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Abstract

We show that for Multiplicative Exponential Linear Logic (without weakenings) the
syntactical equivalence relation on proofs induced by cut-elimination coincides with
the semantic equivalence relation on proofs induced by the multiset based relational
model: one says that the interpretation in the model (or the semantics) is injective. We
actually prove a stronger result: two cut-free proofs of thefull multiplicative and ex-
ponential fragment of linear logic whose interpretations coincide in the multiset based
relational model are the same “up to the connections betweenthe doors of exponential
boxes”.

1. Introduction

Separation is an important mathematical property, and several theorems are of-
ten referred to as “separation theorems”. In theoretical computer science, one of the
most well-known examples of separation theorem is Böhm’s theorem ([1]) for pure
λ-calculus: ift, t′ are two distinct closedβη-normal terms, then there exists a context
C[ ] s.t.C[t] 'β 0 andC[t′] 'β 1. Such a result induces an order relation (i.e. aT0

topology) on theβη-equivalence classes of (normalizable)λ-terms. Later on, this kind
of question has been studied by Friedman and Statman for the simply typedλ-calculus
([2]), leading to what is often called “typed Böhm’s theorem” (see also [3], [4] for
sharper formulations). We believe that if no other result ofthis kind has been produced
for a long time, it is due to the absence of interesting logical systems where proofs
could be represented in a nice “canonical” way.

The situation radically changed in the nineties, mainly dueto Linear Logic (LL [5]),
a refinement of intuitionistic (and classical) logic characterized by the introduction of
new connectives (the exponentials) which give alogical status to the operations of
erasing and copying (corresponding to thestructural rulesof logic): this change of
viewpoint had striking consequences in proof-theory, likethe introduction of proof-
nets, a geometric way of representing computations. In the framework of proof-nets,
the separation property can be studied: the first work on the subject is [6] where the
authors deal with the translation in LL of the pureλ-calculus; it is a key property
of ludics ([7]) and has been studied more recently for the intuitionistic multiplicative
fragment of LL ([8]) and for differential nets ([9]). For Parigot’s λµ-calculus, see [10]
and [11].
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Still in LL’s framework, a semantic approach to the questionof separation is devel-
opped in [12] and [13], where the (very natural) question of “injectivity” of the seman-
tics is adressed: do the equivalence relation on proofs defined by the cut-elimination
procedure and the one defined by a given denotational model (sometimes/always) co-
incide? When the answer is positive one says that the model isinjective(it separates
syntactically different proofs). Indeed, two proofs are “syntactically” equivalent when
(roughly speaking) they have the same cut-free form (in a confluent and weakly nor-
malizing system), and they are “semantically” equivalent in a given denotational model
(a semantics of proofs in logical terms) when they have the same interpretation. It is
worth noticing that the study of both these equivalence relations is at the heart of the
whole research area between proof-theory and theoretical computer science: on the
one hand, cut-elimination is a crucial property of logical systems since Gentzen. In
the second part of last century, there was a renewal of interest in this property after the
discovery of the Curry-Howard correspondence: a proof is a program whose execution
corresponds to applying the cut-elimination procedure to the proof. On the other hand,
the general goal of denotational semantics is to give a “mathematical” counterpart to
syntactical devices such as proofs and programs, bringing to the fore their essential
properties: the basic pattern is to associate with every formula/type an object of some
category and with every proof/program a morphism of this category (its interpretation).
In the theoretical computer science tradition, once a notion of “value” is defined, one
often wants to consider that two programs are equivalent when whatever context one
chooses, the two programs are either both non-correct or they are both correct and yield
the same value: this equivalence is then called “observational equivalence”. When the
semantic equivalence in a given model coincides with observational equivalence, one
says that the model is “fully abstract”. Full abstraction isamong the most studied
properties of theoretical computer science in the last decades. In LL, if one considers
cut-free proof-nets as values, the syntactic equivalence relation is observational equiva-
lence, and a model is injective precisely when it is fully abstract. To be more precise, in
an untyped framework one should also have that two proof-nets with the same interpre-
tation are either both normalizable1 or both non-normalizable: in the relational model
this is a consequence of the semantic characterization of normalizable proof-nets given
in [14].

The works [12] and [13] give partial results and counterexamples to the question
of injectivity, mainly for the (multiset based) coherent model: in particular the coun-
terexamples show that this model is not injective for multiplicative and exponential
LL (MELL). Also, it was conjectured that the (multiset based) relational model is
injective forMELL, but despite many efforts ([12], [13], [15], [16], [9], [17]...) all
the attempts to prove the conjecture failed up to now: no realprogress has been done
since [13], where a proof of injectivity of the relational model is given for a fragment
of MELL2. Game semantics is much closer to syntax than relational andcoherent
semantics, and positive answers have been obtained for little fragments like the multi-

1We mean that it is possible to apply the cut-elimination procedure to both the proof-nets and obtain a
cut-free proof-net.

2Precisely, for the(?℘)LL fragment given byA ::= X | ?A℘A | A℘?A | A℘A | A ⊗ A | !A .



plicative fragmentMLL or the fragment corresponding to theλ-calculus ([18],[19]),
but also for the polarized fragment of LL ([20]).

We prove here that forMELL without weakenings (and without the multiplicative
unit⊥) relational semantics is injective (Corollary 55). This tremendous improvement
with respect to the previous situation is an immediate consequence of a much stronger
result: in the fullMELL fragment (with units) two proof-netsR andR′ with the same
interpretation are the same “up to the connections between the doors of exponential
boxes” (we say they have the same LPS: Theorem 50 and Corollary 52). This result can
be expressed in terms of differential nets ([21]): two cut-free proof-nets with different
LPS have different Taylor expansions. We also believe this work is an essential step
towards the proof of the full conjecture.

In the style of [22] and [14] we work in an untyped framework; we do not define
proof-nets nor cut-elimination but only cut-free proof-structures (PS, Definition 17):
we prove that two PS with the same interpretation have the same LPS (Corollary 52).
A proof-net (as defined in [14]) is a particular case of PS so that the result holds for
untyped (so as for typed)MELL proof-nets (Remark 56). Since we want to prove that
two PS are isomorphic in Theorem 50, it is mandatory to have a (simple and clear) no-
tion of isomorphism between PS (Definition 19), and this is why in Section 2 we give a
very sharp description of the syntax in the style of interaction nets ([23], [24]): we can-
not only rely on a graphic intuition. The notion of Linear Proof-Structure (LPS), which
comes from [13], is our main syntactical tool: with every proof-netR of (say) [14]
is associated a LPS, which is obtained fromR by forgetting some informations about
R’s exponential boxes, namely which auxiliary doors correspond to which!-link (us-
ing standard LL’s terminology); this is particularly clearin Definition 17 of PS: a PS
is a LPS and a function allowing to recover boxes. Recoveringthis function from the
interpretation of a PS is the only missing point in the proof of the full conjecture, but a
simple remark shows that the function can be recovered from the LPS when the PS is a
connected graph: this yields injectivity forMELL without weakenings and⊥ (Corol-
lary 55). In Section 3, we introduce a domainD to interpret PS which is essentially
the one already defined in [14]. Like in [13], we use here experiments (introduced
in [5]) which can be thought as objects in between syntax and semantics and are re-
lated to type derivations in theλ-calculus ([25]). Experiments are functions defined on
proof-nets allowing to compute the interpretation pointwise: the set ofresultsof all the
experiments of a given proof-net is its interpretation3. Usually an experimente of a
proof-netR is a labeling ofR at depth0 and a function associating with every!-link l
of R a set of experiments of the content of the box associated withl. We noticed that
a particular kind of experiment calledk-experiment(Definition 35) can be defined di-
rectly on LPS (boxes are not needed). In Section 4, we state our results and reduce the
problem of injectivity to Proposition 40, which is proven inSection 5. The paper ends
with a technical appendix, containing some obvious definitions and the formal details
of some constructions previously used.

In [13], a single (well-chosen!) point of the interpretation of a proof-net allowed

3The result of an experimente is the image of the conclusions of the proof-net through the functione; so
that contrary to an experiment its result is a truly semanticobject.



to “rebuild” the entire proof-net (in some particular casesand for coherent semantics).
Something similar happens in this paper, with a notable difference that makes every-
thing much more complicated: in [13] the well-chosen point of the interpretation of a
proof-net allowed not only to rebuild the proof-net but alsothe experiment having this
point as result. This is not the case here, where the well-chosen points of the interpre-
tation of a PS are atomic injectivek-points (Definition 22): we show (see Example 28
and Figure 2) that there exist different experiments havingas result the same atomic
injectivek-point. Let us conclude by mentioning the main novelties in our proof.

• We use injective experiments in a completely different sense than in [13]: intu-
itively, our injectivek-experiments associate with an axiom link with depthd, kd

different labels, while the injectivek-obsessional experiments of [13] associate
a unique label with such an axiom link (see Remark 23). A crucial aspect of
our new injectivek-experiments is that they can be recognized by their results
(Definition 22), and this was not the case forrelational injectivek-obsessional
experiments.

• We define some kind of “prototype” of injective atomick-experiments: the no-
tion of injective atomick-experiment of LPS (Definitions 35 and 36). It is true
that the two experiments of the PS of Figure 2 previously mentioned (see again
Example 28 for the details) are different, but we would like to consider them as
“the same” experiment: any atomic injectivek-experiment of a given LPSΦ, al-
lows to generate the set of injective atomick-points of the interpretation of every
PS havingΦ as LPS (Fact 48).

• We consider the results of experiments after forgetting thenames of the atoms
(see again Fact 48): two experiments having as results injective and atomick-
points that are the same “up to the names of the atoms” might not be the same
experiment, but they are necessarily experiments of two PS having the same LPS
(Proposition 40).

Summing up, we show that if the interpretation of the PSR contains an atomic injec-
tive k-point, then everyR′ with the same interpretation asR has the same LPS asR
(Corollary 52); and contrary to [13] we do not know the experiment which produced
this point.

Conventions. We use the notation[ ] for multisets while the notation{ } is, as
usual, for sets. For any setA, we denote byMfin(A) the set of finite multisetsa whose
support, denoted bySupp(a), is a subset ofA. The pairwise union of multisets given
by term-by-term addition of multiplicities is denoted by a+ sign and, following this
notation, the generalized union is denoted by a

∑

sign. The neutral element for this
operation, the empty multiset, is denoted by[ ]. Fork ∈ N anda multiset, we denote
by k · a the multiset defined bySupp(k · a) = Supp(a) and for everyα ∈ Supp(a),
(k · a)(α) = ka(α).

For anyk ∈ N, we setpkq = {1, . . . , k}. For any setA, we denote byA<ω the
set of finite sequences of elements ofA, by P(A) the powerset ofA, by Pfin(A) the
finite powerset ofA and byP2(A) the set{{a, b} ∈ P(A) | a, b ∈ A anda 6= b}. A



functionf : A → B has domainA = dom(f), codomainB = codom(f), image

im(f) = {f(a) | a ∈ A}; we denote byf
∣

∣

B′

A′
the restriction off to the domainA′ and

to the codomainB′ and byP(f) the functionP(A) → P(B) wich associates with
everyX ⊆ A the set{f(x) | x ∈ X}. We denote byε the unique element ofpkq

0 for
anyk ∈ N and byA ] B the disjoint union of the setsA andB.

2. Syntax

This section is devoted to present in full details the syntactical objets for which
we prove our main result: proof-structures (Definition 17).We adopt the interaction
nets point of view and pass through intermediate objects: cells and ports (Subsec-
tion 2.1) Pre-Linear Proof-Structures (Subsection 2.2), Linear Proof-Structures (Sub-
section 2.3), Proof-Structures (Subsection 2.4). Cells come with a notion of isomor-
phism which is then adapted to its refinements; isomorphismsbetween Linear Proof-
Structures and Proof-Structures will be crucial to prove the results presented in the
paper (see for example Proposition 40 and Theorem 50).

2.1. Cells and Ports

We introduce cells and ports, which intuitively correspondto “links with their
premises and conclusions” in the theory of linear logic proof-nets ([5], [26], [12],
. . . ). Our presentation is in the style of interaction nets ([23], [24]), where principal
(resp. auxiliary) ports correspond to the conclusions (resp. the premises) of the links
and axiom links of the usual syntax become wires (see Definition 7). We deal with (the
analogue of) unary!-links, while ?-links can have an arbitrary number of premises.
More precisely, we setT = {⊗,`, 1,⊥, !, ?} and we defineCellsas follows.

Definition 1. A cell baseis a 6-tupleC = (t,P , C, Ppri, Pleft, #) such that
• t is a function such thatdom(t) is finite andcodom(t) = T ; the elements of
dom(t) are the cells ofC;
• P is a finite set whose elements arethe ports ofC;
• C is a surjectionP → dom(t) such that for anyl ∈ dom(t), we have

• t(l) ∈ {⊗,`} ⇒ Card({p ∈ P | C(p) = l}) = 3;

• t(l) = ! ⇒ Card({p ∈ P | C(p) = l}) = 2;

• andt(l) ∈ {1,⊥} ⇒ Card({p ∈ P | C(p) = l}) = 1;

the set{p ∈ P | C(p) = l} is the set ofthe ports ofl;
• Ppri is a functiondom(t) → P such thatC ◦Ppri = iddom(t); the portPpri(l) is the

principal port ofl. A port ofl different fromPpri(l) is anauxiliary port ofl;
• Pleft is a functionCm → P such thatPleft(l) is an auxiliary port ofl, whereCm =
{l ∈ dom(t) | t(l) ∈ {⊗,`}};
• # is a function

⋃

l∈C?{p ∈ P \ {Ppri(l)} | C(p) = l} → N, whereC? = {l ∈
dom(t) | t(l) = ?}.

We denote byCells the set of cell bases.



Notations 2. Let C ∈ Cells. We setC(C) = dom(t), tC = t, P(C) = P , CC = C,
Ppri

C
= Ppri, Pleft

C = Pleft and #C = #. For any t ∈ T , we setCt(C) = {l ∈
C(C) | tC(l) = t}. We setCm(C) = C⊗(C) ∪ C`(C).

Remark 3. (i) Intuitively, C ∈ Cells corresponds to what is called “a set of links”
in the usual syntax of [13]. Notice that the functionsPpri and Pleft of Definition 1
induce the functionPaux

C : C(C) → P(P(C)) defined byPaux
C (l) = {p ∈ P(C) \

{Ppri
C

(l)} | CC(p) = l} and the functionPright
C

: Cm(C) → P(C) defined by{Pright
C

(l)}

= Paux
C (l) \ {Pleft

C (l)}: the functionsPpri
C

andPaux
C allow to distinguish the principal

ports (conclusions in [13]) from the auxiliary ports (premises in [13]), while for mul-
tiplicative cells the functionsPleft

C andPright
C

allow to distinguish the left auxiliary port
(left premise in [13]) from the right one. We denote byPpri(C) (resp.Paux(C)) the
set of principal (resp. auxiliary) ports ofC. Moreover, we denote byaC the function
C(C) → N defined byaC(l) = Card(Paux

C (l)); the integeraC(l) is the arity ofl.
(ii) There is however a notable difference w.r.t. [23] in theway we handle boxes

in our PS (Definition 17): here the function# plays a crucial role. Ifp ∈ Paux
C (l) for

somel ∈ C?(C), then the integer#C(p) is in the syntax of [13] the number of auxiliary
doors of boxes of the exponential branch corresponding top. For instance, for theC
in Figure 2, we have#C(p1) = 0 and#C(p2) = 1. In the spirit of LL, we split the set
C?(C) into the four following disjoint sets:
• C?w(C) = {l ∈ C?(C) | aC(l) = 0} which (in [13]) corresponds to the set of
weakening links ofC
• C?d(C) = {l ∈ C?(C) | aC(l) = 1 and#C(p) = 0, where{p} = Paux

C (l)}, which
(in [13]) corresponds to the set of dereliction links ofC

• C?cb(C) = {l ∈ C?(C) | aC(l) > 1 and(∃p ∈ Paux
C (l)) #C(p) = 0}, which

(in [13]) corresponds to the set of contraction links ofC having at least the conclu-
sion of one dereliction link among their premises
• C?cauxd(C) = {l ∈ C?(C) | aC(l) ≥ 1 and(∀p ∈ Paux

C (l)) #C(p) > 0}, which
(in [13]) corresponds to the set of contraction links havingonly conclusions of
auxiliary doors of boxes among their premises.

Theauxiliary ports of the?-cells of C are the ports belonging to the setAux?(C) =
⋃

l∈C?(C) Paux
C (l), while theauxiliary doorsof C are the elements ofAuxdoors(C) =

{p ∈ Aux?(C) | #C(p) > 0}.

Definition 4. Let C, C′ ∈ Cells and letϕ = (ϕC , ϕP) be a pair of bijections with
ϕC : C(C) → C(C′) andϕP : P(C) → P(C′). For writing ϕ : C ' C′, we require
that the following diagrams commute:

C(C)
Ppri

C- P(C)
CC

- C(C)
tC

- T Cm(C)
Pleft

C- P(C)

C(C′)

ϕC

?

Ppri
C′

- P(C′)

ϕP

?

CC′

- C(C′)

ϕC

?

tC
′

-

Cm(C′)

ϕC

∣

∣

Cm(C′)

Cm(C)

?

Pleft
C′

- P(C′)

ϕP

?



If these diagrams commute, then we haveim(ϕP Aux?(C)) = Aux?(C′). Hence we can

considerϕ′ = ϕP

∣

∣

Aux?(C′)

Aux?(C)
. We then require moreover that#C′ ◦ ϕ′ = #C.

2.2. Pre-Linear Proof-Structures (PLPS)

With PPLPS (Pre-Pre-Linear Proof-Structures) we shift from “sets of cells” (ele-
ments ofCells) to graphs, and this amounts to give the rules allowing to connect the
ports of the different cells. We introduce a setI (intuitively, p ∈ I whenp is a port
of some axiom and a conclusion of a PPLPS) and we give conditions on the set of
wires of our graphs: condition 1 implies that three ports cannot be connected by two
wires, condition 2 implies that auxiliary ports can never beconclusions of PPLPS (see
Definition 7), condition 3 implies that when the principal port of a cell is connected to
another port this is necessarily a port of some cell, condition 4 corresponds to the fact
that PPLPS are cut-free.

The reader acquainted with the theory of linear logic proof-nets might be interested
in the reasons why our structures (PPLPS and later PLPS, LPS and PS) never contain
cuts. There are essentially two reasons:

• (cut-free) PS are enough for our purpose, since the propertywe want to prove
(injectivity) deals with cut-free proofs: once a precise notion of “identity” (or
better said isomorphism) between cut-free PS is given (see Definition 19), if
we prove that two different PS have different interpretations, then injectivity is
proven (w.r.t. the chosen interpretation) whatever systemof proofs one considers,
provided the notion of cut-free proof of this system coincides with the one of PS4.

• We can thus avoid a technical problem related to the presenceof cuts in un-
typed proof-structures: it might happen that applying a cut-elimination step to
an untyped proof-structure which “contains a cycle” (meaning that it does not
satisfy the proof-net correctness criterion) yields a graph without cuts but con-
taining “vicious cycles” (a premise of some link is also its conclusion: see the
discussion before Definition 13 of PLPS). It is precisely to avoid this problem
that in [14] we decided to restrict to nets (proof-structures “without cycles” i.e.
satisfying the correctness criterion).

Definition 5. LetPPLPS be the set of triplesΦ = (C, I,W) with C ∈ Cells, I a finite
set satisfyingI ∩ P(C) = ∅ andW ⊆ P2(P(C) ∪ I) such that

1. for anyw, w′ ∈ W such thatw ∩ w′ 6= ∅, we havew = w′;
2. we havePaux(C) ∪ I ⊆

⋃

W ;
3. for anyw ∈ W such thatw ∩ I 6= ∅, we havew ∩ Ppri(C) = ∅;
4. for anyw ∈ W , there existsp ∈ w such thatp /∈ Ppri(C).

We setC(Φ) = C, I(Φ) = I, W(Φ) = W andP(Φ) = P(C(Φ)) ∪ I. The elements
of P(Φ) are the ports ofΦ, the elements ofC(C(Φ)) are thecells ofΦ and those of
W(Φ) are the wiresof Φ.

4We already mentioned in the introduction that a standard cut-free proof-net (as defined for example
in [13] or in [14]) is a particular case of PS.



Notations 6. Let Φ ∈ PPLPS. We setC(Φ) = C(C(Φ)) and Cα(Φ) = Cα(C(Φ))

for any α ∈ T ∪ {?w, ?d, ?cb, ?cauxd}, tΦ = tC(Φ), CΦ = CC(Φ), Ppri
Φ = Ppri

C(Φ),

Pleft
Φ = Pleft

C(Φ) andAuxdoors(Φ) = Auxdoors(C(Φ)).

We now introduce precisely axioms and conclusions of a PPLPSΦ; a consequence
of our definition is that a conclusionp of Φ is either the principal port of some cell or
an axiom port.

Definition 7. For anyΦ ∈ PPLPS, we set:
• P f(Φ) = I(Φ) ∪ {p ∈ P(C(Φ)) | p /∈

⋃

W(Φ)}; the elements ofP f(Φ) are the
free portsor theconclusionsof Φ;
• C t(Φ) = {l ∈ C(Φ) | Ppri

Φ (l) ∈ P f(Φ)}; the elements ofC t(Φ) are theterminal
cellsof Φ;
• Ax(Φ) = {{p, q} ∈ W(Φ) | p, q /∈ Ppri(C(Φ))}; the wire{p, q} ∈ Ax(Φ) is an
axiomof φ and the portsp andq areaxiom ports;
• Axt(Φ) = {w ∈ Ax(Φ) | (∃p ∈ w)p ∈ P f(Φ)} andAxi(Φ) = {w ∈ Ax(Φ) | (∀p ∈

w) p ∈ P f(Φ)};5 the wires ofAxt(Φ) (resp.Axi(Φ)) are theterminal axioms(resp.
the isolated axioms) of Φ.

Definition 8. LetΦ, Φ′ ∈ PPLPS. We writeϕ = (ϕP , ϕC) : Φ ' Φ′ if, and only if,
• ϕP is a bijectionP(Φ) → P(Φ′) such thatim(ϕP I(Φ)) = I(Φ′);

• (ϕP

∣

∣

P(C(Φ′))

P(C(Φ))
, ϕC) : C(Φ) ' C(Φ′);

• and for every{p, q} ∈ P2(P(Φ)), we have{p, q} ∈ W(Φ) iff {ϕP(p), ϕP(q)} ∈
W(Φ′).

For anyΦ, Φ′ ∈ PPLPS, for anyϕ = (ϕC , ϕP) : Φ ' Φ′, we setP(ϕ) = ϕP and
C(ϕ) = ϕC .

Intuitively, an axiom port is “above” a unique conclusion. But for general PPLPS
this is wrong and we can only say that an axiom port cannot be “above” two different
conclusions (Lemma 10). We thus consider the reflexive and transitive closure≤Φ of
the relation<1

Φ “p is immediately belowp′ in Φ” (see Definition 9) and show that our
statement holds provided≤Φ is antisymmetric (Lemma 14), that is for PLPS (Defini-
tion 13).

Definition 9. For any Φ ∈ PPLPS, we define the binary relation<1
Φ on P(Φ) as

follows: p <1
Φ p′ if, and only if, one of the following conditions holds:

• there exists a celll of Φ such thatp is the principal port ofl andp′ is an auxiliary
port of l
• p′ is the principal port of some celll′ of Φ, p is an auxiliary port of some celll of
Φ and{p, p′} is a wire ofΦ.

The binary relation≤Φ (or simply≤) onP(Φ) is the transitive reflexive closure of<1
Φ.

Lemma 10. Let Φ ∈ PPLPS. We have(∀w ∈ Ax(Φ)) (∀p ∈ w) (∀c, c′ ∈ P f(Φ))
((c ≤Φ p andc′ ≤Φ p) ⇒ c = c′).

5Notice thatAxi(Φ) = {w ∈ W(Φ) | w ∈ P2(I(Φ))}.



The proof of Lemma 10 is just an application of Facts 11 and 12:

Fact 11. Let Φ ∈ PPLPS and p, q1, q2 ∈ P(Φ). If q1 ≤Φ p and q2 ≤Φ p, then
q1 ≤Φ q2 or q2 ≤Φ q1.

PROOF. If q1 <1
Φ p andq2 <1

Φ p, thenq1 = q2.

Fact 12. LetΦ ∈ PPLPS. If c ∈ P f(Φ) andp ≤Φ c, thenp = c.

PROOF. If c ∈ P f(Φ)) then¬p <1
Φ c for everyp ∈ P(Φ).

A PPLPSΦ can have “vicious cycles” like for example a celll such thatp (resp.
p′) is the principal (resp. an auxiliary) port ofl and{p, p′} is a wire ofΦ: in [13] this
corresponds to a link having a premise which is also the conclusion of the link. Let
us stress that such a cycle is called “vicious” to distinguish it from the cycles in the
so-called correctness graphs, which are related to the issue of sequentialization (see the
discussion before Corollary 55). A PLPS is a PPLPS without vicious cycles:

Definition 13. We setPLPS = {Φ ∈ PPLPS | the relation ≤Φ is antisymmetric}.

The fact that an axiom port is above a conclusion follows fromthe antisymmetry
of ≤ and from the fact that minimal elements are conclusions. Indeed:

Lemma 14. LetΦ ∈ PLPS. We have(∀w ∈ Ax(Φ)) (∀p ∈ w) (∃!c ∈ P f(Φ)) c ≤Φ p.

PROOF. For the unicity, apply Lemma 10. For the existence, use the antisymmetry of
≤Φ and the following property: we have(∀q ∈ P(Φ)) ((∀p ∈ P(Φ))(p ≤Φ q ⇒ p =
q) ⇒ q ∈ P f(Φ)).

The depth of a celll is (in the usual syntax see [13]) the number of exponential
boxes containingl. We have not yet defined our notion of box (Definition 17), but since
we are cut-free,l’s depth can also be defined as the number of doors of boxes below l;
this makes sense in our framework too. We thus obtain the following definition (where
the function# plays a crucial role, as mentioned in Remark 3):

Definition 15. LetΦ ∈ PLPS. For anyp ∈ P(Φ):
• we denote bycΦ(p) the uniquec ∈ P f(Φ) such thatc ≤Φ p

• depthΦ(p) = Card({l ∈ C!(Φ) | Ppri
Φ (l) <Φ p})+

∑

q∈Auxdoors(Φ),q≤p #Φ(q).
The depth of a PLPSΦ is the maximal depth of its ports and it is denoted by depth(Φ).

2.3. Linear Proof-Structures (LPS)

In a (cut-free) Proof-Structure of [13], the depth of an axiom link is easily defined
as the number of boxes in which the link is contained. In our framework this notion
makes sense only when the two ports of an axiom have the same depth (Definition 15).
This condition is not fulfilled by every PLPS: when this is thecase we have a LPS.
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c2

⊗

?

c1

p2 qp1 Figure 1: Example of LPS. Let Ψ2 ∈ PPLPS as
beside and such that#Ψ2

(p1) = 1 = #Ψ2
(p2).

Then we haveΨ2 ∈ LPS. Actually Ψ2 ∈
?-box-PLPS∩ LPS (see Definition 43).

Definition 16. A LPS is a PLPSΦ such that(∀{p1, p2} ∈ Ax(Φ)) depthΦ(p1) =
depthΦ(p2). We denote byLPS the set of LPS.6

2.4. Proof-Structures (PS)

Intuitively, what is still missing inΦ ∈ LPS to be a (cut-free) Proof-Structure in the
standard sense ([13]) is the connection between the doors ofexponential boxes (once
this information has been correctly produced, it automatically yields boxes). We then
introduce a functionb associating with everyv ∈ C!(Φ) a set of auxiliary doors of
Φ: this is precisely what was missing, provided certain conditions are satisfied (Def-
inition 17). In particular, one asks that with everyv ∈ C!(Φ) is associated a Proof-
Structure: this is the usual notion of exponential box (see for example [26]). In our
framework, in order to define the Proof-Structure associated with v7, we first build a
PLPSΦv by taking “everything what is abovev and the doors associated byb with v”
and add a?-cell under every “auxiliary conclusion”; doing this we take care to change
the value of# on the auxiliary doors. We then removev (using Definition 85); finally
we define fromb the new functionbv:

Definition 17. A Proof-Structure (PS)is a pairR = (Φ, b) whereΦ ∈ LPS andb is a
functionC!(Φ) → P(Auxdoors(Φ)) such that for anyp ∈ Auxdoors(Φ), #Φ(p) =
Card{l ∈ C!(Φ) | p ∈ b(l)}. Proof-Structures are defined by induction on the number
of !-cells: we ask that with everyv ∈ C!(Φ) is associated a PS calledthe boxof v
(denoted byB(R)(v))8, and defined from the following subsetBv ofP(Φ):

Bv = {q ∈ P(Φ) | (∃p ∈ Paux
Φ (v) ∪ b(v)) p ≤Φ q}.

We ask that forv, v′ ∈ C!(Φ) eitherBv ∩ Bv′ = ∅ or Bv ⊆ Bv′ or Bv′ ⊆ Bv
9.

In order to defineB(R)(v) one first definesΨ ∈ PLPS, starting from two setsL0

andP0 and from two bijectionsp1 : L0 → b(v) andp0 : L0 → P0, by setting:

6Our notion ofLPShas not to be confused with what is sometimes called “the linearization of a proof-
net”: the “linearization” forgets the auxiliary doors, andobviously there are some PS that have the same
“linearization” but different LPS.

7We use the factv’s box is itself a Proof-Structure in Definition 24.
8Two examples of boxes are in Figures 3 and 4.
9This is the usual nesting condition of the definition of proof-net: two boxes are either disjoint or con-

tained one in the other.



Figure 2: Example of PS. In the standard syntax
of [14] we have a box with a unique auxiliary door
represented by the portp2 (the dashed arrow allows
to determine the doors of the box) and a dereliction
link (the portp1); the conclusions of the auxiliary
door and the dereliction are then contracted.

℘ ℘

? !

1

c1 c2

p2p1 q

• C(Ψ) = L0 ] (P(CΦ)(Bv) \ P(CΦ)(b(v)));
tΨ P(CΦ)(Bv)\P(CΦ)(b(v)) = tΦ P(CΦ)(Bv)\P(CΦ)(b(v)) and tΨ(l) = ? for every
l ∈ L0;

• P(C(Ψ)) = (Bv ∪ {Ppri
Φ (v)}) ] P0;

• CΨ(p) =















CΦ(p) if p ∈ Bv\b(v);
l if p = p1(l) for p ∈ b(v);
l if p = p0(l) for p ∈ P0;
v if p = Ppri

Φ (v);

10

• Ppri
Ψ (l) =

{

Ppri
Φ (l) if l /∈ L0;

p0(l) if l ∈ L0;

• Pleft
Ψ = Pleft

Φ Cm(Φ)∩P(CΦ)(Bv);

• #Ψ(p) = Card{w ∈ C!(Φ) ∩ P(CΦ)(Bv) | w 6= v andp ∈ b(w)};

• I(Ψ) = ∅11;

• W(Ψ) = {{p, q} ∈ W(Φ) | p, q ∈ Bv}.

The box ofv, denoted byB(R)(v), is the pair(Φv, bv) such thatΦv is obtained from

Ψ by eliminating the terminal linkv (Definition 85) and such thatbv = b
∣

∣

P(Auxdoors(Φv))

C!(Φv)
.

We setLPS(R) = Φ, b(R) = b and we will writethe ports ofR (resp.the cells of
R) meaning the ports ofΦ (resp. the cells ofΦ).

In order to establish the equality (or better said an isomorphism) between two
graphs representing (some kind of) proof we need to say how the conclusions of the
two graphs correspond one another: we thus introduce the notion of indexed PPLPS
(resp. PLPS, LPS, PS).

10This implies that everyl ∈ L0 is a?-cell with two ports :p0(l) andp1(l), where (see next item)p0(l)
is the principal port andp1(l) is the unique auxiliary port ofl.

11As mentioned at the beginning of Subsection 2.2,p ∈ I(Ψ) whenp is an axiom port and a conclusion
of Ψ. Following our construction, none of the ports ofΨ can be in such a position. Notice, in particular, that
in case the unique auxiliary port ofv is an axiom port ofΦ, then it is not a conclusion ofΨ (and thus it is not
an element ofI(Ψ)) but it is a conclusion ofLPS(B(R)(v)) and the unique element ofI(LPS(B(R)(v))),
following Definition 85 of the Appendix.



Definition 18. We denote byPPLPSind the set of pairs(Φ, ind) such thatΦ ∈ PPLPS
andind is a bijectionP f(Φ) → pCard(P f(Φ))q.

We setPSind = {(R, ind) | R ∈ PS and(LPS(R), ind) ∈ PPLPSind}.

Definition 19. For any (Φ, ind), (Φ′, ind’) ∈ PPLPSind, we write ϕ : (Φ, ind) '
(Φ′, ind’) if, and only if,ϕ : Φ ' Φ′ and, for everyc ∈ P f(Φ), we haveind’(P(ϕ)(c)) =
ind(c).

Definition 20. Let (R, ind), (R′, ind’) ∈ PSind. We writeϕ : (R, ind) ' (R′, ind’) if,
and only if,ϕ : (LPS(R), ind) ' (LPS(R′), ind’) and the following diagram com-
mutes12:

C!(LPS(R))
b(R)

- P(Auxdoors(LPS(R)))

C!(LPS(R′))

C(ϕ)
∣

∣

C!(LPS(R′))

C!(LPS(R))

?

b(R′)
- P(Auxdoors(LPS(R′)))

P(P(ϕ)
∣

∣

Auxdoors(LPS(R′))

Auxdoors(LPS(R))
)

?

3. Experiments

We introduce in Subsection 3.1 experiments for Proof-Structures (a well-known no-
tion coming from [5]), adapted to our framework (Definition 24), and in Subsection 3.2
a new notion, the one ofk-experiment of PLPS (Definition 35), that will be crucial in
the sequel of the paper.

3.1. Experiments of PS

In [22] and [14] experiments are defined in an untyped framework; we follow here
the same approach in our Definition 24. Experiments allow to compute the semantics
of proof-nets (more generally of proof-structures): theinterpretationJπK of a proof-net
π is the set of the results ofπ’s experiments, and the same happens in our framework
for PS (Definition 27). Like in [14], in the following definition the set{+,−} is used
in order to “semantically distinguish” cells of type⊗ from cells of type`, which
is mandatory in an untyped framework (as already discussed and used in [14]). The
function ( )⊥ (which is the semantic version of linear negation) flips polarities (see
Definition 86 of the appendix for the details).

Definition 21. We fix a setA which does not contain any couple nor any3-tuple and
such that∗ 6∈ A; we call atomsthe elements ofA. By induction onn we defineDn:
D0 = A ∪ ({+,−} × {∗}) andDn+1 = D0 ∪ ({+,−} × Dn × Dn) ∪({+,−} ×
Mfin(Dn)). We setD =

⋃

n∈N
Dn.

12Recall that the notationC(ϕ) refers to Definition 8 and that for a functionf the notationP(f) is among
the ones introduced in the conventions at the beginning of the paper.



We need in the sequel the notion of injectivek-point ofD<ω, and forE ∈ P(D<ω)
the notion ofE-atomic element. In a typed framework, we would not have to define the
latter notion, but in our untyped framework we need to restrict the setE of all results of
all experiments of a PS to the set of the results of theatomicexperiments (see footnote
26) of this PS. Of course, a given point ofD can be the result of an atomic experiment
of a PS and the result of a non-atomic experiment of another PS. However, once the
subsetE of D<ω is fixed, it makes sense forr ∈ E to say that it isE-atomic: this
means that no other element ofE is “more atomic” thanr.

Definition 22. Givenk ∈ N, we say thatr ∈ D<ω is ak-pointwhen if(+, [α1, . . . , αm])
occurs inr13, thenm = k.

We say thatr ∈ D<ω is injectivewhen for everyγ ∈ A, eitherγ does not occur in
r13 or there are exactly two occurrences ofγ in r13.

GivenE ∈ P(D<ω), we say thatr ∈ E is E-atomicwhen for everyr′ ∈ E and
every substitution14 σ such thatσ(r′) = r one hasσ(γ) ∈ A for everyγ ∈ A that
occurs inr′. For E ∈ P(D<ω), we denote byEAt the subset ofE consisting of the
E-atomic elements.

Remark 23. The notion ofk-point is reminiscent of the notion of “result of ak-
obsessional experiment” ([13]), and it is also used in [22].Notice however that the
notion of injective pointis notrelated to what is called in [13] a result of an injective
k-obsessional experiment: we keep the idea that all positivemultisets have the same
size, but we are very far from obsessionality. In some sense we do here exactly the
opposite than obsessional experiments do: ak-obsessional experiment takesk copies
of the same (k-obsessional) experiment every time it crosses a box, whilethe intuition
here is that injectivek-points are results of experiments obtained by takingk pairwise
different(k-)experiments every time a box is crossed.

We now adapt to our framework the definition of experiment (given in [5]; see
also [12], [13], [14] for alternative definitions), the key tool to define the interpretation
of a PS. Intuitively, an experiment of a PSΦ is a labeling of its ports by elements ofD:
this works perfectly well in the multiplicative fragment ofLL (see for example [27]),
but of course for PS with depth greater than zero things become a bit more complicated.
One can either say that an experiment is defined only on portsp such thatdepthΦ(p) =
0 and that with every!-cell with depth zero is associated a multiset of experiments of
its box (allowing to define the labels of the ports with depth zero): this is the choice
made in [22] and [14]. Or one can follow (as we are going to do here in the spirit
of [12] and [13]) the intuition that even with portsp such thatdepthΦ(p) > 0, an
experiment associates labels, but not necessarily a uniquelabel for every port (they
might be several or none): formally it will associates withp a multiset of elements of
D (and thus with every!-cell a multiset of multisets of experiments). Of course thetwo
definitions associate the same interpretation with a given PS (Definition 27).

13See Definition 87 of the appendix for a formal definition of this expression.
14A subsitution is a functionσ : D → D induced by a functionσA : A → D (see Definition 88 of the

appendix for the details).



Definition 24. An experimente of a PSR = (Φ, b) is given by a functionP(Φ) →
Mfin(D)15 and for everyv ∈ C!(Φ) a finite multiset of finite multisets of experiments
of v’s box (i.e.B(R)(v)) e(v) = [[e1

1, . . . , e
1
n1

], . . . , [elv
1 , . . . , elv

nlv
]], wherelv ≥ 0 and

ni ≥ 0 for every1 ≤ i ≤ lv. Experiments are defined by induction ondepth(Φ) and
we ask thatCard(e(v)) = 1 for v ∈ C!(Φ) such that depthΦ(Ppri

Φ (v)) = 0 and that
Card(e(p)) = 1 for p ∈ P(Φ) such that depthΦ(p) = 0. For ports at depth0 the
following conditions hold:

• for any{p, q} ∈ Ax(Φ), we haveα = β⊥, wheree(p) = [α] ande(q) = [β];

• for any l ∈ C⊗(Φ), we havee(Ppri
Φ (l)) = [(+, α, β)], wheree(Pleft

Φ (l)) = [α]

ande(Pright
Φ (l)) = [β];

• for any l ∈ C`(Φ), we havee(Ppri
Φ (l)) = [(−, α, β)], wheree(Pleft

Φ (l)) = [α]

ande(Pright
Φ (l)) = [β];

• for anyl ∈ C1(Φ), we havee(Ppri
Φ (l)) = [(+, ∗)];

• for anyl ∈ C⊥(Φ), we havee(Ppri
Φ (l)) = [(−, ∗)];

• for anyl ∈ C?(Φ), we havee(Ppri
Φ (l)) = [(−,

∑

p∈Paux
Φ (l) e(p))];

• for any{p, q} ∈ W(Φ) \ Ax(Φ), we havee(p) = e(q).

If depth(Φ) = 0, the definition is already complete. Otherwise for everyv ∈ C!(Φ)

such that depthΦ(Ppri
Φ (v)) = 0 we know the multiset[e1, . . . , env

] of experiments ofv’s
box such thate(v) = [[e1, . . . , env

]] and we know for every portp of Φ which is also a
port ofB(R)(v) the multisetei(p) (for i ∈ {1, . . . , nv}). Then we set

• e(Ppri
Φ (v)) = [(+,

∑

i∈{1,...,nv}
ei(p))], wherep is the unique free port ofB(R)(v)

such thatPpri
Φ (v) ≤Φ p;16

• e(p) =
∑

i∈{1,...,nv}
ei(p) for every portp ofΦ which is also a port ofB(R)(v);17

• e(w) =
∑

i∈{1,...,nv}
ei(w) for every !-cell w of Φ which is also a cell of

B(R)(v).17

Example 25. Consider the PSR of Figure 2 and the boxB(R)(v) of its unique!-cell
v represented in Figure 3. We can define two experimentse1 and e2 of B(R)(v) by
choosingγ1, γ2 ∈ D: we obtainei(p2) = ei(p

′
2) = [(−, γi, γ

⊥
i )] andei(q

′) = [(+, ∗)]
where{q, q′}, {p2, p

′
2} ∈ W(LPS(R)). By choosingα ∈ D, we have an experiment

e of R such thate(p1) = [(−, α, α⊥)], e(p′2) = e(p2) = [(−, γ1, γ
⊥
1 ), (−, γ2, γ

⊥
2 )],

e(c1) = [(−, [(−, γ1, γ
⊥
1 ), (−, γ2, γ

⊥
2 ), (−, α, α⊥)])], e(q′) = e(q) = [(+, ∗), (+, ∗)],

e(c2) = [(+, [(+, ∗), (+, ∗)])], ande(v) = [[e1, e2]].

15The elements ofe(p) are often calledthe labelsof p. Notice thate(p) 6∈ D.
16Let {qv} = Paux

Φ (v); then for some portq′v of Φ we have{qv, q′v} ∈ W(Φ). If {qv, q′v} ∈ Ax(Φ)

(resp.{qv, q′v} 6∈ Ax(Φ)), thenqv (resp.q′v) is the unique free portp of B(R)(v) such thatPpri
Φ (v) ≤Φ p.

17We are using here the nesting condition of Definition 17 : see Footnote 9.



Figure 3: The box B(R)(v) of the unique !-cell v
of the PSR of Figure 2.
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Definition 26. Let(R, ind) ∈ PSind, lete be an experiment ofR, letn = Card(P f(LPS(R)))
and letr ∈ Dn. We say that(e, r) is an experiment of(R, ind) and thatr is the result
of (e, r) if and only ifr = (x1, . . . , xn), wherexi is the unique element of the multiset
e ◦ ind−1(i).

Definition 27. If (R, ind) ∈ PSind, we definethe interpretation of(R, ind) as the set

J(R, ind)K = {r ∈ DCard(P f(R)) | r is the result of an experiment of(R, ind)}.

The crucial result proven in [5] is that ifπ′ is a proof-net obtained by applying
to π some steps of cut-elimination, thenJπK = Jπ′K. Since any cut-free untyped net
of [14] (and thus any cut-free proof-net of, for example, [13]) is a PS, in order to prove
injectivity for the nets of [14] (and thus for the usual proof-nets of, for example, [13]) it
is enough to prove that two PS with the same interpretation are the same (Corollary 54
and Corollary 55).

Example 28. We can define two experimentse1 and e2 of the PSR represented in
Figure 2 in such a way thate1(p1) = [ζ1], e2(p1) = [ζ2], e1(p2) = [ζ2, ζ3, ζ4] and
e2(p2) = [ζ1, ζ3, ζ4], whereζj = (−, γj, γj) and theγj are distinct atoms. The two
(different) experiments have the same result. More precisely: we defineind by setting
ind(c1) = 1 andind(c2) = 2, and we setr = ((−, [ζ1, ζ2, ζ3, ζ4]), (+, [(+, ∗), (+, ∗), (+, ∗)])).
Then(e1, r) and(e2, r) are experiments of(R, ind), andr is anJ(R, ind)K-atomic in-
jective3-point.

3.2. Experiments of PLPS

In general, if we want to know whether a point is the result of any experiment, it
is not enough to know the LPS of the (proof-)net: we have to know “the connection
between the doors of the boxes”. But if one takesk copies every time one crosses a
box, then it is enough: results ofk-experiments can be defined directly on LPS. This
yields the notion ofk-experiment of a LPS (Definition 35). Actuallyk-experiments are
defined “up to the names of the atoms” and we thus introduce sequences of indexes:
the intuition is that forγ ∈ A ands ∈ Nn, (γ, s) is one of thekn copies ofγ.

We setA′ = A × N<ω, and we denote by| | (resp.loc) the first (resp. second)
projection with domainA′ and codomainA (resp.N<ω) : the function| | associates
with δ ∈ A′ its “support” |δ| ∈ A, while loc associates withδ ∈ A′ its “location”



loc(δ) ∈ N<ω.
The embedding that associates(a, ε) ∈ A′ with everya ∈ A allows to considerA as a
proper subset ofA′.

Definition 29. For anys ∈ N<ω, we denote bydig(s) the functionA′ → A′ defined
bydig(s)(δ) = (|δ|, conc(loc(δ), s)), where conc is the functionN<ω × N<ω → N<ω

defined by
conc((d1, . . . , dm), (d′1, . . . , d

′
m′)) = (d1, . . . , dm, d′1, . . . , d

′
m′).

A construction similar to the one used to defineD from A allows to defineD′ from
A′: intuitively, an element ofD′ is an element ofD where every atom is followed by a
sequence of integers. Notice that sinceA ⊆ A′ one hasD ⊆ D′, and this will be used
in Definition 35 (last item) of experiment of a PLPS.

Definition 30. By induction onn we defineD′
n: D′

0 = A′ ∪ ({+,−} × {∗}) and
D′

n+1 = D′
0 ∪ ({+,−}×D′

n×D′
n) ∪({+,−}×Mfin(D

′
n)). We setD′ =

⋃

n∈N
D′

n.

Definition 31. We define At’: D′ → Pfin(A
′) the function which associates with

α ∈ D′ its atoms, by induction onmin{n ∈ N | α ∈ D′
n}:

• At’(δ) = {δ} if δ ∈ A′;
• At’(ι, ∗) = ∅;
• At’(ι, α1, α2) = At’(α1) ∪ At’(α2);
• At’(ι, [α1, . . . , αm]) = ∪m

j=1At’(αj).
We also denote by At’ the functionPfin(D

′) → Pfin(A
′) defined by At’(a) =

⋃

α∈a At’(α);
and At’ will also denote the functionMfin(D

′)
<ω → Pfin(A

′) defined by At’(a1, . . . , an) =
⋃n

i=1 At’(Supp(ai)).

Definition 32. The set of partial injections fromA′ to A′ is denoted bypInj.
Let τ ∈ pInj. For anyα ∈ D′ such that At’(α) ⊆ dom(τ), we defineτ · α ∈ D′

by induction onmin{n ∈ N | α ∈ D′
n}:

τ · α =















τ(δ) if α = δ ∈ A′;
(ι, ∗) if α = (ι, ∗);
(ι, τ · α1, τ · α2) if α = (ι, α1, α2);
(ι, [τ · α1, . . . , τ · αm]) if α = (ι, [α1, . . . , αm]).

For any a = [α1, . . . , αm] ∈ Mfin(D
′) such that At’(a) ⊆ dom(τ), we setτ ·

a = [τ · α1, . . . , τ · αm] ∈ Mfin(D
′). For any r = (α1, . . . , αn) ∈ D′<ω such

that At’([α1, . . . , αn]) ⊆ dom(τ), we setτ · r = (τ · α1, . . . , τ · αn) ∈ D′<ω. For
any r = (a1, . . . , an) ∈ Mfin(D

′)
<ω such that At’(r) ⊆ dom(τ), we setτ · r =

(τ · a1, . . . , τ · an) ∈ Mfin(D
′)

<ω.

Definition 33. For any τ ∈ pInj, for any functionh such thatim(h) ⊆ D′ and
At’(im(h)) ⊆ dom(τ), we defineτ ·h : dom(h) → D′ as follows:(τ ·h)(x) = τ ·h(x).

The functiondigk
d associates witha ∈ Mfin(D

′) the multiset of thekd copies
of a: if for examplea = [α, β, β] for someα, β ∈ A, then one hasdig2

1(a) =
[(α, 1), (α, 2), (β, 1), (β, 2), (β, 1), (β, 2)]. An immediate consequence of the follow-
ing definition is that for everya ∈ Mfin(D

′) and for every integerd one hasdigk
d+1(a) =

digk
1(digk

d(a)).



Definition 34. For anyk, d ∈ N, let digk
d be the functionMfin(D

′) → Mfin(D
′) de-

fined bydigk
d(a) =

∑

s∈pkqd

∑

α∈Supp(a) a(α) · [dig(s) · α].

We now have all the tools to define (a particular kind of) experiments directly
on LPS and not on PS as in the usual setting (Definition 24 in ourframework). It
clearly appears in Subsection 4.2 (and precisely in Fact 48)how (injective atomic)
k-experiments of LPS are used in our proof. It is worth noticing that we recover in
the framework of LPS the simplicity of the definition of experiment in the multiplica-
tive fragment of linear logic proof-nets (see for example [27] and [16]): despite the
presence of exponentials (here?-cells and!-cells) ak-experiment of a PLPS is just a
labeling of its ports by elements ofD′ satisfying some conditions.

Definition 35. Let k ∈ N. For anyΦ ∈ PLPS, a k-experimente of Φ is a function
P(Φ) → D′ such that
• for anyl ∈ C⊗(Φ), we havee(Ppri

Φ (l)) = (+, e(Pleft
Φ (l)), e(Pright

Φ (l)));

• for anyl ∈ C`(Φ), we havee(Ppri
Φ (l)) = (−, e(Pleft

Φ (l)), e(Pright
Φ (l)));

• for any l ∈ C1(Φ) (resp. l ∈ C⊥(Φ)), we havee(Ppri
Φ (l)) = (+, ∗) (resp.

e(Ppri
Φ (l)) = (−, ∗));

• for anyl ∈ C!(Φ), we havee(Ppri
Φ (l)) = (+,

∑

p∈Paux
Φ (l) digk

1([e(p)]))18;

• for anyl ∈ C?(Φ), we havee(Ppri
Φ (l) = (−,

∑

p∈Paux
Φ (l) digk

#Φ(p)([e(p)]));

• and for any{p, q} ∈ W(Φ), we havee(p) =

{

e(q)⊥ with e(p) ∈ D, if {p, q} ∈ Ax(Φ);
e(q) otherwise.

19

Definition 36. Letk ∈ N, let Φ ∈ PLPS. Lete be anyk-experiment ofΦ.
We say thate is atomicif for anyw ∈ Ax(Φ), for anyp ∈ w, we havee(p) ∈ A.
We say thate is injective if for any w, w′ ∈ Ax(Φ), for anyp ∈ w, p′ ∈ w′, we

have At’(e(p)) ∩ At’(e(p′)) 6= ∅ ⇒ w = w′.

Definition 37. Let k ∈ N. Let (Φ, ind) ∈ PLPSind. Lete be ak-experiment ofΦ and

let r ∈ (D′)Card(P f(Φ)). We say that(e, r) is a k-experiment of(Φ, ind) and thatr is
the result of(e, r) iff r = e ◦ ind−1.

Example 38. Let Ψ2 be as in Figure 1 and letind2(c1) = 1 and ind2(c2) = 2. Let
γ1, γ2 ∈ A such thatγ1 6= γ2. Leta1 = [(γ1, 1), (γ1, 2), (γ1, 3), (γ2, 1), (γ2, 2), (γ2, 3)]
and
a2 = [(+, (γ1, 1), (γ2, 1)), (+, (γ1, 2), (γ2, 2)), (+, (γ1, 3), (γ2, 3))]. Thenr2 = ((−, a1),
(+, a2)) is the result of the injective atomic3-experimente2 of (Ψ2, ind2) such that
e2(p1) = γ2 ande2(p2) = γ1. Notice that once we have chosen the labels ofp1 and
p2 and the integerk (herek = 3), thek-experiment ofΨ2 is entirely determined.

18Notice that
∑

p∈Paux
Φ

(l) digk
1([e(p)]) = digk

1([e(p)]) where{p} = Paux
Φ (l).

19δ⊥ is obtained fromδ ∈ D′ by substituting every occurrence of+ (resp.−) by − (resp.+): see
Definition 86 of the appendix for the details.



Remark 39. As mentioned in Example 38, once an integerk ≥ 1 and the labels of
the axiom ports of the LPSΦ are chosen, thek-experiment ofΦ is entirely determined.
In particular, given a1-experimente1 of Φ, for everyk ≥ 1 there exists a uniquek-
experimentek associating with the axiom ports ofΦ the same labels ase1. Clearly,e1

is atomic (resp. injective) iffek is atomic (resp. injective).

4. Main result

In Subsection 4.2, we prove the main result on PS (Theorem 50), based on a crucial
proposition (Proposition 40) concerning only LPS (and not PS anymore). In Subsec-
tion 4.1, we introduce the main syntactical tools to prove this crucial proposition, and
we explain the technique we adopt in Section 5 to fully prove it.

4.1. Main result on LPS

When there exist two injective atomic experiments of two LPSwith the same result
(up to the name of the atoms), then the two LPS are the same:

Proposition 40. Let(Φ, ind), (Φ′, ind’) ∈ LPSind. For anyk > cosize(Φ), cosize(Φ′)20,
for any k-experiment(e, r) of (Φ, ind), for anyk-experiment(e′, r′) of (Φ′, ind’), e
ande′ atomic and injective, if there existρ, ρ′ ∈ pInj such thatρ · r = ρ′ · r′, then
(Φ, ind) ' (Φ′, ind’).

Remark 41. As already noticed (Example 38, Remark 39), for every integer k there
exists a unique atomic injectivek-experiment ofΦ ∈ LPS (up to the name of the atoms).
This entails that by giving the suitable definition of isomorphism between experiments,
one could easily substitute the conclusion of Proposition 40 by a(n apparently) stronger
statement, namely(e, r) ' (e′, r′).

Our strategy is to define a “measure” (mes(Φ), see Definition 42) of the size of
an LPSΦ and to prove Proposition 40 by induction on this measure. More precisely,
relying on the fact that LPS (and actually PLPS) can be inductively built, our idea can
be roughly summed up as follows:

1. we start with the datas contained in the hypothesis of Proposition 40, namely
with (Φ, ind), (Φ′, ind’) ∈ LPSind and twok-experiments ((e, r) of (Φ, ind) and
(e′, r′) of (Φ′, ind’)), both atomic and injective, and such thatρ · r = ρ′ · r′, for
someρ, ρ′ ∈ pInj

2. fromρ · r = ρ′ · r′ we can deduce that21:
(a) (Φ, ind) and(Φ′, ind’) can be obtained from some suitable LPS(Φ1, ind1)

and(Φ′
1, ind’1) by “adding the same cell(s)”, wheremes(Φ1) < mes(Φ)

andmes(Φ′
1) < mes(Φ′)

20The integercosize(Φ) is the maximal arity of the?-cells ofΦ (see Definition 42).
21This is the difficult part of the proof.



(b) (e, r) and(e′, r′) can be obtained from some suitable injective atomick-
experiments(e1, r1) of (Φ1, ind1) and(e′1, r

′
1) of (Φ′

1, ind’1) such thatρ1 ·
r1 = ρ′1 · r

′
1, for someρ1, ρ

′
1 ∈ pInj

3. we can thus apply the induction hypothesis on the measure to (Φ1, ind1) and
(Φ′

1, ind’1) (with their injective atomick-experiments(e1, r1) and(e′1, r
′
1)): we

obtain(Φ1, ind1) ' (Φ′
1, ind’1)

4. since by “adding the same cell(s)” to(Φ1, ind1) and (Φ′
1, ind’1) one obtains

(Φ, ind) and(Φ′, ind’), from (Φ1, ind1) ' (Φ′
1, ind’1) one easily deduces that

(Φ, ind) ' (Φ′, ind’).

The first thing we do is to define the measure, by introducing two sizes on elements
of PPLPS: an integer and an ordered pair (pairs are lexicographically ordered).

Definition 42. Let Φ ∈ PPLPS. We set cosize(Φ) = max{aΦ(l) | l ∈ C?(Φ)} and
mes(Φ) = (

∑

l∈C?(Φ) aΦ(l), Card(P(Φ)) +
∑

p∈Auxdoors(Φ) #Φ(p)).

The aim of the rest of the section is to give a precise meaning to the expres-
sion “(Φ, ind) and(Φ′, ind’) can be obtained from some suitable LPS(Φ1, ind1) and
(Φ′

1, ind’1) by adding the same cell(s)”. The intuition is thatΦ1 (resp.Φ′
1) is obtained

from Φ (resp.Φ′) by “eliminating some terminal cell” (thus decreasing the measure).
So the general problem is to define a procedure to “eliminate aterminal cell” from
Φ ∈ PLPS22, which of course depends on the available terminal cells. Wethus first
classify PLPS depending on their terminal cells:Φ ∈ PLPScan have different terminal
cells, but notice that in caseΦ ∈ ?-box-PLPSdefined below, every terminal cell ofΦ
belongs to the setC!(Φ) ∪ C?cauxd(Φ).

Definition 43. We set:
• ∅-PLPS = {Φ ∈ PLPS | W(Φ) = ∅}.
• ax-PLPS = {Φ ∈ PLPS | Axi(Φ) 6= ∅}.
• mult-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ)) tΦ(l) ∈ {⊗,`}}.
• unit-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ)) tΦ(l) ∈ {1,⊥}}.
• ?w-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ)) l ∈ C?w(Φ)}.
• ?d-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ)) l ∈ C?d(Φ)}.
• ?cb-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ)) l ∈ C?cb(Φ)}.
• ?unit-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ)) l ∈ C?unit(Φ)}, whereC?unit(Φ) = {l ∈
C?(Φ) \ C?cb(Φ) | (∃p ∈ Paux

Φ (l))(#Φ(p) ≥ 1 and(∀q ≥Φ p)q /∈
⋃

Ax(Φ))};
• !unit-PLPS = {Φ ∈ PLPS | (∃l ∈ C t(Φ) ∩ C!(Φ))(∃p ∈ Paux

Φ (l))(∀q ≥Φ p)q /∈
⋃

Ax(Φ))};
• ?-box-PLPS = PLPS\(∅-PLPS∪ax-PLPS∪mult-PLPS∪unit-PLPS∪?w-PLPS∪?d-PLPS∪?cb -PLPS∪
?unit-PLPS ∪ !unit-PLPS).

If Φ ∈ ax-PLPS it is obvious how to remove an isolated axiom. And to “eliminate
a terminal celll” from a particular PLPS is immediate whenl ∈ C?w(Φ) or tΦ(l) ∈

22In the proof of Proposition 40, we actually “eliminate terminal cells” fromΦ ∈ LPS. However, the
definition makes sense for general PLPS, and it seems more natural to define it on PLPS. We then have to
take care that when applying this operation to a PLPS which isalso a LPS we still get a LPS.



{1,⊥} since there is nothing “above”l. In casetΦ(l) ∈ {⊗,`, !} or l ∈ C?d(Φ), “to
eliminatel” is intuitively clear, that is why we do not give the formal definition23. But
of course a non-emptyΦ ∈ PLPS does not always have an isolated axiom or contain
the previously mentioned terminal cells: in that case we arein one of the last four
cases of Definition 43. WhenΦ ∈?cb -PLPS, there existsl ∈ C?cb(Φ) ∩ C t(Φ) and
p ∈ Paux

Φ (l) such that#Φ(p) = 0; one can obtainΦ1 ∈ PLPS from Φ by removingp
from the auxiliary ports ofl: this operation (which is precisely described in the proof
of Proposition 40 in Section 5 and in the Appendix) is also intuitively clear, and yields
a PLPSΦ1 with one more conclusion and with a strictly smaller measure, since the
number of premises ofl has strictly decreased. It then remains to describe operations
allowing to shrink the measure whenΦ ∈ ?unit-PLPS∪ !unit-PLPS ∪ ?-box-PLPS.

The peculiarity of the PLPS elements of?unit-PLPS ∪ !unit-PLPS is that they
contain “isolated subgraphs”: if “above” an auxiliary portp of l ∈ C!(Φ) ∪ C?(Φ)
there are no axioms, then the subgraph “above”p is isolated. In presence of “isolated
subgraphs”, we can apply to the PLPSΦ the following transformationswithout damage
(Fact 44) and shrinking the measure ofΦ. For anyΦ ∈ PLPS, for any l ∈ C t(Φ) ∩
(C!(Φ) ∪ C?(Φ)), we denote byΦ[l] the PLPS obtained as follows:

• if l ∈ C!(Φ), then we distinguish between two cases:

– if {p ∈
⋃

Ax(Φ) | p ≥Φ Ppri
Φ (l)} 6= ∅, thenΦ[l] = Φ;

– otherwise, we removel;

• if l ∈ C?(Φ), Φ[l] isΦ, except when there existsq ∈ Paux
Φ (l) such that#Φ(q) ≥ 1

and{p ∈
⋃

Ax(Φ) | p ≥Φ q} = ∅: in that caseΦ[l] is Φ where for every suchq
one has#Φ[l]

(q) = #Φ(q) − 1.

The reader can easily check that whenΦ ∈ ?unit-PLPS∪ !unit-PLPS, it is always
possible to select a suitable celll such thatmes(Φ[l]) < mes(Φ). And we now show
that whateverl we choose,LPS is stable with respect to the transformation previously
defined.

Fact 44. For anyΦ ∈ LPS, for anyl ∈ C t(Φ)∩ (C!(Φ)∩C?(Φ)), we haveΦ[l] ∈ LPS.

PROOF. We haveAx(Φ[l]) = Ax(Φ) and for any{p, q} ∈ Ax(Φ), depthΦ(p) =
depthΦ[l]

(p).

We turn to the last caseΦ ∈ ?-box-PLPS: here the intuition is that we eliminate
one layer, the most external one. In order to do so, we must be sure that there is no
terminal axiom port in such aΦ.

Fact 45. For anyΦ ∈ ?-box-PLPS ∩ LPS, we haveAxt(Φ) = ∅.

PROOF. Let {p, q} ∈ Ax(Φ), supposep ∈ P f(Φ) and letcq be the unique conclusion
belowq: by Definition 15depthΦ(p) = 0. SinceΦ 6∈ ax-PLPS we haveq 6= cq and

23See Definition 85 in the appendix for such a definition.



thuscq is not an axiom port: in this casecq is the principal port of some celll of Φ. By
Definition 43 this means thatl ∈ C!(Φ)∪C?cauxd(Φ), which entails thatdepthΦ(q) > 0,
thus contradicting Definition 16 of LPS.

A consequence of Fact 45 is that in caseΦ ∈ ?-box-PLPS∩ LPS all Φ’s conclu-
sions are principal ports of some cells of the setC!(Φ)∪C?cauxd(Φ); in the syntax of [13]
this corresponds to a proof-structureΦ with no links at depth0 except boxes and con-
traction links. We callΦ the PLPS obtained from such aΦ by decreasingΦ’s depth by
1, which can be easily done sinceΦ ∈ ?-box-PLPS∩ LPS24; the reader will notice
that LPS is stable with respect to this operation, hence we actually haveΦ ∈ LPS.
Furthermore, from Definition 42 it clearly follows thatmes(Φ) < mes(Φ).

Since in the proof of Proposition 40 we deal with indexed LPS,we conclude the
section by defining the indexing function onΦ[l] andΦ, based on the indexing function
of Φ.

Definition 46. LetR = (Φ, ind) ∈ PLPSind and letl ∈ C t(Φ) ∩ (C!(Φ) ∪ C?(Φ)). We
setR[l] = (Φ[l], ind[l]), whereind[l](p) = ind(cΦ(p)) for p ∈ P f(Φ[l]).

Definition 47. Let (Φ, ind) ∈ LPSind such thatΦ ∈ ?-box-PLPS. We set(Φ, ind) =
(Φ, ind), whereΦ has been defined above25 and ind(p) = ind(cΦ(p)).

Coming back to the last four cases of Definition 43, we want to mention that the
casesΦ ∈ ?unit-PLPS andΦ ∈ !unit-PLPS have to be distinguished because our
graphs (PLPS, LPS, PS) are disconnected (as already mentioned they can contain “iso-
lated subgraphs”); if we decided from the beginning to restrict to connected graphs
these cases would not occur (and Corollary 54 would hold, butour main result Theo-
rem 50 would be much weaker). On the other hand, even in the connected case, the
two most delicate cases in the proof of Proposition 40 would still be Φ ∈?cb-PLPSand
Φ ∈ ?-box-PLPS.

4.2. Main result on PS

An injective atomick-experiment of an LPSΦ can be considered as a “prototype”
of (atomic)k-experiment ofanyPS(Φ, b).26 Indeed, everyk-point of J(Φ, b)KAt can
be obtained from the result of an injective atomick-experiment ofΦ: to be precise, if
(R, ind) ∈ PSind and(e, r) is any injective atomick-experiment of(LPS(R), ind), we
have

{r0 ∈ J(R, ind)KAt | r0 is ak-point} = {ρ · r | ρ is a partial map fromA′ to A}

24See Definition 89 in the appendix for a formal definition.
25and, more formally, in Definition 89 of the appendix.
26Notice that we did not definek-experiments of PS but only of LPS:k-experiments of nets have been

defined in [22] and by(injective)k-experiment of a PSwe mean here an experiment having a(n injective)
k-point as result. Ak-experiment of a PSR is said to beatomic if for any p ∈

⋃

Ax(LPS(R)), we have
Supp(e(p)) ⊆ A.
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Figure 4:The critical case of Fact 48.We havep = p′ if, and only if,p′ ∈
⋃

Ax(LPS(R)).

whereρ · r is defined by a straightforward generalization of Definition32. In our proof
we will only use Fact 48, namely that for a PSR = (Φ, b), the restriction ofJRK to the
injectivek-points which areJRK-atomic is precisely the set of the results of the atomic
injectivek-experiments ofΦ (up to the name of the atoms):

Fact 48. Let k ∈ N, let (R, ind) ∈ PSind and let (e, r) be an injective atomick-
experiment of(LPS(R), ind). We have{r0 ∈ J(R, ind)KAt|r0 is an injectivek-point} =
{ρ · r | ρ ∈ pInj andcodom(ρ) = A}.

PROOF. One of the two inclusions is easy to prove: given an injective atomick-
experiment(e, r) of (LPS(R), ind) and givenρ ∈ pInj such thatcodom(ρ) = A,
there is an experiment(eρ, r0) of (R, ind) such thatr0 = ρ ·r. The experiment(eρ, r0)
of (R, ind) can be defined by induction onmes(LPS(R)) (see Definition 42 and see
also Example 49).

Conversely, letr0 ∈ J(R, ind)KAt be an injectivek-point and let(e0, r0) be an ex-
periment of(R, ind). We prove that for every atomic injectivek-experiment(e, r) of
(LPS(R), ind), there existsρ ∈ pInj such thatim(ρ) ⊆ At’(r0) andρ · r = r0. The
proof is by induction onmes(LPS(R)), the unique case deserving some details being
the one where there is a unique terminal!-cell v of R and every other terminal cell is
a ?-cell having a unique auxiliary port which is an element ofb(R)(v)27. The situ-
ation is represented in Figure 4. We set{p1, . . . , pl} = b(R)(v), we callB(R)(v)
the box ofv (we still denote byind the obvious bijectionP f(LPS(B(R)(v))) '
pCard(P f(LPS(B(R)(v)))q) and we callp the unique free port ofB(R)(v) such that
Ppri

LPS(R)(v) ≤LPS(R) p.
In the sequel of the proof, it is important to distinguish between experiments of PS

27In the standard terminology of linear logic proof-nets one would say thatR is an exponential box.



(Definition 24) andk-experiments of LPS (Definition 35): the experiments of PS have
0 as index (e0 andf i

0), while all the others arek-experiments of LPS.
Lete0(v) = [[f1

0 , . . . , f1
0 ]], where(f i

0, r
i
0) is an experiment of(B(R)(v), ind). Clearly,

ri
0 ∈ J(B(R)(v), ind)KAt is an injectivek-point. The restriction(f, s) of (e, r) to

LPS(B(R)(v)) is an atomic injectivek-experiment of(LPS(B(R)(v)), ind). We can
then apply the induction hypothesis: for everyi ∈ pkq there existsρi ∈ pInj such that
im(ρi) ⊆ At’(ri

0) andρi · s = ri
0

28.
Sinceim(ρi) ⊆ At’(ri

0) and sincer0 is injective, one hasAt’(ri
0) ∩ At’(rj

0) = ∅
wheni 6= j and thusim(ρi) ∩ im(ρj) = ∅ wheni 6= j. We can then defineρ ∈ pInj
on the elementsγ ∈ At’(r): since for every suchγ there exist a uniquei ∈ pkq and a
uniqueβ ∈ At’(s) such thatγ = dig(i)(β), we can setρ(γ) = ρi(β).

We now check thatρ is indeed the function we look for. With the notations intro-
duced we have:

• r0 = ((−,
∑k

i=1 f i
0(p1)), . . . , (−,

∑k
i=1 f i

0(pl)), (+,
∑k

i=1 f i
0(p)))

• ri
0 = ((−, f i

0(p1)), . . . , (−, f i
0(pl)), βi), wheref i

0(p) = [βi], for everyi ∈ pkq

• s = ((−, digk
d1

([f(p1)])), . . . , (−, digk
dl

([f(pl)])), f(p)), wheredj = #LPS(B(R)(v))(pj)
for j ∈ plq.

• r = ((−, digk
1(digk

d1
([f(p1)]))), . . . , (−, digk

1(digk
dl

([f(pl)]))), (+, digk
1([f(p)]))).

Now notice that for everyj ∈ plq we havedigk
1(digk

dj
([f(pj)])) =

∑k
i=1 dig(i) ·

digk
dj

([f(pj)]); and, since we haveAt’(digk
dj

([f(pj)])) ⊆ At’(s), we can deduce for

everyβ ∈ At’(digk
dj

([f(pj)])) and for everyi ∈ pkq that dig(i)(β) ∈ dom(ρ) and

ρ(dig(i)(β)) = ρi(β). This entails that for everyj ∈ plq one hasρ·digk
1(digk

dj
([f(pj)])) =

∑k
i=1 ρ·(dig(i)·digk

dj
([f(pj)])) =

∑k
i=1 ρi ·digk

dj
([f(pj)]). In the same way, we have

ρ · digk
1([f(p)]) =

∑k
i=1 ρ · (dig(i) · [f(p)]) =

∑k
i=1 ρi · [f(p)]. Then the following

equalities hold:
ρ ·r = ((−,

∑k
i=1 ρi ·digk

d1
([f(p1)])), . . . , (−,

∑k
i=1 ρi ·digk

dl
([f(pl)])), (+,

∑k
i=1 ρi ·

[f(p)])) = ((−,
∑k

i=1 f i
0(p1)), . . . , (−,

∑k
i=1 f i

0(pl)), (+,
∑k

i=1 f i
0(p))) = r0.

Example 49. Consider the LPSΨ2 of Figure 1. The experiment(e2, r2) consid-
ered in Example 38 is an injective atomic3-experiment of(Ψ2, ind2). Let ρ ∈ pInj
be such that forj ∈ p2q and i ∈ p3q one hasρ(γj , i) = γji, whereγji ∈ A
(sinceρ ∈ pInj the γjis are pairwise different). Then for any29 PS R such that
LPS(R) = Ψ2, there exists an experimente0 = (e2)ρ of R with resultr0 = ρ · r2 =
((−, [γ11, γ12, γ13, γ21, γ22, γ23]), (+, [(+, γ11, γ21), (+, γ12, γ22), (+, γ13, γ23)])). In-
deed, if we callv the unique!-cell of R, we can sete0(v) = [[f1, f2, f3]], wherefi is
the experiment ofv’s box obtained by settingfi(p1) = [γ2i] andfi(p2) = [γ1i] (which
entirely determinesfi). One can easily check thatr0 is indeede0’s result.

28Notice that for everyi ∈ pkq one hasAt’(s) ⊆ dom(ρi).
29Corollary 54 shows that in this particular case (Ψ2 is a connected graph) there is actually a unique PS

R such thatLPS(R) = Ψ2.
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Figure 5:Two different PS with the same LPS.The PSR1, R2 andT are PS of depth0.

Theorem 50. Let(R, ind), (R′, ind’) ∈ PSind. Letk > cosize(LPS(R)), cosize(LPS(R′)).
If {r0 ∈ J(R, ind)KAt|r0 is an injectivek-point}∩{r0 ∈ J(R′, ind’)KAt|r0 is an injectivek-point} 6=
∅, then(LPS(R), ind) ' (LPS(R′), ind’).

PROOF. Let r0 be an injectiveJ(R, ind)K-atomick-point of J(R, ind)K which is also
an injectiveJ(R′, ind’)K-atomick-point of J(R′, ind’)K. Let (e, r) (resp.(e′, r′)) be an
injective atomick-experiment of(LPS(R), ind) (resp.(LPS(R′), ind’)). By Fact 48,
there existsρ ∈ pInj (resp.ρ′ ∈ pInj ) such thatρ · r = r0 = ρ′ · r′. By Proposition 40
we thus have(LPS(R), ind) ' (LPS(R′), ind’).

Remark 51. Of course, as illustrated by Figure 5, there are different PSwith the same
LPS. Thek-experiments of two PS30 have the same results if, and only if, the PS have
the same LPS, but we do not say anything about the results of the other experiments.

Corollary 52. AssumeA is infinite. Let(R, ind), (R′, ind’) ∈ PSind. If J(R, ind)K =
J(R′, ind’)K, then(LPS(R), ind) ' (LPS(R′), ind’).

PROOF. SinceA is infinite, for everyk ∈ N one has{r0 ∈ J(R, ind)KAt|r0 is an injectivek-point}∩
{r0 ∈ J(R′, ind’)KAt | r0 is an injectivek-point} 6= ∅. Apply Theorem 50.

Remark 53. In the proof of Corollary 52, we use the fact that there alwaysexists an
JRK-atomic injectivek-point in the interpretation of any PSR and thus there always
exists an atomic injectivek-experiment ofR30 (and we already noticed in Remark 41
that such an atomic injectivek-experiment30 is unique “up to the names of the atoms”).

The reader acquainted withinjectivek-obsessional experiments(see [12, 13]) knows
that, in the coherent model, not every PS has an injectivek-obsessional experiment:
this is precisely the reason why the proof of injectivity of the coherent model given

30See Footnote 26.



in [12, 13] for the(?℘)LL fragment (already mentioned in the introduction) cannotbe
extended toMELL; and still for that reason injectivity of the coherent modelfails for
MELL as shown in [12, 13].

The following corollary is based on a simple and crucial remark, already used
in [13] (for the same purpose): since in LPS the depth of everyport is known, given
two !-cellsv andw with the same depth in a PS(Φ, b) and given an auxiliary portp
of some?-cell of Φ, there might be an ambiguity on whetherp ∈ b(v) or p ∈ b(w)
(we would say in the standard terminology of linear logic proof-nets whetherp is an
auxiliary door ofv or w’s box) only in caseΦ is not a connected graph31. Indeed (us-
ing again the standard terminology of linear logic proof-nets), in caseΦ is connected,
p andv are two “doors of the same box” iff there exists a path ofΦ connectingp andv
and crossing only cells with depth greater than the depth ofv. More precisely:

Corollary 54. AssumeA is infinite. Let(R, ind), (R′, ind’) ∈ PSind such thatLPS(R)
is a connected graph. IfJ(R, ind)K = J(R′, ind’)K, then(R, ind) ' (R′, ind’).

PROOF. By Corollary 52(LPS(R), ind) ' (LPS(R′), ind’). Now notice that when
LPS(R) is connected, there is a unique functionb such that(LPS(R), b) ∈ PS. Indeed,
givenv ∈ C!(LPS(R)), we havep ∈ b(v) iff the two following conditions hold:

• depthLPS(R)(P
pri
LPS(R)(w)) ≤ depthLPS(R)(P

pri
LPS(R)(v)), wherep ∈ Paux

LPS(R)(w)

• there exists a pathdp0p starting from the unique auxiliary portp0 of v and ending
in p such that for every portq crossed bydp0p we have thatdepthLPS(R)(q) >

depthLPS(R)(P
pri
LPS(R)(v)).

As already pointed out in the introduction, the theory of proof-nets is among the
striking novelties introduced with Linear Logic. Right from the start (see [5]), it ap-
peared very natural to first introduce graphs (called like inthis paper “proof-structures”)
not necessarily representing sequent calculus proofs, andthen look for “intrinsic”
(usually graph-theoretical) properties allowing to characterize, among proof-structures,
precisely those corresponding to sequent calculus proofs (in this case the proof-structure
is calledproof-net). Such a property is calledcorrectness criterion; the most used one
is the Danos-Regnier criterion: a proof-structureπ of Multiplicative Linear Logic is a
proof-net iff every correctness graph (every graph obtained from π by erasing one of
the two premisses of everỳ link) is acyclic and connected.
As soon as one leaves the purely multiplicative fragment of Linear Logic, things be-
come less simple; for Multiplicative and Exponential Linear Logic MELL, one often
considers (like for example in [14]) a weaker correctness criterion: a proof-structure
is a proof-net when every correctness graph is acyclic (and not necessarily connected);
such a criterion corresponds to a particular version of Linear Logic sequent calculus

31Here, we considerΦ ∈ LPS as the following graph: cells and terminal axiom ports ofΦ are the nodes
and two nodesν andν′ are connected by an edge iff{p, p′} is a wire, wherep (resp.p′) is a port ofν (resp.
ν′) if ν (resp.ν′) is a cell, andp = ν (resp.p′ = ν′) if ν (resp.ν′) is a terminal axiom port.



(see for example [12]). But it is also well-known (see again for example [12]) that in
the absence of weakening and⊥ links, the situation is much better, in the sense that
one can strengthen the criterion so as to capture the standard Linear Logic sequent cal-
culus (very much in the style of the purely multiplicative case): in this framework, an
MELL proof-structure is a proof-net iff every correctness graphis not only acyclic,
but also connected. ByMELL net we mean in the following corollary the (indexed)
untyped version (in the style of [14]) of this strong notion of proof-net:

Corollary 55. AssumeA is infinite. LetR andR′ be twoMELL nets without weak-
ening nor⊥ links. If JRK = JR′K, thenR and R′ have the same (cut-free) normal
form.

PROOF. Let R0 (resp.R′
0) be a cut-free normal form ofR (resp.R′). ThenJRK =

JR0K = JR′
0K = JR′K. Since we are inMELL without weakening nor⊥, LPS(R0)

(so asLPS(R′
0)) is a connected graph. Apply Corollary 54.

Remark 56. Theorem 50, Corollary 52, Corollary 54 and Corollary 55 holdfor the
standard typedMELL proof-nets of [13]: in particular if every propositional variable
of the logical language is interpreted by the infinite setA and ifπ andπ′ are two cut-
free typed proof-nets with atomic axioms, without weakenings nor⊥32, and such that
JπK = Jπ′K, thenπ = π′33.

5. Proof of Proposition 40

In this last section, we use the tools previously introducedin order to prove the
key-proposition (Proposition 40) concerning only LPS (andnot PS anymore). Since
we need to consider isomorphisms between several kinds of objects (elements ofD′,
t-uples of elements ofD′, finite multisets ofD′, t-uples of finite multisets ofD′,. . . )
we use the notion of groupoid (Subsection 5.1).

Subsections 5.2, 5.3 and 5.4 establish the main results thatwill be used in the dif-
ferent cases of the proof by induction of Proposition 40, given in Subsection 5.5. More
precisely, let’s come back to the general strategy described in Subsection 4.1: follow-
ing the classification of Definition 43, we already explainedin that subsection how
from (Φ, ind) and(Φ′, ind’) one can obtain(Φ1, ind1) and(Φ′

1, ind’1) by “eliminating
the same cell(s)”, in such a way thatmes(Φ1) < mes(Φ) andmes(Φ′

1) < mes(Φ′)
(this is item 2a of the description given in Subsection 4.1).We now turn to item 2b
of the description given in Subsection 4.1: starting from(e, r) and(e′, r′) of Propo-
sition 40, we want to define some suitable injective atomick-experiments(e1, r1) of
(Φ1, ind1) and(e′1, r

′
1) of (Φ′

1, ind’1) such thatρ1 ·r1 = ρ′1 ·r
′
1, for someρ1, ρ

′
1 ∈ pInj .

This is more or less obvious except in four of the cases of Definition 43, namely for
Φ, Φ′ ∈?cb -PLPS∪ ?unit-PLPS∪ !unit-PLPS ∪ ?-box-PLPS.

When Φ, Φ′ ∈?cb-PLPS, the LPS(Φ1, ind1) and (Φ′
1, ind’1), so as the experi-

ments(e1, r1) and (e′1, r
′
1), are defined directly in the proof of Proposition 40; and

32We still refer here to the strong notion of proof-net corresponding toMELL sequent calculus.
33More formally, one should write that ifJ(π, ind)K = J(π′, ind’)K, then(π, ind) ' (π′, ind’).



Subsection 5.2 is mainly devoted to define an equivalence relation allowing to split the
multiset associated with the principal port ofl ∈ C?cb(Φ) ∩ C t(Φ) in such a way that
all the “possible” labels of a given auxiliary port p ofl such that#Φ(p) = 0 are in the
same equivalence class.

On the other hand, Subsections 5.3 and 5.4 have a similar structure34: we first define
the injective atomick-experiments(e1, r1) and (e′1, r

′
1) and we then have a “purely

semantic” part (dealing only with points ofD′ and not with experiments anymore),
allowing to prove (in the corresponding case of the proof of Proposition 40) that from
ρ · r = ρ′ · r′ it follows thatρ1 · r1 = ρ′1 · r

′
1, for someρ1, ρ

′
1 ∈ pInj .

Finally, in Subsection 5.5 we prove Proposition 40 by induction on the measure
introduced in Definition 42.

Let e be an atomick-experiment ofΦ ∈ PLPS and supposee(p) = α for p ∈
P f(Φ). If α = (+, α1, α2), then sincee is atomic we can say thatp is not an axiom port,
so thatp is necessarily the principal port of a cell of type⊗. Whenα = (−, a) for some
a ∈ Mfin(D

′), even if we know thatp is not an axiom port, there are several possibilities
for the?-cell havingp as principal port. The following fact will be used several times
in Subsection 5.5: it allows (in particular) to distinguishbetween?-cells having only
auxiliary doors (remember Remark 3) among their premises from the others.

Fact 57. Let Φ ∈ PLPS. Let l ∈ C?(Φ). Letk > aΦ(l). LetP0 ⊆ Paux
Φ (l). Lete be

a k-experiment ofΦ. We seta =
∑

p∈P0
digk

#Φ(p)([e(p)]). Thenk divides Card(a) if,
and only if,(∀p ∈ P0) #Φ(p) 6= 0.

PROOF. We have

Card(a) =
∑

p∈P0

k#Φ(p)

= Card({p ∈ P0 | #Φ(p)) = 0}) + k
∑

p ∈ P0

#Φ(p) 6= 0

k#Φ(p)−1

Hencek dividesCard(a) if, and only if,k dividesCard({p ∈ P0 |#Φ(p) = 0}). Now

Card({p ∈ P0 | #Φ(p) = 0}) ≤ aΦ(l)

< k.

Sok dividesCard({p ∈ P0 | #Φ(p) = 0}) if, and only if, Card({p ∈ P0 | #Φ(p) =
0}) = 0 i.e. (∀p ∈ P0) #Φ(p) 6= 0.

5.1. Groupoids

We recall that a groupoid is a category such that any morphismis an iso and that
a morphism of groupoids is a functor between two groupoids. For any groupoidG,

34Notice by the way that since the casesΦ, Φ′ ∈ ?unit-PLPS andΦ,Φ′ ∈ !unit-PLPS are very similar
we treat them in the same Subsection 5.3.



we will denote byG0 the class of objects of the groupoidG. In the following, we
sometimes think of a set as a groupoid such that the morphismsare identities on the
elements of the set. We now define some useful groupoids; someof them rely on the
definition of the subsetD′At of D′, consisting of those points ofD′ containing at least
one atom (see Definition 64):
• The groupoidD: letD0 = D′ andρ : α → α′ in D if, and only if,ρ ∈ pInj such thatρ·

α = α′.
• The groupoidsD: let sD0 = D′<ω andρ : (α1, . . . , αn) → (α′

1, . . . , α
′
n′) in sD if,

and only if,n = n′ and(∀i ∈ pnq) ρ : αi → α′
i in D.

• The groupoidM : let M0 = Mfin(D
′) andρ : a → a′ in M if, and only if,ρ ·a = a′.

• The groupoidsDM: let sDM0 = (D′<ω × Mfin(D
′)) andρ : (r, a) → (r′, a′) in

sDM if, and only if,ρ : r → r′ in sD andρ : a → a′ in M .
• the groupoidpM : let pM0 = Pfin(Mfin(D

′)) andρ : a → a′ in pM if, and only if,
for anya′ ∈ Mfin(D

′), we havea′ ∈ a′ ⇔ (∃a ∈ a) ρ : a → a′ in M .

• The groupoidsM: let sM0 = Mfin(D
′At

)
<ω

andρ : (a1, . . . , an) → (a′
1, . . . , a

′
n)

in sM if, and only if, for anyi ∈ pnq, we haveρ : ai → a′
i in M .

• the groupoidpsM: let psM0 = Pfin(Mfin(D
′At

)<ω) andρ : r → r′ in psM if, and

only if, for anyr′ ∈ Mfin(D
′At)

<ω
, we haver′ ∈ r′ ⇔ (∃r ∈ r) ρ : r → r′ in sM.

• the groupoidppsM: let ppsM0 = Pfin(Pfin(Mfin(D
′At

)<ω)) andρ : A → A′ in
ppsM if, and only if, for anya′ ∈ Pfin(Mfin(D

′At
)<ω), we havea′ ∈ A′ ⇔ (∃a ∈

A) ρ : a → a′ in psM.
• the groupoidBij : objects are sets and morphisms are bijections.

In the sequel, we will writeρ : r → r′ (referring to a given groupoid) in order to
indicate thatρ is an iso betweenr andr′, while we will writer ' r′ meaning that there
exists some isoρ : r → r′.

Definition 58. We denote by Card the morphism of groupoidsM → N defined by:
Card(a) =

∑

α∈Supp(a) a(α); and Card(ρ) = idCard(a) for anyρ : a → a′.

5.2. The case of?cb-PLPS

The main result of this subsection is Lemma 63, where we establish a precise cor-
respondence between equivalence classes of a multiset which is the label given by an
experiment to the principal port of a?-cell and the auxiliary ports of this same?-cell. So
we start by defining, for every multiseta, an equivalence relation onSupp(a) allowing
to splita:

Definition 59. Let a ∈ Mfin(E) such that Supp(a) = E . Let R be an equivalence
relation onE . We set

a/R = {a0 ∈ Mfin(E) | Supp(a0) ∈ E/R and(∀α ∈ Supp(a0)) a0(α) = a(α)}.

Consider again the LPSΨ2 of Figure 1 and the3-experiment(e2, r2) of (Ψ2, ind2)
already defined in Example 38. We have that(r2, (γ1, 1)), (r2, (γ1, 2)) ∈ sD0 and
if we defineρ ∈ pInj by settingρ(γ1, 1) = (γ1, 2), ρ(γ1, 2) = (γ1, 1), ρ(γ2, 1) =
(γ2, 2), ρ(γ2, 2) = (γ2, 1), ρ(γ3, 1) = (γ3, 1) andρ(γ3, 2) = (γ3, 2), we have that



ρ : (r2, (γ1, 1)) → (r2, (γ1, 2)) in sD35: the effect of the morphismρ of sD is to
exchange two elements ofa1 = [(γ1, 1), (γ2, 1), (γ1, 2), (γ2, 2), (γ1, 3), (γ2, 3)],
without changingr2. This suggests the definition of an equivalence relation on any
a ∈ Mfin(D

′) (w.r.t. a givenr ∈ sD0):

Definition 60. For any (r, a) ∈ sDM0, we set Q(r, a) = a/ ', where forα1, α2 ∈
Supp(a) one hasα1 ' α2 if, and only if,(r, α1) ' (r, α2) in sD.

Fact 61. By extending the definition of Q to the morphisms ofsDM in setting Q(ρ) = ρ,
we obtain a morphism of groupoidssDM → pM.

PROOF. For any(r, α1), (r, α2) ∈ sD0, for anyρ ∈ pInj such thatAt’(r, α1, α2) ⊆
dom(ρ), we have(r, α1) ' (r, α2) in sD if, and only if, we have(ρ · r, ρ · α1) '
(ρ · r, ρ · α2) in sD.

We now prove a fact concerning experiments and their results, that allows to “ex-
change” two indexes (elements ofpkq) without changing the result of a given experi-
ment: thanks to this property we will be able (in Lemma 63) to exchange two “copies”
of α ∈ a for some multiseta of D′.

Fact 62. Letk ∈ N. Let(Φ, ind) ∈ PLPSind. Let (e, r) be ak-experiment of(Φ, ind).
Letd ∈ N. Letj1, j2 ∈ pkq. Letρ ∈ pInj defined by setting

ρ(δ) =







dig(s)(dig(j2)(δ0)) if δ = dig(s)(dig(j1)(δ0)) with s ∈ pkq
d andδ0 ∈ A′;

dig(s)(dig(j1)(δ0)) if δ = dig(s)(dig(j2)(δ0)) with s ∈ pkq
d andδ0 ∈ A′;

δ otherwise.

Then we haveρ · r = r.

PROOF. We first try to explain the intuition behind this fact: whenever, forj ∈ pkq, an
atom(γ, conc(σ, conc(j, σ′))) (whereσ, σ′ ∈ N<ω) occurs36 in the labelα ∈ D′ asso-
ciated by an experiment with a port of some cell, the atom(γ, conc(σ, conc(i, σ′)))
occurs inα too, for everyi ∈ pkq. And (most important) there always exists a
multiset a occurring inα such thatβj , βi ∈ a and (γ, conc(σ, conc(j, σ′))) (resp.
(γ, conc(σ, conc(i, σ′)))) occurs inβj (resp. inβi). This means that one can always
“exchange”(γ, conc(σ, conc(j, σ′))) and (γ, conc(σ, conc(i, σ′))), without changing
α (and thus without changing the resultr of the experiment ofΦ). This is essentially
due to the fact that following Definition 35 ofk-experiment, indexes are introduced
precisely when (following the top-down propagation of labels) multisets appear.

More precisely, one can proceed by induction onmes(Φ).
If C!(Φ)∩C t(Φ) 6= ∅, we choose somel0 ∈ C!(Φ)∩C t(Φ), we seti0 = ind(Ppri

Φ (l0))
and we consider the PLPSΨ obtained fromΦ by removingl0 and the bijectionind’ :
P f(Ψ) → Card(P f(Ψ)) defined byind’ = ind ◦ cΦ. We haver(i0) = (+, digk

1([β]))

35Notice that we do not have, for example,(r2, (γ1, 1)) ' (r2, (γ2, 2)) in sD.
36Recall that Definition 87 of the appendix gives a precise meaning to this notion.



with r′ = (r(1), . . . , r(i0 − 1), β, r(i0 + 1), . . . , r(n)) a result of ak-experiment of
(Ψ, ind’). By induction hypothesis, we haveρ · r′ = r′.

Ford = 0, we clearly haveρ · digk
1([β]) = digk

1([β]), henceρ · r = r.
Ford > 0, we considerρ′ ∈ pInj defined by

ρ′(δ) =







dig(s′)(dig(j2)(δ0)) if δ = dig(s′)(dig(j1)(δ0)) with s′ ∈ pkq
d−1 andδ0 ∈ A′;

dig(s′)(dig(j1)(δ0)) if δ = dig(s′)(dig(j2)(δ0)) with s′ ∈ pkq
d−1 andδ0 ∈ A′;

δ otherwise.

Again by induction hypothesis, we haveρ′ · β = β, hence, for anyj ∈ pkq, we have
ρ · (dig(j) · β) = dig(j) · (ρ′ · β) = dig(j) · β, soρ · digk

1([β]) = digk
1([β]).

If there existsl0 ∈ C?(Φ) ∩ C t(Φ) such that for any auxiliary portp of l0, we have
#Φ(p) > 0, we proceed in the same way as before, except that instead of applying
the induction hypothesis on the PLPS obtained by removingl0, we apply the induction
hypothesis on the PLPS obtained by decreasing the function# on the auxiliary ports
of l0.

The other cases are left to the reader.

Suppose(e, r) is an experiment of(Φ, ind) ∈ PLPSind, supposee(Ppri
Φ (l)) =

(−, a) for somel ∈ C?(Φ) ∩ C t(Φ) and suppose thate(p) = α for p ∈ Paux
Φ (l) such

that#Φ(p) = d. Then the idea is that (like we did in the example before Definition 60)
one can exchange two “copies” ofα in a without changingr: the intuition is that for
everyα1, α2 ∈ Supp(digk

d([α])) one has(r, α1) ' (r, α2) in sD. More precisely, the
following lemma holds:

Lemma 63. Let k ∈ N. Let (Φ, ind) ∈ PLPSind. Let l ∈ C?(Φ). Let (e, r) be
a k-experiment of(Φ, ind). Let a ∈ Mfin(D

′) such thate(Ppri
Φ (l)) = (−, a). Let

a0 ∈ Q(r, a). Then there existsP0 ⊆ Paux
Φ (l) such thata0 =

∑

q∈P0
digk

#Φ(q)(e(q)).

PROOF. We prove, by induction ond and using Fact 62, that for anyd ∈ N, for any
α ∈ D′, for anyα1, α2 ∈ Supp(digk

d([α])), we have(r, α1) ' (r, α2) in sD.

5.3. The case of?unit-PLPS and!unit-PLPS

In the first part of this subsection (and similarly in the firstpart of the following
Subsection 5.4), we first define some suitable injective atomic k-experiments(e1, r1)
of (Φ1, ind1) and(e′1, r

′
1) of (Φ′

1, ind’1)37, and we then establish somepurely semantic
statements, that will allow in the final Subsection 5.5 to show thatr1 ' r′1 (and thus
apply the induction hypothesis). Notice that in the second part of Subsections 5.3
and 5.4 we often refer tok-experiments and LPS, but only in discussions and examples:
the intuition is that the points ofD′ we consider in mathematical statements are results
of k-experiments of LPS, but the statements themselves hold without any reference to
experiments.

37Notations still refer to the general strategy described in Subsection 4.1.



For everyρ ∈ pInj (Definition 32) and for everyα ∈ D′, whenAt’(α) = ∅, one
hasρ · α = α. We will use in the sequel the remark that any multisetb ∈ Mfin(D

′)
can be decomposed into a (possibly empty) multisetbAt in which atoms occur and a
(possibly empty) multisetb∗ in which no atom occurs:b = bAt + b∗, wherebAt andb∗

are precisely defined as follows.

Definition 64. For anyD0 ⊆ D′, we setD0
At = {α ∈ D0 | At’(α) 6= ∅} andD0

∗ =
{α ∈ D0 | At’(α) = ∅}.

For anya ∈ Mfin(D
′), we setaAt = a Supp(a)At anda∗ = a Supp(a)∗ .

When (for someΦ ∈ PLPS) “above” an auxiliary portp of l ∈ C?(Φ) ∪ C!(Φ)38

there are no axiom ports, it is obvious that whateverk-experimente of Φ one considers,
the labelα = e(p) of p contains no atom. And the converse holds too whene is atomic:
if At’(e(p)) = ∅, there are no axiom ports “above”p. This implies thate(Ppri

Φ (l)) =
(ι, b) for someb ∈ Mfin(D

′) such thatb∗ 6= [] iff “above” one of the auxiliary ports of
l there are no axiom ports, as the following fact shows.

Fact 65. Letk ≥ 1, let Φ ∈ PLPS and lete be an atomick-experiment ofΦ. Suppose
that l ∈ C(Φ) ande(Ppri

Φ (l)) = (ι, b) for someb ∈ Mfin(D
′).

We have thatb∗ 6= [] iff there existsp ∈ Paux
Φ (l) such that for everyq ≥Φ p one has

q /∈
⋃

Ax(Φ).

PROOF. Sincee is atomic39 andk ≥ 1, we haveAt’(e(q)) 6= ∅ for anyq ∈
⋃

Ax(Φ),
hence one can easily prove, by induction on the number of ports “above” the portp
of Φ (that is onCard({q ∈ P(Φ) / q ≥Φ p})), that there existsq ≥Φ p such that
q ∈

⋃

Ax(Φ) iff At’(e(p)) 6= ∅. This immediately yields the conclusion: for every
p ∈ Paux

Φ (l) there existsq ≥Φ p such thatq ∈
⋃

Ax(Φ) iff At’(α) 6= ∅ for everyα ∈ b
iff b∗ = [].

The following Fact 66 and Fact 68 are similar in spirit to Fact71 of the following
Subsection 5.4: they allow to obtain ak-experimente[l0] of Φ[l0] from ak-experimente
of Φ ∈ LPS, and they will be used in the casesΦ ∈ !unit-PLPS andΦ ∈ ?unit-PLPS
of the proof of Proposition 40. In both the facts the hypothesis a∗ 6= [] (for a ∈
Mfin(D

′) such thate(p) = (ι, a) with p port of Φ) is crucial: it implies that “above”
p there is an “isolated subgraph”, which allows to apply the transformations defined in
Subsection 4.1, thus shrinking the measure ofΦ.

Fact 66. Let k ≥ 1. Let R = (Φ, ind) ∈ LPSind and let (e, r) be an atomick-
experiment of(Φ, ind). Let l0 ∈ C!(Φ) ∩ C t(Φ) andβ ∈ D′ such thate(Ppri

Φ (l0)) =

(+, digk
1([β])) and (digk

1([β]))
∗
6= []. Then mes(Φ[l0]) < mes(Φ) and there exists a

unique atomick-experiment(e[l0], r[l0]) of R[l0] such that
• for anyp ∈ (P(Φ) \ P f(Φ)) ∩ P(Φ[l0]), we havee[l0](p) = e(p);

38In casel ∈ C!(Φ) such a premise is the unique premise ofl.
39In casee is not atomic, one might have for examplee(q) = (+, ∗) for someq ∈

⋃

Ax(Φ).



•

r[l0](i) =

{

r(i) if i 6= ind(Ppri
Φ (l0));

β if i = ind(Ppri
Φ (l0)).

Moreover, ife is injective, thene[l0] is injective.

PROOF. By Fact 65, if we callp the unique auxiliary port ofl0, we have that for every
q ≥Φ p one hasq /∈

⋃

Ax(Φ), that is{p ∈
⋃

Ax(Φ) | p ≥Φ Ppri
Φ (l)} = ∅: this implies

thatΦ ∈ !unit-PLPS, thusmes(Φ[l0]) < mes(Φ).
We then sete[l0](p) = e(p) for anyp ∈ P(Φ[l0]).

Remark 67. If e is a k-experiment ofΦ ∈ PLPS and l ∈ C?(Φ), we know by Defi-
nition 35 thate(Ppri

Φ (l)) = (−, a), wherea =
∑

p∈Paux
Φ (l) digk

#Φ(p)([e(p)]). Whenl ∈

C?cauxd(Φ) we have#Φ(p) ≥ 1 for everyp ∈ Paux
Φ (l), which implies thata = digk

1(b)

for b =
∑

p∈Paux
Φ (l) digk

#Φ(p)−1([e(p)])). It then follows that whenΦ ∈ ?unit-PLPS

there always existsl ∈ C t(Φ) such thate(Ppri
Φ (l)) = (−, digk

1(b)) for someb ∈
Mfin(D

′).

Fact 68. Let k > 1. Let R = (Φ, ind) ∈ LPSind and let (e, r) be an atomick-
experiment ofR. Let l0 ∈ (C?(Φ) \ C?cb(Φ)) ∩ C t(Φ) and b ∈ Mfin(D

′) such that

e(Ppri
Φ (l0)) = (−, digk

1(b)) and(digk
1(b))

∗
6= []. Then mes(Φ[l0]) < mes(Φ) and there

exists a unique atomick-experiment(e[l0], r[l0]) of R[l0] such that
• for anyp ∈ (P(Φ) \ P f(Φ)) ∩ P(Φ[l0]), we havee[l0](p) = e(p);
•

r[l0](i) =

{

r(i) if i 6= ind(Ppri
Φ (l0));

(−, (digk
1(b))At + b∗) if i = ind(Ppri

Φ (l0)).

Moreover, ife is injective thene[l0] is injective.

PROOF. By Fact 65 there existsp ∈ Paux
Φ (l0) such that for everyq ≥Φ p one has

q /∈
⋃

Ax(Φ). From k > 1, e(Ppri
Φ (l0)) = (−, digk

1(b)) and (digk
1(b))

∗
6= [] we

deduce thatl0 /∈ C?w(Φ) ∪ C?d(Φ), and sincel0 6∈ C?cb(Φ), we havel0 ∈ C?cauxd(Φ)
and thus#Φ(p) ≥ 1. Summing up, we have the existence ofp ∈ Paux

Φ (l0) such that
#Φ(p) ≥ 1 and{q ∈

⋃

Ax(Φ) | q ≥Φ p} = ∅: this implies thatl0 ∈ C?unit(Φ) and
Φ ∈ ?unit-PLPS, thusmes(Φ[l0]) < mes(Φ).

We then sete[l0](p) =

{

e(p) if p 6= Ppri
Φ (l0);

(−, (digk
1(b))At + b∗) if p = Ppri

Φ (l0).

We now prove two “purely semantic” facts, that will be used inthe cases?unit-PLPS
and !unit-PLPS of the proof of Proposition 40. The first one intuitively states that
given an (injective atomic) experimente (resp.e′) of Φ (resp.Φ′) such thate(Ppri

Φ (l)) '

e′(Ppri
Φ′(l′)) for some suitable teminal linkl (resp.l′), there existsp ∈ P f(Φ[l]) such that

for the “corresponding”p′ ∈ P f(Φ′
[l′]) one hase[l](p) ' e′[l′](p

′).

Fact 69. Let k ≥ 1. Let b, b′ ∈ Mfin(D
′). Letρ : digk

1(b) → digk
1(b

′) in M. Then we
haveρ : b∗ + (digk

1(b))At → b′
∗

+ (digk
1(b′))At in M.



PROOF. We havedigk
1(b∗) = (digk

1(b))
∗

= (digk
1(b′))

∗
= digk

1(b′
∗
), hence (since

k 6= ∅) b∗ = b′
∗. Fromρ : digk

1(b) → digk
1(b

′) one deduces thatρ : (digk
1(b))At →

(digk
1(b′))At, and since forρ ∈ pInj we already noticed thatρ(b∗) = b∗, we can

conclude thatρ : b∗ + (digk
1(b))

At → b∗ + (digk
1(b′))At = b′

∗
+ (digk

1(b′))At.

Fact 70. Letk ∈ N. Letβ ∈ D′ such that(digk
1([β]))∗ 6= []. Then([β])∗ = [β].

PROOF. From(digk
1([β]))∗ 6= [], we deduce thatAt’(β) = ∅.

5.4. The case of?-box-PLPS ∩ LPS

The last case to analyze (Φ ∈ ?-box-PLPS∩LPS) is the most complicated one. The
first part of this subsection allows to define ak-experimente of Φ from ak-experiment
e of the LPSΦ (whereΦ has been defined in Subsection 4.1, where we already noticed
thatmes(Φ) < mes(Φ)) and consists only of Fact 71. All the rest of the subsection is
“purely semantic”.

Fact 71. Let k ∈ N. Let (Φ, ind) ∈ LPSind such thatΦ ∈ ?-box-PLPS and let
(e, r) be ak-experiment of(Φ, ind). Then there exists a uniquek-experiment(e, r) of
(Φ, ind) = (Φ, ind) such that
• for anyp ∈ (P(Φ) \ P f(Φ)) ∩ P(Φ), we havee(p) = e(p);
• if r(i) = (+, a), then there existsα ∈ D′ such thatr(i) = α anda =

∑k
j=1 dig(j)·

[α]; if r(i) = (−, a), then there existsb ∈ Mfin(D
′) such thatr(i) = (−, b) and

a =
∑k

j=1 dig(j) · b.
Moreover, ife is atomic (resp. injective), thene is atomic (resp. injective).

PROOF. For anyl ∈ C?cauxd(Φ)∩C t(Φ), we havee(Ppri
Φ (l)) =

∑

p∈Paux
Φ (l) digk

#Φ(p)([e(p)]) =
∑k

j=1 dig(j) ·
∑

p∈Paux
Φ (l) digk

#Φ(p)−1([e(p)]). For anyl ∈ C!(Φ) ∩ C t(Φ), we have

e(Ppri
Φ (l)) =

∑

p∈Paux
Φ (l) digk

1([e(p)]) =
∑k

j=1 dig(j) · [e(q)], where{q} = Paux
Φ (l).

In the following informal discussion, we fix an LPSΦ and an atomick-experiment
(e, r) of (Φ, ind). SupposeΦ consists of 2 cells: a!-cell and a?-cell with a unique
auxiliary portp such that#Φ(p) = 1, and suppose that the two auxiliary ports of
the two cells are connected by an axiom (in the language of theusual theory of linear
logic proof-nets,Φ would correspond to an axiom link inside an exponential box). In
this caser = ((−, digk

1([δ])), (+, digk
1([δ]))) ∈ D′At × D′At for someδ ∈ A. If

α, α′ ∈ Supp(digk
1([δ])) such thatα 6= α′, thenAt’(α) ∩ At’(α′) = ∅: two elements of

the multiset associated with the principal port of the?-cell have no atom in common,
since they “come from” two different copies of the content ofthe box.
Suppose now that, more generally,Φ ∈ ?-box-PLPS∩ LPS has two conclusions,
one is the principal port of a!-cell and the other one is the principal port of a?-cell,
but now this last cell has several auxiliary ports and for every such portp one has
#Φ(p) ≥ 1; suppose also that the graph obtained by removing this?-cell is connected
(in the language of the usual theory of linear logic proof-nets,Φ would now correspond
to a connected proof-net inside an exponential box, where the?-conclusions of the box
are contracted): an example of such anLPS is in Figure 1 (see also the following



Example 75). The previous remark can be generalized to such an LPS: leta (resp.
b) be the multiset associated bye with the principal port of the?-cell (resp.!-cell)
conclusion ofΦ; we have thatα, α′ ∈ Supp(a) “come from” the same copy of the
content of the box if and only if there is a “bridge” betweenα andα′40, meaning that
there is a sequenceα0, . . . , αn such thatαi ∈ Supp(a + b) andα0 = α, αn = α′ and
for anyi ∈ pnq, we haveAt’(αi−1) ∩ At’(αi) 6= ∅. This means that one can split the
multiseta into equivalence classes given by the relation “being connected by a bridge”,
and every equivalence class will identify a copy of the box.
For generalΦ ∈ ?-box-PLPS∩ LPS, the situation is more complex: it might be the
case that the elementsα andα′ above come from the same copy of a box even though
they are not connected by a bridge. On the other hand, the converse still holds: when
there is a bridge betweenα andα′ they do come from the same copy of the box. We
thus define a functionsB, that splits the resultr of the experimente into equivalence
classes of this relation.

Definition 72. For anyD0 ⊆ D′At, we define the equivalence relation'D0 onD0 as
follows: α 'D0 α′ if, and only if, there existα0, . . . , αn ∈ D0 such thatα0 = α,
αn = α′ and for anyi ∈ pnq, we have At’(αi−1) ∩ At’(αi) 6= ∅.

Definition 73. We denote by B the functionPfin(D
′At

) → Pfin(Pfin(D
′At

)) defined by
B(D0) = D0/ 'D0 .

The functionsBthat we are going to define “splits” at-uple of multisets, following
the equivalence classes of the “bridge” equivalence relation:

Definition 74. We denote by sB the morphism of groupoidssM → psM defined by:
sB(a1, . . . , an) = {(a1 Supp(a1)∩a, . . . , an Supp(an)∩a) | a ∈ B(Supp(

∑n
i=1 ai))}; and

sB(ρ) = ρ.

Example 75. Leta1 anda2 be as in Example 38. Then we have B(Supp(a1 + a2)) =
{c1, c2, c3}, wherecz = {(γ1, z), (γ2, z), (+, (γ1, z), (γ2, z))}, and sB(a1, a2) = {r1, r2, r3},
whererz = ([(γ1, z), (γ2, z)], [(+, (γ1, z), (γ2, z))]). Notice that every element of
sB(a1, a2) corresponds to a copy of the box.

Given r = (a1, . . . , an) ∈ sM0 and two different equivalence classesa, b ∈
B(Supp(

∑n
i=1 ai)), we clearly have thatAt’(a) ∩ At’(b) = ∅. This implies that any

element of the restriction ofr to the elements ofa has no atom in common with any el-
ement of the restriction ofr to the elements ofb, as the following fact precisely states.
A consequence that will be used in Lemma 81 is that if for somer, r′ ∈ sM0 one has
ρ : sB(r) → sB(r′) in psM, thenρ : r → r′ in sM.

Fact 76. Letr ∈ sM0. For anyr1, r2 ∈ sB(r), we have At’(r1)∩At’(r2) 6= ∅ ⇒ r1 =
r2.

40Notice that by Definition 43Φ /∈ ?unit-PLPS∪ !unit-PLPS, so thatα, α′ ∈ D′At.



PROOF. Supposer = (a1, . . . , an), r1 = (c1, . . . , cn) andr2 = (d1, . . . , dn). By
Definition 74, for everyi ∈ {1, . . . , n} we have thatci = ai Supp(ai)∩a anddi =
ai Supp(ai)∩b for somea, b ∈ B(Supp(

∑n
i=1 ai)).

If At’(r1)∩At’(r2) 6= ∅, then sinceAt’(r1) ⊆ At’(a) andAt’(r2) ⊆ At’(b), we have
At’(a) ∩ At’(b) 6= ∅, which means thatAt’(ξ) ∩ At’(η) 6= ∅ for someξ ∈ a andη ∈ b:
this implies by Definition 72 thatξ 'Supp(

∑

n
i=1 ai) η and thusa = b andr1 = r2.

In the language of the usual theory of linear logic proof-nets, given a proof-net one
can “box it”; we have generalized this boxing operation in the framework ofLPS: for
Φ ∈ ?-box-PLPS∩ LPS this corresponds to the passage fromΦ to Φ. From an ex-
periment(e1, r1) of (Φ, ind), one can naturally obtain an experiment(e, r) of (Φ, ind).
The following lemma (intuitively) relates the effect of applying the splitting function
sBafter boxing to the effect of applying the splitting function sBbefore boxing.

Lemma 77. Let k, n ∈ N such thatk > 0. Let b1, . . . , bn ∈ Mfin(D
′At

). We have
sB(digk

1(b1), . . . , digk
1(bn)) = {(dig(j0)·f1, . . . , dig(j0)·fn)|j0 ∈ pkq and(f1, . . . , fn) ∈

sB(b1, . . . , bn)}.

PROOF. For anyb ∈ Mfin(D
′At

), we haveB(Supp(digk
1(b))) = B(Supp(

∑k
j=1 dig(j) ·

b)) = {{dig(j0) · β | β ∈ b} | j0 ∈ pkq andb ∈ B(Supp(b))}. Now notice that
digk

1(
∑n

i=1 bi) =
∑n

i=1 digk
1(bi); henceB(Supp(

∑n
i=1 digk

1(bi))) = B(Supp(digk
1(

∑n
i=1 bi))) =

{{dig(j0) · β | β ∈ b} | j0 ∈ pkq andb ∈ B(Supp(
∑n

i=1 bi))}. Thus

sB(digk
1(b1), . . . , digk

1(bn))

= {(digk
1(b1) Supp(digk

1 (b1))∩a
, . . . , digk

1(bn) Supp(digk
1(bn))∩a

) |

a ∈ B(Supp(
n

∑

i=1

digk
1(bi)))}

= {(digk
1(b1) Supp(digk

1 (b1))∩{dig(j0)·β | β∈b}, . . . , digk
1(bn) Supp(digk

1 (bn))∩{dig(j0)·β | β∈b}) /

j0 ∈ pkq andb ∈ B(Supp(
n

∑

i=1

bi))}

= {(digk
1(b1) {dig(j0)·β | β∈Supp(b1)∩b}, . . . , digk

1(bn) {dig(j0)·β | β∈Supp(bn)∩b}) /

j0 ∈ pkq andb ∈ B(Supp(
n

∑

i=1

bi))}

= {((dig(j0) · b1) {dig(j0)·β | β∈Supp(b1)∩b}, . . . , (dig(j0) · bn) {dig(j0)·β | β∈Supp(bn)∩b}) /

j0 ∈ pkq andb ∈ B(Supp(
n

∑

i=1

bi))}

= {(dig(j0) · b1 Supp(b1)∩b, . . . , dig(j0) · bn Supp(bn)∩b) | j0 ∈ pkq andb ∈ B(Supp(
n

∑

i=1

bi))}

= {(dig(j0) · f1, . . . , dig(j0) · fn) | j0 ∈ pkq and(f1, . . . , fn) ∈ sB(b1, . . . , bn)}.



℘ ℘

?

p2p1 Figure 6: Example illustrating the case of
?-box-PLPS∩ LPS. Let Φ ∈ PLPS as beside
and such that#Φ(p1) = 1 = #Φ(p2). We have
Φ ∈ ?-box-PLPS∩ LPS.

Our aim is now to prove Lemma 81: both the following Definition78 and Fact 79
are just tools to prove this result (in order to get some intuition, see Example 80).

Definition 78. We denote by R the morphism of groupoidspsM → ppsM defined by:
R(a) = a/ 'sM, wherer 'sM r′ if, and only if,r ' r′ in sM; and R(ρ) = ρ.

Fact 79. Letk ∈ N \ {0}. Letr, r′ ∈ sM0. Letb ∈ R(sB(r)), b′ ∈ R(sB(r′)) such that
{dig(j0) · r0 | j0 ∈ pkq andr0 ∈ b} ' {dig(j0) · r′0 | j0 ∈ pkq andr′0 ∈ b′} in psM.
Then we haveb ' b′ in psM.

PROOF. Letρ : {dig(j0)·r0 |j0 ∈ pkq andr0 ∈ b} → {dig(j0)·r
′
0 |j0 ∈ pkq andr′0 ∈

b′} in psM. Letr0 ∈ b. Letr′0 ∈ b′ andj0 ∈ pkq such thatρ : dig(1)·r0 → dig(j0)·r′0
in sM; then we haver0 ' r′0 in sM. Thus the following holds:
• there existsr0 ∈ b, r′0 ∈ b′ such thatr0 ' r′0 in sM;
• for anyr1, r2 ∈ b, we haver1 ' r2 in sM and for anyr′1, r

′
2 ∈ b′, r′1 ' r′2 in sM;

• for any r1, r2 ∈ b, we haveAt’(r1) ∩ At’(r2) 6= ∅ ⇒ r1 = r2 and for any
r′1, r

′
2 ∈ b′, we haveAt’(r′1) ∩ At’(r′2) 6= ∅ ⇒ r′1 = r′2 (by Fact 76);

• Card(b) = Card(b′).
Henceb ' b′ in psM. Indeed: letτ : r0 → r′0 in sM and letϕ : b → b′ in Bij ; for
anyr1 ∈ b, let τr1 : r1 → r0 in sM; for any r′1 ∈ b′, let τ ′

r′

1
: r′0 → r′1 in sM; for

anyr1 ∈ b, we setρr1 = τ ′
ϕ(r1) ◦ τ ◦ τr1 ; we defineρ′ : b → b′ in psM by setting

ρ′(δ) = ρr1(δ) if δ ∈ At’(r1).

Example 80. In order to help the reader to get some intuition of what we want to
do here, let us consider the LPSΦ represented in Figure 6: the contraction of two
auxiliary doorsp1 and p2 such that#Φ(p1) = #Φ(p2) = 1; above each auxil-
iary door, a `; above each̀ , an axiom. Lete = e′ be the injective atomick-
experiment ofΦ such that the label associated bye with every auxiliary port of the
?-cell is (−, γz, γz), whereγz ∈ A, z ∈ p2q and γ1 6= γ2. The resultr = r′

is (−,
∑

1≤j≤k,1≤z≤2[(−, (γz, j), (γz , j))]). We haveρ : a → a′ in psM, where
a =

⋃

1≤j≤k,1≤z≤2{([(−, (γz, j), (γz , j))])} = a′, with ρ that can send any(γz , j)
to any(γz′ , j′). Fact 79 will be useful to deduce very generally that in situations of this
kind, we haveb ' b′ in psM, where hereb = {([(−, γ1, γ1)]), ([(−, γ2, γ2)])} = b′.

The following lemma is the crucial step allowing to apply theinduction hypothesis
in the proof of the key-Proposition 40 in the?-box-PLPScase: it intuitively states
that if there is an isomorphism between the results of two experiments ofΦ1, Φ2 ∈
?-box-PLPS∩ LPS, then there exists also an isomorphism between the results of two



experiments ofΦ1 andΦ2. In the proof, we denote byU the forgetful functorppsM →
Bij .

Lemma 81. Let k, n ∈ N such thatk > 0. Let b1, . . . , bn, b′1, . . . , b
′
n ∈ Mfin(D

′At
)

such that(digk
1(b1), . . . , digk

1(bn)) ' (digk
1(b′1), . . . , digk

1(b
′
n)) in sM. Then we have

(b1, . . . , bn) ' (b′1, . . . , b
′
n) in sM.

PROOF. We set

a = {dig(j0) · (f1, . . . , fn) | j0 ∈ pkq and(f1, . . . , fn) ∈ sB(b1, . . . , bn)}

and

a′ = {dig(j0) · (f
′
1, . . . , f

′
n) | j0 ∈ pkq and(f ′

1, . . . , f
′
n) ∈ sB(b′1, . . . , b

′
n)}.

SincesB is a morphism of groupoids, by Lemma 77, there existsρ : a → a′ in psM.
Since for anyr, r′ ∈ sM0, for anyj1, j2 ∈ pkq, we havedig(j1) ·r ' dig(j2) ·r′ in

sM if, and only if, r ' r′ in sM, we can defineϕ : U(R(sB(b1, . . . , bn))) → U(R(a))
in Bij by settingϕ({(f1

1 , . . . , f1
n), . . . , (f q

1 , . . . , f q
n)}) = {dig(j) · (fz

1 , . . . , fz
n) | j ∈

pkq andz ∈ pqq} and ϕ′ : U(R(sB(b′1, . . . , b
′
n))) → U(R(a′)) in Bij by setting

ϕ′({(f ′1
1, . . . , f

′1
n), . . . , (f ′q

1, . . . , f
′q
n)}) = {dig(j) · (f ′z

1, . . . , f
′z
n) | j ∈ pkq andz ∈

pqq}. We haveϕ′−1 ◦ U(R(ρ)) ◦ ϕ : U(R(sB(b1, . . . , bn))) → U(R(sB(b′1, . . . , b
′
n)))

in Bij .
For anyb ∈ U(R(sB(b1, . . . , bn))), we haveρ : ϕ(b) = {dig(j0) · r0 | j0 ∈

pkq andr0 ∈ b} → {dig(j0) · r′0 | j0 ∈ pkq andr′0 ∈ (ϕ′−1 ◦ U(R(ρ)) ◦ ϕ)(b)} =
(U(R(ρ)) ◦ ϕ)(b) in psM. Hence by Fact 79, for anyb ∈ U(R(sB(b1, . . . , bn))) there
existsτb : b → (ϕ′−1 ◦ U(R(ρ)) ◦ ϕ)(b) in psM.

Now, by applying a first time Fact 76, we can define an application

τ :
⋃

r∈sB(b1,...,bn)

At’(r) →
⋃

r′∈sB(b′1,...,b′n)

At’(r′)

by settingτ(δ) = τb(δ) for δ ∈ At’(r), r ∈ b andb ∈ R(sB(b1, . . . , bn)).
We thus obtainτ : R(sB(b1, . . . , bn)) → R(sB(b′1, . . . , b

′
n)) in ppsM. By ap-

plying a second time Fact 76, we obtainτ :
⋃

R(sB(b1, . . . , bn)) = sB(b1, . . . , bn) →
sB(b′1, . . . , b

′
n) =

⋃

R(sB(b′1, . . . , b
′
n)) in psM. Lastly, by applying a third time Fact 76,

we obtainτ : (b1, . . . , bn) → (b′1, . . . , b
′
n) in sM.

5.5. Key-Proposition
We can now conclude the paper by giving the complete proof of the missing result:

Proposition 40. Let (Φ, ind), (Φ′, ind’) ∈ LPSind, let k > cosize(Φ), cosize(Φ′), let
(e, r) (resp.(e′, r′)) be an atomic injectivek-experiment of(Φ, ind) (resp.(Φ′, ind’)).
If r ' r′ in sD, then(Φ, ind) ' (Φ′, ind’).

PROOF. The proof is by induction onmes(Φ). We havemes(Φ) = (0, 0) if, and
only if, Φ ∈ ∅-PLPS; in this case, it is obvious that we have(Φ, ind) ' (Φ′, ind’).
If mes(Φ) > (0, 0), then letρ : r → r′ in sD, we setn = Card(P f(Φ)) and we
distinguish between the several cases.



• In the case whereΦ ∈ ax-PLPS, let w = {p0, q0} ∈ Axi(Φ) and leti0, j0 ∈
pnq such thatind(p0) = i0 and ind(q0) = j0. Let p′0, q

′
0 ∈ P f(Φ′) such that

ind’(p′0) = i0 and ind’(q′0) = j0. As e is atomic ande′ is injective, we have
w′ = {p′0, q

′
0} ∈ Axi(Φ′).

Let (Φ1, ind1) ∈ PLPSind (resp. (Φ′
1, ind’1) ∈ PLPSind) obtained from(Φ, ind)

(resp. (Φ′, ind’)) by removingw (resp. w′).41 SinceΦ, Φ′ ∈ LPS, we have
Φ1, Φ

′
1 ∈ LPS. We sete1 = e P(Φ1) ande′1 = e′ P(Φ′

1)
. We setr1 = e ◦ ind1

−1

andr′1 = e′ ◦ ind’1
−1: it is immediate that(e1, r1) is an injective atomic experiment

of (Φ1, ind1) and that(e′1, r
′
1) is an injective atomic experiment of(Φ′

1, ind’1); and
from ρ : r → r′ in sD one deducesρ : r1 → r′1 in sD. Notice thatmes(Φ1) <
mes(Φ): by induction hypothesis we have(Φ1, ind1) ' (Φ′

1, ind’1), which obvi-
ously implies(Φ, ind) ' (Φ′, ind’).
• In the case whereΦ ∈?cb -PLPS, let l0 ∈ C?cb(Φ) ∩ C t(Φ) and let i0 ∈ pnq

such thatind(Ppri
Φ (l0)) = i0. As e′ is atomic, there existsl′0 ∈ C?(Φ′) ∩ C t(Φ′)

such thatPpri
Φ′(l′0) = ind’−1(i0). Let a ∈ Mfin(D

′) such thate(Ppri
Φ (l0)) = (−, a).

Let a′ ∈ Mfin(D
′) such thatρ · (−, a) = (−, a′). Let p ∈ Paux

Φ (l0) such that
#Φ(p) = 0. We setβ = e(p). We haveβ ∈ Supp(a), hence there existsa0 ∈
Q(r, a) such thatβ ∈ Supp(a0). By Lemma 63, there existsP0 ⊆ Paux

Φ (l0) such
that a0 =

∑

q∈P0
digk

#Φ(q)(e(q)). We havep ∈ P0 (otherwise, we would have
a(β) > a0(β)). Hence, by Fact 57,k does not divideCard(a0) = Card(ρ · a0). As
we haveρ : (r, a) → (r′, a′) in sDM and by Fact 61Q is a morphism of groupoids,
we haveρ · a0 ∈ Q(r′, a′). Hence, by Lemma 63, there existsP ′

0 ⊆ Paux
Φ′ (l′0) such

thatρ · a0 =
∑

q∈P′

0
digk

#Φ′(q)(e
′(q)). By Fact 57, there existsp′ ∈ P ′

0 such that
#Φ′(p′) = 0. Let β′ = e′(p′); we have(r′, ρ · β) ' (r′, β′) and(r, β) ' (r′, ρ · β)
in sD, hence(r, β) ' (r′, β′) in sD.
Let Φ1 ∈ PLPS (resp. Φ′

1 ∈ PLPS) obtained fromΦ (resp. Φ′) by removingp
(resp.p′) from the auxiliary ports ofl0 (resp.l′0).42 Notice thatmes(Φ1) < mes(Φ).
Both Φ1 andΦ′

1 haven + 1 free ports: forΦ1, those ofΦ and a new free portp0;
for Φ′

1, those ofΦ′ and a new free portp′0. We set

ind1(q) =

{

ind(q) if q 6= p0;
n + 1 if q = p0;

andind’1(q) =

{

ind’(q) if q 6= p′0;
n + 1 if q = p′0.

We have(Φ1, ind1), (Φ
′
1, ind’1) ∈ LPSind. For anyq ∈ P(Φ1) \ {Ppri

Φ1
(l0)}, we set

e1(q) = e(q). Letb ∈ Mfin(D
′) such thata = b+[β]; we sete1(P

pri
Φ1

(l0)) = (−, b).

For anyq ∈ P(Φ′
1) \ {Ppri

Φ′

1
(l′0)}, we sete′1(q) = e′(q). Let b′ ∈ Mfin(D

′) such that

a′ = b′ + [β′]; we sete′1(P
pri
Φ′

1
(l′0)) = (−, b′).

We setr1(i) =







r(i) if i /∈ {i0, n + 1};
(−, b) if i = i0;
β if i = n + 1.

41See the appendix for a formal definition of(Φ1, ind1) and(Φ′
1, ind’1).

42See the appendix for a formal definition of(Φ1, ind1) and(Φ′
1, ind’1).



We setr′1(i) =







r′(i) if i /∈ {i0, n + 1};
(−, b′) if i = i0;
β′ if i = n + 1.

Since(e, r) (resp. (e′, r′)) is an atomic injectivek-experiment of(Φ, ind) (resp.
(Φ′, ind’)), (e1, r1) (resp.(e′1, r

′
1)) is an atomic injectivek-experiment of(Φ1, ind1)

(resp. (Φ′
1, ind’1)) and since(r, β) ' (r′, β′) in sD we haver1 ' r′1 in sD. By

induction hypothesis we deduce that(Φ1, ind1) ' (Φ′
1, ind’1), from which the con-

clusion(Φ, ind) ' (Φ′, ind’) immediately follows.
• In the case whereΦ ∈ !unit-PLPS, by Fact 65, there existsl0 ∈ C!(Φ) ∩ C t(Φ)

andβ ∈ D′ such thate(Ppri
Φ (l0)) = (+, digk

1([β])) and(digk
1([β]))

∗
6= []. As e′

is atomic, there existsl′0 ∈ C!(Φ′) ∩ C t(Φ′) such thatPpri
Φ′(l′0) = ind’−1(i0). Since

ρ : r → r′ in sD one hasρ : e(Ppri
Φ (l0)) → e′(Ppri

Φ′(l′0)) in D, so that there exists
β′ ∈ D′ such thate′(Ppri

Φ′(l′0)) = (+, digk
1([β′])) andρ : digk

1([β]) → digk
1([β′]) in

M . Hence(digk
1([β

′]))∗ 6= [] and, by Fact 69,ρ : ([β])∗+(digk
1([β]))At → ([β′])∗+

(digk
1(([β′]))At in M : by Fact 70, we obtainρ : β → β′ in D and thusρ : r[l0] →

r′[l′0] in sD, wherer[l0] andr′[l′0] have been defined in Fact 66. By this fact and by
Fact 44, we can apply the induction hypothesis and deduce that (Φ[l0], ind[l0]) '
(Φ′

[l′0]
, ind’[l′0]). SinceΦ[l0] (resp.Φ′

[l′0]
) has been obtained fromΦ (resp.Φ′) by

removing the!-cell l0 (resp.l′0), the fact that(Φ[l0], ind[l0]) ' (Φ′
[l′0]

, ind’[l′0]) entails
that(Φ, ind) ' (Φ′, ind’).
• In the case whereΦ ∈ ?unit-PLPS, by Remark 67 and Fact 65, there existsl0 ∈

(C?(Φ) \ C?cb(Φ)) ∩ C t(Φ) andb ∈ Mfin(D
′) such thate(Ppri

Φ (l0)) = (−, digk
1(b))

and (digk
1(b))

∗
6= []. As e′ is atomic, there existsl′0 ∈ C?(Φ′) ∩ C t(Φ) such

that Ppri
Φ′(l′0) = ind’−1(i0). We havel0 6∈ C?cb(Φ), so that by Fact 57,k divides

Card(digk
1(b)). Still by Fact 57, we obtain thatl′0 6∈ C?cb(Φ′). Fromρ : r → r′

in sD, we can deduce (using again Remark 67) thatρ : digk
1(b) → digk

1(b′) in
M , hence, by Fact 69, we getρ : b∗ + (digk

1(b))At → b′
∗

+ digk
1(b′)At in M

and thusρ : r[l0] → r′[l′0] in sD, wherer[l0] and r′[l′0] have been defined in
Fact 68. By this fact and by Fact 44, we can apply the inductionhypothesis and
deduce that(Φ[l0], ind[l0]) ' (Φ′

[l′0], ind’[l′0]). Now notice that forϕ = (ϕC , ϕP) :
(Φ[l0], ind[l0]) ' (Φ′

[l′0]
, ind’[l′0]), we also haveϕ : (Φ, ind) ' (Φ′, ind’). In-

deed: letb0 =
∑

p∈Paux
Φ (l0)

[e(p)] and b′0 =
∑

p′∈Paux
Φ′

(l′0)
[e′(p′)] ; then for any

p ∈ Paux
Φ (l0), we havee(p) ∈ Supp(b0

∗) if, and only if, e′(ϕP (p)) ∈ Supp(b′0
∗
),

hence#Φ(p) = #Φ′(ϕP (p)).
• In the case whereΦ ∈ ?-box-PLPS, for everyi ∈ pnq we have thatr(i) = (ιi, bi)
for somebi ∈ Mfin(D

′) and from the existence ofρ : r → r′ in sD, we deduce
that r′(i) = (ιi, b

′
i) whereb′i = ρ · bi. SinceΦ 6∈ ?unit-PLPS, by Fact 65 we

deduceb∗i = [] for everyi ∈ pnq, thusb′∗i = [] which impliesΦ′ 6∈ ?unit-PLPS.
By Fact 57,k dividesCard(bi). SinceCard(bi) = Card(b′i) ande′ is atomic, by
applying again Fact 57, we can conclude thatΦ′ ∈ ?-box-PLPS. We can thus now
apply Fact 71 twice:

1. there exists a unique atomic and injectivek-experiment(e, r) of (Φ, ind) =
(Φ, ind) ∈ LPSind such that
• for anyp ∈ (P(Φ) \ P f(Φ)) ∩ P(Φ), we havee(p) = e(p);



• if r(i) = (+, digk
1([αi])) for someαi ∈ D′, thenr(i) = αi and if r(i) =

(−, digk
1(ci)) thenr(i) = (−, ci).

2. there exists a unique atomic and injectivek-experiment(e′, r′) of (Φ′, ind’) =
(Φ′, ind’) ∈ LPSind such that
• for anyp ∈ (P(Φ′) \ P f(Φ′)) ∩ P(Φ′), we havee′(p) = e′(p);
• if r′(i) = (+, digk

1([α
′
i])) for someα′

i ∈ D′, thenr′(i) = α′
i and ifr′(i) =

(−, digk
1(c′i)) thenr′(i) = (−, c′i).

If we set bi = ci (resp.bi = [αi]) if r(i) = ci (resp.r(i) = αi), andb′i = c′i
(resp.b′i = [α′

i]) if r′(i) = c′i (resp.r′(i) = α′
i), thenr ' r′ in sD is equivalent

to (digk
1(b1), . . . , digk

1(bn)) ' (digk
1(b

′
1), . . . , digk

1(b′n)) in sM. By Lemma 81 we
can then conclude that(b1, . . . , bn) ' (b′1, . . . , b

′
n) in sM, which immediately yields

r ' r′ in sD. Sincemes(Φ) < mes(Φ), by induction hypothesis we deduce that
(Φ, ind) ' (Φ′, ind’). To conclude, notice that (sincer ' r′ in sD) for p ∈ P f(Φ),
p = Ppri

Φ (l) (resp.p′ ∈ P f(Φ′), p′ = Ppri
Φ′(l′)) such thatind(p) = ind’(p′), we

havel ∈ C!(Φ) iff l′ ∈ C!(Φ′). Thus from(Φ, ind) ' (Φ′, ind’) it follows that
(Φ, ind) ' (Φ′, ind’).
• the other cases are easier and left to the reader.

Remark 82. A crucial point in the caseΦ ∈?cb -PLPS of the proof is that we have
ρ · β ' β′, but we do not necessarily haveρ · β = β′ and this corresponds to the fact
that, as illustrated in the introduction by an example usingthe PS of Figure 2, there
are different atomick-experiments of PS43 having the same injective result. Consider
again this figure and letΦ be the LPS of this PS. Lete = e′ be a3-experiment ofΦ
such thate(pz) = (−, λz , λz) with λz ∈ A andz ∈ p2q. We havee(c1) = (−, a) with
a = [(−, λ1, λ1)] +

∑3
j=1[(−, (λ2, j), (λ2, j))]. Letr = r′ be the result ofe = e′. We

have Q(r, a) = {a}, hence we can consider, for example,ρ : (−, a) → (−, a) in sD
such thatρ(λ1) = (λ2, 1). We haveβ = (−, λ1, λ1) = β′ 6= ρ · β.
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[1] C. Böhm. Alcune proprietà delle formeβ-η-normali nelλ- K-calcolo. Pubbli-
cazioni dell’Istituto per le Applicazioni del Calcolo, 696, 1968.

[2] R. Statman.λ-definable functionals andβη conversion. 23:21–26, 1983.
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Technical appendix

6. Syntax

6.1. Pre-Linear Proof-Structures (PLPS)
We introduce a weaker notion than the one of PPLPS:ωPPLPS. An ωPPLPS44 is a

PPLPS, except that Condition 3 of Definition 5 is not required.

Definition 83. Let ωPPLPS be the set of triplesΦ = (C, I,W) with C ∈ Cells, I a
finite set satisfyingI ∩ P(C) = ∅ andW ⊆ P2(P(C) ∪ I) such that

1. for anyw, w′ ∈ W such thatw ∩ w′ 6= ∅, we havew = w′;
2. we havePaux(C) ∪ I ⊆

⋃

W ;
3. for anyw ∈ W , there existsp ∈ w such thatp /∈ Ppri(C).

We setC(Φ) = C, I(Φ) = I, W(Φ) = W andP(Φ) = P(C(Φ)) ∪ I. We use for
ωPPLPS the notations introduced for PPLPS (see Notations 6).

With everyωPPLPSΦ, we associate a unique PPLPSω(Φ):

Definition 84. Let ω be the functionωPPLPS → PPLPS such thatω(Φ) = Φ′ is
defined as follows:

• C(Φ′) = C(Φ);

• I(Φ′) = I(Φ) \ {p ∈ I(Φ) | (∃q ∈ Ppri(C(Φ))) {p, q} ∈ W(Φ)};

• W(Φ′) = {w ∈ W(Φ) | w ⊆ P(Φ′)}.

We give here the formal definition ofthe PLPSΨ obtained fromΦ by removingC0,
whereC0 ⊆ C t(Φ) is such that(C0 = {l} andl ∈ Cm(Φ) ∪ C?d(Φ)) or C0 ⊆ C!(Φ):

Definition 85. Let Φ ∈ PLPS and let C0 ⊆ C t(Φ) such that(C0 = {l} andl ∈
Cm(Φ) ∪ C?d(Φ)) or C0 ⊆ C!(Φ). The PLPSΨ obtained fromΦ by removingC0

is ω(Φ′), whereΦ′ is theωPPLPS defined as follows45:

• C(Φ′) = C(Φ) \ C0;

• P(Φ′) = P(Φ) \
⋃

l∈C0
{p ∈ P(Φ) | CΦ(p) = l};

• tΦ′ = tΦ C(Φ′) andCΦ′ = CΦ

∣

∣

C(Φ′)

P(Φ′)
;

• Ppri
Φ′ = Ppri

Φ

∣

∣

P(Φ′)

C(Φ′)
(resp.Pleft

Φ′ = Pleft
Φ

∣

∣

P(Φ′)

C(Φ′)
);

• #Φ′ = #Φ;

• I(Φ′) = I(Φ) ∪
⋃

l∈C0
Paux

Φ (l);

• W(Φ′) = {w ∈ W(Φ) | w ⊆ (P(Φ′) ∪ I(Φ′))}.

44ω is reminiscent of the definition ofω-reductionin [28]
45Concretely,Φ′ is obtained fromΦ by erasing the cells ofC0 and their principal ports, and by “changing

the status” of the auxiliary ports of the cells ofC0, which become elements ofI(Φ′).



6.2. Proof-Structures (PS)

In the same way that we introduced indexed PPLPS, indexed PLPS, indexed LPS
and indexed PS, we introduce the notion of indexedωPPLPS. Now, to every(Φ, ind) ∈
ωPPLPSind, we associate the indexed PPLPSω(Φ) = (ω(Φ), ind1) defined as follows:
for p ∈ P f(ω(Φ)) we setind1(p) = ind(cΦ(p)).

7. Experiments

Definition 86. We calldepth of an elementα ∈ D the least numbern ∈ N such that
α ∈ Dn.46

Let+⊥ = − and−⊥ = +. We defineα⊥ for anyα ∈ D, by induction on the depth
of α:
• for γ ∈ A, γ⊥ = γ; and (ι, ∗)⊥ = (ι⊥, ∗);
• else,(ι, α, β)⊥ = (ι⊥, α⊥, β⊥) and(ι, [α1, . . . , αn])⊥ = (ι⊥, [α⊥

1 , . . . , α⊥
n ]).

Definition 87. For anyα ∈ D, we define, by induction on the depth ofα, Sub(α) ∈
Mfin(D) as follows:
• Sub(δ) = [δ] if δ ∈ A ∪ ({+,−}× {∗});
• Sub(ι, α, β) = [(ι, α, β)] + Sub(α) + Sub(β);
• Sub(ι, [α1, . . . , αm]) = [(ι, [α1, . . . , αm])] +

∑m
j=1 Sub(αj).

For any(α1, . . . , αn) ∈ D<ω, we set Sub(α1, . . . , αn) =
∑n

i=1 Sub(αi).
For anyβ ∈ D, for anyr ∈ D<ω, we say thatβ occurs inr if β ∈ Supp(Sub(r)).
For anyγ ∈ A, for anyr ∈ D<ω, for anym ∈ N, we say thatthere are exactlym

occurrences ofγ in r if Sub(r)(γ) = m.

The following precise definition of substitution clearly entails that for everyα ∈ D
and for every substitutionσ : D → D, one hasσ(α⊥) = σ(α)⊥:

Definition 88. A substitutionis a functionσ : D → D induced by a functionσA :
A → D and defined by induction on the depth of elements ofD, as follows (as usual
ι ∈ {+,−} andγ ∈ A):
• σ(γ) = σA(γ) andσ(ι, ∗) = (ι, ∗);
• σ(ι, α, β) := (ι, σ(α), σ(β))
• σ(ι, [α1, . . . , αn]) = (ι, [σ(α1), . . . , σ(αn)]).

8. Main result

We give the formal definition ofΦ for Φ ∈ ?-box-PLPS∩ LPS:

Definition 89. WithΦ ∈ ?-box-PLPS∩LPS one can associate the PLPSΦ−1 obtained
fromΦ by modifying the function# (all the rest is unchanged):C?(Φ−1)∩C t(Φ−1) =
C?cauxd(Φ) ∩ C t(Φ) and for every celll ∈ C?cauxd(Φ) ∩ C t(Φ), the auxiliary ports ofl
in Φ are exactly those ofl in Φ−1; we can thus set#Φ−1(p) = #Φ(p) − 1 for such

46The definition ofDn has been given in Definition 21.



an auxiliary portp47. For everyl ∈ C?(Φ−1) \ (C?(Φ−1) ∩ C t(Φ−1)) and for every
auxiliary portp of l, we set#Φ−1(p) = #Φ(p).

The PLPSΦ is then obtained fromΦ−1 by removingC!(Φ−1) ∩ C t(Φ−1)
48.

9. Proof of Proposition 40

9.1. The case ofax-PLPS

We give here the formal definition of(Φ1, ind1) and (Φ′
1, ind’1) of the proof of

Proposition 40 (caseΦ ∈ ax-PLPS).
We setm0 = min{i0, j0} andM0 = max{i0, j0}. We define(Φ1, ind1), (Φ

′
1, ind’1) ∈

PLPSind as follows:
• C(Φ1) = C(Φ) andC(Φ′

1) = C(Φ′);
• I(Φ1) = I(Φ) \ {p0, q0} andI(Φ′

1) = I(Φ′) \ {p′0, q
′
0};

• W(Φ1) = W(Φ) \ {{p0, q0}} andW(Φ′
1) = W(Φ′) \ {{p′0, q

′
0}};

• we define the value ofind1(p) as follows:






ind(p) if ind(p) < m0;
ind(p) − 1 if m0 < ind(p) < M0;
ind(p) − 2 if M0 < ind(p);

and the value ofind’1(p) as follows:






ind’(p) if ind’(p) < m0;
ind’(p) − 1 if m0 < ind’(p) < M0;
ind’(p) − 2 if M0 < ind’(p).

9.2. The case of?cb-PLPS

We give here the definition of(Φ1, ind1), (Φ
′
1, ind’1) ∈ PLPSind of the proof of

Proposition 40 (case:Φ ∈?cb -PLPS): (Φ1, ind1) = ω(Ψ1, ind2) and (Φ′
1, ind’1) =

ω(Ψ′
1, ind’2), where(Ψ1, ind2), (Ψ

′
1, ind’2) ∈ ωPPLPSind are defined as follows:

• C(Ψ1) = C(Φ) andC(Ψ′
1) = C(Φ′);

• tΨ1 = tΦ andtΨ′

1
= tΦ′ ;

• P(Ψ1) = P(Φ) \ {p} andP(Ψ′
1) = P(Φ′) \ {p′};

• CΨ1 = CΦ P(Ψ1) andCΨ′

1
= CΦ′ P(Ψ′

1)
;

• Ppri
Ψ1

= Ppri
Φ andPpri

Ψ′

1
= Ppri

Φ′ ; Pleft
Ψ1

= Pleft
Φ andPleft

Ψ′

1
= Pleft

Φ′ ;
• #Ψ1 = #Φ dom(#Φ)\{p} and#Ψ′

1
= #Φ′ dom(#Φ′)\{p′};

• I(Ψ1) = I(Φ) ∪ {p} andI(Ψ′
1) = I(Φ′) ∪ {p′};

• W(Ψ1) = W(Φ) andW(Ψ′
1) = W(Φ′);

• ind2(q) =

{

ind(q) if q 6= p;
Card(P f(Φ)) + 1 if q = p;

andind’2(q) =

{

ind’(q) if q 6= p′;
Card(P f(Φ′)) + 1 if q = p′.

47We use here the crucial hypothesis thatl ∈ C?cauxd (Φ) which means that#Φ(p) > 0.
48following Definition 85


