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In Definition 17, the setb(v) has to contain only ports of the PS that are minimal
in Bv w.r.t. the order relation≤Φ, i.e. we have to add the following condition on the
functionb:

for anyv ∈ C!(Φ), for anyp1, p2 ∈ b(v), we havep1 ≤Φ p2 ⇒ p1 = p2,

which yields the following definition:

Definition 17 A Proof-Structure (PS)is a pairR = (Φ, b) whereΦ ∈ LPS andb is a
functionC!(Φ) → P(Auxdoors(Φ)) such that for anyp ∈ Auxdoors(Φ), #Φ(p) =
Card{l ∈ C!(Φ) | p ∈ b(l)} and, for anyv ∈ C!(Φ), for anyp1, p2 ∈ b(v), we have
p1 ≤Φ p2 ⇒ p1 = p2. Proof-Structures are defined by induction on the number of!-
cells: we ask that with everyv ∈ C!(Φ) is associated a PS calledthe boxof v (denoted
byB(R)(v)) , and defined from the following subsetBv ofP(Φ):

Bv = {q ∈ P(Φ) | (∃p ∈ Paux
Φ (v) ∪ b(v)) p ≤Φ q}.

We ask that forv, v′ ∈ C!(Φ) eitherBv ∩Bv′ = ∅ or Bv ⊆ Bv′ or Bv′ ⊆ Bv .
In order to defineB(R)(v) one first definesΨ ∈ PLPS, starting from two setsL0

andP0 and from two bijectionsp1 : L0 → b(v) andp0 : L0 → P0, by setting:

• C(Ψ) = L0 ⊎ (P(CΦ)(Bv) \P(CΦ)(b(v)));
tΨ P(CΦ)(Bv)\P(CΦ)(b(v)) = tΦ P(CΦ)(Bv)\P(CΦ)(b(v)) and tΨ(l) = ? for every
l ∈ L0;

• P(C(Ψ)) = (Bv ∪ {Ppri
Φ (v)}) ⊎ P0;

• CΨ(p) =















CΦ(p) if p ∈ Bv\b(v);
l if p = p1(l) for p ∈ b(v);
l if p = p0(l) for p ∈ P0;
v if p = Ppri

Φ (v);

• Ppri
Ψ (l) =

{

Ppri
Φ (l) if l /∈ L0;

p0(l) if l ∈ L0;
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• Pleft
Ψ = Pleft

Φ Cm(Φ)∩P(CΦ)(Bv)
;

• #Ψ(p) = Card{w ∈ C!(Φ) ∩P(CΦ)(Bv) | w 6= v andp ∈ b(w)};

• I(Ψ) = ∅ ;

• W(Ψ) = {{p, q} ∈ W(Φ) | p, q ∈ Bv}.

The box ofv, denoted byB(R)(v), is the pair(Φv, bv), whereΦv is obtained from

Ψ by eliminating the terminal linkv (Definition 85) andbv = b
∣

∣

P(Auxdoors(Φv))

C!(Φv)
.

We setLPS(R) = Φ, b(R) = b and we will writethe ports ofR (resp.the cells of
R) meaning the ports ofΦ (resp. the cells ofΦ).


