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Abstract

We show that for Multiplicative Exponential Linear Logic ifwout weakenings) the
syntactical equivalence relation on proofs induced byetimination coincides with
the semantic equivalence relation on proofs induced by thkisat based relational
model: one says that the interpretation in the model (or ¢éneasitics) is injective. We
actually prove a stronger result: two cut-free proofs offiiemultiplicative and ex-
ponential fragment of linear logic whose interpretatioagcide in the multiset based
relational model are the same “up to the connections bettteedoors of exponential
boxes”.

1. Introduction

Separation is an important mathematical property, andraktteeorems are of-
ten referred to as “separation theorems”. In theoreticalmaer science, one of the
most well-known examples of separation theorem is Bohheotem ([1]) for pure
A-calculus: ift, ¢’ are two distinct close@n-normal terms, then there exists a context
Cl]s.t.CJt] ~3 0 andC|[t'] ~g 1. Such a result induces an order relation (i.&pa
topology) on thedn-equivalence classes of (normalizableferms. Later on, this kind
of question has been studied by Friedman and Statman fontipdystypedX-calculus
([2]), leading to what is often called “typed Bohm's thewrg(see also [3], [4] for
sharper formulations). We believe that if no other resuth@f kind has been produced
for a long time, it is due to the absence of interesting ldgsyatems where proofs
could be represented in a nice “canonical” way.

The situation radically changed in the nineties, mainlytusnear Logic (LL [5]),

a refinement of intuitionistic (and classical) logic chadesized by the introduction of
new connectives (the exponentials) which givéogical status to the operations of
erasing and copying (corresponding to 8teuctural rulesof logic): this change of
viewpoint had striking consequences in proof-theory, lifke introduction of proof-
nets, a geometric way of representing computations. Inrdradwork of proof-nets,
the separation property can be studied: the first work on thgest is [6] where the
authors deal with the translation in LL of the pukecalculus; it is a key property
of ludics ([7]) and has been studied more recently for theifimnistic multiplicative
fragment of LL ([8]) and for differential nets ([9]). For Hgot's Au-calculus, see [10]
and [11].
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Still in LL's framework, a semantic approach to the questibseparation is devel-
opped in [12] and [13], where the (very natural) questioniojettivity” of the seman-
tics is adressed: do the equivalence relation on proofsetkfiy the cut-elimination
procedure and the one defined by a given denotational manlaletimes/always) co-
incide? When the answer is positive one says that the modgkigtive (it separates
syntactically different proofs). Indeed, two proofs argritactically” equivalent when
(roughly speaking) they have the same cut-free form (in dlgent and weakly nor-
malizing system), and they are “semantically” equivalarg given denotational model
(a semantics of proofs in logical terms) when they have tingesaterpretation It is
worth noticing that the study of both these equivalencdimia is at the heart of the
whole research area between proof-theory and theoreticapuater science: on the
one hand, cut-elimination is a crucial property of logicgtems since Gentzen. In
the second part of last century, there was a renewal of stter¢his property after the
discovery of the Curry-Howard correspondence: a proof igiam whose execution
corresponds to applying the cut-elimination procedurééoproof. On the other hand,
the general goal of denotational semantics is to give a “ema#itical” counterpart to
syntactical devices such as proofs and programs, bringirige fore their essential
properties: the basic pattern is to associate with everpdita/type an object of some
category and with every proof/program a morphism of thiggaty (its interpretation).
In the theoretical computer science tradition, once a natio‘value” is defined, one
often wants to consider that two programs are equivalentwiteatever context one
chooses, the two programs are either both non-correctpattedboth correct and yield
the same value: this equivalence is then called “obsemaliequivalence”. When the
semantic equivalence in a given model coincides with olagienval equivalence, one
says that the model is “fully abstract”. Full abstractioraimong the most studied
properties of theoretical computer science in the lastdiexaln LL, if one considers
cut-free proof-nets as values, the syntactic equivalezledion is observational equiva-
lence, and a model is injective precisely when it is fullytadst. To be more precise, in
an untyped framework one should also have that two procfwiigh the same interpre-
tation are either both normalizabler both non-normalizable: in the relational model
this is a consequence of the semantic characterizationrofadizable proof-nets given
in [14].

The works [12] and [13] give partial results and counterepia®ito the question
of injectivity, mainly for the (multiset based) coherentded in particular the coun-
terexamples show that this model is not injective for miittagive and exponential
LL (MELL). Also, it was conjectured that the (multiset based) refal model is
injective for M ELL, but despite many efforts ([12], [13], [15], [16], [9], [17) all
the attempts to prove the conjecture failed up to now: nopeajress has been done
since [13], where a proof of injectivity of the relational del is given for a fragment
of MELL? Game semantics is much closer to syntax than relationacahdrent
semantics, and positive answers have been obtained ferftagments like the multi-

1We mean that it is possible to apply the cut-elimination prhae to both the proof-nets and obtain a
cut-free proof-net.
2Precisely, for thé?p)LL fragment given byA ::= X | 7ApA | Ap?A | ApA|AQ A|!A.



plicative fragmentM L L or the fragment corresponding to thecalculus ([18],[19]),
but also for the polarized fragment of LL ([20]).

We prove here that fat/ £ L L without weakenings (and without the multiplicative
unit L) relational semantics is injective (Corollary 55). Thisrtrendous improvement
with respect to the previous situation is an immediate cgusece of a much stronger
result: in the fullM EL L fragment (with units) two proof-net® and R’ with the same
interpretation are the same “up to the connections betweenldors of exponential
boxes” (we say they have the same LPS: Theorem 50 and CgrbRar This result can
be expressed in terms of differential nets ([21]): two aeefproof-nets with different
LPS have different Taylor expansions. We also believe tligkvis an essential step
towards the proof of the full conjecture.

In the style of [22] and [14] we work in an untyped frameworle @o not define
proof-nets nor cut-elimination but only cut-free proofustures (PS, Definition 17):
we prove that two PS with the same interpretation have the4dm$ (Corollary 52).
A proof-net (as defined in [14]) is a particular case of PS s the result holds for
untyped (so as for typed) £ L L proof-nets (Remark 56). Since we want to prove that
two PS are isomorphic in Theorem 50, it is mandatory to hawinaple and clear) no-
tion of isomorphism between PS (Definition 19), and this igwhSection 2 we give a
very sharp description of the syntax in the style of intéaachets ([23], [24]): we can-
not only rely on a graphic intuition. The notion of Linear Bf<Structure (LPS), which
comes from [13], is our main syntactical tool: with every girmet R of (say) [14]
is associated a LPS, which is obtained fréhby forgetting some informations about
R'’s exponential boxes, namely which auxiliary doors coroggbto which!-link (us-
ing standard LL’s terminology); this is particularly cleiarDefinition 17 of PS: a PS
is a LPS and a function allowing to recover boxes. Recovdtirgfunction from the
interpretation of a PS is the only missing point in the prodhe full conjecture, but a
simple remark shows that the function can be recovered fnrelb PS when the PS is a
connected graph: this yields injectivity faf £ L L without weakenings and (Corol-
lary 55). In Section 3, we introduce a domdinto interpret PS which is essentially
the one already defined in [14]. Like in [13], we use here expents (introduced
in [5]) which can be thought as objects in between syntax amdasitics and are re-
lated to type derivations in the-calculus ([25]). Experiments are functions defined on
proof-nets allowing to compute the interpretation poissvithe set ofesultsof all the
experiments of a given proof-net is its interpretatiot/sually an experiment of a
proof-netR is a labeling ofR at depth) and a function associating with everjink [
of R a set of experiments of the content of the box associated/witfe noticed that
a particular kind of experiment callédexperimen{Definition 35) can be defined di-
rectly on LPS (boxes are not needed). In Section 4, we staiteesults and reduce the
problem of injectivity to Proposition 40, which is proven@ection 5. The paper ends
with a technical appendix, containing some obvious defingiand the formal details
of some constructions previously used.

In [13], a single (well-chosen!) point of the interpretatiof a proof-net allowed

3The result of an experimentis the image of the conclusions of the proof-net through timetione; so
that contrary to an experiment its result is a truly semaottiect.



to “rebuild” the entire proof-net (in some particular cases for coherent semantics).
Something similar happens in this paper, with a notablediffice that makes every-
thing much more complicated: in [13] the well-chosen poiinthe interpretation of a
proof-net allowed not only to rebuild the proof-net but atlse experiment having this
point as result. This is not the case here, where the wekahpoints of the interpre-
tation of a PS are atomic injectivepoints (Definition 22): we show (see Example 28
and Figure 2) that there exist different experiments hagisgesult the same atomic
injective k-point. Let us conclude by mentioning the main noveltiestn @roof.

e We use injective experiments in a completely different sghan in [13]: intu-
itively, our injectivek-experiments associate with an axiom link with degth?
different labels, while the injectivk-obsessional experiments of [13] associate
a unique label with such an axiom link (see Remark 23). A auaspect of
our new injectivek-experiments is that they can be recognized by their results
(Definition 22), and this was not the case felational injective k-obsessional
experiments.

e We define some kind of “prototype” of injective atormiteexperiments: the no-
tion of injective atomick-experiment of LPS (Definitions 35 and 36). Itis true
that the two experiments of the PS of Figure 2 previously meet (see again
Example 28 for the details) are different, but we would ligecbnsider them as
“the same” experiment: any atomic injectikeexperiment of a given LP®, al-
lows to generate the set of injective atorhipoints of the interpretation of every
PS havingd as LPS (Fact 48).

e We consider the results of experiments after forgettingndn@es of the atoms
(see again Fact 48): two experiments having as resultstivgeand atomick-
points that are the same “up to the names of the atoms” mighbethe same
experiment, but they are necessarily experiments of twoaf the same LPS
(Proposition 40).

Summing up, we show that if the interpretation of the R8ontains an atomic injec-
tive k-point, then evenyR®’ with the same interpretation @ has the same LPS &%
(Corollary 52); and contrary to [13] we do not know the expent which produced
this point.

Conventions. We use the notatiof] for multisets while the notatiof } is, as
usual, for sets. For any sdt we denote byi;, (A4) the set of finite multisets whose
support, denoted bgupga), is a subset ofA. The pairwise union of multisets given
by term-by-term addition of multiplicities is denoted bytasign and, following this
notation, the generalized union is denoted by asign. The neutral element for this
operation, the empty multiset, is denoted[By For k € N anda multiset, we denote
by & - a the multiset defined bBupgk - a) = Supfa) and for everyn € Supga),
(k- a)(a) = ka(a).

For anyk € N, we set' k™ = {1,...,k}. For any set4, we denote byA<“ the
set of finite sequences of elementsAfby PB(A) the powerset ofd, by B, (A) the
finite powerset ofA and byB2(A) the set{{a,b} € PB(A4) | a,b € Aanda # b}. A



function f : A — B has domaind = dom(f), codomainB = codom(f), image

im(f) = {f(a)| a € A}; we denote byf f, the restriction off to the domaind’ and
to the codomainB’ and byB(f) the function3(4) — PB(B) wich associates with
everyX C Athe set{f(z) | z € X}. We denote by the unique element 67 ™ for
anyk € N and byA W B the disjoint union of the setd and B.

2. Syntax

This section is devoted to present in full details the syitatobjets for which
we prove our main result: proof-structures (Definition 1We adopt the interaction
nets point of view and pass through intermediate objectis ead ports (Subsec-
tion 2.1) Pre-Linear Proof-Structures (Subsection 2.%)eéar Proof-Structures (Sub-
section 2.3), Proof-Structures (Subsection 2.4). Celisewith a notion of isomor-
phism which is then adapted to its refinements; isomorphtsshseen Linear Proof-
Structures and Proof-Structures will be crucial to prove tesults presented in the
paper (see for example Proposition 40 and Theorem 50).

2.1. Cells and Ports

We introduce cells and ports, which intuitively correspdod‘links with their
premises and conclusions” in the theory of linear logic poets ([5], [26], [12],
...). Our presentation is in the style of interaction ne®3][ [24]), where principal
(resp. auxiliary) ports correspond to the conclusionsp(rédse premises) of the links
and axiom links of the usual syntax become wires (see Definit). We deal with (the
analogue of) unary-links, while 7-links can have an arbitrary number of premises.
More precisely, we sef = {®,%,1, L,!, 7} and we defin€ells as follows.

Definition 1. A cell bases a 6-tupleC = (t, P, C, PP P"" ) such that
e t is a function such thatlom(¢) is finite andcodom(t) = 7; the elements of
dom(t) arethe cells ofC;
e P is afinite set whose elements a@hne ports ofC;
e Cis a surjectionP? — dom(t) such that for any € dom(t), we have

o t(l) e {®,®} = Card({p € P|C(p) =1}) = 3;
et(l)=!=Card({peP|C(p) =1}) =2;
e andt(l) € {1,L} = Card({pe P|C(p) =1}) = 1;
the set{p € P | C(p) = [} is the set ofthe ports of; _
e PMis afunctiondom(t) — P such thatC o P = idgom(y); the portP™ (1) isthe
principal port ofl. A port ofl different fromPP" (1) is anauxiliary port ofi;
e P*"is afunctionC™ — P such that'®"(1) is an auxiliary port ofl, whereC™ =
{l e dom(t) | t(]) € {®,B}}; _
e # is a function{J,...{p € P\ {P"(1)} | C(p) = I} — N, whereC" = {l €
dom(t) | t(l) = 7}.
We denote bZellsthe set of cell bases.



Notations 2. LetC € Cells. We seC(C) = dom(t), tc = t, P(C) = P, Cc = C,
PP — pPipEt — P and #c = #. Foranyt € 7, we setC'(C) = {I
C(C) | te(l) = t}. We seC™(C) = C¥(C) U C?(C).

Remark 3. (i) Intuitively, C € Cells corresponds to what is called “a set of links”
in the usual syntax of [13]. Notice that the functioR®' and P'*" of Definition 1
induce the functioP2™ : C(C) — P(P(C)) defined byPE*(1) = {p € P(C) \
{PP(1)} | Cc(p) = I} and the functioP[9™ : ¢™(C) — P(C) defined by{P{9" (1)}
= PEX(1) \ {PE"(1)}: the functionsP?" and P2 allow to distinguish the principal
ports (conclusions in [13]) from the auxiliary ports (preses in [13]), while for mul-
tiplicative cells the functioné’!ceft and P[éght allow to distinguish the left auxiliary port
(left premise in [13]) from the right one. We denote B¥'(C) (resp.P2X(C)) the
set of principal (resp. auxiliary) ports €. Moreover, we denote by, the function
C(C) — N defined byac (1) = Card(P2™(1)); the integerac (1) is the arity ofl.

(i) There is however a notable difference w.r.t. [23] in ttvay we handle boxes
in our PS (Definition 17): here the functiog plays a crucial role. Ifp € P& (1) for
somé < C’(C), then the integeftc(p) is in the syntax of [13] the number of auxiliary
doors of boxes of the exponential branch corresponding tBor instance, for theC
in Figure 2, we have#c(pi) = 0 and#c¢(p2) = 1. In the spirit of LL, we split the set
C’(C) into the four following disjoint sets:

e C™(C) = {l € C*(C) | ac(l) = 0} which (in [13]) corresponds to the set of
weakening links of

e C'(C) = {l € C*(C) | ac(l) = 1 and#c(p) = 0, where{p} = PE*(1)}, which
(in [13]) corresponds to the set of dereliction links@©f

e C'(C) = {l € C*(C) |ac(l) > 1and(3p € PEX(1)) #c(p) = 0}, which
(in [13]) corresponds to the set of contraction links@®having at least the conclu-
sion of one dereliction link among their premises

e C"(C) = {I € C*(C) | ac(l) > 1and(¥Vp € PEX(1)) #c(p) > 0}, which

(in [13]) corresponds to the set of contraction links haviogly conclusions of

auxiliary doors of boxes among their premises.

Theauxiliary ports of the?-cells of C are the ports belonging to the sAUx?(C) =

Uieer ) P27 (1), while theauxiliary doorsof C are the elements @uxdoors(C) =

{p € Aux’(C) | #c(p) > 0}.

Definition 4. Let C,C’ € Cellsand lety = (¢¢, pp) be a pair of bijections with
e : C(C) — C(C") andyp : P(C) — P(C'). For writing ¢ : C ~ C’, we require
that the following diagrams commute:

Ppri C t Pleft
c(C) —C+ p(c) =S~ c(C) —=— T c™(C) —E P(C)
m(cl)
pc PP ve Ao pc ‘Cm (©) PP
C(C') —= P(C") —— C(C)) cm(c) (C)



If these diagrams commute, then we haNgpp | a7 (c)) = Aux’(C’). Hence we can
Aux” (C’

) .
A’ (C) ° We then require moreover th#c: o ¢’ = #c¢.

considery’ = op|
2.2. Pre-Linear Proof-Structures (PLPS)

With PPLPS (Pre-Pre-Linear Proof-Structures) we shift from “sets elf (ele-
ments ofCells) to graphs, and this amounts to give the rules allowing tmeohthe
ports of the different cells. We introduce a gefintuitively, p € Z whenp is a port
of some axiom and a conclusion of a PPLPS) and we give condittm the set of
wires of our graphs: condition 1 implies that three portsncdribe connected by two
wires, condition 2 implies that auxiliary ports can nevercbaclusions of PPLPS (see
Definition 7), condition 3 implies that when the principalkpof a cell is connected to
another port this is necessarily a port of some cell, comdifi corresponds to the fact
that PPLPS are cut-free.

The reader acquainted with the theory of linear logic pnoets might be interested
in the reasons why our structures (PPLPS and later PLPS, h&®8) never contain
cuts. There are essentially two reasons:

e (cut-free) PS are enough for our purpose, since the propertwant to prove
(injectivity) deals with cut-free proofs: once a precisdiow of “identity” (or
better said isomorphism) between cut-free PS is given (sefaibon 19), if
we prove that two different PS have different interpretagiathen injectivity is
proven (w.r.t. the chosen interpretation) whatever systBpnoofs one considers,
provided the notion of cut-free proof of this system coimsigvith the one of P'S

e We can thus avoid a technical problem related to the presehcats in un-
typed proof-structures: it might happen that applying addimination step to
an untyped proof-structure which “contains a cycle” (megrthat it does not
satisfy the proof-net correctness criterion) yields a grajithout cuts but con-
taining “vicious cycles” (a premise of some link is also itnclusion: see the
discussion before Definition 13 of PLPS). It is precisely void this problem
that in [14] we decided to restrict to nets (proof-structutgithout cycles” i.e.
satisfying the correctness criterion).

Definition 5. LetPPLPSbe the set of triple® = (C,Z, W) with C € Cells, 7 a finite
set satisfying NP(C) = 0 andW C P2 (P(C) UZ) such that

1. for anyw, w’ € W such thatw N w’ # 0, we havew = w’;

2. we haveP™(C)UZ C UWw;

3. foranyw € W such thatw N Z # (), we havew N PP(C) = (;

4. for anyw € W, there existp € w such thatp ¢ PP"(C).
We setC(®) = C,Z(®) = Z, W(®) = WandP(®) = P(C(P)) UZ. The elements
of P(®) are the ports ofd, the elements af(C(®)) are thecells of ® and those of
W(®) arethe wiresof ®.

“We already mentioned in the introduction that a standarefreet proof-net (as defined for example
in [13] or in [14]) is a particular case of PS.



Notations 6. Let ® € PPLPS. We setC(®) = C(C(®)) andC*(®) = C*(C(®))
foranya € 7 U {7W, ?d,?cb;?cauxd}y te = tc(q>), Co = C(C(q;.), Pgl = P([p;(lq)),
Pa" = P¢{p) andAuxdoors(®) = Auxdoors(C(®)).

We now introduce precisely axioms and conclusions of a PRERESconsequence
of our definition is that a conclusignof @ is either the principal port of some cell or
an axiom port.

Definition 7. For any® € PPLPS, we set:

o PI(®) = Z(®) U {p € P(C(®)) | p ¢ UW(®)}; the elements oP'(®) are the
free portsor theconclusionof ®;

o C(®) = {l € C(®) | P§'(I) € P'(®)}; the elements of'(®) are theterminal
cellsof @;

o AX(®) = {{p,q} € W(®) | p,q & PP(C(D))}; the wire {p,q} € Ax(®) is an
axiomof ¢ and the porte andq are axiom ports _

o AX(®) = {w € AX(®)| (Fp € w)p € P'(®)} andAX' (®) = {w € AX(®) | (Vp €
w) p € PH(®)};° the wires ofAx'(®) (resp.Ax'(®)) are theterminal axiomgresp.
theisolated axiom)of ®.

Definition 8. Let®, ®’ € PPLPS. We writep = (¢p, ¢c) : ® ~ @' if, and only if,
e op is a bijectionP(®) — P(®’) such thaim(vp |7(e)) = Z(P');

P(C(D'
o (£p| oty - wc) : C(®) = C(@);

e and for every{p, ¢} € Po2(P(®)), we have{p, ¢} € W(®) iff {¢p(p), or(9)} €
W(d').
For any ®, &' € PPLPS, for anyy = (¢, pp) : @ ~ &', we setP(p) = pp and
Clp) = ¢c.

Intuitively, an axiom port is “above” a unique conclusionutBor general PPLPS
this is wrong and we can only say that an axiom port cannot beva’ two different
conclusions (Lemma 10). We thus consider the reflexive aatsitive closure<q of
the relation<g, “p is immediately below’ in ®” (see Definition 9) and show that our
statement holds provideds is antisymmetric (Lemma 14), that is for PLPS (Defini-
tion 13).

Definition 9. For any ® € PPLPS, we define the binary relatior:}, on P(®) as
follows: p <} p’ if, and only if, one of the following conditions holds:
e there exists a cell of ® such thatp is the principal port of andp’ is an auxiliary
port of]
e p’ is the principal port of some cell of ®, p is an auxiliary port of some cellof
® and{p, p'} is a wire of®.
The binary relation<q (or simply<) onP(®) is the transitive reflexive closure ef},.

Lemma 10. Let® € PPLPS. We haveVw € Ax(®)) (Vp € w) (Ve, ¢ € PH(®))
((c <g pandc <g p) = c= 7).

5Notice thatAx! (®) = {w € W(®) | w € P2 (Z(D))}.



The proof of Lemma 10 is just an application of Facts 11 and 12:

Fact1l. Let® € PPLPSandp,qi,q2 € P(®). If ¢ <o pandgs <g p, then
g1 <& g2 Or g2 <o q1.

PROOF. If ¢; <} pandgy <} p, theng, = ¢.
Fact12. Let® € PPLPS. If c € P'(®) andp <4 ¢, thenp = c.
PROOF. If ¢ € P(®)) then—p <}, cfor everyp € P(®).

A PPLPS® can have “vicious cycles” like for example a cékuch thap (resp.
p’) is the principal (resp. an auxiliary) port b&nd{p, p'} is a wire of®: in [13] this
corresponds to a link having a premise which is also the csiah of the link. Let
us stress that such a cycle is called “vicious” to distinguisrom the cycles in the
so-called correctness graphs, which are related to the &fsequentialization (see the
discussion before Corollary 55). A PLPS is a PPLPS withoeibuis cycles:

Definition 13. We sePLPS = {® € PPLPS| the relation <g is antisymmetri¢.

The fact that an axiom port is above a conclusion follows fthmantisymmetry
of < and from the fact that minimal elements are conclusionseénd

Lemma 14. Let® € PLPS. We haveVw € Ax(®)) (Vp € w) (3'c € PN (®))c <o p.

PrROOF For the unicity, apply Lemma 10. For the existence, use thisy\anmetry of
<4 and the following property: we hav@q € P(®)) ((Vp € P(®))(p <o ¢ = p =
q) = q € PI(®)).

The depth of a cell is (in the usual syntax see [13]) the number of exponential
boxes containing We have not yet defined our notion of box (Definition 17), ute
we are cut-freel's depth can also be defined as the number of doors of boxew belo
this makes sense in our framework too. We thus obtain theviillg definition (where
the function# plays a crucial role, as mentioned in Remark 3):

Definition 15. Let® € PLPS. For anyp € P(®):
¢ we denote bgs(p) the unique: € Pf(®) such that: <4 p

o depthy (p) = Card({l € C'(®) | PY'(1) <& P})+ X yc auxdoors(e).q<p #0 (9):
The depth of a PLP® is the maximal depth of its ports and it is denoted by dgbth

2.3. Linear Proof-Structures (LPS)

In a (cut-free) Proof-Structure of [13], the depth of an axilink is easily defined
as the number of boxes in which the link is contained. In camiwork this notion
makes sense only when the two ports of an axiom have the sgpite (@efinition 15).
This condition is not fulfilled by every PLPS: when this is tese we have a LPS.



Figure 1: Example of LPS.Let ¥ € PPLPSas
beside and such thgty, (p1) = 1 = #w, (p2).
Then we have¥, € LPS. Actually ¥y €
?-box-PLPSN LPS (see Definition 43).

Definition 16. A LPS is a PLPSP such that(V{pi,p2} € Ax(®)) depthy(p1) =
depthy (p2). We denote b PSthe set of LPS.

2.4. Proof-Structures (PS)

Intuitively, what is still missing inb € LPSto be a (cut-free) Proof-Structurein the
standard sense ([13]) is the connection between the do@spainential boxes (once
this information has been correctly produced, it autonadltic/ields boxes). We then
introduce a functiorb associating with every € C'(®) a set of auxiliary doors of
®: this is precisely what was missing, provided certain ctiods are satisfied (Def-
inition 17). In particular, one asks that with evaryc C'(®) is associated a Proof-
Structure: this is the usual notion of exponential box (seekample [26]). In our
framework, in order to define the Proof-Structure assodiati¢h v*, we first build a
PLPS®, by taking “everything what is abovweand the doors associated byith v”
and add &-cell under every “auxiliary conclusion”; doing this we &g&are to change
the value of# on the auxiliary doors. We then remowvéusing Definition 85); finally
we define fromb the new functiorb,,:

Definition 17. A Proof-Structure (PS¥ a pair R = (®,b) where® € LPSandb is a
functionC'(®) — P(Auxdoors(®)) such that for any € Auxdoors(®), #4(p) =
Card{l € C'(®) | p € b(l)}. Proof-Structures are defined by induction on the number
of I-cells: we ask that with every € C'(®) is associated a PS calleithe boxof v
(denoted byB(R)(v))8, and defined from the following subs®t of P(®):

B, ={q€P(®)|(Fp € P§"(v) Ub(v)) p <o q}.

We ask that fop, v’ € C'(®) either B, N B, = 0 or B, C B, or By C B,°.
In order to defineB(R)(v) one first defined € PLPS, starting from two set£,
andP, and from two bijectiong, : Lo — b(v) andpy : Lo — Py, by setting:

60ur notion ofLPShas not to be confused with what is sometimes called “thetination of a proof-
net”: the “linearization” forgets the auxiliary doors, anblviously there are some PS that have the same
“linearization” but different LPS.

"We use the fact’s box is itself a Proof-Structure in Definition 24.

8Two examples of boxes are in Figures 3 and 4.

9This is the usual nesting condition of the definition of proet: two boxes are either disjoint or con-
tained one in the other.



Figure 2: Example of PS.In the standard syntax
of [14] we have a box with a unique auxiliary door
represented by the popb (the dashed arrow allows
to determine the doors of the box) and a dereliction
link (the portp1); the conclusions of the auxiliary

door and the dereliction are then contracted. C1 C2

piyN"ZzZ-" " ~- q

C(¥) = Lo & (PB(Ca)(By) \ B(Ca)(b(v)));

b |9(Ca) (B)\B(Ca)b(v) = 1@]B(Ca)(B\B(Ca)(b(v)) AN Ly () = 7 for every
l € Ly;

o P(C(V)) = (B, U{PY'(v)}) & Py;

Ca(p) ifpe By\b(v);

) if p=p1(l) forp € b(v); 44
* Culp) =19, if p = po(l) for p € Py;
v if p = P (v);

i PP)IfL ¢ Lo
Py (Z)_{ pka) ifzeco;0

left _ pleft .
o Py = Pg | en@)ngp(Ca)(By)

#g(p) = Card{w € C'(®) N P(Ca)(B,) | w # v andp € b(w)};
Z(0) = Pt
W) ={{p.q} e W(®)|p,q € By}

The box of, denoted b(R)(v), is the pair(®,, b,) such thatb,, is obtained from

¥ by eliminating the terminal link (Definition 85) and such that, = b\zf((ggxfoors@“))
We selLPS(R) = @, b(R) = b and we will writethe ports ofR (resp.the cells of

R) meaning the ports ob (resp. the cells ob).

In order to establish the equality (or better said an isotismp) between two
graphs representing (some kind of) proof we need to say hewedhclusions of the
two graphs correspond one another: we thus introduce themot indexed PPLPS
(resp. PLPS, LPS, PS).

10This implies that every € Lq is a?-cell with two ports :po (1) andp; (1), where (see next itenpg (1)
is the principal port ang (1) is the unique auxiliary port af.

11As mentioned at the beginning of Subsection 2.2 Z(¥) whenp is an axiom port and a conclusion
of W. Following our construction, none of the portsbfcan be in such a position. Notice, in particular, that
in case the unique auxiliary port ofis an axiom port ofp, then it is not a conclusion of (and thus it is not
an element of (¥)) but it is a conclusion o PS(B(R)(v)) and the unique element @{LPS(B(R)(v))),
following Definition 85 of the Appendix.



Definition 18. We denote biPPLPS4 the set of pairg®, ind) such thatb € PPLPS
andind is a bijectionP’(®) — ~Card(P(®))™.
We sePSyq = {(R,ind) | R € PSand(LPS(R),ind) € PPLPSng}.

Definition 19. For any (®,ind), (®’,ind’) € PPLPSp4, we writep : (®,ind) ~
(®’,ind’) if, and only if,p : ® ~ &' and, for every: € P'(®), we havend’(P(¢)(c)) =
ind(c).

Definition 20. Let (R, ind), (R',ind’) € PSpq. We writep : (R, ind) ~ (R/,ind’) if,
and only if,¢ : (LPS(R),ind) ~ (LPS(R’),ind’) and the following diagram com-
mutes?:

C'(LPS(R)) LI

PB(Auxdoors(LPS(R)))
C'(LPS(R")) Auxdoors(LPS(R’))
C@)lerpsim) B(P(#) | auxdoors(Lps(r)) )

C'(LPS(R')) B(Auxdoors(LPS(R')))

b(R)

3. Experiments

We introduce in Subsection 3.1 experiments for Proof-$tmes (a well-known no-
tion coming from [5]), adapted to our framework (Definitiof)2and in Subsection 3.2
a new notion, the one df-experiment of PLPS (Definition 35), that will be crucial in
the sequel of the paper.

3.1. Experiments of PS

In [22] and [14] experiments are defined in an untyped frantkyee follow here
the same approach in our Definition 24. Experiments allowotogute the semantics
of proof-nets (more generally of proof-structures): ithterpretation[«] of a proof-net
7 is the set of the results afs experiments, and the same happens in our framework
for PS (Definition 27). Like in [14], in the following definiin the sef{ +, —} is used
in order to “semantically distinguish” cells of type from cells of type?, which
is mandatory in an untyped framework (as already discussddised in [14]). The
function ( )+ (which is the semantic version of linear negation) flips ptits (see
Definition 86 of the appendix for the details).

Definition 21. We fix a setd which does not contain any couple nor atwuple and
such that« ¢ A; we call atomsthe elements ofl. By induction o we defineD,,:
Dy =AU ({+,-} x{x})andD, 11 = Do U ({+,—} x D, x D) U({+, -} x
MNMiin(Dy,)). We setD = |,y Dn.

12Recall that the notatiod () refers to Definition 8 and that for a functighthe notatiorfl3( f) is among
the ones introduced in the conventions at the beginningeopéper.



We need in the sequel the notion of injectivpoint of D<¥, and forE € P(D<¥)
the notion ofE-atomic element. In a typed framework, we would not have fondehe
latter notion, but in our untyped framework we need to resthie set of all results of
all experiments of a PS to the set of the results ofatoenicexperiments (see footnote
26) of this PS. Of course, a given pointBbfcan be the result of an atomic experiment
of a PS and the result of a non-atomic experiment of anotheHB®&ever, once the
subsetE of D<¥ is fixed, it makes sense far € F to say that it isE-atomic: this
means that no other element®fis “more atomic” thanr.

Definition 22. Givenk € N, we say that € D<“ isak-pointwhenif(+, [, . .., am))
occurs inrt3, thenm = k.

We say that € D<¥ is injectivewhen for everyy € A, either~ does not occur in
13 or there are exactly two occurrencespin 12,

GivenE € P(D<v), we say that € E is E-atomicwhen for every’ € E and
every substitutiolf o such thato (') = r one haso(y) € A for everyy € A that
occurs inr’. For E € PB(D<¥), we denote by, the subset oF consisting of the
E-atomic elements.

Remark 23. The notion ofk-point is reminiscent of the notion of “result of &
obsessional experiment” ([13]), and it is also used in [22Jotice however that the
notion of injective points notrelated to what is called in [13] a result of an injective
k-obsessional experiment: we keep the idea that all positivttisets have the same
size, but we are very far from obsessionality. In some semrsdonhere exactly the
opposite than obsessional experiments dé:-@bsessional experiment takiesopies
of the sameK-obsessional) experiment every time it crosses a box, \wheéléntuition
here is that injectivé:-points are results of experiments obtained by takingairwise
different(k-)experiments every time a box is crossed.

We now adapt to our framework the definition of experimentégiin [5]; see
also [12], [13], [14] for alternative definitions), the keydl to define the interpretation
of a PS. Intuitively, an experiment of a B8s a labeling of its ports by elements bf
this works perfectly well in the multiplicative fragment bE (see for example [27]),
but of course for PS with depth greater than zero things beeohit more complicated.
One can either say that an experiment is defined only on padsh thatlepth, (p) =
0 and that with every-cell with depth zero is associated a multiset of experimeifit
its box (allowing to define the labels of the ports with dep#iag: this is the choice
made in [22] and [14]. Or one can follow (as we are going to dhe the spirit
of [12] and [13]) the intuition that even with porssuch thatdepth,(p) > 0, an
experiment associates labels, but not necessarily a utétped for every port (they
might be several or none): formally it will associates with multiset of elements of
D (and thus with everi-cell a multiset of multisets of experiments). Of coursetthe
definitions associate the same interpretation with a giv&finition 27).

13see Definition 87 of the appendix for a formal definition obthkpression.
14A subsitution is a functiow : D — D induced by a functiom” : A — D (see Definition 88 of the
appendix for the details).



Definition 24. An experiment of a PSR = (®,b) is given by a functiorP(®) —
Miin(D)*® and for everyw € C'(®) a finite multiset of finite multisets of experiments
of v's box (i.e.B(R)(v)) e(v) = [[e}, ..., el ],..., [e}",... €l ]], wherel, > 0 and

n; > 0 for everyl < ¢ < [,. Experiments are deflned by induction adepth(®) and

we ask thaCard(e(v)) = 1 for v € C'(®) such that deptp(P' (v)) = 0 and that
Card(e(p)) = 1 for p € P(®) such that depth(p) = 0. For ports at depttD the
following conditions hold:

e forany{p,q} € Ax(®), we havex = 5+, wheree(p) = [a] ande(q) = [5];

e foranyl e C®(®), we havee(PY (1)) = [(+, o, 3)], wheree(PE"(1)) = [a]
ande(Py" (1)) = [9);

e for anyl € C7(®), we havee(PY' (1)) = [(—,, 3)], wheree(PE"(1)) = [a]
ande(P3"" (1)) = (0]

o foranyl € C1(®), we have:(PY' (1)) = [(+, *)];

o foranyl € C1(®), we have:(PY' (1)) = [(—, %)];

[(— Zpepfgxa) e(p)l;
e forany{p,q} € W(®) \ Ax(®), we have:(p) = e(q).

If depth(®) = 0, the definition is already complete. Otherwise for everg C'(®)
such that deptp(P%'(v)) = 0 we know the multisét, . .., e,,, ] of experiments of's
box such that(v) = [[eq, . .., en,]] and we know for every portof ® which is also a
port of B(R)(v) the multiset; (p) (fori € {1,...,n,}). Then we set

o e(PY(v) = [(+: Xicq1,. nyy €i(p))], wherepis the unique free port dB(R) (v)
such thatP? (v) <g p;16

o foranyl € C*(®), we have:(PY' (1))

o ¢(p) = Y icq1. .,y €i(p) forevery porp of & whichis also a port o3 (R) (v);

e e(w) = Yicq1,. n,)€i(w) for everyl-cell w of & which is also a cell of
B(R)(v)M

Example 25. Consider the PSR of Figure 2 and the boXB(R)(v) of its uniquel-cell

v represented in Figure 3. We can define two experimemsnd ez Of B(R)(v) by
choosingy, 72 € D: we obtaine;(ps) = e;(ph) = [(—, 7i, ;") ande;(¢') = [(+, *)]
where{q,q'}, {p2,p5} € W(LPS(R)). By choosingr € D, we have an experlment
e of R such thate(py) = [(—, a, o)), e(p} ) = e(p2) = [(=,7:71), (=72,72)],
6(61) = [(_’ [( » YL 1 ) ( V2,72 )’( )])] e(q/) = G(Q) = [(+’ *)7 (+7 *)]!
e(ca) = [(+, [(+: %), (+, %)])], ande(v) = [[61,62]]-

15The elements of(p) are often calledhe labelsof p. Notice thate(p) & D.

16l et {gv} = PE™(v); then for some por/, of & we have{g., ¢,} € W(®). If {qv,q),} € Ax(D)
(resp{qu, ¢, } & Ax(®)), theng, (resp.q,) is the unique free pogt of B(R)(v) such thaP?'(v) <e p.

17We are using here the nesting condition of Definition 17 : samriote 9.



Figure 3: The box B(R)(v) of the unique !-cell v ; ;
of the PSR of Figure 2.

Definition 26. Let(R,ind) € PSyq, lete be an experiment @t, letn = Card(Pf(LPS(R)))
and letr € D™. We say thate, r) is an experiment ofR, ind) and thatr is the result

of (e,r) ifand only ifr = (z1,...,x,), wherez; is the unique element of the multiset
eoind (7).

Definition 27. If (R,ind) € PSpq, we definghe interpretation of R, ind) as the set
[(R,ind)] = {r € DCadP'(R) |  is the result of an experiment 6R, ind)}.

The crucial result proven in [5] is that i’ is a proof-net obtained by applying
to m some steps of cut-elimination, thén] = [x']. Since any cut-free untyped net
of [14] (and thus any cut-free proof-net of, for example J}Ji8a PS, in order to prove
injectivity for the nets of [14] (and thus for the usual prawdts of, for example, [13]) it
is enough to prove that two PS with the same interpretatienhs same (Corollary 54
and Corollary 55).

Example 28. We can define two experiments and e; of the PSR represented in
Figure 2 in such a way that (p1) = [C1], e2(p1) = [G]. e1(p2) = [, G5, C4] and

e2(p2) = [C1,(3,Ca], Where(; = (—,7;,7,) and they; are distinct atoms. The two
(different) experiments have the same result. More pricisee definend by setting
ind(c1) = 1andind(cz) = 2, andwe set = ((—, [C1, Gz, Ca, Cal), (+, [(+, %), (+, %), (+,#)]).
Then(ey, r) and (e, r) are experiments fR, ind), andr is an [(R, ind)]-atomic in-
jective3-point.

3.2. Experiments of PLPS

In general, if we want to know whether a point is the resultof axperiment, it
is not enough to know the LPS of the (proof-)net: we have tonkfthe connection
between the doors of the boxes”. But if one takesopies every time one crosses a
box, then it is enough: results éfexperiments can be defined directly on LPS. This
yields the notion of-experiment of a LPS (Definition 35). Actualkyexperiments are
defined “up to the names of the atoms” and we thus introduceesegs of indexes:
the intuition is that fory € A ands € N™, (v, s) is one of thek™ copies ofy.

We setd’ = A x N<¥, and we denote by| (resp.loc) the first (resp. second)
projection with domaind’ and codomaim (resp.N<+) : the function| | associates
with § € A’ its “support”|§| € A, while loc associates witlh € A’ its “location”



loc(d) € N<v,
The embedding that associafese) € A’ with everya € A allows to consider as a
proper subset ofl’.

Definition 29. For anys € N<“, we denote byig(s) the functionA’ — A’ defined
bydig(s)(d) = (|d],condloc(d), s)), where conc is the functidi<* x N<¥ — N<«
defined by

cond(dy,...,dm), (d},...,d )= (d1,...,dm,d},....d ).

A construction similar to the one used to defindrom A allows to defineD’ from
A’: intuitively, an element oD’ is an element o> where every atom is followed by a
sequence of integers. Notice that sint&C A’ one hasD C D’, and this will be used
in Definition 35 (last item) of experiment of a PLPS.

Definition 30. By induction onn we defineD,: D{ = A’ U ({+,—} x {x}) and
Dy = DU ({+, =} x D}, x D) U({+, =} x Miin(Dy,)). We setD’ = |, ey Dy,

Definition 31. We define At': D’ — By,(A4’) the function which associates with
a € D' its atoms, by induction omin{n € N|a € D], }:

o At'(6 )_{5}|f56A’
o At'(s,*) =
o At'(e, al,ag) At (a1) UAL (a2);

o AU(¢, [, ..., am]) = UTL Al (aj).
We also denote by At the functi@hy,(D’) — Piin(A") defined by Ata) = |, ., At'(a);
and At’ will also denote the functidiits, (D) ~“ — P (A’) defined by Ata, . . ., a,) =
Ur, At (Supfa;)).
Definition 32. The set of partial injections frord’ to A’ is denoted byl nj.
Letr € plnj. Forany«a € D’ such that Atf«) C dom(r), we definer - « € D’
by induction onnin{n € N |a € D}, }:

7(9) ifa=0¢e A
) () if a = (¢, %);
Ta= (b, 7 a1, T az) if = (¢, 01,a9);
([T ar, ..., 7)) Fa=(,|ar,. .., am]).
Foranya = [a1,...,am] € M (D’) such that Atla) C dom(7), we setr -
a = [r-oq,...,7 an] € M(D'). Foranyr = (aq,...,a,) € D'=* such
that At'([as,...,a,]) € dom(7), wesetr -r = (7-a1,...,7 - ap) € D'<“. For

anyr = (a1,...,an) € Min(D')* such that Affr) C dom(r), we setr - r =
(T-ap,...,7-an) € Mgin(D')~Y.

Definition 33. For any = € plnj, for any functionk such thatim(h) C D’ and
At'(im(h)) C dom(r), we define-h : dom(h) — D’ as follows:(7-h)(z) = 7-h(z).

The functiondigs associates with € My, (D’) the multiset of thek? copies
of a: if for examplea = [, 3, 3] for somea, 5 € A, then one haslig®(a) =
[(a, 1), (e, 2),(8,1),(8,2),(5,1),(8,2)]. Animmediate consequence of the follow-
ing definition is that for every € M, (D’) and for every integef one hasjig§+1(a) =

dig} (digj (a)).



Definition 34. For anyk,d € N, letdig’ be the functioms, (D) — Mg (D') de-
fined bydig;(a) = Y, crra > aesupp(a) (@) - [dig(s) - al.

We now have all the tools to define (a particular kind of) ekpents directly
on LPS and not on PS as in the usual setting (Definition 24 infaumework). It
clearly appears in Subsection 4.2 (and precisely in Facthé8) (injective atomic)
k-experiments of LPS are used in our proof. It is worth noticihat we recover in
the framework of LPS the simplicity of the definition of exjment in the multiplica-
tive fragment of linear logic proof-nets (see for examplé][and [16]): despite the
presence of exponentials (hereells and'-cells) ak-experiment of a PLPS is just a
labeling of its ports by elements &F satisfying some conditions.

Definition 35. Letk € N. For any® € PLPS, a k-experimenk of ® is a function
P(®) — D’ such that

o for anyl € C®(®), we have:(PR(1)) = (+, e(PE" (1)), e(PR™(1)));
o for anyl € C¥(®), we have:(PY (1)) = (—, e(PE" (1)), e(PR™(1)));

e for anyl e C'(®) (resp. | € CL(®)), we havee(PY' (1)) = (+,%) (resp.
e(PE'(1) = (=, #)); |

o foranyl € C'(®), we have:(P§' (1)) = (+, 3, cpaxy digh ([e(p)]) "

o for anyl € C?(®), we have:(P' (1) = (—, S pepuxpy ik, i) ([e(P)]);

e(q)t withe(p) € D, if {p,q} € AX(D); 1

e andforany{p,q} € W(®), we have(p) = { ¢(q) otherwise.

Definition 36. Letk € N, let® € PLPS. Lete be anyk-experiment ofb.
We say that is atomicif for anyw € Ax(®), for anyp € w, we haves(p) € A.
We say that is injectiveif for any w, w’ € Ax(®), for anyp € w,p’ € w', we
have Atle(p)) NAt(e(p’)) #0 = w = w'.

Definition 37. Letk € N. Let(®,ind) € PLPSy4. Lete be ak-experiment of> and
letr € (D')C¥dP'(®) We say thate, r) is a k-experiment of @, ind) and thatr is
the result of(e, ) iff r = e o ind ™.

Example 38. Let U5 be as in Figure 1 and leind(¢;) = 1 andinds(ce) = 2. Let
71,72 € Asuchthaty; # 72. Letar = [(71,1), (11,2), (71, 3), (72, 1), (72, 2), (72, 3)]
and

az = [(+, (11, 1), (92, 1)), (+, (11, 2), (72, 2)), (++, (71, 3), (72, 3))]. Thenry = ((—, a1),
(4, az)) is the result of the injective atomBexperiment; of (U5, indy) such that
ea(p1) = 72 andea(p2) = 71. Notice that once we have chosen the labelg,adnd
p2 and the integek: (herek = 3), thek-experiment ofV; is entirely determined.

"Notice that)” ¢ paux ;) dig®([e(p)]) = dig¥ (Je(p)]) where{p} = P2*(1).
1951 is obtained fromf € D’ by substituting every occurrence &f (resp.—) by — (resp.+): see
Definition 86 of the appendix for the details.



Remark 39. As mentioned in Example 38, once an integer 1 and the labels of
the axiom ports of the LP8& are chosen, thé-experiment ofb is entirely determined.
In particular, given al-experiment; of ®, for everyk > 1 there exists a uniquk-
experiment;, associating with the axiom ports @fthe same labels as . Clearly,e;
is atomic (resp. injective) iff;, is atomic (resp. injective).

4. Main result

In Subsection 4.2, we prove the main result on PS (Theorenb&8gd on a crucial
proposition (Proposition 40) concerning only LPS (and ngtadymore). In Subsec-
tion 4.1, we introduce the main syntactical tools to prove tiucial proposition, and
we explain the technique we adopt in Section 5 to fully prave i

4.1. Main result on LPS

When there exist two injective atomic experiments of two Rt the same result
(up to the name of the atoms), then the two LPS are the same:

Proposition 40. Let(®,ind), (®’,ind’) € LPSpq. For anyk > cosizé®), cosiz¢d’)?°,
for any k-experiment(e, r) of (®,ind), for any k-experiment(e’, r’') of (®’,ind’), e

and e’ atomic and injective, if there exigt p’ € plnj such thatp - r = p’ -/, then
(®,ind) ~ (®’,ind’).

Remark 41. As already noticed (Example 38, Remark 39), for every imtéghere
exists a unique atomic injectikeexperiment o € LPS (up to the name of the atoms).
This entails that by giving the suitable definition of isopitism between experiments,
one could easily substitute the conclusion of Propositidbyla(n apparently) stronger
statement, namelg, r) ~ (e/,7’).

Our strategy is to define a “measureti¢$®), see Definition 42) of the size of
an LPS® and to prove Proposition 40 by induction on this measure.eMwecisely,
relying on the fact that LPS (and actually PLPS) can be indelgtbuilt, our idea can
be roughly summed up as follows:

1. we start with the datas contained in the hypothesis of ¢%itipn 40, namely
with (®,ind), (®’,ind") € LPSj,q and twok-experiments(e, r) of (®,ind) and
(e’,r") of (®’,ind")), both atomic and injective, and such thatr = p’ -/, for
somep, p’ € plnj

2. fromp-r = p’ -’ we can deduce th&t

(@) (®,ind) and(®’,ind’) can be obtained from some suitable LR% ,ind;)
and(®},ind’y) by “adding the same cell(s)”, wheraeg®;) < meg®)
andmeg®}) < megd’)

20The integercosizé®) is the maximal arity of the-cells of  (see Definition 42).
21This is the difficult part of the proof.



(b) (e,r) and(¢’,r’) can be obtained from some suitable injective atokiic
experimentge;, 1) of (®q,ind,) and(e’, ) of (®},ind’;) such thap; -
r1 = p} - r}, for somepy, p} € pinj
3. we can thus apply the induction hypothesis on the measuf®t ind,) and
(®},ind’y) (with their injective atomid:-experimentge;, 1) and(e}, r1)): we
obtain(®4,ind;) ~ (®1,ind’;)
4. since by “adding the same cell(s)” {®,,ind;) and (®},ind’;) one obtains
(®,ind) and (®’,ind’), from (®4,ind;) ~ (P},ind’;) one easily deduces that
(®,ind) ~ (@', ind").

The first thing we do is to define the measure, by introducirgydizes on elements
of PPLPS an integer and an ordered pair (pairs are lexicograpRioatiered).

Definition 42. Let® € PPLPS. We set cosiZ®) = max{as(l) |l € C*(®)} and
mes®) = (3_;ccr(a) o (l), Card(P(®)) + 3, cauxdoors(a) #e (P))-

The aim of the rest of the section is to give a precise mearontpe expres-
sion “(®,ind) and(®’,ind’) can be obtained from some suitable LR, ind;) and
(®},ind’;) by adding the same cell(s)". The intuition is thf (resp.®)) is obtained
from @ (resp.®’) by “eliminating some terminal cell” (thus decreasing theasure).
So the general problem is to define a procedure to “eliminatrrainal cell” from
® ¢ PLPS??, which of course depends on the available terminal cells.thwe first
classify PLPS depending on their terminal cefblsc PLPS can have different terminal
cells, but notice that in case € ?-box-PLPSdefined below, every terminal cell df
belongs to the sat'(®) U C?Cawa(P).

Definition 43. We set:

0-PLPS = {® € PLPS| W(®) = 0}.

ax-PLPS = {® € PLPS| AX'(®) # 0)}.

mult-PLPS = {® € PLPS| (31 € C'(®)) ty(1) € {®, ¥} }.
unit-PLPS = {® € PLPS| (3l € CY(®)) to (1) € {1, L}}.
!
l

2w-PLPS = {® € PLPS| (3l € CY(®)) [ € C™(®)}.

74-PLPS = {® € PLPS| (31 € CY(®)) I € C*4(®)}.
?.,-PLPS = {® € PLPS| (3] € CY(®)) 1 € C*%(®)}.

'7un|t PLPS = {® € PLPS| (3l € CY(®)) [ € C™"'(d)}, whereC™""(d) = {I €
C*(®)\ C7*(®) | (3p € PG (1) (#a(p) > 1 and( 7o p)g & UAX(D))};

e lUNit-PLPS = {® € PLPS| (31 € CY(®) N C'(®))(3p € PF*(1))(Vq >a p)q ¢

UAx(®))};

e ?-box-PLPS = PLPS\ (()-PLPSUax-PLPSUmult-PL PSUunit-PLPSU?,,-PLPSU?4-PLPSU? ., -PLPSU

?unit-PLPS U !unit-PLPS).

If ® € ax-PLPSit is obvious how to remove an isolated axiom. And to “eliniaa
a terminal celll” from a particular PLPS is immediate wheénc C*V(®) or tg(l) €

22In the proof of Proposition 40, we actually “eliminate tenai cells” from® € LPS. However, the
definition makes sense for general PLPS, and it seems marmhtd define it on PLPS. We then have to
take care that when applying this operation to a PLPS whialssa LPS we still get a LPS.



{1, 1.} since there is nothing “abové’ In casety (1) € {®,%,!} orl € C*(®), “to
eliminatel” is intuitively clear, that is why we do not give the formalfation?®. But
of course a non-empt$ € PLPS does not always have an isolated axiom or contain
the previously mentioned terminal cells: in that case weiarene of the last four
cases of Definition 43. Whe# <7, -PLPS, there existd € C*(®) N C'(®) and
p € P$%(1) such that#4 (p) = 0; one can obtai®; € PLPS from ® by removingp
from the auxiliary ports of: this operation (which is precisely described in the proof
of Proposition 40 in Section 5 and in the Appendix) is alsaiiitely clear, and yields
a PLPS®; with one more conclusion and with a strictly smaller meassigce the
number of premises dfhas strictly decreased. It then remains to describe opesati
allowing to shrink the measure whéne ?unit-PLPS U !unit-PLPS U ?-box-PLPS
The peculiarity of the PLPS elements 2dinit-PLPS U !unit-PLPS is that they
contain “isolated subgraphs”: if “above” an auxiliary perof I € C'(®) U C*(®)
there are no axioms, then the subgraph “abgvis’isolated. In presence of “isolated
subgraphs”, we can apply to the PLBS$he following transformationaithout damage
(Fact 44) and shrinking the measuredaf For any® € PLPS, for anyl € C'(®) N
(C'(®) UC"(®)), we denote byb; the PLPS obtained as follows:

e if [ € C'(®), then we distinguish between two cases:

— if {p e UAX(®) | p > PR ()} # 0, thendy = &;
— otherwise, we remove
e if 1 € C"(®), Py is @, exceptwhen there exisjse P5™ (1) suchthatq (q) > 1

and{p € UAX(®) | p >4 ¢} = 0): in that caseby; is  where for every such
one has#s, (q) = #a(q) — 1.

The reader can easily check that wiere ?unit-PLPSU !unit-PLPS, it is always
possible to select a suitable céuch thatmeg®(;) < meg®). And we now show
that whatevef we choosel PS is stable with respect to the transformation previously
defined.

Fact 44. For any® € LPS, for anyl € C'(®)N (C'(®)NC*(®)), we haveb; € LPS.

PROOF. We haveAx(®p;) = Ax(®) and for any{p,q} € Ax(®), depthy(p) =
depthy (p).

We turn to the last casé € ?-box-PLPS here the intuition is that we eliminate
one layer, the most external one. In order to do so, we mustiteetbat there is no
terminal axiom portin such @.

Fact 45. For any® € ?-box-PLPSN LPS, we haveAx'(®) = 0.

PROOF. Let{p,q} € Ax(®), suppose € P'(®) and letc, be the unique conclusion
belowq: by Definition 15depth, (p) = 0. Since® ¢ ax-PLPS we haveg # ¢, and

23see Definition 85 in the appendix for such a definition.



thusc, is not an axiom port: in this casg is the principal port of some cdllof ¢. By
Definition 43 this means thatc C'(®) U (d), which entails thadlepthy (¢) > 0,
thus contradicting Definition 16 of LPS.

A consequence of Fact 45 is that in ca@ses ?-box-PLPSN LPS all ¢'s conclu-
sions are principal ports of some cells of the@é® ) UC?Cua (®); in the syntax of [13]
this corresponds to a proof-structuevith no links at deptt) except boxes and con-
traction links. We calfb the PLPS obtained from suchiaby decreasing’s depth by
1, which can be easily done sinde ¢ ?-box-PLPSN LPS?% the reader will notice
that LPS is stable with respect to this operation, hence we actualel® < LPS.
Furthermore, from Definition 42 it clearly follows thateg®) < meg®).

Since in the proof of Proposition 40 we deal with indexed L®8,conclude the
section by defining the indexing function dp; and®, based on the indexing function
of .

Definition 46. Let R = (®,ind) € PLPSq and letl € C'(®) N (C'(®) UC*(®)). We
setR[l] = (‘I’[l], indm), Whereindm (p) = ind(Cé(p)) forp e Pf((I)[l]).
Definition 47. Let (®,ind) € LPSpq such that® € ?-box-PLPS. We se{(®,ind) =
(®,ind), where® has been defined abdveandind(p) = ind(cs(p)).

Coming back to the last four cases of Definition 43, we want éntion that the
casesd € ?unit-PLPS and® € !unit-PLPS have to be distinguished because our
graphs (PLPS, LPS, PS) are disconnected (as already medtiogy can contain “iso-
lated subgraphs”); if we decided from the beginning to resto connected graphs
these cases would not occur (and Corollary 54 would holdpbumain result Theo-
rem 50 would be much weaker). On the other hand, even in theeoted case, the
two most delicate cases in the proof of Proposition 40 wotillbe ¢ 7., -PLPSand
d € ?-box-PLPS

4.2. Main result on PS

An injective atomick-experiment of an LP® can be considered as a “prototype”
of (atomic) k-experiment ofany PS (@, 5).26 Indeed, every:-point of [(®, b)]a can
be obtained from the result of an injective atorhiexperiment ofp: to be precise, if
(R,ind) € PSpg and(e, r) is any injective atomié-experiment of LPS(R), ind), we
have

{ro € [(R,ind)]at]| 7o is ak-point} = {p - r | pis a partial map fromd’ to A}

243ee Definition 89 in the appendix for a formal definition.

25and, more formally, in Definition 89 of the appendix.

26Notice that we did not defing-experiments of PS but only of LP&:experiments of nets have been
defined in [22] and byinjective) k-experiment of a P&e mean here an experiment having a(n injective)
k-point as result. Ak-experiment of a PSR is said to beatomicif for any p € |J Ax(LPS(R)), we have
Supre(p)) C A.



B(R)(v) = P P

Figure 4:The critical case of Fact 48 We havep = p’ if, and only if,p’ € [J AX(LPS(R)).

wherep - r is defined by a straightforward generalization of Definit8h In our proof
we will only use Fact 48, namely that for a BS= (®, b), the restriction of R] to the
injective k-points which ard R]-atomic is precisely the set of the results of the atomic
injective k-experiments ofd (up to the name of the atoms):

Fact48. Letk € N, let (R,ind) € PSpy and let(e,r) be an injective atomic:-
experiment ofLPS(R), ind). We havery € [(R,ind)]atro is an injectivek-point} =
{p-r|p € plnjandcodom(p) = A}.

PrROOF One of the two inclusions is easy to prove: given an injecaomick-
experiment(e, ) of (LPS(R),ind) and givenp € plnj such thattodom(p) = A,
there is an experimeif¢,,, ro) of (R, ind) such thaty = p-r. The experimente,, o)
of (R, ind) can be defined by induction anegLPS(R)) (see Definition 42 and see
also Example 49).

Conversely, lety € [(R,ind)]a: be an injectivek-point and let(eq, ro) be an ex-
periment of( R, ind). We prove that for every atomic injectiveexperimente, r) of
(LPS(R),ind), there existe € plnj such thaim(p) C At'(rg) andp - r = ro. The
proof is by induction oome4LPS(R)), the unique case deserving some details being
the one where there is a unique termikakll v of R and every other terminal cell is
a 7-cell having a unique auxiliary port which is an elementogR?)(v)?’. The situ-
ation is represented in Figure 4. We §et,...,p;} = b(R)(v), we call B(R)(v)
the box ofv (we still denote byind the obvious bijectiorP'(LPS(B(R)(v))) =~
"Card(P (LPS(B(R)(v)))”) and we callp the unique free port oB(R)(v) such that
PE::IS(R?](’U) <LPS(R) P- o S _

In the sequel of the proof, it is important to distinguishvibeen experiments of PS

27In the standard terminology of linear logic proof-nets orauld say thatR is an exponential box.



(Definition 24) andkc-experiments of LPS (Definition 35): the experiments of P&ha
0 as index ¢y and f¢), while all the others arg-experiments of LPS.
Leteo(v) = [[fd, .-, fa]], where(f¢, ry) is an experiment of B(R)(v), ind). Clearly,
ry € [(B(R)(v),ind)]at is an injectivek-point. The restrictionf, s) of (e,r) to
LPS(B(R)(v)) is an atomic injectivé:-experiment of LPS(B(R)(v)),ind). We can
then apply the induction hypothesis: for evéry "k there exist®; € pInj such that
im(p;) C At'(r}) andp; - s = rj%. 4
Sinceim(p;) C At'(r}) and sincer is injective, one ha#\t'(rj) N At'(r}) = 0
wheni # j and thusm(p;) Nim(p;) = 0 wheni # j. We can then defing € pinj
on the elements € At'(r): since for every such there exist a uniquée "k and a
uniquegl € At'(s) such thaty = dig(:)(5), we can sep(y) = p;(0).
We now check thap is indeed the function we look for. With the notations intro-
duced we have:

o 0= ((— X0, fop1))o s (= 00 fa0), (1, 5 fa(0)))
b r(i) = ((_7 fé(pl))v R (_7 fé(pl))767)1 Wheref{j(p) = [ﬁl]' for everyi € "k

o s = ((—digh ([fV)))).- .. (= digh ([f()))). f(p)), Whered; = # ps () () (P7)
forj el

o 7= ((—,dig{(dig}, ([f(p1)]))),- .-, (=, digi(digl, ([ (), (+ dig ([f (0)]))-

Now notice that for every € "I we havedig} (diglj ([f(p)])) = i, dig(i) -
digy ([f(p;)]); and, since we havat'(digy ([f(p;)])) € At'(s), we can deduce for
everyg € At’(dig(’ji([f(pj)])) and for everyi € "k thatdig(:)(5) € dom(p) and
p(dig(i)(3)) = ps(5). This entails that for every € "I one hag-digf (dig} ([f(p;)])) =
St p-(dig(i)-digy ([£(py)]) = 31y pi-digy, ([ (p;)]). Inthe same way, we have
p-dig([f(p)]) = X1y p- (dig(i) - [f(p)]) = £y pi - [f(p)]. Then the following
equalities hold:
por = (= X0 pidigg, ([f (1)), - (= 00 pi-digg, ([F (), (+, iy i
@) = (= i £60)s - (= 00, F300), (+, 325 f3(0)) = ro-

Example 49. Consider the LPSI, of Figure 1. The experimer(es,r2) consid-
ered in Example 38 is an injective atonfieexperiment of U5, indz). Letp € plnj

be such that forj € ™27 and: € T37 one hasp(y;,i) = ~;;, wherey;; € A

(sincep € plnj the v;;s are pairwise different). Then for atfyPS R such that
LPS(R) = ¥, there exists an experimeeg = (e2), of R with resultry = p - 7, =

(=, [y11, M2, 713, Y21, Y225 Y23)), (F, [(+, 711, 721), (+, 712, Y22), (+, 713, 723)]))- In-
deed, if we calb the uniqué-cell of R, we can sety(v) = [[f1, f2, f3]], wheref; is

the experiment af’s box obtained by setting; (p1) = [y2:] and f;(p2) = [y1:] (which
entirely determineg;). One can easily check thag is indeede’s result.

28Notice that for everyi € "k7 one hasAt' (s) C dom(p;).
29Corollary 54 shows that in this particular cask(is a connected graph) there is actually a unique PS
R such thalLPS(R) = U».



Figure 5:Two different PS with the same LPS.The PSR, Rz andT are PS of depth.

Theorem 50. Let(R,ind), (R',ind’) € PSpq. Letk > cosizéLPS(R)), cosizéLPS(R')).
If {ro € [(R,ind)]at|ro is an injectivek-pointtn{ry € [(R’,ind")]a|ro iS an injectivek-point} #
0, then(LPS(R),ind) ~ (LPS(R'),ind").

PROOF Letrq be an injective]( R, ind)]-atomic k-point of [(R, ind)] which is also
an injective[(R’, ind")]-atomick-point of [(R’,ind’)]. Let (e, r) (resp.(¢’,r')) be an
injective atomick-experiment of LPS(R), ind) (resp.(LPS(R’),ind’)). By Fact 48,
there existy € plnj (resp.p’ € pInj) suchthap-r = ry = p’ - r’. By Proposition 40
we thus havéLPS(R),ind) ~ (LPS(R’),ind’).

Remark 51. Of course, as illustrated by Figure 5, there are differentidth the same
LPS. Thek-experiments of two P&have the same results if, and only if, the PS have
the same LPS, but we do not say anything about the resulte oftiler experiments.

Corollary 52. Assumed is infinite. Let(R,ind), (R’,ind’) € PSpqg. If [(R,ind)] =
[(R’,ind")], then(LPS(R),ind) ~ (LPS(R’),ind").

PROOF SinceA isinfinite, foreveryk € None hagr € [(R,ind)]adro is an injectivek-pointin
{ro € [(R',ind")]at | 70 is an injectivek-point} # (. Apply Theorem 50.

Remark 53. In the proof of Corollary 52, we use the fact that there alwayists an
[R]-atomic injectivek-point in the interpretation of any P& and thus there always
exists an atomic injective-experiment of2°° (and we already noticed in Remark 41
that such an atomic injectivie-experiment is unique “up to the names of the atoms”).
The reader acquainted withjectivek-obsessional experimer{see [12, 13]) knows
that, in the coherent model, not every PS has an injedtiebsessional experiment:
this is precisely the reason why the proof of injectivity leé toherent model given

30See Footnote 26.



in [12, 13] for the (?p)LL fragment (already mentioned in the introduction) canipet
extended ta\/ £ L L; and still for that reason injectivity of the coherent moéls for
MELL as shownin[12, 13].

The following corollary is based on a simple and crucial remalready used
in [13] (for the same purpose): since in LPS the depth of epeny is known, given
two !-cellsv andw with the same depth in a P®, b) and given an auxiliary pout
of some?-cell of ®, there might be an ambiguity on whether b(v) orp € b(w)
(we would say in the standard terminology of linear logicqdroets whethep is an
auxiliary door ofv or w’s box) only in caseb is not a connected graph Indeed (us-
ing again the standard terminology of linear logic proofsign cased is connected,
p andv are two “doors of the same box” iff there exists a patldafonnecting andv
and crossing only cells with depth greater than the depth More precisely:

Corollary 54. Assume is infinite. Let(R, ind), (R’,ind’) € PSy4 such thalLPS(R)
is a connected graph. [{(R,ind)] = [(R’,ind")], then(R,ind) ~ (R’,ind").

PrRoOOF By Corollary 52(LPS(R),ind) ~ (LPS(R’),ind’). Now notice that when
LPS(R) is connected, there is a unique functiosuch thatLPS(R), b) € PS Indeed,
givenv € C'(LPS(R)), we havep € b(v) iff the two following conditions hold:

. depthS(R)(PfgS(R) (w)) < deptqps(R)(Pfgs(R) (v)), wherep € P{pg gy (w)

o there exists a patth,,,, starting from the unique auxiliary pgs of v and ending
in p such that for every poi crossed byi,,, we have thatlepthpg(z)(q) >

depthps ) (Plps ) (v)):

As already pointed out in the introduction, the theory ofgdfpets is among the
striking novelties introduced with Linear Logic. Right frothe start (see [5]), it ap-
peared very natural to first introduce graphs (called likbismpaper “proof-structures”)
not necessarily representing sequent calculus proofs,tla look for “intrinsic”
(usually graph-theoretical) properties allowing to cluéesize, among proof-structures,
precisely those corresponding to sequent calculus prinaisi§ case the proof-structure
is calledproof-ne). Such a property is calletbrrectness criterionthe most used one
is the Danos-Regnier criterion: a proof-structaref Multiplicative Linear Logic is a
proof-net iff every correctness graph (every graph obthinem = by erasing one of
the two premisses of evefy link) is acyclic and connected.

As soon as one leaves the purely multiplicative fragmentin&ar Logic, things be-
come less simple; for Multiplicative and Exponential Linéagic M ELL, one often
considers (like for example in [14]) a weaker correctnegieron: a proof-structure
is a proof-net when every correctness graph is acyclic (ahdecessarily connected);
such a criterion corresponds to a particular version of &firleogic sequent calculus

31Here, we conside® € LPS as the following graph: cells and terminal axiom portsfofire the nodes
and two nodes andv’ are connected by an edge {ff, p’} is a wire, wherep (resp.p’) is a port ofv (resp.
V') if v (resp.v’) is acell, and = v (resp.p’ = /') if v (resp.v/’) is a terminal axiom port.



(see for example [12]). But it is also well-known (see againdxample [12]) that in
the absence of weakening andlinks, the situation is much better, in the sense that
one can strengthen the criterion so as to capture the sthhotear Logic sequent cal-
culus (very much in the style of the purely multiplicativese in this framework, an
M ELL proof-structure is a proof-net iff every correctness gragphot only acyclic,
but also connected. BYy/ FLL net we mean in the following corollary the (indexed)
untyped version (in the style of [14]) of this strong notidrpooof-net:

Corollary 55. Assumé is infinite. LetR and R’ be twoM E L L nets without weak-
ening nor L links. If [R] = [R'], thenR and R’ have the same (cut-free) normal
form.

PROOF Let Ry (resp.Ry) be a cut-free normal form aR (resp.R’). Then[R] =
[Ro] = [R(] = [R]- Since we are im/ ELL without weakening nod., LPS(Ry)
(so asLPS(Ry)) is a connected graph. Apply Corollary 54.

Remark 56. Theorem 50, Corollary 52, Corollary 54 and Corollary 55 hdtat the
standard typed/ E'L L proof-nets of [13]: in particular if every propositional viable
of the logical language is interpreted by the infinite deaind if r and =’ are two cut-
free typed proof-nets with atomic axioms, without weakgsimor 132, and such that
[7] = ['], thent = '3,

5. Proof of Proposition 40

In this last section, we use the tools previously introduicedrder to prove the
key-proposition (Proposition 40) concerning only LPS (arod PS anymore). Since
we need to consider isomorphisms between several kindsjettsl{elements ob)’,
t-uples of elements ab’, finite multisets ofD’, ¢-uples of finite multisets oP’,...)
we use the notion of groupoid (Subsection 5.1).

Subsections 5.2, 5.3 and 5.4 establish the main resultsvithéie used in the dif-
ferent cases of the proof by induction of Proposition 40egiin Subsection 5.5. More
precisely, let's come back to the general strategy destib&ubsection 4.1: follow-
ing the classification of Definition 43, we already explainedhat subsection how
from (®,ind) and(®’,ind’) one can obtairi®,, ind;) and(®,ind’;) by “eliminating
the same cell(s)”, in such a way thaieg®;) < meg®) andmegd;) < megd’)
(this is item 2a of the description given in Subsection 4\ now turn to item 2b
of the description given in Subsection 4.1: starting frerv) and (e’, ') of Propo-
sition 40, we want to define some suitable injective atomexperimentge;, ;1) of
(®1,indy) and(ef, ) of (1,ind’y) suchthap, -r1 = pf -7}, forsomepy, pj € plnj.
This is more or less obvious except in four of the cases of Rein43, namely for
o, 9" €7, -PLPSU ?unit-PLPS U lunit-PLPS U ?-box-PLPS

When @, &’ €7, -PLPS, the LPS(®,,ind;) and (®/,ind’;), so as the experi-
ments(ey, 1) and (e}, ), are defined directly in the proof of Proposition 40; and

32\Ve still refer here to the strong notion of proof-net corarsging toM E L L sequent calculus.
33More formally, one should write that fi(r, ind)] = [(=’,ind")], then(x,ind) ~ («’, ind’).



Subsection 5.2 is mainly devoted to define an equivalenadwalallowing to split the
multiset associated with the principal portiof C*®(®) N C'(®) in such a way that
all the “possible” labels of a given auxiliary port p b§uch that#4(p) = 0 are in the
same equivalence class.

On the other hand, Subsections 5.3 and 5.4 have a similatstetf: we first define
the injective atomidc-experimentge;,r1) and (e}, r}) and we then have a “purely
semantic” part (dealing only with points d and not with experiments anymore),
allowing to prove (in the corresponding case of the proofrof@sition 40) that from
p-r=p -ritfollowsthatp, - ry = p} - r{, for somepy, p| € pInj.

Finally, in Subsection 5.5 we prove Proposition 40 by inguton the measure
introduced in Definition 42.

Let e be an atomid:-experiment ofd € PLPS and suppose(p) = « for p €
PH(®). If « = (+, a1, az), then since is atomic we can say thatis not an axiom port,
so thaip is necessarily the principal port of a cell of typge Whena = (—, a) for some
a € Myn(D'), even if we know thap is not an axiom port, there are several possibilities
for the 7-cell havingp as principal port. The following fact will be used severaiés
in Subsection 5.5: it allows (in particular) to distinguisbtween?-cells having only
auxiliary doors (remember Remark 3) among their premises the others.

Fact57. Let® € PLPS. Letl € C*(®). Letk > ag(l). LetPy C P3X(l). Lete be
ak:-exper.iment ofb. Weset =3 dig’;q)(p)([e(p)]). Thenk divides Carda) if,
and only if,(Vp € Poy) #a(p) # 0.

ProoOF We have

Card(a) = Z L#e(P)
pEPo
= Card({p S 770 | #q>(p)) = 0}) —+ k Z k#rb(p)fl
pE€Po
#a(p) #0

Hencek dividesCard(a) if, and only if, k dividesCard({p € Py | #4(p) = 0}). Now

Card({p € Py | #a(p) =0}) < aall)
< k.

Sok dividesCard({p € Py | #4(p) = 0}) if, and only if, Card({p € Py | #a(p) =
0}) =0i.e.(vp € Po) #a(p) # 0.

5.1. Groupoids

We recall that a groupoid is a category such that any morphésan iso and that
a morphism of groupoids is a functor between two groupoids. any groupoids,

34Notice by the way that since the cages®’ € ?unit-PLPS and®, &' € !unit-PLPS are very similar
we treat them in the same Subsection 5.3.



we will denote byG, the class of objects of the groupd@l In the following, we

sometimes think of a set as a groupoid such that the morpraseniglentities on the
elements of the set. We now define some useful groupoids; sbthem rely on the
definition of the subseb’*' of D’, consisting of those points @ containing at least

one atom (see Definition 64):

e The groupoid: letDy = D’ andp : a — o’ in D if, and onlyif, p € pInj such thap-
a=da.

e The groupoicsD: letsDy = D'<* andp : (aq,...,a,) — (af,...,al,) in sDif,
andonly if,n =n’and(Vi € "n") p: a; — o} inD.

e The groupoidM: letMy = My, (D) andp : @ — o’ inM if,and only if, p-a = a@’.

e The groupoicsDM: let sSDMy = (D’<¥ x Mgn (D)) andp : (r,a) — (r',a’) in
sDMif,and onlyif,p: r — 7’ insDandp : a — o’ in M.

e the groupoicpM: letpM, = PBsin (Msin(D’)) andp : a — o' in pM if, and only if,
foranya’ € M (D), we haver' € o' < (Ja € a)p:a — o’ INM.

e The groupoicsM: let sMy = imﬁn(D’At)@ andp : (a1,...,a,) — (a},...,al)
in sM if, and only if, for anyi € "n", we havep : a; — a} in M.

e the groupoidosM: let psM, = ‘ﬁfin(imﬁn(D’At)@) andp : v — t/ in psM if, and
only if, for anyr’ € Smﬁn(D’At)@, we haver’ ev < (Ir€t) p:r — ' insM.

e the groupoidppsM: let ppsM, = ‘,Bﬁn(inﬁn(imﬁn(D’At)<“’)) andp : A — A’ in
ppsM if, and only if, for anya’ € Pin (Miin (D) <), we haver’ € A’ < (3a €
A)p:a—a inpsM.

e the groupoidBij : objects are sets and morphisms are bijections.

In the sequel, we will writep : » — ¢’ (referring to a given groupoid) in order to
indicate thap is an iso betweenandr’, while we will write » ~ " meaning that there
exists someisp : r — 1.

Definition 58. We denote by Card the morphism of groupdids— N defined by:
Card(a) = >_ ,esupga) @(@); and Cardp) = idcarq) foranyp:a — a'.

5.2. The case df., -PLPS

The main result of this subsection is Lemma 63, where we ksitad precise cor-
respondence between equivalence classes of a multiset vghtice label given by an
experimentto the principal port oflacell and the auxiliary ports of this sarfieell. So
we start by defining, for every multiset an equivalence relation @upga) allowing
to splita:

Definition 59. Leta € My, (E) such that Supf) = £. LetR be an equivalence
relation on€&. We set

a/R = {ap € Msin(E) | Supfag) € £/R and (Vo € Supfag)) ag(a) = ala)}.

Consider again the LP8, of Figure 1 and th8-experimentes, 2) of (U5, ind3)
already defined in Example 38. We have that, (v1,1)), (r2, (71,2)) € sDy and
if we definep € pInj by settingp(y1,1) = (71,2), p(71,2) = (71,1), p(72,1) =
(72:2), p(72,2) = (72,1), p(73,1) = (73,1) andp(ys,2) = (73,2), we have that



p i (re,(71,1)) — (r2,(71,2)) in sD*: the effect of the morphism of sD is to
EXChange two elements of = [(717 1)) (’72) 1)7 (7172)5 (7252)7 (7173)5 (’7253)]1
without changing. This suggests the definition of an equivalence relationron a
a € Min (D') (w.r.t. a givenr € sDy):

Definition 60. For any (r,a) € sDMg, we set Qr,a) = a/ ~, where fora;, as €
Supfa) one hasy; ~ «s if, and only if,(r, aq) ~ (r, a2) in SD.

Fact 61. By extending the definition of Q to the morphismsi¥ in setting Qp) = p
we obtain a morphism of groupoid®M — pM.

PrROOF For any(r,ay), (r,as) € sDy, for anyp € plnj such thatAt'(r, a1, as) C
dom(p), we have(r,a1) ~ (r,a) in sDif, and only if, we have(p - r,p - a1) =~
(p-r,p-az)insD.

We now prove a fact concerning experiments and their reghlis allows to “ex-
change” two indexes (elements'@ ™) without changing the result of a given experi-
ment: thanks to this property we will be able (in Lemma 63)xch&ange two “copies”
of a € a for some multiset of D’.

Fact62. Letk € N. Let(®,ind) € PLPSq. Let(e,r) be ak-experiment of®, ind).
Letd € N. Letjq,jo € "k Letp € plnj defined by setting

dig(s)(dig(j2) (60)) if & = dig(s)(dig(j1)(50)) with s € "k and, € A';
p(0) = { dig(s)(dig(j1)(60)) if & = dig(s)(dig(j2)(do)) with s € "k¢ anddy € A’;
0 otherwise.

Then we have - r =r.

PROOF We first try to explain the intuition behind this fact: wheee forj € "k, an
atom(vy, condo, condj,o’))) (whereo, o’ € N<) occurs®in the labeln € D’ asso-
ciated by an experiment with a port of some cell, the atetondo, condi, ¢’)))
occurs ina too, for everyi € k7. And (most important) there always exists a
multiseta occurring ina such thats;, 3; € a and (v, condo,condj,o’))) (resp.
(v, condo,condi,o’)))) occurs ing; (resp. ing;). This means that one can always
“exchange”(v, condo, condj, ¢’))) and (v, condao, condi, o’))), without changing
« (and thus without changing the resulof the experiment o). This is essentially
due to the fact that following Definition 35 df-experiment, indexes are introduced
precisely when (following the top-down propagation of Ishenultisets appear.

More precisely, one can proceed by inductiomoeg®).

If C'(®)NCY(®) # 0, we choose somlg € C'(®)NCY(P), we setip = ind(PY ' (Ip))
and we consider the PLPB obtained from® by removingl, and the bijectionnd’ :
Pf(¥) — Card(P'(¥)) defined byind’ = ind o cs. We haver(ig) = (+,digh([5]))

35Notice that we do not have, for exampleg, (y1,1)) =~ (r2, (v2,2)) in sD.
36Recall that Definition 87 of the appendix gives a precise rimggiw this notion.



with v = (r(1),...,7(i0 — 1), 8, r(io + 1),...,7r(n)) a result of ak-experiment of
(¥, ind"). By induction hypothesis, we haye r' = r'.

Ford = 0, we clearly have - digh ([3]) = dig} ([3]), hencep - r = .

Ford > 0, we considep’ € pInj defined by

dig(s')(dig(j2)(80)) if & = dig(s’)(dig(j1)(do)) with s’ € "k~ andd, € A’;
p'(8) = ¢ dig(s')(dig(j1)(0o)) if & = dig(s’)(dig(j2)(do)) with s’ € "k 4~ andd, € A’;
0 otherwise.

Again by induction hypothesis, we hayé- 5 = 3, hence, for any € "k, we have
p- (dig(y) - B) = dig(j) - (o' - B) = dig(3) - B, sop - digy ([B]) = dig} ([3]).

If there existd, € C*(®) N CY(®) such that for any auxiliary poyt of Iy, we have
#a(p) > 0, we proceed in the same way as before, except that instegubbfirsg
the induction hypothesis on the PLPS obtained by remalinge apply the induction
hypothesis on the PLPS obtained by decreasing the fungtion the auxiliary ports
of lp.

The other cases are left to the reader.

Supposeg(e, ) is an experiment of ®,ind) € PLPSyq, supposes(Ph (1)) =
(—,a) for somel € C*(®) N CY(®) and suppose thalp) = « for p € P5>(I) such
that#4 (p) = d. Then the idea is that (like we did in the example before Dedini60)
one can exchange two “copies” afin a without changing-: the intuition is that for
everyay, ag € Supmdig’;([a])) one hagr,a;) ~ (r,a2) in sD. More precisely, the
following lemma holds:

Lemma 63. Let k € N. Let(®,ind) € PLPSy. Letl € C'(®). Let(e,r) be
a k-experiment of ®,ind). Leta € 9Mgn(D’) such thate(Py' (1)) = (—,a). Let
ag € Q(r,a). Then there existBy C P3*(1) such thatg = 3~ digl, ) (e(q)).

PROOF We prove, by induction od and using Fact 62, that for ary < N, for any
o € D/, foranyay, as € Supgdigh([a])), we have(r,a;) ~ (r, as) in sD.

5.3. The case dfunit-PLPS and!unit-PLPS

In the first part of this subsection (and similarly in the fipstrt of the following
Subsection 5.4), we first define some suitable injective atdrexperimentge;, )
of (®y,ind;) and(e}, ;) of (®/,ind’;)%’, and we then establish somarely semantic
statements, that will allow in the final Subsection 5.5 tovshivatr,; ~ r} (and thus
apply the induction hypothesis). Notice that in the secoad pf Subsections 5.3
and 5.4 we often refer tb-experiments and LPS, but only in discussions and examples:
the intuition is that the points dD’ we consider in mathematical statements are results
of k-experiments of LPS, but the statements themselves holebutitany reference to
experiments.

3Notations still refer to the general strategy describedubs®ction 4.1.



For everyp € pinj (Definition 32) and for every € D', whenAt'(a) = 0, one
hasp - @ = a. We will use in the sequel the remark that any multiset 95, (D’)
can be decomposed into a (possibly empty) mul#$étn which atoms occur and a
(possibly empty) multise* in which no atom occursh = b + b*, whereb™ andb*
are precisely defined as follows.

Definition 64. For any D, C D', we setDy™ = {a € Dy | At'(a) # 0} andDy* =
{a € Do | At(a) = 0}
For anya € Mgin(D'), we sett = a|supgtay™ ANAa* = @ supga)”-

When (for someb € PLPS) “above” an auxiliary porp of [ € C*(®) U C'(®)3®
there are no axiom ports, it is obvious that whatewvexperiment of & one considers,
the labeln = e(p) of p contains no atom. And the converse holds too whismatomic:
if At'(e(p)) = 0, there are no axiom ports “above’ This implies thak(P% (1)) =
(¢, b) for someb € Myn (D’) such thab* # [] iff “above” one of the auxiliary ports of
[ there are no axiom ports, as the following fact shows.

Fact65. Letk > 1, let ® € PLPSand lete be an atomid:-experiment of>. Suppose
that! € C(®) ande(P%' (1)) = (1, b) for someb € M (D).
We have that* # [] iff there existe € P3>(1) such that for every >4 p one has

q ¢ UAX(®).

PROOF. Sincee is atomic¢® andk > 1, we haveAt' (e(q)) # () for anyq € |J Ax(®),
hence one can easily prove, by induction on the number ofpaltove” the port

of ® (that is onCard({q € P(®) / ¢ >4 p})), that there existg >4 p such that

q € JAX(D) iff At'(e(p)) # 0. This immediately yields the conclusion: for every
p € P (1) there existy >4 p such thay € [J Ax(®) iff At'(«) # () for everya € b

iff b* = [].

The following Fact 66 and Fact 68 are similar in spirit to Fattof the following
Subsection 5.4: they allow to obtairkeexperiment;,) of ®(;;; from ak-experiment
of ® € LPS, and they will be used in the casés= !unit-PLPS and® € ?unit-PLPS
of the proof of Proposition 40. In both the facts the hypoithe$ # || (for a €
Miin(D’) such thate(p) = (¢, a) with p port of @) is crucial: it implies that “above”
p there is an “isolated subgraph”, which allows to apply tle@sformations defined in
Subsection 4.1, thus shrinking the measuré of

Fact66. Letk > 1. Let R = (®,ind) € LPSpg and let(e,r) be an atomick-
experiment of ®,ind). Letl, € C'(®) N CY(®) and € D’ such thate(P% (Iy)) =
(+,dig’f([ﬁ])) and(dig’f([ﬁ]))* # []. Then me@p;;;;) < megd) and there exists a
unique atomig:-experimentey;,j, rp,) of Ry, such that

 foranyp € (P(®) \ P'(®)) N P(@y,)), we havery,(p) = e(p);

38In casel € C'(®) such a premise is the unique premisé.of
39n casee is not atomic, one might have for examplgy) = (4, *) for someg € |J Ax(®).



() = r(i) ifi;éind(ng(lo))i
WY g it i = ind (PP (1g)).

Moreover, ife is injective, there ) is injective.

PROOF By Fact 65, if we calp the unique auxiliary port ofy, we have that for every
q >o pone hag ¢ |JAX(®), thatis{p € JAX(®) |p >o P§ (1)} = 0: this implies
that® < !unit-PLPS, thusmeg ;) < meg®).

We then set;, (p) = e(p) foranyp € P(®,)).

Remark 67. If e is a k-experiment oft € PLPSand! € C’(®), we know by Defi-
nition 35 thate(P' (1)) = (—, ), wherea = 3= _paw(,) digl., ) ([e(p)]). Whenl €
Ceawd (d) we have#ts(p) > 1 for everyp € P (1), which implies that. = dig¥ (b)
for b = 3 cpap) digl, () -1 ([e(p)])). It then follows that whed € 2unit-PLPS

there always exists € C'(®) such thate(P‘;”(l)) = (—,dig¥ (b)) for someb €
Min(D').

Fact68.Letk > 1. Let R = (®,ind) € LPSpy and let(e,r) be an atomick-
experiment ofR. Letly € (C'(®) \ C**(®)) N CY(®) andb € My (D’) such that
e(PY'(ly)) = (—, digl (b)) and(dig (b))” # [J. Then mesby,|) < meg®) and there
exists a unique atomie-experimentey,;, ) of Ry;,) such that

o foranyp € (P(®) \ P'(®)) N P(®,)), we havery,(p) = e(p);

(i) = 1 7@ it i # ind(Pg (1n));
WYY (=, (digh(0)A + b*)  if i = ind(PP(1)).

Moreover, ife is injective thery, ) is injective.

PROOF. By Fact 65 there exists € P%3*(ly) such that for everyy >4 p one has
¢ ¢ UAX(®). Fromk > 1, e(P¥ (o)) = (—,digi(b)) and (digh(s))” # [ we

deduce thaty ¢ C™(®) U C’Y(®), and sincdy & C(®), we havely € CCua(P)

and thus#g(p) > 1. Summing up, we have the existencepof P3*(Io) such that
#a(p) > Land{q € UAX(®) | ¢ > p} = 0: this implies that, € C*""'(d) and
@ € ?unit-PLPS, thusmeg®(;,;) < meg®).

_ | e it p # P (lo);
e hen Seé“f”(p)‘{ (o dgE ) 57) it PE).

We now prove two “purely semantic” facts, that will be usethia case8unit-PLPS
and!unit-PLPS of the proof of Proposition 40. The first one intuitively gtsitthat
given an (injective atomic) experimenfresp.e’) of & (resp.®’) such tha’e(Pgi(l)) ~
¢/ (P (1")) for some suitable teminal link(resp.’), there existp € P(®y;) such that
for the “correspondingp’ € P'(®'(;1) one hagy(p) ~ €’ (p').

Fact 69. Letk > 1. Leth, b’ € My, (D’). Letp : digh(b) — digh(t') in M. Then we
havep : b* + (dig¥ (b))A — b'* + (digh (v'))Atin M.



*

PROOF We havedigh(b*) = (digh(b))" = (dig"(+))" = digh(v'*), hence (since
k # 0) b* = b'*. Fromp : digh(b) — dig¥(¥’) one deduces that : (digh (b))At —

(dig’f(b’))At, and since forp € plnj we already noticed thai(b*) = b*, we can
conclude thap : b* + (dig¥ (b)) — b* + (digh (b'))A = b'* + (digh (')A,

Fact 70. Letk € N. Let3 € D’ such that(dig® ([3]))* # []. Then([8])* = [3].
ProOFR From(dig¥([3]))* +# [], we deduce thaAt' () = 0.

5.4. The case df-box-PLPSN LPS

The last case to analyze (€ ?-box-PLPSLPS) is the most complicated one. The
first part of this subsection allows to definé-@xperiment of ® from ak-experiment
e of the LPS® (where® has been defined in Subsection 4.1, where we already noticed
thatmeg®) < meg®)) and consists only of Fact 71. All the rest of the subsection i
“purely semantic”.

Fact71.Letk € N. Let(®,ind) € LPSyq such thatd € ?-box-PLPS and let
(e,r) be ak-experiment of ®,ind). Then there exists a unigieexperimente, 7) of
(®,ind) = (®,ind) such that

e for anyp € (P(®) \ P(®)) N P(®), we havee(p) = e(p);

e ifr(i) = (4, a), thenthere exista € D’ suchtha¥(i) = canda = Z?Zl dig(j)-
[af; if (i) = (—,a), then there exists € My, (D’) such that (i) = (—,b) and
=37, dig(j) b
Moreover, ife is atomic (resp. injective), thenis atomic (resp. injective).

PROOF. Foranyl € C*uwd(®)NCYP), we havee(P‘;,”(l)) = Epepgxu) dig;(b(p)([e(p)]) =
E;?:} dig(y) - Zpepw) dig;(p(p)il([e(p)]). For anyl € C'(®) N CY(®), we have
(PR (1) = X epanqy digh ([e()]) = X5, dig(7) - [e(q)], where{q} = P3*(0).

In the following informal discussion, we fix an LRSand an atomié&-experiment
(e,r) of (®,ind). Supposed consists of 2 cells: &cell and a?-cell with a unique
auxiliary portp such that#4(p) = 1, and suppose that the two auxiliary ports of
the two cells are connected by an axiom (in the language afisbal theory of linear
logic proof-nets® would correspond to an axiom link inside an exponential béx)
this caser = ((—,digh([8])), (+,digh([8]))) € D™ x D™ for somes € A. If
o, of € Supgdig? ([6])) such thaty # o/, thenAt (a) N At (/) = 0): two elements of
the multiset associated with the principal port of theell have no atom in common,
since they “come from” two different copies of the contentlad box.

Suppose now that, more generally, € ?-box-PLPSN LPS has two conclusions,
one is the principal port of &cell and the other one is the principal port of-aell,
but now this last cell has several auxiliary ports and forrgwich portp one has
#ao(p) > 1; suppose also that the graph obtained by removind’tiisll is connected
(in the language of the usual theory of linear logic proofsp® would now correspond
to a connected proof-netinside an exponential box, wheré-ttonclusions of the box
are contracted): an example of such &S is in Figure 1 (see also the following



Example 75). The previous remark can be generalized to sudtP8: leta (resp.

b) be the multiset associated laywith the principal port of the’-cell (resp.!-cell)
conclusion of®; we have thatv, o’ € Supga) “come from” the same copy of the
content of the box if and only if there is a “bridge” betweemnda’*°, meaning that
there is a sequenees, . . ., o, such thaity; € Supfa + b) andagy = «, a, = o’ and
for anyi € "n”, we haveAt' («;—1) N At'(a;) # 0. This means that one can split the
multiseta into equivalence classes given by the relation “being cotatkby a bridge”,
and every equivalence class will identify a copy of the box.

For generalb € ?-box-PLPSN LPS, the situation is more complex: it might be the
case that the elementsanda’ above come from the same copy of a box even though
they are not connected by a bridge. On the other hand, theecgmstill holds: when
there is a bridge betweenandc«’ they do come from the same copy of the box. We
thus define a functionB, that splits the result of the experiment into equivalence
classes of this relation.

Definition 72. For any D, C D', we define the equivalence relatiorp, on Dy as
follows: o ~p, o if, and only if, there existy,...,a, € Dy such thatey = «,
a, = o andforany: € "n”, we have Ao, 1) N AL (o) # 0.

Definition 73. We denote by B the functi®Bg, (D'*") — Bin(Bin (D)) defined by
B(DQ) = Do/ :Dg-

The functionsBthat we are going to define “splits"tauple of multisets, following
the equivalence classes of the “bridge” equivalence miati

Definition 74. We denote by sB the morphism of groupaills — psM defined by:
sB(ai,...,a,) = {(al [Supfai)Nas -« 5 anISup;{an)ﬁa) | a€ B(SUPQZ?':l ai))}; and
sB(p) = p.

Example 75. Leta; andas be as in Example 38. Then we hav&Bpga; + a2)) =

{617 C2, Cg}, Wherecz = {(’71, Z)a (727 Z)7 (+7 (717 Z)7 (72; Z))}) and SE{al, CLQ) = {Th T2, 7”3},
wherer, = ([(11,2), (72, 2)], [(+, (71, 2), (72, 2))]). Notice that every element of
sB(a1, as) corresponds to a copy of the box.

Givenr = (a1,...,a,) € sSMy and two different equivalence classesh €
B(Supg>_.-, a;)), we clearly have thaht'(a) N At'(b) = (. This implies that any
element of the restriction ofto the elements af has no atom in common with any el-
ement of the restriction of to the elements df, as the following fact precisely states.
A consequence that will be used in Lemma 81 is that if for semé € sM, one has
p : SB(r) — sB(r') in psM, thenp : » — 7’ in SM.

Fact 76. Letr € sMy. For anyry,re € sB(r), we have Ar;) NAt'(ry) # 0 = r =
T9.

40Notice that by Definition 43> ¢ ?unit-PLPS U lunit-PLPS, so thato, o/ € D',



PROOFE Suppose: = (ai,...,an), r1 = (¢1,...,¢,) @andre = (dy,...,d,). By
Definition 74, for everyi € {1,...,n} we have that; = a;|sypga,)na ANAd; =
@i|Supa;)ne TOF SOMea, b € B(Supg)_"" | a;)).

If At'(r1)NAL (r2) # 0, then sincéAt’(r1) C At'(a) andAt'(r2) C At'(b), we have
At'(a) NAL'(b) # 0, which means thaAt' (§) N At'(n) # (0 for someg € a andn € b:
this implies by Definition 72 thag ~sypgs-» , 4;) 7 @nd thuss = b andry = ro.

In the language of the usual theory of linear logic proofsngiven a proof-net one
can “box it”; we have generalized this boxing operation ia ftamework ofL. PS: for
® ¢ ?-box-PLPSN LPS this corresponds to the passage frémo ®. From an ex-
periment(e;, ) of (®,ind), one can naturally obtain an experiméatr) of (o, ind).
The following lemma (intuitively) relates the effect of dpipg the splitting function
sBafter boxing to the effect of applying the splitting functisB before boxing.

Lemma 77. Letk,n € N such thatk > 0. Letby,...,b, € M (D'™). We have
sB(digf (by), ..., digf (b)) = {(dig(jo)-f1. .- .. dig(jo) fn)ljo € "k a@nd(fi, ..., fa) €
SB(bl, ceey bn)}

PROOF. For anyb € Mg, (D), we haveB(Supgdigh (b)) = B(Suppizk_ldig( j)-
b)) = {{dig(jo) - B| B € b}|jo € "k'andb € B(Supmb))} Now notice that

digy (37, bs) = Yo, digy (bi); henceB(SupY_ -, dlgl(b ))) (Suplﬂidlgl(Zz: bi))) =
{{dig(jo) - 818 € b} | jo € "k andb € B(Supgy i, bi))}- T

SB(dig} (b1), .. ., dig] (bn))
k
= {(digy(b1) |Supndlgl<b1>>ma""’d'gl(b")|3upr(dig’f<bn>>ma)|

ae B(Supmz dig? (b:)))}

i=1

= {(digy (01) |supgaigh (b)) {dig(io) 5 | Beny -+ DT (0n) | suppiaigh (b)) (dig (o) 5 | Beb)) /

jo € "k andb € B(Supit» _ b))}

i=1

= {(dig}(by) |{dI9(Jo)ﬂ\563UPr(b1)ﬂb}"' ,dig’ (b n)| (dig(io)-5 | Besuprba)e}) /

jo € "k andb € B(Suppjz b))}
=1

= {((dig(o) - b1)|(aig(jo)-5 | sesuprbr)ne}s - - -+ (AiD(T0) - bn) | aigijo)- | sesupbIney) /

jo € "k andb € B(Supgt» _ b))}

=1
= {(dig(jo) - b1|supggsi)nes - - - »diG(Jo) - bn|supgp,)ne) | Jo € Tk andb € B(SUDQZ bi))}

i—1
= {(dig(jo) - f1,---,dig(jo) - fn) | Jo € "k and(f1,..., fn) € SB(b1,...,bn)}.
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D1 P Figure 6: Example illustrating the case of
?-box-PLPSN LPS. Let ® € PLPS as beside
and such tha# ¢ (p1) = 1 = #a(p2). We have

d € ?-box-PLPSN LPS.

Our aim is now to prove Lemma 81: both the following Definitio® and Fact 79
are just tools to prove this result (in order to get some fitnj see Example 80).

Definition 78. We denote by R the morphism of groupgidsl — ppsM defined by:
R(a) = a/ ~qu, wherer ~gy 7’ if, and only if,r ~ " in sM; and R\p) = p.

Fact 79. Letk € N\ {0}. Letr,r’ € sMy. Letb € R(sB(r)), b’ € R(sB(r")) such that
{dig(jo) - o | jo € "k andrg € b} ~ {dig(jo) - r{, | jo € "kTandr| € b’} in psM.
Then we havé ~ b’ in psM.

PROOF Letp : {dig(jo)-ro|jo € "k andrg € b} — {dig(jo)-r|jo € "k andrj €
b’} in psM. Letrg € b. Letr| € b’ andj, € "k suchthap : dig(1)-ro — dig(jo)-r{
in sM; then we have ~ r{, in sM. Thus the following holds:

e there exists € b, 7, € b’ such thatg ~ r{ in sM;

e for anyry,ro € b, we haver; ~ ro in sM and for anyr}, r5 € b/, 7} ~ 7}, in sM;

e for anyri,75 € b, we haveAt'(r1) N At'(r2) # 0 = r = ro and for any

ri,rh € b, we haveAt'(r]) NAt'(r}) # 0 = r| = r}, (by Fact 76);

e Card(b) = Card(b’).
Henceb ~ b’ in psM. Indeed: letr : ry — r{ in sM and lety : b — b’ in Bij; for
anyr, € b, letr,, : r1 — roin sM; foranyr| € v/, IetT;i i 1y — 1) in sM; for
anyr, € b, we setp,,, = r;(m oTorT.,; wedefiney’ : b — b’ in psM by setting
P (0) = pr (0)if 6 € At'(11).

Example 80. In order to help the reader to get some intuition of what we tan
do here, let us consider the LR represented in Figure 6: the contraction of two
auxiliary doorsp; and p» such that#4(p1) = #a(p2) = 1; above each auxil-
iary door, a%¥; above each?®, an axiom. Lete = ¢’ be the injective atomié:-
experiment ofb such that the label associated bywith every auxiliary port of the
7-cell is (—,7z,7:.), wherey, € A, z € "27and~; # 72. The resultr = 7/

is (=, X 1< i<a<2l(— (¥2,0), (72,9))]). We havep : a — a’ in psM, where
0 = Uyejepacacat (= (4,4), (4=.3)])} = @', with p that can send anyy., )

to any(~.., j'). Fact 79 will be useful to deduce very generally that in sitwss of this

kind, we haves ~ b’ in psM, where hereb = {([(—, 71, 71)]), ([(—,72,72)])} = b".

The following lemma is the crucial step allowing to apply thduction hypothesis
in the proof of the key-Proposition 40 in tiebox-PLPScase: it intuitively states
that if there is an isomorphism between the results of tweegrpents ofd,, &, €
?-box-PLPSN LPS, then there exists also an isomorphism between the reduli®o



experiments of; and®,. In the proof, we denote by the forgetful functoppsM —
Bij.

Lemma 81. Letk,n € N such thatt > 0. Letby,...,b,,b],...,b), € imﬁn(D’At)
such that(dig¥ (b,), ..., digh (b,)) ~ (digh(¥}), ..., digh(b,,)) in sM. Then we have
(by,...,by) ~ (by,...,b.)insM.

PrROOF We set

a={dig(jo) - (f1,---,fn) | Jo € kT and(f1,..., fn) € SBb1,...,b,)}

and

o = {dlg(JO) : (f{vafrlz) |jO SN and(f{vafrlz) € SB(b/lv’bln)}

SincesB is a morphism of groupoids, by Lemma 77, there exists — a’ in psM.
Since for any, ' € sMy, foranyj, jo € "k, we havedig(j1) - ~ dig(j2) -’ in

sM if, and only if, » ~ " in sM, we can define : U(R(sB(by,...,b,))) — U(R(a))

in Bij by settingp({(f1,..., fa).--- (ff,.-., fD}) = {dig(j) - (ff..... fi) |j €

Tk7andz € "¢} andy’ @ U(R(sB(b;,...,b,))) — U(R(a")) in Bij by setting
U e f ) (P D) = {dig(j) ( Lo ') 1j €Tk andz €
_rqu}__. We havey’ ' o U(R(p)) o ¢ : UR(SB(b1, ..., by))) — U(R(SB(b,,...,b.)))
in Bij.

For anyb € U(R(sB(by,...,b,))), we havep : ¢(b) = {dig(jo) - 70 | jo €
"kTandry € b} — {dig(jo) - 7 | jo € Tk andr) € (¢’ o U(R(p)) o )(b)} =
(U(R(p)) o v)(b) in psM. Hence by Fact 79, for anty € U(R(sB(b1, . .., by))) there
existsty, : b — (o'~ o U(R(p)) o ©)(b) in psM.

Now, by applying a first time Fact 76, we can define an appbeati

T U At'(r) — U At (r")
rESB(by,...,bn) 7! esB(b, ..., b, )
by settingr () = 7 (J) for § € At'(r), r € b andb € R(sB(by, ..., by)).

We thus obtainr : R(sB(by,...,b,)) — R(sB(),...,b))) in ppsM. By ap-
plying a second time Fact 76, we obtain | J R(sB(b1,...,b,)) = sB(b1,...,b,) —
sB(b, ..., b)) = R(sB(b,..., b)) inpsM. Lastly, by applying a third time Fact 76,
we obtainr : (by,...,b,) — (b},...,b),) in sM.

5.5. Key-Proposition
We can now conclude the paper by giving the complete prodfefitissing result:

Proposition 40. Let (®,ind), (9’,ind") € LPSyq, letk > cosizé®), cosizéd’), let
(e,r) (resp.(¢/,r')) be an atomic injectivé-experiment of @, ind) (resp.(®’,ind’)).
If r ~ " in sD, then(®,ind) ~ (®’,ind’).

PROOF The proof is by induction omeg®). We havemeg®) = (0,0) if, and
only if, ® € (-PLPS; in this case, it is obvious that we ha¢®,ind) ~ (®’,ind").
If meg®) > (0,0), then letp : » — 7+’ in sD, we setn = Card(P'(®)) and we
distinguish between the several cases.



e In the case wher@ € ax-PLPS, letw = {po,q} € AX'(®) and letig, jo €
Tn7 such thatind(py) = o andind(qo) = jo. Letp),q, € P'(®') such that
ind’'(pp) = o andind’(¢}) = jo. As e is atomic ande’ is injective, we have
w' = {plyap} € AX (@),
Let (®4,ind;) € PLPSyg (resp. (®),ind’y) € PLPSy) obtained from(®, ind)
(resp. (®,ind’)) by removingw (resp. w’).*' Since®,®' < LPS, we have
Oy, @) € LPS. We sete; = e|p(,) ande; = €|p(a;). We setr; = e oind; ™'
andr; =¢’o ind’; ~*: itis immediate thateq, 1) is an injective atomic experiment
of (®4,ind;) and that(e!, ;) is an injective atomic experiment ¢®/,ind’;); and
fromp : r — ¢’ in sD one deduceg : r; — r} in sD. Notice thatmeg®;) <
meg®): by induction hypothesis we ha@,,ind;) ~ (®,ind’;), which obvi-
ously implies(®, ind) ~ (®’,ind").

e In the case wher® €?.,-PLPS, letl, € C'®(®) N CY(®) and letiyp € "n”
such thatnd(P%'(lp)) = io. As e’ is atomic, there existg, € C*(®') N CY(P')
such thaP, (1)) = ind’ " (io). Leta € Mygn(D’) such thae(PY (Ip)) = (—,a).
Leta’ € Mgn(D’) such thatp - (—,a) = (—,a’). Letp € P3*(lp) such that
#a(p) = 0. We set3 = e(p). We have8 € Supfa), hence there existg €
Q(r,a) such that3 € Supgag). By Lemma 63, there exist8, C P%™(ly) such
thatag = > cp, dig’;q)(q)(e(q)). We havep € P, (otherwise, we would have
a(B) > ao(B)). Hence, by Fact 5% does not divideCard(ag) = Card(p - ag). As
we havep : (r,a) — (r’,a’) in sDM and by Fact 61 is a morphism of groupoids,
we havep - ap € Q(r’,a’). Hence, by Lemma 63, there exigt§ C P3(1}) such
thatp - ag = qupé dig’;q),(q) (¢'(q)). By Fact 57, there existg € P/ such that
#o(p) =0. Letp’ =¢€'(p'); we have(r’, p- 8) ~ (+', 8') and(r, B) ~ (', p- B)
in sD, hence(r, 3) ~ (r/, 3’) in sD.

Let ®; € PLPS (resp. ®] € PLPS) obtained from® (resp. ®’) by removingp
(resp.p’) from the auxiliary ports of, (resp.l}).*? Notice thatmeg®,) < meg®).
Both ®; and®] haven + 1 free ports: for®,, those of® and a new free poti;
for @}, those of®’ and a new free pogtj,. We set
- ind(q) if ¢ # po; . ind'(¢) if ¢ # pp;
mdl(q):{ n+1 if ¢ =po; andmdl(q):{ n+1 ifq:pg.
We have(®,,ind; ), (®},ind’y) € LPSig. Foranyg € P(®1) \ {PF (lo)}, we set
e1(q) = e(q). Letb € My (D') such thaty = b+ [3]; we sete; (P (Io)) = (—,b).
Foranyg € P(®})\ {Pflfl1 (1)}, we sete) (q) = €'(q). Letd’ € My, (D’) such that
a =b+ (0], we sete’l(P';fi (16)) = (=, ).

r(i) if i ¢ {ig,n +1};
We setr1(i) = ¢ (—,b) if i = ip;

gifi=n+1.

41See the appendix for a formal definition @1, ind1) and (&4, ind" ).
42See the appendix for a formal definition @1 , ind;) and (@}, ind'"; ).



(i) if i ¢ {ig,n +1};
We setr| (i) = ¢ (=, ) if i = ip;

B ifi=n-+1.
Since(e,r) (resp. (¢/,r')) is an atomic injectives-experiment of(®, ind) (resp.
(®’,ind"), (e1,r1) (resp.(e}, 7)) is an atomic injectivé-experiment of @, ind; )
(resp. (®1,ind’y)) and since(r, 8) ~ (v, ') in sD we haver; ~ r{ in sD. By
induction hypothesis we deduce tldt; , ind;) ~ (®/,ind’;), from which the con-
clusion(®,ind) ~ (¥’ ind’) immediately follows.

e In the case wher@ < !unit-PLPS, by Fact 65, there exists € C'(®) N C'(®)
andg € D’ such thate(PY (o)) = (+,dig}([5])) and (digh([)))" # [|. Ase’
is atomic, there exist§ € C'(®') N C'(®') such thaPh, (1) = ind’~ (). Since
p:r — 1 insDone hay : e(PY'(lo)) — €' (P% (1)) in D, so that there exists
§' € D' such that'(Pg, () = (+,digy ([5'])) andp : digy ([8]) — digy ([6]) in
M. Hence(dig} ([3]))* # [ and, by Fact 69 : ([3])* +(dig ([8]))* — ([8])"+
(digy (([8']))A in M: by Fact 70, we obtaip : 3 — £ in D and thus : ] —
r’%] in sD, wherery; andr’%] have been defined in Fact 66. By this fact and by
Fact 44, we can apply the induction hypothesis and dedutehg,,indj;,;) ~
(®'(1y),ind’py)). Sincedy,) (resp.®’(;1) has been obtained frod (resp.®’) by
removing the-celll, (resplp), the fact that @y, indy,) ) ~ (', ind’y;) entails
that(®,ind) ~ (®’,ind’).

¢ In the case wher@ € ?unit-PLPS, by Remark 67 and Fact 65, there exigts
(C7 (@) \ C*(@)) N C'(®) andb € Myn(D’) such thae(Py' (1)) = (-, dig¥ (b))
and (dig’f(b))* # [l. As e is atomic, there exist§, € C*(®') N CY(®) such
that Py, (1)) = ind"~'(i9). We havely ¢ C’(®), so that by Fact 57 divides
Card(dig® (b)). Still by Fact 57, we obtain thaf, ¢ C?®(®'). Fromp : r — r/
in sD, we can deduce (using again Remark 67) matdig’f(b) — dig’f(b’) in
M, hence, by Fact 69, we get : b* + (digh(b)) — b + digh(¥)A in M
and thusp : r, — r’%] in sD, whererp,, and r’%] have been defined in
Fact 68. By this fact and by Fact 44, we can apply the indudtigpothesis and
deduce that®,), indy,;) ~ (@171, ind’;1). Now notice that forp = (¢, ¢p) :
(1, ind)) = (@'pyy,ind’y), we also havep : (®,ind) ~ (&',ind’). In-
deed: leth, = Zpepg)ux(lo)[e(p)] andby = ZP’EP";‘}(%)[G/(}?I)] ; then for any
p € P3%(lo), we havee(p) € Supgby*) if, and only if, ¢’ (op (p)) € Supgby”),
hence#q (p) = #a (¢p(p))-

e Inthe case wher@ € ?-box-PLPS for every: € "nwe have that (i) = (v;, b;)
for someb; € My, (D’) and from the existence ¢f : » — r’ in sD, we deduce
thatr’'(i) = (u;,b}) whereb, = p - b;. Since® ¢ ?unit-PLPS, by Fact 65 we
deduce); = [] for everyi € "n7, thusb* = [] which implies®’ ¢ ?unit-PLPS.
By Fact 57,k dividesCard(b;). SinceCard(b;) = Card(b;) ande’ is atomic, by
applying again Fact 57, we can conclude thate ?-box-PLPS We can thus now
apply Fact 71 twice:

1. there exists a unique atomic and injecthrexperiment(e,7) of (®,ind) =
(®,ind) € LPS;q such that
e for anyp € (P(®) \ P'(®)) N P(®), we havee(p) = e(p);



o if r(i) = (+,dig¥([a;])) for somea; € D', then7(i) = o; and ifr(i) =
(—, digF(c;)) then7(i) = (—, ;).
2. there exists a unique atomic and injectivexperimente’, r’) of (¢’,ind’) =
(®/,ind’) € LPSjy4 such that
e foranyp ¢ (P(®') \ PI(®')) N P(®’), we havee(p) = ¢'(p);
o if /(i) = (+,dig¥([a}])) for somen, € D', thenr’(i) = o and if /(i) =
(—, digh(¢})) then’(i) = (—, c}).

If we setb; = ¢; (resp.b; = [o;]) if F(i) = ¢; (resp.7(i) = «;), andd, = ¢,
(resp.b; = [af]) if v/ (i) = ¢, (resp.r’(i) = o), thenr ~ ¢’ in sDis equivalent
to (dig¥(b1),...,digh (b)) ~ (digh(®)),...,dig"(#.,)) in sM. By Lemma 81 we
canthen conclude théi, ..., b,) ~ (b}, ..., b)) in sM, whichimmediately yields
7 ~ r’ in sD. Sincemeg®) < meg®), by induction hypothesis we deduce that
(®,ind) ~ (®’,ind’). To conclude, notice that (sinee~ 7’ in sD) for p € P (®),

p = PY'(1) (resp.p’ € PY(®'), p’ = PY (1)) such thatind(p) = ind'(p’), we
havel € C'(®) iff I’ € C'(®'). Thus from(®,ind) ~ (¥’,ind’) it follows that
(®,ind) =~ (®’,ind’).

¢ the other cases are easier and left to the reader.

Remark 82. A crucial point in the cas& 7. -PLPS of the proof is that we have
p- 3 ~ (3, but we do not necessarily hape 3 = (3 and this corresponds to the fact
that, as illustrated in the introduction by an example usihg PS of Figure 2, there
are different atomid:-experiments of P8 having the same injective result. Consider
again this figure and le® be the LPS of this PS. Let= ¢’ be a3-experiment ofp
such thake(p,) = (—, A\, A.) with A, € Aandz € "27. We have:(c;) = (—, a) with
a=1[(—, A, )]+ Z?Zl[(—, (A2,7)s (A2, 4))]. Letr =+ be the result o = ¢’. We
have Qr,a) = {a}, hence we can consider, for exampe, (—,a) — (—,a) in sD
such thaip(A\1) = (A2, 1). We havel = (—, A\, A1) =03 #p- 6.
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Technical appendix
6. Syntax

6.1. Pre-Linear Proof-Structures (PLPS)
We introduce a weaker notion than the one of PPLEFPLPS An wPPLP$%is a
PPLPS, except that Condition 3 of Definition 5 is not required

Definition 83. LetwPPLPS be the set of triple® = (C,Z, W) with C € Cells, 7 a
finite set satisfyin@ N P(C) = ) andW C B2(P(C) U Z) such that

1. for anyw, w’ € W such thatw N w’ # 0, we havew = w’;
2. we haveP?™*(C)UZ C UWw; _
3. for anyw € W, there existp € w such thap ¢ PP"(C).

We setC(®) = C, Z(®) = Z, W(®) = W andP(®) = P(C(®)) UZ. We use for
wPPLPS the notations introduced for PPLPS (see Notations 6).

With everywPPLPS®, we associate a uniqgue PPLRED):

Definition 84. Let w be the functionuPPLPS — PPLPS such thatw(®) = @' is
defined as follows:

o C(®') = C(P);
o Z(®') =Z(®) \ {p € Z(®) | (3¢ € PP(C(®))) {p,q} € W(D)};
o W(') = {we W(®)|wC P(®)}.

We give here the formal definition ¢tie PLPSV obtained from® by removing’y,
whereCy C CY(®) is such thatCy = {I} andl € C™(®) U C"4(®)) orCy C C'(®):

Definition 85. Let ® € PLPS and letCy C C'(®) such that(Co, = {l}andl €
C™(®) U C*4(®)) or Cy € C'(®). The PLPST obtained from® by removingCy
isw(®'), whered’ is thewPPLPS defined as follows

C(2) = C(®) \ Co;
P(2") =P(®) \ Ujec, {r € P(®) [ Calp) = 1}

Cc(o’
g = tq>|c(<pz) andCg = C‘I’|73((q>/));

P(2)y.

pri|P(®") )
C(@/) i)

@ le(a)
#o = H#ao;
Z(®') = Z(®) UUjec, P3 (1)

W(P') ={w e W(®) |w C (P(P) UL(D))}.

o« PN —p (resp.P§! = P§"|

44, is reminiscent of the definition @f-reductionin [28]
45Concretely®’ is obtained fromb by erasing the cells afy and their principal ports, and by “changing
the status” of the auxiliary ports of the cells@f, which become elements &{®’).



6.2. Proof-Structures (PS)

In the same way that we introduced indexed PPLPS, indexe®PbBexed LPS
and indexed PS, we introduce the notion of indexPLPS. Now, to everyd, ind) €
wPPLPSg, we associate the indexed PPLP&) = (w(®), ind;) defined as follows:
for p € P(w(®)) we setind; (p) = ind(cs (p)).

7. Experiments

Definition 86. We calldepth of an element € D the least number € N such that
a€ D,
Let+1 = —and—* = +. We define.! for anya € D, by induction on the depth
of a:
o foryc A, vt =~ and (s, %)t = (11, %);
o else,(s,a, 8)" = (uh, b, fh) and (s, [an, .., an])t = (5 [ag e ).

Definition 87. For anya € D, we define, by induction on the depthaafSulja) €
Min (D) as follows:
e Suld) =[d]if6 € AU({+,—} x {x});
e Sulds, o, B) = [(¢, o, B)] + Sulr) + SuldB);
o Sully, [a1,...,am]) = [, o1, ..., am])] + E;"'zl Sula;).
Forany(ai,...,a,) € D<%, we set Sulavy, ..., a,) = > ., Sul{a;).
Foranyg € D, for anyr € D<¥, we say thaf occurs inr if 3 € SupgSuldir)).
For anyy € A, for anyr € D<%, for anym € N, we say thathere are exactlyn
occurrences of in r if Sul(r)(v) = m.

The following precise definition of substitution clearlytaits that for everyx € D
and for every substitution : D — D, one hawr(at) = o(a)*:

Definition 88. A substitutionis a functions : D — D induced by a functioa” :
A — D and defined by induction on the depth of element® ods follows (as usual
L € {+,—}andy € A):

e o(y) = o?(y) ando(s, *) = (1, %);
e o(t,a, ) == (1,0(a), 0(B))
o (i, far,...,an)) = (4, [o(a1), ..., 0(am)]).

8. Main result
We give the formal definition ob for ® € ?-box-PLPSN LPS:

Definition 89. With® € ?-box-PLPSNLPSone can associate the PLHES ; obtained
from ® by modifying the functiog (all the rest is unchanged’(®_,)NCY(®_;) =
C"Cawa (@) N CY(P) and for every cell € C*Cwd(P) N CY(P), the auxiliary ports of
in ® are exactly those dfin ®_;; we can thus se#s_, (p) = #a(p) — 1 for such

46The definition ofD,, has been given in Definition 21.



an auxiliary portp*’. For everyl € C*(®_4) \ (C*(®_1) N CY(®_,)) and for every
auxiliary portp of [, we set#s_, (p) = #ao(p)-
The PLPSP is then obtained frond_; by removingC'(®_;) N C'(P_;)*8.

9. Proof of Proposition 40

9.1. The case dx-PLPS

We give here the formal definition dfp,,ind;) and (®},ind’;) of the proof of
Proposition 40 (cas® € ax-PLPS).

We setmg = min{ig, jo} andMy = max{io, jo}. We defing®,,ind;), (®},ind’;) €
PLPSq as follows:
o C(®1) = C(®) andC(®}) = C(D");
o I(91) = I(9) \ {po, qo} andZ(®}) = Z(') \ {pf. b }:
e W(@1) = W(®) \ {{po. g0} } andW(®}) = W(®") \ {{ph. a}};
o we define the value dhd, (p) as follows:

ind(p) if ind(p) < mo;
{ ind(p) — 1if mo < ind(p) < Mo;
ind(p) — 2 if My < ind(p);

and the value oind’; (p) as follows:

{ ind’(p) if ind’(p) < mo;
ind’(p) — 1if mp <ind’'(p) < Mo;
ind’(p) — 21if My < ind'(p).

9.2. The case df., -PLPS

We give here the definition of®,,ind,), (®/,ind’;) € PLPSyq of the proof of
Proposition 40 (case® €7, -PLPS): (®1,ind;) = w(¥y,ind2) and (®},ind’;) =
w(P),ind’y), where(¥y,indz), (¥, ind’2) € wPPLPS,4 are defined as follows:

e C(Uy) =C(®) andC(¥)) = C(D");
° t\pl =13 andtq,rl =1y,
o P(¥1) =P(®)\ {p} andP(¥}) = P(2') \ {p'};
e Cy, = Co|p(w,) andCy; = Co|p(w));
o PY' =P andPy, =P PE" = Pg" andPy! = Pg;
* #uy = FFe|dom#e)\ (p} ANAF 0] = # |dom(sg )\ (p')
o I(¥y) = Z(®) U {p} andZ(¥}) = Z(®") U {p'};
e W(Up) = W(®) andW(T)) = W(P');
_ _{ ind(q) if ¢ # p;
e indy(q) = { CardP'(®)) +1 if ¢ =p;
ooy [ ind'(g) if g # p';

andind’z(q) = { Card(P!(®')) +1 if q=p.

4"We use here the crucial hypothesis that C?uxd (&) which means thatt ¢ (p) > 0.
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