+1 �Õ
k

exci

�k i+1 i �Õ
k

(a) Exchange

�k i i+1 �Õ
k

mixi

�k i i+1 �Õ
k

(b) Mix
· · · i i+1 · · ·

ax
axi

· · · · · ·

(c) Hypothesis (ax,z, 1, ‹, ?w)

�k

cut

cuti

i+1i�k

(d) Cut

�k

¢

i

¢i

�k i i+1

(e) Binary multiplicative
(¢,`)

�k · · · · · ·

?

i

?ci

�k · · ·

?

i

· · ·

?

i+1

(f) Contraction

�k

?

i

?di

�k i

(g) Dereliction

!

i

?

?�k

Boxi

i

?

?�k

(h) Box

Figure 6 Actions of elementary paths on MELLz quasi-proof-structures.

Given two MELLz quasi-proof-structures R and RÕ, we say that a rule a applies to R if329

there is a finite sequence of exchanges exci1 · · · excin such that R
exci1 ···excin a

RÕ.330

I Definition 12 (the functor qMELLz). We define a functor qMELLz : Path æ Rel by:331

on objects: qMELLz(�) is the set of MELLz quasi-proof-structures of type �;332

on morphisms: for › : � æ �Õ, qMELLz(›) = › (see Definition 11).333

Our rewrite rules enjoy two useful properties, expressed by Propositions 13 and 15.334

I Proposition 13 (co-functionality). Let › : � æ �Õ be a path. The relation › is a co-function335

on the sets of underlying graphs, that is, a function ›
op

: qMELLz(�Õ) æ qMELLz(�).336

I Lemma 14 (applicability of rules). Let R be a non-empty MELLz quasi-proof-structure.337

There exists a conclusion i such that:338

either a rule in {axi, 1i, ‹i, ¢i,`i, ?c i, ?d i, ?wi, cuti,zi, Boxi} applies to R;339

or R mixi RÕ (where the conclusions a�ected by mixi are i≠k, . . . , i, i+1, . . . , i+¸) and340

i≠k, . . . , i are all the conclusions of either a box or an hypothesis cell, and one of the341

components of RÕ coincides with this cell or box (and its border).342

Proposition 13 and Lemma 14 are proven by simple inspection of the rewrite rules of Figure 6.343

I Proposition 15 (termination). Let R be a MELLz quasi-proof-structure of type �. There344

exists a path › : � æ Á such that R › Á.345

To prove Proposition 15, it is enough to apply Lemma 14 and show that the size of MELLz346

quasi-proof-structures decreases for each application of the rules in Figure 6, according to347

the following definition of size. The size of a proof-structure R is the couple (p, q) where348

p is the (finite) multiset of the number of inputs of each ?-cell in R;349
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�k i i+1 �Õ
k

z
mixi

I

�k i i+1 �Õ
k

z z
J

(a) Mix

. . . i i+1 . . .

z
axi

I

. . . . . .

J

(b) Hypothesis (ax,z, 1, ‹, ?w)

�k

z
cuti

I

�k i i+1

z
J

(c) Cut

�k i

z ?ci

I

�k i i+1

z
J

(d) Binary rule (¢,`, ?c )

�k i

z ?di

I

�k i

z
J

(e) Dereliction

?�k i

z
Boxi

I

?�k i

z
J

(f) Daimoned box

?�k i

? !
Boxi

I

?�k i

z
J

(g) Empty box

. . .

fln

fl1

!

i

?

?�k

Boxi

Y
_________]

_________[

. . .flj

i?

?�k

Z
_________̂

_________\
16j6n

(h) Non-empty box (n > 0)

Figure 7 Actions of elementary paths on z-cells and on a box in qDiLLz0 .

q is the number of cells not labeled by z in R.350

The size of a quasi-proof-structure R is the (finite) multiset of the sizes of its components.351

Multisets are ordered as usual, couples are ordered lexicographically.352

5 Naturality of unwinding DiLLz
0 quasi-proof-structures353

For � a list of lists of MELL formulæ, qDiLLz0 (�) is the set of DiLLz0 quasi-proof-structures354

of type �. For any set X, its powerset is denoted by P(X).355

I Definition 16 (action of paths on DiLLz0 quasi-proof-structures). An elementary path356

a : � æ �Õ defines a relation a ™ qDiLLz0 (�) ◊ P(qDiLLz0 (�Õ)) (the action of a) by the357

rules in Figure 6 (except Figure 6h, and with all the already remarked notes) and in Figure 7.358

We extend this relation on P(qDiLLz0 (�))◊P(qDiLLz0 (�Õ)) by the monad multiplication359

of X ‘æ P(X) and define › (the action of any path › : � æ �Õ) by composition of relations.360

Roughly, all the rewrite rules in Figure 7—except Figure 7h—mimic the behavior of the361

corresponding rule in Figure 6 using a z-cell. Note that in Figure 7g a z-cell is created.362

The non-empty box rule in Figure 7h requires that, on the left of Boxi , flj is not connected363

to fljÕ for j ”= jÕ, except for the !-cell and the ?-cells in the conclusions. Read in reverse, the364

rule associates with a non-empty finite set of DiLL0 quasi-proof-structures {fl1, . . . , fln} the365

merging of fl1, . . . , fln, that is the DiLL0 quasi-proof-structure depicted on the left of Boxi .366

I Definition 17 (the functor PqDiLLz0 ). We define a functor PqDiLLz0 : Path æ Rel by:367

on objects: for � a list of lists of MELL formulæ, PqDiLLz0 (�) = P(qDiLLz0 (�)), the368

set of sets of DiLLz0 proof-structures of type �;369

on morphisms: for › : � æ �Õ, PqDiLLz0 (›) = › (see Definition 16).370

I Theorem 18 (naturality). The filled Taylor expansion defines a natural transformation371

Tz : PqDiLLz0 ∆ qMELLz : Path æ Rel by: (�, R) œTz� i� � ™ T z(R) and the type of372
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R is �. Moreover, if � is a set of DiLL0 proof-structures with � › �Õ and �Õ ™ T (RÕ), then373

R is a MELL proof-structure and � ™ T (R), where R is such that R › RÕ.8374

In other words, the following diagram commutes for every path › : � æ �Õ.375

PqDiLLz0 (�) PqDiLLz0 (�Õ)

qMELLz(�) qMELLz(�Õ)

PqDiLLz0 (›)

Tz�
qMELLz(›)

Tz�Õ

376

It means that given � › �Õ, where �Õ ™ T z(RÕ), we can simulate backwards the rewriting377

to R (this is where the co-functionality of the rewriting steps expressed by Proposition 13378

comes handy) so that R › RÕ and � ™ T z(R); and conversely, given R › RÕ, we can379

simulate the rewriting for any � ™ T z(R), so that � › �Õ for some �Õ ™ T z(RÕ).380

6 Glueability of DiLL0 quasi-proof-structures381

Naturality (Theorem 18) allows us to characterize the sets of DiLL0 proof-structures that are382

in the Taylor expansion of some MELL proof-structure (Theorem 20 below).383

I Definition 19 (glueability). We say that a set � of DiLLz0 quasi-proof-structures is glueable,384

if there exists a path › such that � › {Á}.385

I Theorem 20 (glueability criterion). Let � be a set of DiLL0 proof-structures: � is glueable386

if and only if � ™ T (R) for some MELL proof-structure R.387

Proof. If � ™ T (R) for some MELL proof-structure R, then by termination (Proposition 15)388

R › Á for some path ›, and so � › {Á} by naturality (Theorem 18, as T z(Á) = {Á}).389

Conversely, if � › {Á} for some path ›, then by naturality (Theorem 18, as T (Á) = {Á}390

and � is a set of DiLL0 proof-structures) � ™ T (R) for some MELL proof-structure R. J391

I Example 21. The three DiLL0 proof-structures fl1, fl2, fl3 below are not glueable as a392

whole, but are glueable two by two. In fact, there is no MELL proof-structure whose Taylor393

expansion contains fl1, fl2, fl3, but any pair of them is in the Taylor expansion of some MELL394

proof-structure. This is a slight variant of the example in [25, pp. 244-246].395

1 1 1 1 ‹ ‹ ‹ ‹ ‹

1 1 1 1 ‹ ‹ ‹ ‹ ‹

!

!1

!

!1

!

!1

?

?‹

?

?‹

?

?‹

1 1 1 1 ‹ ‹ ‹ ‹ ‹

1 1 1 1 ‹ ‹ ‹ ‹ ‹

!

!1

!

!1

!

!1

?

?‹

?

?‹

?

?‹

1 1 1 1 ‹ ‹ ‹ ‹ ‹

1 1 1 1 ‹ ‹ ‹ ‹ ‹

!

!1

!

!1

!

!1

?

?‹

?

?‹

?

?‹

396

An example of the action of a path starting from a DiLL0 proof-structure fl and ending in397

{Á} can be found in Figures 8 and 9. Note that it is by no means the shortest possible path.398

When replayed backwards, it induces a MELL proof-structure R such that fl œ T (R).399

8 The part of the statement after “moreover” is our way to control the presence of z-cells.
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fl =
I

??‹ !!(A‹`A)

? ! J
Box2

I

??‹ !(A‹`A)

z
J

?d1

I

?‹ !(A‹`A)

z
J

R = A‹ A

‹ ‹

ax

`

A‹`A

!

!(A‹ ` A)

‹ ‹

?

?‹

?

??‹

!

!!(A‹ ` A)

!

Box2
A‹ A

‹ ‹

ax

`

A‹`A

‹ ‹

?

?‹

!

!(A‹`A)

!

?

??‹

?d1
A‹ A

‹ ‹

ax

`

A‹`A

‹ ‹

?

?‹

!

!(A‹`A)

!

Box2

I

?‹ A‹`A

z
J

`2

I

?‹ A‹ A

z
J

mix1

I

?‹ A‹ A

z z
J

Box2
‹ ‹ A‹ A

ax

`

A‹`A

‹ ‹

?

?‹

`2
‹ ‹ A‹ A

ax‹ ‹

?

?‹

mix1
‹ ‹ A‹ A

ax‹ ‹

?

?‹

Figure 8 The path Box2 ?d1 Box2 `2 mix1 ax2,3 ?c 1 ?d2 mix1 ‹2 ?d1 ‹1 witnessing that fl œ T (R) (to
be continued on Figure 9).

7 Non-atomic axioms400

From now on, we relax the definition of quasi-proof-structure (Definition 1 and Figure 1) so401

that the outputs of any ax-cell are labeled by dual MELL formulæ, not necessarily atomic. We402

can extend our results to this more general setting, with some technical complications. Indeed,403

the rewrite rule for contraction has to be modified. Consider a set of DiLL0 proof-structures404

consisting of just a singleton which is a z-cell. The contraction rule rewrites it as:405

!A‹ !A‹ ?A

z ?c3
Ó

!A‹ !A‹ ?A ?A

z Ô
which is then in the Taylor expansion of !A‹ !A‹ ?A ?A

ax
ax

406
407

on which no contraction rewrite rule ?c can be applied backwards, breaking the naturality.408

The failure of the naturality is actually due to the failure of Proposition 13 in the case of the409

rewrite rule ?c : ?c
op

(i.e. ?c read from the right to the left) is functional but not total.410

The solution to this conundrum lies in changing the contraction rule for DiLLz0 quasi-411

proof-structures, by explicitly adding ?-cells. Hence, the application of a contraction step ?c412

in the DiLLz0 quasi-proof-structures precludes the possibility of anything else but a ?-cell on413

the MELLz side, which allows the contraction step ?c to be applied backwards.414

In turn, this forces us to change the definition of the filled Taylor expansion into a ÷-filled415

Taylor expansion, which has to include elements where a z-cell (representing an empty416

component) has some of its outputs connected to ?-cells.417
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ax2,3
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?

?‹
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I

?‹
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‹

?

?‹
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‹

‹
‹1 { Á }

Figure 9 The path Box2 ?d1 Box2 `2 mix1 ax2,3 ?c 1 ?d2 mix1 ‹2 ?d1 ‹1 witnessing that fl œ T (R)
(continued from Figure 8).

X‹ X ¢ ?‹ !1 !(?Y ` Y ‹) 1 1

z

?

?!1

! 1 1

!

!1

• •

Figure 10 An element of the ÷-filled Taylor expansion of the MELL quasi-proof-structure in Fig. 2.

I Definition 22 (÷-filled Taylor expansion). An ÷-emptying of a DiLL0 quasi-proof-structure418

fl = (|fl|, F , box) is a DiLL0 quasi-proof-structure with the same conclusions as fl, obtained419

from fl by replacing each of the components of some roots of F with a z-cell whose outputs420

are either tails or inputs of a ?-cell whose output i is a tail, provided that i is the output tail421

of a ?-cell in fl.422

The ÷-filled Taylor expansion T z÷ (R) of a quasi-proof-structure R is the set of all the423

÷-emptyings of every element of its Taylor expansion T (R).424

Note that the ÷-filled Taylor expansion contains all the elements of the filled Taylor425

expansion and some more, such as the one in Figure 10.426

Functors qMELLz and PqDiLLz0 are defined as before (Def. 12 and 17, respectively),9427

except that the image of PqDiLLz0 on the generator ?c i (Figure 7d) is changed to428

?[�k] i

z ?ci

I

?[�k]

z

?

i

?

i+1

J
429

430

9 Remember that now, for � a list of list of MELL formulæ, qMELLz(�) (resp. qDiLLz
0 (�)) is the set

of MELLz (resp. DiLLz
0 ) quasi-proof-structures of type �, possibly with non-atomic axioms.
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where ?[�k] signifies that some of the conclusions of �k might be connected to the z-cell431

through a ?-cell. We can prove similarly our main results.432

I Theorem 23 (naturality with ÷). The ÷-filled Taylor expansion defines a natural transform-433

ation Tz÷ : PqDiLLz0 ∆ qMELLz : Path æ Rel by: (�, R) œTz÷ � i� � ™ T z÷ (R) and the434

type of R is �. Moreover, if � is a set of DiLL0 proof-structures with � › �Õ and �Õ ™ T (RÕ),435

then R is a MELL proof-structure and � ™ T (R), where R is such that R › RÕ.436

I Theorem 24 (glueability criterion with ÷). Let � be a set of DiLL0 proof-structures, not437

necessarily with atomic axioms: � is glueable i� � ™ T (R) for some MELL proof-structure R.438

8 Conclusions and perspectives439

z-cells inside boxes Our glueability criterion (Theorem 20) solves the inverse Taylor440

expansion problem in a “asymmetric” way: we characterize the sets of DiLL0 proof-structures441

that are included in the Taylor expansion of some MELL proof-structure, but DiLL0 proof-442

structures have no occurrences of z-cells, while a MELL proof-structure possibly contains443

z-cells inside boxes (see Definition 1). Not only this asymmetry is technically inevitable, but444

it reflects on the fact that some glueable set of DiLL0 proof-structure might not contain any445

information on the content of some box (which is reified in MELL by a z-cell), or worse that,446

given the types, no content can fill that box. Think of the DiLL0 proof-structure fl made only447

of a !-cell with no inputs and one output of type !X, where X is atomic: {fl} is glueable but448

the only MELL proof-structure R such that {fl} ™ T (R) is made of a box containing a z-cell.449

This asymmetry is also present in Pagani and Tasson’s characterization [22], even if450

not particularly emphasized: their Theorem 2 (analogous to the left-to-right part of our451

Theorem 20) assumes not only that the rewriting starting from a finite set of DiLL0 proof-452

structures terminates but also that it ends on a MELL proof-structure (without z-cells, which453

ensures that there exists a MELL proof-structure without z-cells filling all the empty boxes).454

The ⁄-calculus, connectedness and coherence Our rewriting system and glueability cri-455

terion should help to prove the existence of a binary coherence for elements of the Taylor456

expansion of a fragment of MELL proof-structures (despite the impossibility for full MELL457

proved in [25]), extending the one that exists for resource ⁄-terms. We can remark that our458

glueability criterion is actually an extension of the criterion for resource ⁄-terms. Indeed,459

in the case of the ⁄-calculus, there are three rewrite steps, corresponding to abstraction,460

application and variable (which can be encoded in our rewrite steps), and coherence is defined461

inductively: if a set of resource ⁄-terms is coherent, then any set of resource ⁄-term that462

rewrites to it is also coherent.463

Presented in this way, the main di�erence between the ⁄-calculus and MELL (concerning464

the inverse Taylor expansion problem) would not be because of the rewriting system but465

because the structure of any resource ⁄-term univocally determines the rewriting path, while,466

for DiLL0 proof-structures, we have to quantify existentially over all possible paths. This is467

an unavoidable consequence of the fact that proof-structures do not have a tree-structure,468

contrary to ⁄-terms and resource ⁄-terms.469

Moreover, it is possible to match and mix di�erent sequences of rewriting. Indeed,470

consider three DiLL0 proof-structures pairwise glueable. Proving that they are glueable as a471

whole amounts to computing a rewriting path from the rewriting paths witnessing the three472

glueabilities. Our paths were designed with that mixing-and-matching operation in mind, in473

the particular case where the boxes are connected. This is reminiscent of [16], where we also474
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showed that a certain property enjoyed by the ⁄-calculus can be extended to proof-structures,475

provided they are connected inside boxes. We leave that work to a subsequent paper.476

Functoriality and naturality Our functorial point of view on proof-structures might unify477

many results. Let us cite two of them:478

a sequent calculus proof of „ � can be translated into a path from the empty sequence479

into �. This could be the starting point for the formulation of a new correctness criterion;480

the category Path can be extended with higher structure, allowing to represent cut-481

elimination. The functors qMELLz and PqDiLLz0 can also be extended to such higher482

functors, proving via naturality that cut-elimination and the Taylor expansion commute.483
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