Erratum to the paper "The relational model is injective for Multiplicative Exponential Linear Logic (without weakenings)"

Daniel de Carvalho and Lorenzo Tortora de Falco

In Definition 17, the set $b(v)$ has to contain only ports of the PS that are minimal in B_{v} w.r.t. the order relation \leq_{Φ}, i.e. we have to add the following condition on the function b :
for any $v \in \mathcal{C}^{!}(\Phi)$, for any $p_{1}, p_{2} \in b(v)$, we have $p_{1} \leq_{\Phi} p_{2} \Rightarrow p_{1}=p_{2}$,
which yields the following definition:
Definition 17 A Proof-Structure (PS) is a pair $R=(\Phi, b)$ where $\Phi \in$ LPS and b is a function $\mathcal{C}^{!}(\Phi) \rightarrow \mathfrak{P}($ Auxdoors $(\Phi))$ such that for any $p \in \operatorname{Auxdoors}(\Phi)$, $\#_{\Phi}(p)=$ $\operatorname{Card}\left\{l \in \mathcal{C}^{!}(\Phi) \mid p \in b(l)\right\}$ and, for any $v \in \mathcal{C}^{!}(\Phi)$, for any $p_{1}, p_{2} \in b(v)$, we have $p_{1} \leq_{\Phi} p_{2} \Rightarrow p_{1}=p_{2}$. Proof-Structures are defined by induction on the number of !cells: we ask that with every $v \in \mathcal{C}^{!}(\Phi)$ is associated a PS called the box of v (denoted by $\bar{B}(R)(v)$), and defined from the following subset B_{v} of $\mathcal{P}(\Phi)$.

$$
B_{v}=\left\{q \in \mathcal{P}(\Phi) \mid\left(\exists p \in P_{\Phi}^{\text {aux }}(v) \cup b(v)\right) p \leq_{\Phi} q\right\} .
$$

We ask that for $v, v^{\prime} \in \mathcal{C}^{!}(\Phi)$ either $B_{v} \cap B_{v^{\prime}}=\emptyset$ or $B_{v} \subseteq B_{v^{\prime}}$ or $B_{v^{\prime}} \subseteq B_{v}$. In order to define $\bar{B}(R)(v)$ one first defines $\Psi \in \boldsymbol{P L P S}$, starting from two sets \mathcal{L}_{0} and \mathcal{P}_{0} and from two bijections $p_{1}: \mathcal{L}_{0} \rightarrow b(v)$ and $p_{0}: \mathcal{L}_{0} \rightarrow \mathcal{P}_{0}$, by setting:

- $\mathcal{C}(\Psi)=\mathcal{L}_{0} \uplus\left(\mathfrak{P}\left(C_{\Phi}\right)\left(B_{v}\right) \backslash \mathfrak{P}\left(C_{\Phi}\right)(b(v))\right)$;
$t_{\Psi} \mathfrak{P}_{\mathcal{P}\left(C_{\Phi}\right)\left(B_{v}\right) \backslash \mathfrak{P}\left(C_{\Phi}\right)(b(v))}=t_{\Phi} \mathfrak{P}_{\mathfrak{P}\left(C_{\Phi}\right)\left(B_{v}\right) \backslash \mathfrak{P}\left(C_{\Phi}\right)(b(v))}$ and $t_{\Psi}(l)=$? for every $l \in \mathcal{L}_{0}$;
- $\mathcal{P}(\mathbb{C}(\Psi))=\left(B_{v} \cup\left\{P_{\Phi}^{\text {pri }}(v)\right\}\right) \uplus \mathcal{P}_{0}$;
- $C_{\Psi}(p)= \begin{cases}C_{\Phi}(p) & \text { if } p \in B_{v} \backslash b(v) ; \\ l & \text { if } p=p_{1}(l) \text { for } p \in b(v) ; \\ l & \text { if } p=p_{0}(l) \text { for } p \in \mathcal{P}_{0} ; \\ v & \text { if } p=P_{\Phi}^{\text {ori }}(v) ;\end{cases}$
- $P_{\Psi}^{\text {pri }}(l)=\left\{\begin{array}{l}P_{\Phi}^{\text {pri }}(l) \text { if } l \notin \mathcal{L}_{0} ; \\ p_{0}(l) \text { if } l \in \mathcal{L}_{0} ;\end{array}\right.$
- $P_{\Psi}^{\text {left }}=\left.P_{\Phi}^{\text {left }}\right|_{\mathcal{C}^{m}(\Phi) \cap \mathfrak{P}\left(C_{\Phi}\right)\left(B_{v}\right)}$;
- $\#_{\Psi}(p)=\operatorname{Card}\left\{w \in \mathcal{C}^{!}(\Phi) \cap \mathfrak{P}\left(C_{\Phi}\right)\left(B_{v}\right) \mid w \neq v\right.$ and $\left.p \in b(w)\right\} ;$
- $\mathcal{I}(\Psi)=\emptyset$;
- $\mathcal{W}(\Psi)=\left\{\{p, q\} \in \mathcal{W}(\Phi) \mid p, q \in B_{v}\right\}$.

The box of v, denoted by $\bar{B}(R)(v)$, is the pair $\left(\Phi_{v}, b_{v}\right)$, where Φ_{v} is obtained from Ψ by eliminating the terminal link v (Definition 85) and $b_{v}=\left.b\right|_{\mathcal{C}^{!}\left(\Phi_{v}\right)} ^{\mathfrak{P}\left(\text { (uuxoors }\left(\Phi_{v}\right)\right)}$.

We set $\operatorname{LPS}(R)=\Phi, b(R)=b$ and we will write the ports of R (resp. the cells of R) meaning the ports of Φ (resp. the cells of Φ).

