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Preface

This special issue is devoted to some aspects of the new ideas that recently arose from the

work of Thomas Ehrhard on the models of linear logic (LL) and of the λ-calculus. In some

sense, the very origin of these ideas dates back to the introduction of LL in the 80s by Jean-

Yves Girard. An obvious remark is that LL yielded a first logical quantitative account of

the use of resources: the logical distinction between linear and non-linear formulas through

the introduction of the exponential connectives. As explicitly mentioned by Girard in his

first paper on the subject, the quantitative approach, to which he refers as ‘quantitative

semantics,’ had a crucial influence on the birth of LL. And even though, at that time,

it was given up for lack of ‘any logical justification’ (quoting the author), it contained

rough versions of many concepts that were better understood, precisely introduced and

developed much later, like differentiation and Taylor expansion for proofs. Around 2003,

and thanks to the developments of LL and of the whole research area between logic and

theoretical computer science, Ehrhard could come back to these fundamental intuitions

and introduce the structure of finiteness space, allowing to reformulate this quantitative

approach in a standard algebraic setting. The interpretation of LL in the category Fin of

finiteness spaces and finitary relations suggested to Ehrhard and Regnier the differential

extensions of LL and of the simply typed λ-calculus: Differential Linear Logic (DiLL)

and the differential λ-calculus. The theory of LL proof-nets could be straightforwardly

extended to DiLL, and a very natural notion of Taylor expansion of a proof-net (and of

a λ-term) was introduced: an element of the Taylor expansion of the proof-net/term α is

itself a (differential) proof-net/term and an approximation of α.

I find it interesting to stress the methodological similarities that led to the introduction of

LL and of DiLL. The vast area of computer science called denotational semantics aims at

giving mathematical counterparts to programming languages; through the Curry–Howard

correspondence between proofs and programs, in proof theory this amounts to study the

invariants of the cut-elimination process. A nice denotational model usually clarifies the

mechanisms at work during the computational process. In some very rare cases, it also

reveals some hidden structure of proofs and suggests improvements of the logical system

itself. Girard’s coherent model of the typed λ-calculus suggested the introduction of the

exponential connectives and thus of LL proof-nets, widely acknowledged as one of the

main novelties carried by LL. Ehrhard’s finiteness spaces suggested the introduction of

the co-structural rules and thus the representation of proofs as (possibly infinite) sums of

differential nets, which have both a geometric nature (as graphs) and an algebraic one (as

elements of the interpretation of proofs).

Using the traditional terminology of logic, one would say that these new proof-

theoretical objects (proof-nets and even more differential nets) are in between syntax

and semantics. Since there is a growing interest for this kind of object, let us recall here an

interesting, rather old, and sometimes a bit neglected precedent in proof theory: Schütte’s
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proof of the completeness theorem for first-order logic. From the computer science point

of view, the capacity of proof-nets to abstract from the order in which certain logical rules

are applied suggested the possibility to establish a link between logic and concurrency.

However, despite a wide use of LL, no deep and really convincing logical insight into

concurrency has ever been found yet. Since some kind of non-determinism is present in

DiLL’s cut-elimination, there is hope that the differential extension of LL can give a new

breath to the relationship between proof theory and concurrency.

This volume presents seven contributions, all related to the new perspectives opened by

the ideas underlying the discovery of DiLL.

The first paper, ‘An introduction to DiLL: proof-nets, models and antiderivatives’

by Thomas Ehrhard, will probably become a reference for the researchers interested

in differential calculi. The author first presents a semantic-driven approach to DiLL

and discusses the deep motivations which led to its discovery. He then introduces (a

possible formalization of) differential nets with boxes, for which he gives a categorical

interpretation: with every DiLL derivation is associated a morphism, and it is stated that

two derivations corresponding to the same differential net have the same interpretation.

As pointed out by the author, a direct interpretation of differential nets would be much

more satisfying, but though the existing categorical models of DiLL (and LL) usually

associate a morphism with a sequent calculus proof, this time the author sets up a

framework in which one can prove that such a morphism is independent from the chosen

sequentialization of any differential net (and thus in particular of any LL proof-net). In

the very general context considered in the paper, the natural question of the existence of

antiderivatives is addressed, and the author gives a sufficient condition for the existence

of the antiderivative of a morphism in a suitable category. The last part of this work

is devoted to apply the constructions introduced in the categorical setting (including

antiderivatives) in two important concrete models: the relational model, which is quickly

revised, and the finiteness space model, which is carefully described.

Since a finitary relation, which is a morphism of the category Fin, is a particular relation,

it is very natural to investigate whether and how some of the most distinctive properties

of the category Rel of sets and relations can be given counterparts in the category Fin.

In the second paper, ‘Transport of finiteness structures and applications’ by Christine

Tasson and Lionel Vaux, the authors prove a key property of Fin: the transport lemma.

This powerful tool allows them to develop a general theory of Rel functors that can be

transported into Fin, and they apply this theory to show that a wide class of recursive

datatypes can be encoded as Fin functors, thus generalizing similar results previously

obtained by Ehrhard.

The two following papers contribute to the debate on the links between DiLL and

concurrency. The aim is to model the so-called true concurrency that is to find models

of interaction that are not interleaving: parallel actions cannot be rendered as sums of

possible sequentializations. In ‘The true concurrency of Differential Interaction Nets,’

Damiano Mazza questions, in an abstract and general framework, the possibility of

representing true concurrency in Differential nets, arguing that, under certain hypothesis,

this is impossible. On the other hand, in ‘Order algebras: a quantitative model of
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interaction,’ Emmanuel Beffara introduces the structure of order algebra, which yields

a model of concurrent interaction with quantitative features. Even if order algebras are

not (yet) a model of DiLL, they represent non-determinism as linear combinations like

differential nets, which is promising in the perspective of building concurrent calculi

related to logic in a Curry–Howard sense.

In ‘Execution Time of λ-Terms via Denotational Semantics and Intersection Types,’

Daniel de Carvalho proposes a quantitative approach to the execution of λ-terms, by

establishing a precise link between the number of steps that Krivine’s machine uses to

execute a λ-term and, on the one hand, the size of type derivations and, on the other

hand, the size of types, in a particular intersection types system (system R). This analysis

has been later extended to cut elimination in multiplicative exponential LL. All the results

are formulated without reference to DiLL, but one could use differential nets: indeed,

types are closely related to the points of the interpretation of a λ-term (or a proof-net) in

Rel, which are themselves closely related to the differential nets occurring in the Taylor

expansion of the λ-term (or the proof-net).

In the paper ‘Jump from Parallel to Sequential Proofs: exponentials’ by Paolo Di

Giamberardino, the question at stake is the relation between parallel and sequential proofs,

a crucial one since the inception of LL. Di Giamberardino extends to the exponential

connectives the use of jumps to analyse sequentiality in polarized LL: a jump can be

thought as an untyped extra edge adding some sequentiality constraints, and the use of

jumps allows then to represent proofs with different levels of sequentiality. A notable

feature of this work is the generalization of the notion of exponential box with the one

of cone: contrary to the order relation induced by boxes in a proof-net, the order relation

induced by the cones of a proof-net with jumps is not necessarily arborescent, since cones

can overlap. Di Giamberardino proves that this fact does not prevent cut elimination of

proof-nets with jumps from enjoying the standard good properties of strong normalization

and confluence.

The last paper of the volume, ‘An explicit formula for the free exponential modality

of LL′ by Paul-André Melliès, Nicolas Tabareau and Christine Tasson, attacks the

general question of the categorical counterpart of the exponential connectives of LL.

Understanding the exponentials is obviously a crucial question, which hides behind every

one of the contributions presented in this volume. This work revisits Lafont’s proposal

to interpret the !-modality by the free commutative comonoid construction in symmetric

monoidal categories and provides a simple description of this construction under a few

commutation conditions. The authors study the cases of coherence spaces and Conway

games, for which they show that the free !-modality can be obtained applying their

method. This is not the case for the free !-modality of Ehrhard’s finiteness spaces: a new

model of LL is then introduced (configuration spaces) and compared to the model of

finiteness spaces.

I want to thank all the authors for their contributions and the anonymous referees for

their work. A special thank has to be addressed to Giuseppe Longo, the promoter of this

special issue. During one of his staying in Roma Tre, by attending the seminars of our

research group, I guess he realised that something new and interesting was happening

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S096012951600044X
Downloaded from https://www.cambridge.org/core. IP address: 79.23.212.237, on 01 Feb 2021 at 18:12:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S096012951600044X
https://www.cambridge.org/core


Preface 994

around the differential extension of LL and the λ-calculus, and he thus proposed me to

take care of a special issue on these themes. Even if it took quite some time to go through

the whole process, I do hope this volume will be appreciated by the researchers in the

field.
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