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Abstract

The paper contains the first complete proof of strong nomattin SN) for full second
order linear logic (LL): Girard’s original proof uses a stiandization theorem which is
not proven. We introduce sliced pure structures (sps),\ag@meral version of Girard’s
proof-nets, and we apply to sps Gandy’s method to ififéifrom weak normalization
(WN). We prove a standardization theorem for spsWiN without erasing steps
holds for an sps, then it enjoy®N. A key step in our proof of standardization is a
confluence theorem for sps obtained by using only a very weak bf correctness,
namely acyclicity slice by slice. We conclude by showing tstandardization for sps
allows to provesN of LL, using as usual Girard’s reducibility candidates.

Key words: (weak strong) normalization, confluence, standardizatioear logic,
proof-nets, additive connectives, sliced pure structures

1. Introduction

In every abstract approach to computation, the distinditween terminating and
non-terminating processes is crucial. A rewriting systenjoys weak normalization
(WN) if every term of the system can be executed in a finite numbsieps.

In the A-calculus, non terminating computations start frasterms that strongly
exploit self-application every A-term can be applied to itself (see for examé§]].
Termination fails for the\-calculus (even in its weak fortWN), but holds for some of
its most remarkable subsystems: the simply typeadiculus and its extension Girard's
system F (§]). The proofs of WN for these calculi have a deep logical content: they
correspond to proofs of consistency in the logical senshigidighted by theproofs-
as-programgaradigm. This paradigm is also call€dirry-Howard isomorphisrand
establishes a correspondence between a fragment of amtigtic natural deduction
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and the typed\-calculus, so that basically: (i) a type can be seen as a far(and
vice versa); (ii) a-term can be seen as a proof (and vice versa); and (iii)%he
reduction of a\-term can be seen as the application of the cut-eliminationguure
to the corresponding proof (and vice versa). Theedexes correspond to the cuts of
the natural deduction (i.e. to the pairs of an introductiolie mand an elimination rule
of the same connective §]), hence thes-reduction to a normal form is equivalent
to a strategy for eliminating the cuts in a proof WN corresponds exactly to cut-
elimination. In traditional proof-theory (dating back t@@zen) cut-elimination is a
key property of a logical system, from which the consistesfdhe system immediately
follows?: WN of the simply typed\-calculus (resp. of system F) corresponds then to a
consistency proof for the implicational fragment of ininiitistic natural deduction NJ
(resp. second order natural deductior?NJ

The proofs-as-programs approach is a way to put constraimtke possibility of
building A-terms, and more precisely on self-application: from thgidal point of
view, these constraints are sufficient conditions to préaedonsistency of the cor-
responding logical systeln While in the simply typed\-calculus self-application is
simply forbidden, in system F a (weak) form of self-applicatis accepted. System
F combines then computational strength and terminatiore(lsethe remarkable in-
terest of WN for F). Godel's second incompleteness theorem sheds tinewdight
on the “difficulty” (and the deep meaning) of the terminatoperty. Indeed, Peano
Arithmetic PA can be translated into RJso thatWN for F cannot be proven within
NJ? (and of course this holds for any subsystem oftkealculus whose corresponding
logical system contains PA).

The terms of system F actually enjetrong normalizatior{SN), a much stronger
termination property thalWVN: whatever execution strategy one applies to F's terms
one eventually reaches a normal for8IN corresponds to saying that the tree of the
computations starting from a term is well-founded. Sevarahniques to infeBN
from WN have been proposed (see for exam@#). In [8] (p.150-159), the author
adapted Gandy'’s proof for Godel's system T (sgl¢ o NJ. The general method pro-
posed by Gandy can be applied to any logical system S as faillow

1. modify S in such a way that “nothing is lost” during nornzaliorf (rewriting
steps never erase pieces of proofs): let's denote'bythe rewriting rule of S
“without erasing steps”;

2. proveWN for == (we 'll often write in the sequel that S enjoy&N"°) and
confluencéfor —%;

2Things went actually the other way round: cut-eliminatioasvproven by Gentzeim order to prove
consistency of Peano Arithmetic PA.

3A term associated with a proof in a logical system is ofted saibetyped the conclusion of the proof
is atypeof the term.

4Thanks to the Curry-Howard isomorphism one can use the ggywf\-terms for proofs, and vice
versa.

5A rewriting system enjoys the confluence property when-i ¢; and¢ = to, there always exists
such that; = ¢/ andts - ¢/, wheret, 1, to, ¢’ are terms and™ is the reflexive and transitive closure of
the rewriting rule of the system, see Secti@.



3. define on the proofs of S a size functipn|, which is strictly increasing with
respect to—;
4. conclude that S enjoy&N.

Notice that the size functioh- | “computes” an upper bound for the length of the
—% reduction sequences starting from any preaif S: it is the value of - | on the
—e-normal form ofr.

Linear Logic (LL [7]) is a refinement of intuitionistic logic and of classicaglo,
which gives dogical status to the operations of erasing and copying (correspghal
the structural rulesof intuitionistic logic and of classical logic). This chamgf view-
point on structural operations has striking consequenegs: of the most important
is the introduction of proof-nets (simply calletsin this paper). Proof-nets yield a
graph-theoretical representation of computation, whieeestrict distinction between
inputs and outputs completely vanishes (this is a sharperéifice between nets and
terms). In LL, cut-elimination is defined directly for presfructures (general graphs
which are not necessarily proofs), and nets are the “cdrpeabf-structures (the ones
satisfying acorrectnesgondition). The presence of proof-structures as new coaput
tional objects widens the space of possible interactiotwd®n logical agents: this
makes the system much richer and more complicated. WeWstwoov, for the termina-
tion property of LL proof-structures, notonly the distiiwet typed/untyped is relevant
(this was already the case farterms), but also the one correct/noncorrect (which is
independent from the typed/untyped one). Indeed this ide@tlies much of Girard’s
work, since []: the correspondence between logical correctness andnation prop-
erty.

We present the first complete proof@iN for full second order LL: we proveN
for Girard’s nets as presented i?4]. BecausesN of full second order LL entails the
consistency of (second order) PA, its proof cannot be chaig within PA: it uses Gi-
rard’s reducibility candidates (introduced @] pnd already used for LL in7]). How-
ever, by applying Gandy’s method to LL, we show that stroriggiples are needed
only to proveWN (more preciselyWwN ™).

Some readers might be surprised that so many years afteisttovdry of LL (and
after so many papers on the subject) no complete proNofor LL has been given.
In [7] Girard gives a “proof” ofSN based on a theorem callsthndardization theorem
(theorem 4.25 p.72 of7]), which is not proven in the paperintuitively, the theorem
states that if a net can be transformed intasanormal form “without applying erasing
steps”, then it enjoy§N. This basically corresponds to achieving all the tasks of
Gandy’s method, except the proof@fN°.

In LL, the absence of a unique output (actually the vanishiithe distinction be-
tween inputs and outputs) entails the absence of a disshgdicut (something like a
“head cut”). There still exists some kind of hierarchy onscint LL nets (hamely the

6 et us point out here that the word “standardization” usedsinard might be misleading w.r.t. thie-
calculus literature: the “standardization property” af #icalculus refers to a different well-known theorem,
while Girard’s standardization theorem is callednservation theoren(see e.g. 1]); moreover, Girard’s
standardization is called “propriété de striction” byrida in ] (théoréme 8.31 p.64). In the present paper
we will adopt Girard’s terminology, however.



so-calledexponential depth but no difference can be made between two cuts with the
same depth. Worse, the reduction of a cut may seriouslytatfiecstatus (and thus
the potential reduction) of other cuts at the same expoalesidipth. There is no ana-
logue of such a meddling of cuts in the life of their fellowdwihe same exponential
depth in the-calculus: the3-reduction of a redex may affect other redexes only if
these last ones are deeper than the former one (in LL teroggothe affected redexes
must have a greater exponential depth than that of the rdduoe). The reader can
refer to SubsectioB.2 (where the notion oéxponential dependenégintroduced to
overcome this difficulty) for a more precise discussion. thls makes the standard-
ization theorem an essential ingredient of §ié proof for second order LL, whicls
nota straightforward adaptation of thR€N proof. This is in sharp contrast with what
happens for Girard’s system F (sé®)[ The presence of an head redex in F’s terms
makes it easy to turn the proof 8N into a proof ofSN (by a slight modification of
the definition of reducibility candidate): the proof®K is an easy variant of the proof
of WN in system F. One might find more elegant (following Gandy)istidguish the
logical part of theSN proof (the proof ofWN) from the purely combinatorial part (the
proof of the standardization theorem) but in F it is still pibse to mix them without
loosing control on the combinatorial part of the proof. Thexomes very difficult in
LL, where a subtle theorem of standardization is neededrtoWN into SN. Some-
thing similar to what we have in LL can be foundircalculi with explicit substitution
(see for exampled]).

In [2], Danos proves standardization (théoreme 8.31 p.649doond order multi-
plicative and exponential LL (MELY), a significant fragment of LL containing sys-
tem F: Danos’ result achieved the proofSX for MELL?. Later on,SN of several
other classical and linear systems has been proven tharmgptopriate embeddings
in MELL? (see for exampled and [15]). But up to now, no proof o8N was avail-
able for the full system, essentially because of the presefitie additive connectives,
whose computational behaviour is difficult to handle (foammple, cut-elimination is
not confluent in presence of the additives, at least in thiitiomal syntax). The main
goal of the paper is to finally fill this (rather big) gap in LUigerature. For the sake
of completeness, we mention here two previous attemptsoeghis result: annexe
A of [23] and [1§]. In annexe A of R3] a proof of a variant of the standardization
theorem is given but, as explained in that paper, it is ndicseit to proveSN for full
LL. In [18], a nice approach to termination using phase semantic®oged, which
is suitable forWN (at least in the fragment MEL4) but not forSN: on the one hand
the proof of standardization for ME2Lis not convincing (it is only “sketched” as the
author writes) and on the other hand in presence of the adsdithe considered cut-
elimination procedure is not the full one (see Subsedi@for a detailed discussion
on [18)).

Our approach is to start from scratch, having in mind the wloiving guidelines:

e as soon as the system is powerful enough, the combinatarisdptheSN proof
(standardization or any of its variants) should be splitrfrthe part involving
logically strong principles\WN or any of its variants);

e it should be stressed where logic (more precisely types amgatness) comes



into the picture: to which extent is it possible to computéhwintyped proof-
structures?

Our main contribution is actually a standardization theor@heoren.2), proven
for “sliced pure structures” (sps) — a notion of proof-sture which yields a better
account of additive cut-elimination than the nets gf [Section5 studies the transla-
tion from nets to sps, proving in particular that a néilswhenever its translation into
sps isSN.  The notion of “slice” was introduced irv] in order to reduce the diffi-
culty of dealing with the additive connectives. In the paad framework, its variant
“sliced proof-structure” is proven to enjoy nice propestjg6]. The main reason why
we use slices in this paper is that we need to prove a conflymoperty (remember
it is part of Gandy’s method), and it is the only known syntdx_t for which one
can hope to prove such a property. Our sps are an extensitinesf proof-structures
to full untypedLL. Indeed, following the idea that types and correctnessukhbe
used only when necessary, we start our analysis with the gawstral kind of graph
we have: untyped and noncorrect. We show in Sectidvow one can always com-
pute with such general structures. This is a first novelty wf paper: both in 7]
and 4], in presence of the additives, computations are defined fomlnets (typed
and correct proof-structures). However, without any kifidarrectness, computation
behaves very badly (and this is not related to the presenseiae of types): we give
a counterexample to boWN and confluence for such general (noncorrect) sps (see
Figurel2). We then introduce the correctness condition “acyclisliye by slice” AC
condition, Definition2.15. It is well-known that this condition is far too weak to char
acterize proofs (se€l()]), and there is a wealth of papers presenting criteria ge&on
than the correctness slice by slice in order to charactérgieal correctness (see for
instance 10, 11]). What we show here is that, despite its weaknessAifiecondition
is sufficient to prove confluence (Theoreihi8 and standardization (Theorefr?):
from the computational point of view only a very weak form ofiectness is needed.

Let us now describe more precisely the structure of the pajethe connection
between the different results is rather delicate and coxnple conclude the introduc-
tion by a graphical representation of the logical structfrthe paper (see FigurB.
Also, the whole paper is scattered with examples and figuweshope this will help
the reader.

Section2 is devoted to sps. In Subsecti@ril we define sps (DefinitioR.2) and
their cut-elimination (Definitior2.12). Subsectior?.4is entirely devoted to motivating
our results and choices by several examples and countepéssnin Subsectio.5
we introduce the weak form of correctness used in the pamgkegoressed by th&C
condition of Definition2.15

Section3 achieves a first essential step of our proof: Definitdohsplits the cut-
elimination rewriting rule (denoted b&‘i) into two strongly normalizing reductions,
the logical reductioniﬁ, proven to enjoysN in Proposition3.4) and the structural
reduction £, proven to enjoySN in Proposition3.10). These two reductions are
disjoint and their union is™; they both enjoySN on sps satisfying\C, even if their
union =2 does not even enjoWN (the untypedi-calculus can be embedded in sps
satisfyingAC, see in particular the example of Fit)). Proposition8.4and3.10are



essential ingredients in the proof of confluence (Theotelf) of the next section.

In Sectiond we apply Gandy’s method to sps: we distinguish the erasitgjfoom
the non erasing ones and we define the rewriting rule for sps (Definitiord.1).
We then explain (Subsectighl) why SN of = entailsSN of <*»: a postponement
lemma (Lemmat.4) allows to “delay” erasing steps after any non-erasing émoen
which the result easily follows (Propositidn5). Subsectiort.2 shows that fromWWN
of =% one can deducgN of —: the key point here is the confluence theorem (The-
orem4.18, proven for dabelledversion of sps (see Definitiods6 and4.7). We first
prove that labels allow to define an increasing size on (labesp$, and that (assum-
ing confluence holds) this allows to proVéN ® = SN for sps satisfying\C: from
this equality and Subsectighl, our main result (standardization, Theordrd) im-
mediately follows. The rest of Sectighis devoted to the proof of confluence, based
on the following results:

1. confluence of the labelled version of the logical reductié®: of Section3: it
follows from local confluence (Lemm& 12 andSN (immediate consequence
of Proposition3.4 of Section3);

2. confluence of the labelled version of the structural rédnc: of Section3:
it follows from local confluence (Lemmé 14 andSN (immediate consequence
of Proposition3.100f Section3);
str

3. commutation of the labelled versions&€> and =2 (Lemma4.17);
4. Hindley-Rosen lemma (seéZ]): a rewriting rule which is the union of two
confluent rewriting rules which commute is itself confluent.

Itis important to stress the fact that confluence (so as the reault of the paper, The-
orem4.2) is far from being an immediate consequence of the samet fesWELL.
It is only partially true that sps allow to work “slice by sfit the additive commu-
tative normalization step (the nightmare of normalizafiopresence of the additives,
see Sectiorb and Figurel9) is not explicitely present in our syntax, but it is hidden
in other normalization steps (tli&/?d) and the(!/!) steps of Definitior2.12). Indeed
the exponential connectives are the bridge between théiaeldnd the multiplicative
worlds through the isomorphishid&B) = 1A ® | B.

Last, Sectiorb introduces the nets oRf] with units, and it turns a proof GiVN
for sps into a proof oSN for the nets of 24]. The syntax of P4] is described in
Subsectiorb.1 and it generalizes Girard’s notion of ne?].[ As already mentioned,
confluence (even local confluence) fails for nets, hence pdyapandy’s method one
must pass through a confluent syntax, in our case the syntspsof SubsectioB.2
contains the motivations for our choice of sps and relatesesults to previous at-
tempts (namelyq] and [18]). Subsectiorb.3gives a translation of nets into sps, called
slicing, and it shows that the slicing of a neétsatisfiesAC (Propositior5.1), and that
[ enjoysSN whenever its slicing does (Propositibrg). Finally in Subsectio®.4we
prove that the slicing of any net enjdy N ® (Theorenb.1]). Standardization for sps
(Theorem4.2) allows then to concludeN for nets (Theorers.12). Actually, the proof

"Notice that theAC condition is not needed here.



of Theorenb.11is given in a terse and sketchy style (using a simple varib@irard’s
reducibility candidates): this is because there is no dabbtt this result, and no real
point in giving more details in the present paper.

Added in print. During the last revision of the paper, we realized that treopof our
main Theorem (Theorerh.2) can be simplified thanks to a result of Bezem and Klop.
Indeed item (iii) of Theorem 1.2.3 p. 18 d?7] says that an abstract rewriting system
enjoying local confluenceWWN and such that it is possible to define an increasing
size, enjoys als8N. In our framework, this means that in order to pré¥&N ™ =
SN (Proposition4.10 we only need local confluence instead of confluence. This
essentially means that in order to prove Theorefhone can omit SectioB. Indeed
Lemmatad.12 4.14and4.16suffice to prove the local confluence of the labelled cut-
elimination. By the way, notice that this holds for the fragmhMELL? too, so that
Danos’ standardization theorem (théoréme 8.31 p.62Jxfgnd thusSN for MELL?,

can be proven using local confluence instead of confluence.

However, we decided to keep the present version of the papes sve believe
that confluence for sps (Theorehil8and Remarld.19, so as confluence for Danos’
nets , are interesting results by themselves. Furthernitgetr-measure defined in
Section3is rather sharp and can be generalized to other notions {lfkestor example
differential nets 25, [26]); it should be a useful tool also for-calculus with explicit
substitutions (see for examph].

Let us also mention that correctness is used in our proéfNoin three points:
under the form of the\C condition, (i) to prove th&N of structural reduction (Propo-
sition 3.10, (ii) to prove the local confluence of structural reduct{tvemmad.14),
hence confluence of cut-elimination (Theorém8; under the form of sequentializa-
tion, (iii) to prove WN™ (Theorem5.11). The simplified proof just mentioned uses
only (i) and (iii).
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Figure 2: Sps links

2. Definitions

In this section we introduce the main tools used in the segjuible paper. In Sub-
section2.1 we define sliced pure structures (sps), Subse@i@ris devoted to recall
some standard results in rewriting theory that will be agapto cut-elimination of sps,
and in Subsectio2.3 we define cut-elimination for sps. After the main definitipns
we illustrate by means of several examples the notions gusly introduced (Subsec-
tion 2.4); we then conclude by presenting tA€ condition (Subsectio.5).

2.1. Sliced pure structures

We start by extending to full LL the definition of “sliced priestructure” given
in [16] for the polarized fragment. In the style df7], we work in an untyped frame-
work.

Definition 2.1 (Flat). A flatis a finite (possibly empty) labelled directed graph whose
nodes (also called links) are defined together with an arityaacoarity, that is a given
number of incident edges called theemiseof the node and a given number of emer-
gent edges called trenclusion®f the node. The valid nodes are pictured in Fig2ire

The !-links and theT -links have a distinguished conclusion (denoted in Figlire
by a bold arrow) callednainconclusion of the link; the other conclusions, if any, are
theauxiliary conclusions. We allow edges with a source but no target, dneyalled
conclusionf the flat.

Links will be denoted by Latin letteiism, . . . Flats will be denoted by initial Greek
lettersa, 3, . ..

Notice that every edge must kbenclusion of a linkbut it needs not beonclusion
of a flat When drawing flats we represent edges oriented downwaiisvanwill
omit to write explicitly the orientation of the edges. Moveo, we speak of moving
“downwards” or “upwards” in the graph, and of nodes or edgdsVe” or “under” a
given node/edge.

Sliced pure structures are, basically, multisets of slieed slices are flats having
the!-links parameterized by sliced pure structures. This méaasslices and sliced
pure structures must be defined simultaneously by inductiotihe exponential depth,
i.e. on the numbed of nesting ofl-links.

10



Definition 2.2 (Sliced pure structure). A slice of depth at mosdiis simply a flat with-
out!-links. A slice of depth at most + 1 is a flata: such that with every-link o of «
with n, + 1 conclusions is associated a sliced pure structure of deptiostd, called
the box ofo and denoted byt?, with n, auxiliary conclusions corresponding to the
n, auxiliary conclusions of and another conclusion, tmeainconclusion of the box,
corresponding to the main conclusionaof

A sliced pure structuresps for shortof depth at most is a finite (possibly empty)
multiset of slices of depth at mostwith the same conclusions: we mean that an sps
comes equipped with an equivalence relation on the coreiagf its slices s.t. every
equivalence class contains exactly one conclusion for ebod The conclusions of
the sps are the equivalence classes of the conclusionsstitis.

We denote slices by initial Greek lettersg, . . ., sps by final Greek letters o, . . .

The depth of a slicer (resp. an sps) is the leastl such that (resp.r) is of depth
at mostd. A flat o at depthd in an spsr is a flat at depthl in a sliceg of 7; « is at
depthd in g if d = 0 anda is 8 (considered as a flat), dr> 0 and« is a flat at depth
d — 1in a box associated withlalink of 3 (considered as a flat). A linkat depthd in
m is a link! of a flata at depthd in 7. We denote bylepth” (I) the depthd of [ in .
We refer more generally to a link/flat af meaning a link/flat at some depth4in We
use the same terminology for the edgesrofWe denote by’ () the set ofl-links at
depth0 in 7. Thesizeof 7, denotedsize(r), is the number of links (at any depth) of

Given a linkl of an spsr, we will often speak of “the flat of’ always meaning
the flat at some depth in containingl. The reader should notice that our sps are
multisets of slices, and not simply sets, as it isi6][ [17]: this quibble is needed to
avoid an unnatural erasing of slices during cut-eliminati/e refer to Subsectiadh4
for examples of this phenomenon. We use the additive not&iomultisets:0 is the
empty multisets + o is the disjoint union ofr ando (repetitions do matter); an sps
7 can also be written a3, .. a. As a consequence, when we writec w, we are
considering an occurence ofin the multisetr, and when that expression binds an
operator, as for example we mean tha} . varies on the set of occurences
of 7's slices.

Figure3 is an example of sps of depth the correspondence between the conclu-
sions of the box of &link and the conclusions of tHdink is given in the figure by the
order of the edges (from left to right).

aem!

Remark 2.3. Notice that, by definition, the boxes of an sps satisfgating condition
two boxes are either disjoint or contained one in the other.

Remark 2.4. Once the decision to work without types has been taken, tlestiqun
arising is: to which extent? A possibility was to use reowgdypes (like in 2], [20)),
another one to type only~edges (like in 17]). In the general LL case that we con-
sider here, none of the answers is completely satisfactuynae decided to work in a
strongly untyped framework. There are little surprisefofeing this choice: the main
one is that a clash (Definitiah 10 might become reducible after some cut-elimination
steps (Definitior2.12): for example, the cut of Figure3 is a clash, but it becomes
reducible after the reduction of the cufsee Subsectiod.4). However such oddities
cause no problem w.r.t. our purposes.

11



Figure 3: An example of sps

Remark 2.5. In order to have a very general result we had to use all the laiK7],
including T. A possible (and rather natural) choice was to rule out timktand to
represent the rule as empty sps (like inlf]). Indeed, such a choice would realize
a greater quotient on proofs: this notion of sps is “closertiénotational semantics.
However, the absence of in sps makes it more difficult to infer strong normalization
of LL nets from strong normalization of sps (Propositis). More precisely, we
would lose Lemm&.3: this is the reason for our choice.

Anyway all the properties we prove for our sps still hold foffree sps (in particular
Theoremi.2).

Remark 2.6. Concerning the presence of empty structures, notice that:

o the empty flat does exist (and so do the empty slice and spainorg the empty
slice), and it has no conclusion. Its presence is requirethéycut-elimination
procedure (Definitior2.12): the procedure applied (for example) to the sps con-
taining a unique flat consisting oflalink a cut and al -link yields the empty
graph;

e with a!-link o of an sps, it imeverpossible to associate an sps containing the
empty slice:o has at least one conclusion and this has also to be the cabefor
sps associated withy

e empty sps (that is empty multisets of slices) do exist: tli®@e such sps for
every set of conclusions.

The reader should notice the difference between the emipgy, shat is the empty
graph, and empty sps, that is empty multisets of slices. Hneywo different kinds
of emptyness, the first one is multiplicative (it can be praetuby eliminating a mul-
tiplicative cut), while the second one is additive (it cangoeduced by eliminating an
additive cut).

2.2. Compendium of rewriting theory

Before introducing the cut-elimination on sps, we give arsheminder of some
standard terminology and results in rewriting theory, vahidll be used in the sequel.
Our references will bel2] and [22].
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(a) local confil.
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(d) commutation
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(b) confluence (c) strong confl.

y
s %X ] — T2
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U

(e) postponement

Figure 4: Diagrams for confluence, commutation and postpemnt

Let = be a binary relation on sps, thé&>, == and =5 denote, respectively, the
reflexive, transitive and reflexive/transitive closure®ef

Let 7 be a spsr is ax-normal form whenever there is no sps with 7 = ;

7 is weaklyx-normalizablewhenever there is a-normal formr; s.t. 7 =5 7y; 7 is
stronglyx-normalizablevhenever there is no infinite sequer{eg);cn s.t.mo = 7 and

m; = 1. We denote byWN* andSN*™ the sets of, respectively, weakly and strongly
x-normalizable sps. Clearly we hag&* C WN*. We say that™ is weakly(resp.
strongly) normalizingon a ses of sps, ifS € WN* (resp.S C SN¥).

The relation™ is locally confluenif for every 7, 71, s S.t. 1, <& 7 = 79, there
is 3 st ey 2 g &5y (see Figurel(a))' % is confluentf for everyyr 71, T S.L.
7 = 1 I my, there isms S.t. 1 == w3 <= m, (See Figured(b)); = is strongly
confluentf for every m, 7, 7o S.t. 11 <& 7 = my, there isms S.t. 1 = T3 < Ty
(see Figured(c)). Strong confluence implies confluence and confluence i jieal
confluence, and none of the converse implications holds {gsvell-known).

Two relations™ and-Y> commuteif for everyr, w1, m s.t. w1 <= 7 L5 0, there
ismy s.t.m 1 w3 <5 my (see Figurel(d)); the relation™ can be postponed.r.t. the
relation, when for everyr, 71, 7 S.t.m = m 5 mo, there ists s.t.m L 13 =5 mo
(see Figurel(e).

Lemma 2.7 (Newman).A locally confluent and strongly normalizing relation is eon
fluent.

Lemma 2.8 (Hindley-Rosen).If two relations™, % are confluentand commute, then
their union> U % is confluent.

Lemma 2.9 (Di Cosmo-Piperno-Geser)Let>, L. be two relations s.t5 is strongly
normalizing and for every, 7y, m s.t.m < 7 = 7o, there ists s.t. m, 2 73 and
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T 5 73, that is the following diagram holds

T —> > o (1)
y y*
y
T x+> 3

then® and %> commute.

2.3. Cut-elimination

We now define the binary relation of cut-eliminatié&- on sps. Before the details
let us give an idea of how>> works: to eliminate a cut at depthin a slicece means in
general to transform: in an spsr,, = > . ; a;, S.t. every slicey; is obtained fromu
by substituting a specific subgraptof o with a subgrapls; having the same pending
edges (i.e. edges with no target or no sourcej,ass pictured below:

cut

The numbem and the subgraphs, 54, ..., 3, depend on the cut we want to re-
duce. Definition2.11formalizes the notion of substituting a subgraph in a sp®int
ducing the notion of module and one-hole context; DefiniRob2 and Figureb give
the substitutions which define the cut-elimination.

As mentioned in the introduction, our sps are very generaktgires: they are
untyped and they may be incorrect (w.r.t. the proofs of LLye&in such a general
setting cut-elimination can be defined and nice properiiédg, las we will show in the
sequel of the paper. However, one has to handle carefullg strange phenomenons
related to this rather “wild” situation, like the presendewts which are not reducible:

Definition 2.10 (Clash and deadlock).The two edges premises of a cut link aleal
when one of the following conditions holds:

e they are conclusions of@-node and of &-node,
e they are conclusions of@;-node and of & ;-node (fori, j € {1, 2}),
e they are conclusions of ehode and of al-node,

e one is the main conclusion of!anode and the other one is either an auxiliary
conclusion of d-node, or the conclusion of one of the following nodés: 7w,
?d.

A cut node of an sps is:

14



e aclash when the premises of the cut node are not dual edges and hdine o
two is the conclusion of amz-link nor an auxiliary conclusion of & -link;

e adeadlock when the two premises of the cut link are conclusions of tmes
az-link (resp.!-link, T-link);

e reducible otherwise.

In Figure3, for example is a deadlocks is a clash and the five other cuts are
reducible.

Definition 2.11 (Module, context closure, substitution).A moduleu is an sps whose
slices at depth may have edges without source, callgghothesedn addition to hav-
ing the same conclusions, the slices of a module are requaitealve the same hypothe-
ses, i.e. amodule comes equipped with an equivalencexelarti the hypotheses of its
slices at deptli s.t. every equivalence class contains exactly one hypstfegseach
slice at deptt®®.

A one-hole context[] is an sps having exactly one occurrence of a special cell, the
hole which has an arbitrary arity and coarity. This formally methatw|[] = o + «f],
whereo is an sps and[] is a slice having at deptheither exactly one occurrence of
the hole or d-link o such that wittp is associated a one-hole contgkl.

Given a one-hole context[| = ¢ + «[] and a module: equipped with a bijection
between the hypotheses (resp. conclusiong) ahd the premises (resp. conclusions)
of the hole inw[], we define the sps[u] by induction on the depth of the holedr |:

o if the hole has depth in af], thenw(u] = o + 375, a[8], wherea[d] is
the slice obtained by substituting iff | the sliceg for the hole, i.e. identifying
the hypotheses (resp. conclusions)jofvith the corresponding premises (resp.
conclusions) of the hole;

o if the hole is a cell of the one-hole contexf associated with &link o at depth
0in «, thenw|u] is obtained by associating withthe spsp[y].

Thecontext closuref a binary relatiorR between modules is the smallest relation
containingR and such that for every one-hole context, uRy' impliesw[u]Rw(py].
We also say that[y/] is the result osubstitutingu’ for p in w{y].

Definition 2.12 (Types of cut and cut-elimination). We define theeduction stepss
the following relations between a single slice modgdlethe redex containing a re-
ducible cutt and a modulé_, 5;, the contractum Apart from the cases&;/®;),
(1/?7d), the contractum is a single slig&, too. All reduction steps are pictured in
Figure5.

(ax): [ is made oft and two distinct linkd,n, each of them having one premisetof
as conclusion; moreover, one link betwden sayl, is anax-link and if n is a
T-link, then the edge shared lyandt is the main conclusion of. In this case
the contractung’ is simply the linkn.

80f course since the slices at deptbf a module have the same conclusions, there is also an &qniea
relation on the conclusions of the slices at deptif a module, as explained in Definitich2
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(1/L1): B is made oft, al-link and a_L-link; a premise of is the conclusion of the
1-link and the other is the conclusion of thelink. In this case the contractum
3’ is the empty grapf.

(®/%): B is made oft, a%-link and a®-link; a premise ot is the conclusion of the
®-link and the other is the conclusion of tRglink. In this case the contractum
(3’ is obtained from3 by erasing theé?-link, the ®-link and the cut linkt (and
its premises) and by putting two new cut links between theleftq(resp. right)
premises of thés-link and of the®-link*°,

(T /cc): B is made oft, a T-link [ having one premise afamong its auxiliary con-
clusions and a slice (not containing) having the other premise ofamong its
conclusions. Letus call (resp.b) the edge shared liyandi (resp.t andv). The
contractum?’ is aT-link, which we still calll, with conclusions the conclusions
of [ different froma and the conclusions of different fromb.

(@i/&;): B is made oft, a ®;-link, and a&;-link; a premise oft is the conclusion
of the @;-link and the other is the conclusion of thg-link. If ; = j, then the
contractum3’ is obtained fromB by erasing the two links (and their conclusions)
and by moving up the cut link to their premises: K j, then the contractum is
the empty multiset.

(1/?7d): B is made of, a!-link with main conclusion a premise ofand a?d-link with
conclusion the other premiseflLet p be the sps associated with think. If p
is the empty multiset, then so it is the contractum. Othexywigth each slicey
of p, we associate the slicg defined by cutting/’s main conclusioht with the

premise of the’d-link: the contractumis theh__ _ +".

(!/?w): pBis made ot, al-link with main conclusion a premise ofind a?w-link with
conclusion the other premise ofIn this case, the contractufif is made of as
many?w-links as the auxiliary conclusions of thdink*.

(!/?¢): B is made oft, a!-link I with main conclusion a premise ofand a?c-link n
with conclusion the other premisebfin this case, the contractufhis obtained
from 3 as follows: let’s calle; andas the two edges premises of the-link n.
We create a newlink I’ by copying the linkl, and we pairwise contract the
auxiliary conclusions afand!’: the conclusions of these néwrlinks substitute
the auxiliary conclusions dfin 5. We then erase (and its conclusion) ant
and we connect the main conclusioni ¢fesp.l’) with a; (resp.az) by means of
a cut link. The sps associated withnd!’ are the same.

9This case yields thsingletonof the empty graph, that has not to be confused withettmpty multiset

contractum of thé€®; /& ;) redex.

1ONotice that this means that the premises of@y€3-links areordered we shall see in the transformation
associated with th@ /?¢) cut link that this is not the case of the premises ofttdinks (nor of the premises
of the cut links).

11we extend here the notion of “main conclusion of a box” to gwdice of the box.

12| case thé-link has no auxiliary conclusion, the contractum is thegkéton of the empty graph, like in
the(1/L) case.
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(1/Y): pis made of, a!-link [ with main conclusion a premise vénd a-link I’ having
the other premise aof among its auxiliary conclusions. Let us callthe edge
shared by’ andt, andp the sps associated with The contractun®’ is a!-link,
which we still denote by’, having as conclusions the conclusiong’dfifferent
from o’ and the auxiliary conclusions &f and having as box the 3@7@ ~,
wherey’ is obtained by cutting the auxiliary's conclusion corresponding td
with the main conclusion df (the sps associated withemains unchangetf)

Thecut-elimination= is the context closure of the union of the reduction steps.

Given a spsr and a reducible cut in 7, we denote byt (r) the sps* obtained by

replacing the redex associated withy its contractum. We will also refer tg=) as a

one step reduct of. We say thak is the type oft wheneverr = ¢(7). In the sequel

we will denote the setWN°"* (resp.SN°**) of weakly (resp. strongly) normalizable

cut

sps w.r.t—= simply by WN (resp.SN).

Remark 2.13.

e Notice that the cut-elimination procedure is defined withany reference to
correctness.

e Observe the restriction imposed in thex) case: in order for a cut to be of type
(ax), notonly one premise @fmust be conclusion of an axiom, but also the other
premise cannot be an auxiliary conclusion of dink. This restriction makes
every cut link of an sps of a unique type: in the absence ofiére would be a
(unique) case in which a reducible cut linlof an sps might have two different
types (ax) and (T /cc)). Notice that this little problem would not occur if
were rejected from sps links (see Remar). Anyway, this constraint does not
restrict the possible reductions starting from a sps, bezahere is an obvious
(T /cc) reduction step having exactly the same effect agdké reduction step:
choose the axiom link as thgin the redex of( T /cc) (see Figures). Working
with reducible cut links having a unique type is simpler asdful in Sectiord,
when we define the notion of erasing cut (Definitia).

e Notice that the(T /cc) step gives rise to non deterministic (and non confluent)
reductions: for example, a cut whose premises are auxitianglusions of two
distinct T-links [, I’ can be reduced by erasing eitheor I’. Anyway such
phenomena disappear when one considers only non erasintticets (see Def-
inition 4.1).

We now give a precise definition of the notions of ancestorrasitiue of a node:
the point is to know whether a node tifr) has been created by the cut-elimination
procedure or was already a nodenof

13Notice that ifp is the empty multiset, so is the box associated With
14The fact that.(r) is indeed an sps can be easlily checked.
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Figure 5: The reduction steps for cut-elimination
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Definition 2.14 (Ancestor, residue).Let 7 be an spst be a cut link ofr andt¢(7) be
a one step reduct of associated with. When a nodé of ¢(7) comes from a (unique)
node | of m, We say that! is theancestorof / in = and thatl is aresidueof 1 in
t(m). If this is not the case, therhas no ancestor im, and we say it is areatednode.
We indicate, for every type of cut nodef Definition 2.12 which links are created in
t(m) (meaning that the other nodestdfr) are residues of somes node). We use the
notations of Definitior2.12and Figures:

(ax): there are no created nodegm);
(1/L1): there are no created nodes {m);

(®/%): the two new cut links between the two left (resp. right) pressiof the®-link
and of thex-link are created nodes;

(T /cc): there are no created nodeg{im);

(@i/&;): if i = j, then the cut link between the two premises of¢he&,-links is a
created node. If # j, there are no created nodegm);

(1/7d): every cut link between;’s main conclusion and the premise of thélink is
a created node;

(!/?w): all the?w-links added during this step are created links;

(!/7¢): the new?c-links having as premises the auxiliary conclusiong ehd!’ are
created nodes. The two cut links having among their prentiemain conclu-
sions ofl and!’ are created nodes,;

(1/1): every cut link between the auxiliary's conclusion corresponding td and!’s
main conclusion is a created link. (Notice that the “névlihk !’ is considered
a residue of the correspondifdink of 7, even though it might have different
conclusions).

2.4. Examples of reductions

After so many definitions, some examples might be usefulLet. us apply cut-
elimination to the sps of Figure3. If one reduces thé&, /1) cutp, the (&2/@5)
cutq, and then the two created cuts of type one obtains the sps of Figure6. Notice
that the sps™ associated with thelink m has now two occurences of the same slice
(consisting of aruz-link): if we had defined the sps aetsof slices, we would have
missed one occurence of the slicerift, so giving an “erasing” feature to tti&, /&;)
step which is quite unnatural. As already mentioned in thiéttuction, it is crucial
in order to apply Gandy’s method to have a good notior@lsing cut-elimination
step: this will appear clear in Secti@n where we splitﬂi into the erasing and the
non-easing reduction (see Definitidri).

15Notice thatl and!’ are both residues df
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Figure 6: The result of applying cut-elimination to the sp&igure3

Let us go on in the elimination of the cuts in the spgof Figure6. If one reduces
the (1/?d) cutr, then one gets the sps’ of Figure7. Notice that this reduction
duplicates the unique slice af, since it opens a box containing two slices. This is
a tricky feature of sps (due to the presence of additive sjicthe reduction of a cut
of type (!/7d) (like r) may duplicate other cuts at the same exponential depté (lik
the cutst and s in 7). We tame this kind of duplication in Sectid#) where we
prove that the “logical” subreduction 6t~ (Definition 3.1) is strongly normalizing
(Proposition3.4).

Yet another remark on the reductionaf notice that the residues of the clash
of Figure6 are reducible cuts of Figuré Thus, let us reduce these residues,ahe
(1/1) cuts so obtained and the tw&; /&;) (¢ # j) cutsu andv in the box associated
with o: we obtain the sps’”’ of Figure8. Notice that the two reduction steps of type
(&;/®;) (i # j) have erased both the slices of the sps associatedbwiithnsforming
it in the empty multiset of slices. This is really differembfn the reduction of the cut
of type(1/L), which has transformed the subgraph consisting in thek, the L-link
and the cut in the empty graph: pay attention not to confusgtesps (i.e. empty
multiset of slices) with the empty slice (see also Renfafx The spsr’”’ of Figure8
is a cut-normal form. Notice however that”’ contains the deadlock in general
cut-normal forms may contain non-reducible cuts, i.e. clasiekeadlocks.

Let us come now to the problem of normalization. The cut-ilation procedure
applied to an sps may lead to infinite reduction sequences basically in twtirdis
cases: (i) either becauseis not typable (by LL formulas, see the grammar in Fig-

Figure 7: The result of applying cut-elimination to the sp&igure6

20



0 !

2.L

Figure 8: The result of applying cut-elimination to the sp&igure?

ure 17) or (ii) becauser is not correct (w.r.t. a notion of correctness which will be
introduced in the following Subsectiénhb). We give an example of (i) in Figur@® and
examples of (ii) are in Figurgland in Figurel2. Let us comment a bit each of them.

The spsdd of Figure9 is taken from L8]: it is a simplification in the setting of
nets of the most famous-term which is not normalizable;d A, with A = Az.zz.
Figure10shows thaté reduces to itself. The sps$ is not even weakly normalizable,
and it is not typable by LL formulas, even if it is correct irethense that it satisfies the
AC condition of Definition2.15

Let us now consider the slice of Figurell: « is typable by LL formulas, but it
is not switching acyclic (Definitio.15 owing to the cycle crossing the cut, thénk
and the?c-link. Such a cycle is the actual reason for the loop pictimdeigure 11

We can use the slicae of Figure 11 to show a last intriguing example of cut-
elimination. Lety be the slice obtained from by erasing the cut link, then consider
the slices defined in Figurel2: 5 is a counter-example both to the confluence and to
the normalization of cut-elimination for sps which are notrect (they don’t satisfy
the AC condition of Definition2.15. On the one hand, if one reduces tfi¢!) cut
t, then the created c\t/?d) and last the create@ /%) cut, one obtains the slicé
of Figure 12, which is not weakly normalizable since reducing the €ueads to a
looping cut-elimination, similar to the one described igltie11l. On the other hand,
if one reduces the cut in 3, then one obtains the slige of Figure12, which is even
strongly normalizable: its (unique) normal formds (notice that the cut has become
a deadlock, so it is not reducible any more). This examplarbteshows that if we drop
the AC condition, we loose both confluence and weak (thus stronghalizationeven

Figure 9: The slicéd which is notWN

21



Figure 10: A proof thass <2 55

for typable sps

The main result of this paper is the standardization thedogrmorrect sps (i.e. for
sps satisfyingA\C, Definition2.15: for correct spSVN ¢ impliesSN (Theorenm4.2).
One crucial step in the proof of Theoretr? is Proposition4.1Q for correct sps non-
erasing weak normalization coincides with non-erasingrgfmormalization. Observe
that the slices of Figure12 gives a counter-example to this equivalence for sps which
are not correct (which don’t satisfy theC condition of Definition2.15: g can be
normalized without applying erasing steps (in the preoisess of Definitiord.1), but
it is not strongly normalizable. More in detail, this counréxample is due to (i) the
presence of deadlocks (the ¢ug not erased by one reduction stepdpbut it becomes

Figure 11: An example of slice s.t.« S, o, The slicen is typable by LL formulas
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Figure 12: A counter-example to normalization and confleefcut-elimination. The
slice~ is obtained by removing the cut from the sliegictured in Figurel1l

a deadlock), (ii) the failure of the confluence-8%- for general sps (indeed one of the
main ingredients in the proof of PropositidriLOis the confluence of (a labelled variant
of) cut-elimination on correct sps, Theorenig).

2.5. Switching acyclicity

Cut-elimination can be performed without any referencedimertness. However
we noticed in the previous subsection that in presence diccgps there are “bad”
computations (even without additives and even for typapk:sthe weak (and the
strong) normalization property fails, so as the confluemopgrty (recall the example
of Figurel12).

We will then use in this paper the weakest (standard) notf@mooectness known
in the litterature, requiring to our sps to be “switching @ay’. Switching acyclicity
is required “slice by slice” (Definitio2.15. We use this condition to avoid cyclic sps
(not enjoyingWN), and to prove Theoredh.18

Definition 2.15 (AC condition). A switchingof a flat« is an undirected subgraph of
« obtained by forgetting the orientation ofs edges and by deleting one of the two
premises of eac¥-node and’c-node ofa.
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We say that an sps is switching acycli¢ or, equivalently, thair satisfiesAC, if
every switching of every flat of is an acyclic graph.

Examples of sps satisfyin§C are the sps of Figure 10 and all sps pictured in
Sectionb.

The following proposition is an important property of spdigh will be used in
this paper to proveN and confluence of thetr-reduction (Prop3.10and Prop4.15:

Proposition 2.16. Letr be an sps andbe a cut link ofr which is not of typé T /cc)*®.
If = satisfiesAC thent(n) satisfiesAC.

PROOF Standard (se€]). O

160ne has to refus€T /cc) steps, essentially because they are not “local’; for theessgasor( T /cc)
and(ccad) steps of f] and [24] can be performed only in presence of correctness, and ofc stionger
notion of correctness thefaC.
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3. Two results of strong normalization

In this section we define two notable subreductions: thelogical reduction

1€, and thestructural reduction=™=> (Definition 3.1). The union of the logical and

cut

structural reductions i§~%. A basic fact, crucial in the next Sectidnis that both—%>
and =5 areSN on sps satisfying\C (Proposition3.4 and Propositior8.10), even if
their union-<2% is not evenWN (see the example of Fid.0). More precisely, we
define two measures on sps|..; and|r|s.. (Definition 3.3 and Definition3.8), and
we prove thafr|,.g (resp.|7|str) Shrinks after every logical (resp. structural) reduction
step. In addition, we briefly discuss how the structural otidn increasesr|,., and
conversely how the logical reduction increagels.,, in accordance with the fact that
cut-elimination is noWN.

Let us stress that thetr-measure is really sharp and it can be generalized to other
notions of net (like for example differential ned, [26]).

Definition 3.1. Thelogical reduction denoted by1°—g>, is the context closure of the
reduction stepgax), (1/1), (®/%), (T /cc), (&:/&;), and(!/?d). Thestructural
reduction denoted by="", is the context closure of the reduction st¢pSw), (1/7¢)
and(!/!).

str

Notice that—¢; and-=* have no reduction step in common and their uniof¥s.

3.1. The strong normalization ot
We now prove that>8: enjoys strong normalization: inde&®*°¢ containsevery

str

sps, regardless its correctness. This is a sharp diffemgiticghe case of——, where
strongstr-normalization holds only for sps satisfyidgC: for example the slicer of
Figure 11 does not satisfiAC, and it is not stronglystr-normalizable (actually not
even weaklystr-normalizable).

Consider an sps which has at most one slice, and recursively s.t. every box of

7 has at most one slice. For suchrathe proof that=%: is SN is immediate: every

reduction step of%e, strictly decreases the number of linksoénd keeps the property
of having at most one slice in each box. However, in the gémase the links of an

sps might increase after-&% reduction: ifr has a boxr® associated with &link
o and containing more than one slice, thefl &d) step “opening’o will (additively)
duplicate the links at the same depthvaas many times as the number of slicesrof
This means we need to find a sharper measure on sps than tesirisiorder to point

out what is decreasing undef:. In some sense, the previous remark concerning a
very special case of sps can also be used in the general bas&stto the notion of
single-threaded slicentroduced in 16].

Definition 3.2 (Single-threaded slice,16]). ' A single-threaded sligegth for short,
of depth at mostl is a slicea of depth at most s.t. with everyl-link at depth0 of « is

I"There are actually two differences w.rid]: in that paper the authors define thetof sgth of a proof-
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Figure 13: The multisetgth(7), wherer is the sps of Fig3, consists of four single-
threaded slices, given by the above picture takigj € {1,2}, h # ;.

associated either the empty sps (with the appropriate asiael) or a single-threaded
slice of depth at most — 1.

Given an spsr we definesgth(7), the multiset ofsgth of 7, by induction on the
depth ofr. In caser has depti), thensgth(7) = [x]; in caser has depthi + 1, then
a € sgth(m) iff « is obtained from a slice’ of = by choosing for every-link o at
deptho of o:

e the empty sps (with the appropriate conclusion), in case 3ps is associated
with o in ,

e asgth of the sps associated with otherwise.
For an example see Figui&, which shows thegth of the spsr of Figure3.

Definition 3.3 (Log-measure). Thelog-measure of an spsis a natural number, de-
noted by|r|,.; and defined as follows:

Thog = Y size(a)

aesgth(m)

For example, consider the spsof Figure 3: it has foursgth and each of them
has18 links (see Figurel3), so|r|1,s = 18 x 4 = 72. Notice that for every sps,
the log-measure ofr is the sum of th& og-measures of the slices af i.e. ||y =

Zaeﬂ' |a|10g'
Proposition 3.4. The reduction—%; is SN on the Sps.

PROOF We prove thatr LA implies |7|1og > [T|og- First, let us restrict to the
caser has exactly one slice, from which the general case follows, as showed at the
end of the proof.

net, we are instead interested in theltisetof sgth of an sps (this difference is due to the fact that our sps
are multisets of slices and not simply sets, as it isl])} the other difference is that while il §] there is
exactlyone slice associated with evelrjink, we have herat mostone slice (this difference is necessary to
deal with the case dflinks having an empty sps inside in Propositid#).
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1 . . .
Leta =% 7,, We Prove|aliog > |Ta|10g- The proof splits in the six cases asso-

ciated with the types of thes steps: we treat in detail only the case dff &’d) cut
at depthl in «, the other cases being immediate. Remember Fifared the notation
of Definition 2.12in the (!/7d) step. LetZ,;<,,v; (n > 0) be the sps associated with
the!l-link [ of «, so thatr, = Z;<,af. If n = 0, thenrw, is empty ¢ is erased) and
clearly |a|1os > |Tal10g™®.  Otherwise, let € {1,...,n} and letsgth(a); be the
multiset ofsgth of o choosing the slice; for I (thussgth(a); C sgth(a)). Notice that
sgth(a) = )", ., sgth(a);, soin particulafalig = >, -, | sgth(a);|10e; Moreoverto
every: and every3 € sgth(a); it corresponds exaclty one elemefite sgth(o) and
size() = size(8') 4+ 2 (in B’ the!-link [ and the?d-link abovet have been erased), so
| sgth(a)iliog > |0 |10g- SINCET, |10g = Zign |t} |10g, We concludga|iog > [T |10g-
Let's consider now the general case of an spsupposer 1o, 7, then there is

. . 1
a slicea € 7 and a multisetr, C 7 s.t.a — m, andr\[o] = T\7,°. We have

already proved thaty|1og > |7a|10g, SO:

|m\[a][10g + |ethrog
|ﬁ\7ra|log + |a|log
|f\7ra|log + |7Ta|log
[T[10g

|7T|log

v 1

O

Notice that the proof above uses the property that afttla?gastep the number of

elements of the multiset efth of an sps cannot increasexif—%; T, thensgth(7) has
at most the same cardinality asth(r). It is remarkable that this property fails under

str

=, for example, ifr =5 7 is obtained by d!/?¢) step thersgth(7) might have
more elements thasgth(7), since we have duplicated the possible choices one has to
do on the duplicatettlink in order to obtainsgth(7). The increase of the number of
sgth in 7 entails the increase of tieg-measure: in thé¢!/?¢) case, we can very well
haVe|7T|10g < |f|log-

3.2. The strong normalization 6£=

We now want to prove that™ enjoysSN on sps satisfying\C (Prop.3.10. As
already mentioned in the Introduction, the delicate poettibd Prop3.10is that the
reduction of a cut may affect the reduction of other cuts, even at the same exjiah
depth ag. The critical pairs presented in the proof of Lemrha4 of Section4 are
examples of this “meddling” of atr-reduction step in anothetr-reduction step, the
most evident example being the slieeof case 2 of the mentioned proof: in that case
the reduction of the cuteven changes the type of the eutom (!/!) to (!/?¢).

18Thjs case motivates our variant DefinitiBr2 of sgth: if exactly one slice were associated with every
Ilink, in this case we would haveth(7) = sgth(7) = 0 and nothing would decrease.

19We use here the standard set notation for multisets of slimesexampler\[«] is the multisetr of
slices without one occurrence of the sliee
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Figure 14: Behaviour of an exponential path meeting stmattinks (i.e.!-, 7w-, 7c-
links) and cuts (it stops on all the other links); dalinks a path can choose which
premise to follow

The key ingredient we found to tame this meddling of cuts @lifie of their fellows
with the same exponential depth is the following notionegponential dependence
(Definition 3.5).

e given two cuts at the same exponential deptind r, the str-reduction oft¢
affects thestr-reduction ofr only if the premises of “depend exponentially”
on the premises af

e exponential dependence is (in some sense) stable gndeeduction.

Definition 3.5 (Exponential dependence)Let = be an sps, and let be an oriented
path in a flat ofr. We say that is exponentialvhen (see Figura&4):

e ¢ crosses only structural links (i.e. links of tyh€w or 7¢) and cuts;

e if ¢ crosses an edgeupwards, them is an edge (conclusion or premise) of a
structural?-link (i.e. a link of type?w or ?¢) or an auxiliary conclusion of a
I-link;

e if ¢ crosses an edgedownwards, then is the main conclusion of alink which
is also premise of a cut link.

Given two edges andb, we say that: exponentially depends @égnwhenever there
is an exponential path fromto b. Given an edge, we denote byred(a) the set
of theimmediate predecessors @fi.e. the set of those edgésuch that there is an
exponential path from to b crossing exactly one node.

The following fact allows to make induction on the maximaidgh of the expo-
nential paths starting from a given edge

Fact 3.6. If 7 satisfiesAC, then every exponential path ofis finite.

200ne could also make induction on the following well-foundattial order on the edges of an sps
satisyingAC: a >czp b Whenever there is an exponential path frarto b. However, the proof that c.p
is indeed a partial order is not immediate, and this papes dotlack delicate proofs...
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PrROOF Immediate consequence of the fact that every exponeraihlqf 7 is a path
of some switching ofr (remember Definitior2.19: hence ifr satisfiesAC, thenn
has no exponential cycle. O

Given an spsr satisfyingAC, we define two functions{d™ andIn™) associating
an integer with every edge(resp.!-link o) of 7. What happens (as the reader will see
during the proof of PropositioB.10), is that for every-link o at depth0 of «, on the
one handwd™ (o) is an upper bound for the number of timesan be copied during
a str-reduction sequence starting from and on the other hanid™ (o) is an upper
bound for the depth of’s residues during atr-reduction sequence starting from
A first evidence that the length of ther-reduction sequences starting from an sps
is bounded, is the existence of these two functions: thetiomerd™ “measures” the
maximal “width” of 7’s reducts while the functiom™ “measures” the maximal depth
of 7's reducts.

Definition 3.7. Let w be an sps satisfyingC and leta be an edge of, at any depth.
We definewd™ (a), thewidth of ¢ in 7, andIn” (a), thelengthof a in =, by double
induction: the first parameter i&pth(), the second one is the maximal length of
the exponential paths af starting froma.

1+ sup(In?(a”)) +1In"(b) if a is an auxiliary conclusion of &link

ep with main conclusiom, boxp anda” is the
In"(a) := conclusion corresponding toof the slice
v € p,
14+ sup (In"(b)) otherwise.
bepred(a)
1 if pred(a) = 0,
(1+ de'y(a”)) wd”(b) if a is an auxiliary conclusion of &link
i yeEp with main conclusiom, boxp anda” is the
wd"(a) = conclusion corresponding tof the slice
v € p,
> wd™(b) otherwise.
bepred(a)

We extendwd™ andIn™ to the!-links of &, by setting for al-link o with main
conclusiorb: In" (o) = In™ (b) andwd™ (o) = wd" (b).

We will often simply writeln(a) orwd(a) (resp.In(o) or wd(o)), when there is no
ambiguity on the sps we refer to.

If a is an auxiliary conclusion of &link o of an sps satisfyind\C, theno’s main
conclusion is the unique immediate predecessat, o thatpred(a) # 0: this is
used in the previous definition efd. Notice also that by definitioin(a) > 0 and
wd(a) > 0. Finally the long-awaited definition aftr-measure:

Definition 3.8 (str-measure). Thestr-measure of an spssatisfyingAC is a natural
number, denoted blyr|s.. and defined by induction atepth(r), as follows:
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mloee = Y (wd"(0)(In™(0) + |7°[sz))

0€!0(mr)

where!®(7) denotes the set dflinks at deptt of , and=® denotes the sps associated
with the!-link o (see Definitior2.2).

Consider for example the sliéeof Fig. 9, we haven® (b) = 1,1n’(a) = 1+1+1 =
3andIn’(d) = 1 + sup{1,3} = 4; as for the width,wd’(b) = 1, wd’(a) = 2,
wd®(d) = 3. Thus|d|ssz = wd’(b) - (In°(b) + 0) = 1. Then consider the slic& of
Fig. 9, we haven®(e) = 1 + In%(d) = 1 + In°(d) = 5 andwd’®(e) = wd*’(d) =
wd®(d) = 3. S0 thatdd|ser = 1 + wd® (e)(In”(e) + [d]ser) = 1+ 3(5 + 1) = 19.
The reader can check that ther-reducts oféé (i.e. the slices pictured in the above

line of Fig. 10) have astr-measure striclty less thad|s.,. Moreover, notice that the

reductionss <%, 55 containslog-steps (the ones represented in the lower part of

Fig. 10).

The following fact shows some kind of “modularity” and of “matonicity” of the
functionsln andwd, two ingredients of Propositiod.1Q Recall the notion of module
of Definition2.11

Fact 3.9 (Modularity). Leta = w[f] anda’ = w|[f’] be two switching acyclic slices,
where the modul@’ replaces the modulg in o’. For every pending edge (i.e. con-
clusion or hypothesid) of 3, denote by’ the corresponding pending edge/gf The
following properties hold:

1. let b be a pending edge ¢f and suppose thdt exponentially depends in[53]
only on edges af[], i.e. if b depends om # b, thenc is not an edge of. Then
In®(b) = In® (') andwd® (b) = wd® (b');

2. if d is an edge o which is not an edge ¢f and if for every pending edgeof
3 we haven®(b) = In® (¢) (resp. In®(b) > In® (¥')), thenln®(d) = In® (d)
(resp.In“(d) > In® (d)); the same holds fowd.

PROOF Itis a consequence of Definitigh7. O

As for thelog-measure, thetr-measure ofr is the sum of thestr-measures of
the slices ofr, i.e. [7[str = > e [Ostr

str

Proposition 3.10. The reduction— is SN on the sps satisfyingC.
PROOF. For satisfyingAC, we prove thatr =5 7 implies||ser > [T]ser. We re-
strict to the case has exactly one slice: the extension to the general case is obtained
exactly as in the proof of Propositich4.

So leta be a switching acyclic slice and 2%, e First remark thatr,, contains
a unique slice (a glance at Figusavill convince the reader). Let then, = {a’} and
lett be the cut link of reduced during th&™, step under consideration. Our goal is

to show|a|str > |@|ser. Actually we prove a stronger statement, by induction on the
depth oft:
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Figure 15: Theg!/?¢) case of the proof of Propositid110

(1) |a|str > |04/|str'
N
(2) for every conclusiod of «, let d be the conclusion af’ corresponding td, one
s r—
hasln®(d) > In® (d ) andwd®(d) > wd® (d).

Base of induction. If ¢ has depttD, then we have three cases, depending on the

type oft.

Case(!/7¢c). If tis a cutof typg!/?c), then (see Figuréb) let! (resp.o) be the
?c-link (resp.!-link) whose conclusiom (resp. whose main conclusidhis a premise
of t, leta, as be the premises df and leto7, 0; be the two copies of in o': EZ and
a;,i € {1,2}, are premises of a cut link.

Let .S be the set oF-links at depth) of « different fromo, i.e. 1°(a) = {0} US (and
the union is actually a disjoint union). Observe that eveligk v € S has a unique
residuev’ in o/: we havel®(a/) = {o7, 03} U S. We use in the sequel the notatioh
for the box associated with thdink v (see Definitior2.2). Let us define:

[Slser =D (wd®(v) (In* (0) + [ |sex))

veS

S lotr = > (wd® (T)(In®

ves

’

(T) + |77 |otr)

Then by definition we have:

|atfser = wd®(0)(In%(0) + 7°[ser) + [Slser

|0 |ste = wd® (57) (In® (1) + 77) + wd® (3) (In®

/

— —
(02) +7%) + |5 [ste-

Consider any conclusiod of o in « different fromb, denote asd the conclusion

of the ?c-link created ina’ and corresponding td, and denote ad_f,d_; the two
premises of thi€c-link, one being an auxiliary conclusion of, the other one be-

ing an auxiliary conclusion ob; (see Figurel5). We proveln®(d) = 1n"‘/(§) and
e d
wd®(d) = wd® (d).
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Since« satisfiesAC, the edges;, i € {1,2}, does not exponentially depend on
any edge involved in the reduction 6f so by Fact3.9-1, one hasn(a;) = In(a;)
andwd(a;) = wd(a;). Then the following equalities hold, where fore =° (resp.

v E 7r07) we denote byl” the conclusion of; corresponding to the auxiliary conclusion
d of o (resp. ofo;):

In“(d) 1+ sup., o (In7(d7)) + In®(b)
2 4 Sup., ¢ o (In7(d")) + In®(a)
= 3+ supv€7rE (In”(d” ))(l—i— s(lilp{)l)n(a;),(ln()ag)})
SUp., ¢ ot (In7(d” + In(ay
1+sup{ (/Sugweﬁ (ln (d)) +In(az) + 2) }
— 1 sup{n® (@), 0 (33}
= ().

—

As for wd®(d) = wd® (d ):

wd(d) = (1+ > emo wd” (d7)) wd® (b
= (1+Z’76ﬂ'° wd”(d")) wd®(a)
= (14X, cpwd’(d))(wd(a1) + wd(az))
= (142, cpo wd"(d)) wd(a1) + (14 3, cpes wd?(d7)) wd(az
= (143 e wd7(d)) wd(br) + (1+ 3 o wd?(d7)) wd(b
= Wd(dl) + Wd(dg)
= wd” (7)
This implies by FacB.9-2, that for everyv € S one hasln(v) = In(7’) and
wd(v) = wd(7), and that for every conclusiod of «, In®(d) = In® (E)) and

wd®(d) = wdo"(ﬁ)): in particular @) holds.

As for (1), notice thatln(o) = 1 + sup {In(o7),In(03)}, so thatln(o) > In(o;)
(i € {1,2}). Notice also thatvd(o) = wd(o1) + wd(0z), as well asr® = 7%
(i € {1,2}). We can then deduée

wd(0)(In(0) + 7°lstz) > wd(a7)(In(o7) + 7 |ssx)
+wd(03)(In(03) + 7% |ssx ).

On the other hand, for every € S the box associated with in = is the same
sps as the box associated with in o/, so that|m¥|s;r = |7 ¥ |ssx- This means that

[S]str = |§>|str. This equality and the inequality above yiétd sty > |o'|str-

Case(!/!). If tis of type(!/!), then (see Figur&6) let o (resp.u) be thel-link of
which the main (resp. an auxiliary) conclusieifresp.b) is a premise of, letc be the

2lwe use here the fact that for every edgef w, one haswd(a) > 0, as already mentioned after
Definition 3.7.
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Figure 16: The!/!) case of the proof of Propositich10

main conclusion ofi, let  be the residue of in o/ and for every sliceﬁ e (if
any) Ietoﬁ be the copy ob WhICh “entered” thé-link v during the reduction of and

finally let¢? be the cut created nzﬁ by the reduction of.
We set!(a) = {u,0} US, i.e. S is the set ofl-links at depth0 of « different
from u ando. Observe that eachlink v € S has a unique residu€’ in o/, so that

0(a/) = {wW}U S. Letus define:

|i|str = Zves(Wda(l) lna(v)/Jr |7 |str)>
|S|str Z?G? (Wda (7)(111 ( ) + |7T |str )

Then by definition we have:

alstr = wd(u)(In(u) + |7T“|str) +wd(0)(In(0) + [7°[ser) + [Slsee
| ser Wd(ﬁ) (hl( ) + |7ru |str) + |S |str-

Consider any conclusiothof « in « different fromb, and denote asl the conclusion
of @ in o/ corresponding tal. If d = ¢, thend does not exponentially depend on

any edge involved in the reduction tif so by Fac3.9-1, one hadn®(d) = 1n“'(7)
e d —

andwd®(d) = wd® (d). If d # ¢, let7* (resp.7 *) be the box ofu (resp. ). By

Definition 3.7 (with the same notations), one has:

In*(d = 1+sup . (In?(a?)) +1In%(c)

) )
I (d) = 1+ sup=c = (In 7(7))—|—1n’( ).

Notice that every edgg conclusion ofr* exponentially depends only on edges which

are not involved in the reduction 6fso by FacB.9-1we haven™ (g) = In™ (7¢).22
Since we already noticed that*(c) = In®(¢’), we can eventually conclude that for

22Notice that we are actually using a slight variant of Fa&1: with the notations of Fac8.9, some
pending edges g8 and3’ do not coincide. These edges are conclusions ahda’ and it is easy to check
that Fact3.9-1 holds in this case too.
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every conclusior of w in 7 different fromb one hadn(d) = ln(ﬁ)), and in the same
way one obtains the equalityd(d) = wd(d ). In particular,In(u) = In(w') and
wd(u) = wd(W).

Then, consider any auxiliary conclusidrof o in «, and denote byl the conclu-

A d

sion of w in o/ corresponding ta. Also in this case we will provin®(d) = In® (d )
andwd®(d) > wd® (d). Still by Fact3.9-1 we have thatn® (%) = In” (57 ) and
wd?(b7) = wd” (b7 ).22 The following equalities hold (where, like in thi&/?c)-case,
d” denotes the conclusion of the sligesorresponding ta):

In%(d) = 1+sup,eq.(In?(d?)) +In%(a)
= 24 sup, o (In”(d)) + In(b)
= 3+ sup,epe (In?(d)) + supge o (In”(5%)) + In®(c)
= 34 sup, o (In’(d)) + SUPG = INACE ) + 1na/(?)
= 3+supz - (sup cno? (In7(d7)) + lni(bﬁ )) +In® (<)
= 2+4supg - (suE cno? (In7(d")) + In? (a” )) +In® ()
= l+supgz, - (1n3 @?)) + In® ()

A d

’

In a similar way we prove thatd“(d) > wd® (E)):

23gee footnote@2.
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yETO Ben®
_ <1+ S owd@)+ Y wd? (67)+ Y wdwm)wdﬁ(bﬁ)) wd® ()
yEMO ﬁeﬂ.ﬂ ﬁeﬂ—7
yET®
> <1+ S wd?0f)+ Y wd”(dwwd%ﬁ)) wd® (7)
gen™ ﬁGWE
yeno?
e X 5wt e
?6#7 “/GW”?
= (1+ wd? (dﬁ)) wd® (@)
Ben®
= wd®' (d)

Like in the (!/?¢)-case, all this implies by Fa8t9-2, that for everyv € S one has
In(v) = In(?") andwd(v) > wd(%’), and that for every conclusiahof a, In*(d) =
In® (7) andwd“(d) > wd""(z): in particular @) holds.

As for (1), we first prove that

wd(?) (In(w) + |7T7|str) < wd(u) (In(u) + |7%[ser) + wd(0) (In(0) + |7°[ser) -

In caser™ is the empty seLof slices, the inequality holqls:7|Str = |m¥|ser = O,
so thatwd(W)(In(w) + |7 ¥ [sez) = wd(u)(In(u) + [7%]sez) < wd(w)(In(u) +
|T%]ser) + wd(0) (In(0) + |7°|sex) (sincewd(o), In(0), |7°[sez > 0). In caser” is
not empty, forg € = (resp.ﬁ € 7r7), defineHg = 2 + 1nﬁ(b5) + |7°]ser (resp.
Hﬁ =2+ 1nﬁ(b5) + |7TOB |str): Notice thatHz = Hﬁ > 0 (we are usingr” # 0),
and this will be used in the following sequence of equalidesd inequalities. By
definitionln(o) = 2 + In(u) + sup g (In” (b%)), so we have (using Fa8t9):
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wd(0)(In(0) + |7°|ser) > wd(0) (2 + sup (1n bﬁ)) + 7|t
peny

1+ Wdﬁ bﬁ)) ( sup Hg)

( ﬁ€W1 pemt

ﬁélqug + wd(u (B%;uwdﬁ bﬁ)H3>

sup H_>) +Wd(ﬂ>)( Z wdﬁ(bﬁ)Hﬁ)

pgen Ben®

= wd(@) 3 (wd? (0F) 2+ 07) + 11 |oer)

+wd(T) (wd” (©7)(1+1n® (67 + | |St,_,))

|

ml gl
Sal

Moreover, SiNCEr" |ser = 3¢ ru |Blstr, We have:

T e = Xgepw (1Blsse +wd” (07)(In” (07) + |r° |str))
= | |str+25eﬂu( dﬁ(oﬁ)(lnﬁ(o ) + | |str))

Now remember that'd(u) = wd(%) andln(u) = In(%). Thus:
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wd (W) (W) + |77 [ser) = wd(u)(In(w) + |7 |ser)

+ ) (wdﬁ(oﬁ) (mﬁ(oﬁ) + |w°y |sn)))

—

+wd(@) 3 (wd? (07 ) (07) + 7 fosr)

< wd(u)(In(u) 4 [7[ser) + wd(0) (In(0) + [7°|str ).

On the other hand, for everyc S the box associated within « is the same sps

as the box associated withi in o/, so that|S|s., = |§|Str. The previous inequation
allows then to concludey|sey > [/ |str-

Case(!/?w). If t is of type(!/?w), then the case is simple and left to the reader.
Notice that in this case the values of length and width canedese, since the reduction
of t erases &link.

Inductive step. If ¢ is a cut in al-link o of o/, thena’ is obtained by replacing
the boxr® associated witly with a box7® s.t. 7° == 7. By induction hypothesis
we know that {) [7°|st, < |7°]str, @and @) for every conclusionl of 7°, In™ (d) >
™ (d), wd™ (d) > wd™ (d).

By Fact3.9-2, this implies both{) and @) for a, o/'. O

We conclude the subsection by noting that (in a perfectlyragtnic way w.r.t. the

log-measure) thetr-measure may increase undes: indeed, the reduction
can change the exponential paths of an sps and their lengthsnorease (think for
example of the main conclusion of-dink o which is the premise of &i-link itself cut
with a!-link «: after the reduction of th@/?d) cut, some exponential paths disappear
and some new ones starting franand crossing edges afs box might appear and
might be longer than the erased ones: this is exactly whatdregin the last reduction
step of Fig.10). If the length of exponential paths grows, so do also theesbf the
functionsln andwd, and consequently thecr-measure.
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4. Standardization for sliced pure structures

In this section we prove our main result: the standardingtieorem for sps (The-
orem4.2). Basically, the standardization theorem reduces thelpnmolf SN to a
problem of WN w.r.t. a subreduction of™%,, callednon-erasing reductionThe non-
erasing reduction steps have a key property: they nevee exgs different from the
reduced one. In fact, the notion of non-erasing reductientbde definedery care-
fully: not only a non-erasing reduction step does not erage, dut also it does not
erase (nor change the non-erasing nature of) “future cthtat is of cuts which can be
created during any reduction sequefite.

Definition 4.1 (Erasing cut). Theerasingreduction steps are the following:
o (®;/&;)fori # 7, (I/?w) and(T /cc),

o (1/2d) (resp.(!/1) in the case the empty sps is associated withivk whose
main conclusion (resp. auxiliary conclusion) is a premigdecut to be reduced.

The other reduction steps are callash-erasing

The erasing (resp. non-erasing) reduction, denoted-bfresp. by —), is the
context closure of the union of the erasing (resp. non-egaseduction steps. A cutis
erasing (resp. non-erasing) when so is its reduction.

Theorem 4.2 (Standardization for sps).Let 7 be an sps which satisfiegsC. If 7 €
WN™¢, thenw € SN.

With respect to the description of Gandy’s method given m lthtroduction, the
standardization theorem achieves all the tasks excepttio of WN™°. We split the
proof of Theorend.2in two parts: in Subsectiof 1we prove thatN is a consequence
of SN (Propositior4.5), in Subsectiort.2we prove the equivalence betwegN °
andWN ¢ (Propositior4.10. This last step is the most delicate one, and uses the key
notion of labelled sps and labelled reduction (Definidb@and Definitiord.7).

4.1. SN is a consequence 8N °

In this subsection we prove Propositidrt: SN is a consequence 8N °. The
proof is based on two simple facts: (i) erasing steps canyaa postponed after
non-erasing ones (Lemma4); (i) there is no infinite sequence of erasing steps (the
<. reduction clearly decreases the size of an sps). Then sepipe exists an infinite
sequence of™% steps starting from an sps(i.e. supposer ¢ SN). This sequence
should contain an infinite number of non-erasing steps:drgiing Lemma.4we then
obtain an arbitrarily long sequence of non-erasing steptisg fromsr, i.e. 7 ¢ SN™°.

Lemma 4.3. Let m and 7’ be two sps. Ifr = =, then every cut link’ of 7’ has an
— —
ancestort’ in . If t' is non erasing, the two cutsand ¢ have the same type.

24This might sound a bit mysterious by now, but it will appeaftith light in Subsectiorb.2
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PrRoOF The only links which might be created by an erasing reducsiep are’w-

links (see Definitior2.14): ¢’ and ¢’ might have a different type only if is erasing.
O

Lemma 4.4 (Postponement of>). The reduction>> can be postponed w.rt. the re-
duction—% (see Figure(e)).

PROOF. Supposer > m; — my. Letu (resp.t) be the cut reduced im = 7 (resp.
in T — m). By Lgmma4.3 and by thg_hypothesis thatis erasing, we d£duce
thatt has an ancestot in = and that and ¢ have the same type: in particular is
non-erasing. -

We definers as the result of reducing in = (som — m3). By inspection of
cases one can check that reducing the residues(which are all still erasing) inrs
yieldsmy, i.e.m5 — To. O

Proposition 4.5. Letw be an sps. Iff € SN7° thenw € SN.

PROOF Suppose that ¢ SN and consider an infinite reduction sequence starting

cut

fromm R =7 =% m &5 1 2% . Observe first thak has no infinite suffix of
erasing steps, since the number of links strictly decreatseach erasing step.

We will define for any number a sequenc@ of —- steps of length starting from
7, hence proving that ¢ SN, Let k be the least number (if any) sty = 7.
We define@ by induction omn — k.

If & > n or k does not exist, then simply takg as the prefix ofR of lengthn. If
k < n, letm be the least integer s > k andr,,, — 7,41 (thism does exist since
R has no infinite suffix of erasing steps). Apply— k times Lemmat.4, for obtaining
an (infinite) sequence of reductioR$ which has a prefix of length + 1 of = steps.
We obtain@ by applying the induction hypothesis K. O

4.2. SN™® is a consequence ¥ N ¢

This subsection is devoted to prove ProposidohQ the weak and strong normal-
ization of — are the same property for sps satisfyiag. Our proof is quite delicate
and it is based on a confluence theorem (Thectel8), following a method proposed
by Gandy in the framework of Godel's systemd[.

The basic idea is to find a measuré, on sps which is a natural number and to
prove that:

(i) ||e strictly increases undef>,
(i) = is confluent.

Then if an spsr has a normal formr’ (i.e. if 7 € WN™°), we can deduce that the
number|7’|, maximizes the length of every*s reduction sequence starting from
(and thusr € SN ™).

In order to define this increasing measure, we change a béytitax of sps, defin-
ing the labelled sps (DefinitioA.6) and the labelled cut-elimination (Definitich?).
The labelling plays the role of “counting” the number of stegpplied to an sps, thus
allowing the definiton of an increasing measure (Definitdos).

Our guidelines in the definition of labelled sps and of theit-elimination are the
following:
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(i) labels will be used to define the measure which has to asgeinder cut-elimination
(ii) to apply Gandy’s method we need confluencel&drelledsps.

We then introduce “new” links (actually dummy links) whosaque role is to partic-
ipate (by means of their labels) to the measure of the spsaléhemx-links. These
dummy links are the only labelled ones. The idea is to assowidh every flat of an
sps a unique-link, whose label is actually “the label of the flat”.

Definition 4.6 (Labelled sps). The x-link is a link without premises nor conclusions.
A labelled sliced pure structures’ps for short, is a couplér, ¢) s.t.7 is an sps with
exactly one occurrence of thelink in every flat ofr, and/ is a function from the
occurrences of-links of 7 to the natural numbers, which is ttebelling of (., ).

Thedegree of the labelling ofr, £), denoted by/|, is the sum of’s values on the
occurrences of-links of 725,

Definition 4.7 (Cut elimination for sps). Lett be a cut of(w, ). We allow to reduce
t only in case it is non erasing. The result of the reduction f the $ps (7/, ')
defined as follows:

1. «' is the result of the reduction ¢fin = defined as in Definitior2.12 except ift
is of type(!/7d): in that case, first erase thdink of the flat oft and then proceed
like in Definition2.12 in such a way, every flat af’ contains exactly one-link;

2. letr be ax-link of 7/, we define?’ (r). Let 7 be the ancestor ofin 72%. There are
three possible cases:

(@) in case is of type(ax), (1/1), (®/%) or (®,/&;), if the flat of 7 is the same
as the flat o, set?’(r) = ¢(7) + 1; otherwise set’(r) = ((7);

(b) in caset is of type(!/?d), letv (resp.o) be thex-link (resp.!-link) in 7 erased
by the reduction of. If & has deptt) in the sps associated with then set
0'(r) = (7)) + £(v) + 2; otherwise set’(r) = £(7);

(c) in case is of type(!/?c) or (1/1), sett'(r) = £(7).

We introduce the notatiot{(r, ¢)) and-%, as usual.
Definition 4.8 (-measure). Let (7, ) be an $ps, ¢ be the number oflinks of 7, d

be the sum of the depths of thdinks of (r, ¢). The/-measure ofr, ¢) is a natural
number, denoted bly(r, ¢) |, and defined as follows:

[(m,0) e = (|f|+c)*+d

25Notice that with two different occurrences of the same flagrafé) are associated two different occur-
rences of the:-link: this entails that our definition d¥| has taken into account the multiplicities of a given
flat in the sps associated with a givetink. We will as usual write in the sequel “&link” always meaning
“an occurrence of the-link”.

26The definition of ancestor/residue ofdink is straightforward, from the definition of’ given in step
1: everyx-link of 7/ has exactly one ancestor4n
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We now prove the first key property of the reductién namely that it strictly
increases thé-measure:

Lemma 4.9. Let(r, ¢) be an $ps: if (r, £) 5 (w0, then| (', 0') |o > | (m,€) |-

PROOF In case(n’, ¢') is the result of affax), (1/L), (®/%) or (®;/&;) step, then
[0 =10+ 1,¢ =¢,d =d, hencd (x',0') |¢ > | (m, L) |

In case(n’, ¢') is the result of g!/?¢) step, therl¢’| > 4|, ¢ > ¢+ 1,d’ > d, hence
| (7 ) [ > | (. €) e

In case(n’, ¢') is the result of g!/!) step, therj¢’| > |¢|, ¢ > ¢, d > d + 1, hence
| (' ) o > | (. £) e

In case(n’, ¢') isthe result of 4!/7d) step, then?’| > |¢|+2,¢ > ¢—1,d > d—c+1.
We deduce| (7", ¢') [¢ > (|| + c+1)2 +d—c+ 1> |(m ) |+ c+ 1. O

The second key property of the reductiénis confluence (Thereorh. 18, which
is proven in the next subsection. We prove now that the twotimead key properties

of 5 entail the equivalence VN ¢ andSN ™ for sps satisfying\C:
Proposition 4.10. Let w be an sps which satisfi@eC. If # € WN™° thenm € SN™°,

PROOF Supposer is an sps satisfyindC and s.t.t € WN™°. For every/, (r, ()
satisfiesAC and (r, /) € WN*. We prove thatr,¢) € SN, which clearly implies
thatm € SN™°,

Let (x’, ¢') be a normal form ofr, ¢): we prove that the length of every reduction
sequence starting frorar, £) is bounded by (7', ¢’ |,.

Supposér, £) 5 (11, 01) 5 ... 5 (., 0,). By Lemmad.Owe have (m,, £n) |¢ >
| (m,£) |¢ + n. Since(r, ¢) satisfiesAC we deduce by confluence (Theordm§ that

*

(T, €n) L (7', 0"y, hence by Lemmd.9, | (n/,¢') |¢ > | (70, ?n) |¢. We then con-
clude that {7/, £') |, > n. O

4.2.1. Confluence of:

The rest of this section is devoted to the proof of confluericereduction (Theo-
rem4.18. Our/-reduction (as well as usual LL cut-reduction) is locallyniaent but
not strongly confluent (recall Figur&c)). The reader can find counter-examples to the
strong confluence property in the proofs of Lemdind2and Lemmat.14

We thus prove the confluence 6feduction (Theorerd.18 by decomposingﬁ

into its logical and structural subreductiohe— and-=*>, exactly as we did fof in
strl

Definition 3.1 Then we show that both?%> and =% are confluent (Propositich13

and Propositiort.15 and that they commute (Lemndal?). We conclude thats is
confluent since it is the union of two confluent reductionsalihGommute (Hindley-
Rosen Lemma, here Lemm2z8).

Definition 4.11. The ¢-logical reduction denoted byﬂn is the context closure of
the following¢-reduction steps(ax), (&/%), (1/1), (®:/&;), (!/?d); thel-structural

reduction denoted byﬂ, is the context closure of the followingreduction steps:

(/1) and(!/?c).
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Z I - re . . -
Of course we haves = ~°&5% U =5, Notice that =% is defined precisely by

thosel-steps which leave unchanged the labels ofhiaks.

logl 74
In what follows we prove that-%- and === are confluent and commute. The

difficult part of the proof is already achieved: it consistestablishing that botA%’,

and <=5 areSN, which is an immediate consequencesdf of 1og, (Proposition3.4)

str

and of =% (Propositior4.13: the labelling of éps plays no role w.r.SN.

Confluence of .. We prove the confluence ofe’. (Propositiord.13 by applying
the Newman Lemma (here Lemra’): a relation which is locally confluent argiN

is confluent. The local confluence &% is proven by Lemma.12 and theSN of

logl . . . .
— is an immediate consequence of Proposifich
Neither in the proof of PropositioB.4 nor in the one of Lemm4.12the AC con-

dition is used, so that the confluence 8E- is established for the whole set dps.

Lemma 4.12. The reduction™%% is locally confluent on‘ps.

PROOF We prove that for every slicgy, ¢) the following diagram holds:

(o, €) —5— (2, )
llogl loglx*
loglx* v
<ﬂ-1, f1> ................... > <ﬂ-37 €3>

This immediately entails local confluence for genefabks

Establishing that the previous diagram holds is not immedialy when at least
one reduction is of typé!/?d): in this casé’ the slice(q, ¢) is duplicated a number
of times equal to the number of slices of the box opened by!if¥el) reduction. Let
us consider for example the ca&e ¢) N (m1,41) is a(!/?d) step andc, ¢) o€,
(m2,£2) is a(®/%) step (the other cases are similar and left to the reader). ae, h
for somen > 0:

the reduction of the cut opens the box of thelink o and duplicates the slicey, ¢)
n times, giving as result the following'jss (notice that the labelling of thelinks
changes):

27\We can suppose without loss of generality that the reducelihéihas depthD in o
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T +x;+2

@

If we reduce the cutt in (w2, £2), we obtain the following‘ps (again notice that the

labelling of thex-links changes):
% @

The same‘ps can be obtained by reducing the residegs.. . , 7, of the cutr in

<7T1,€1>. We conclude tha([m,él) ﬂ <7T3,€3> and<w2,€2> ﬂ) <7T3,€3>. O

r+x;+3

(m3, L) = >

Notice that the critical pair analysed in the proof of LemmaZ2is a counter-
example to the strong confluence 585,

Proposition 4.13. The reduction™8% is confluent on the’ps.

PrROOF Consequence of Lemndal2 Propositior8.4and the Newman Lemma (here
Lemma2.7). O

Confluence of™™%. As for 2%, the confluence of % (Proposition4.15 is ob-

tained using the Newman Lemma. The local confluence is dedogdéemmad.14

and theSN of =% is an immediate consequence of Proposi8adi In sharp contrast

with the case of the=5% rewriting rule, the reader should remark that th@ condi-
tion plays a crucial role both for Lemn#al4and Propositior8.1Q in Subsectior?.4
we have given counter-examples (see Eijand Fig.12) both to the local confluence

str

and theSN of — for sps which do not satisfxC.

Remark that the labelling of thelinks does not play any role in the confluence of

=, since the/ function is invariant unde#™™". We nevertheless picture explicitely

the x-links in the figures illustrating the following lemma, inder to stress that con-
fluence holds fotabelledsps.
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Lemma 4.14. The reduction®™% is locally confluent on the’ps satisfyingAC.

PROOF The local confluence of=% is quite a standard result, the proof is essentially
the same as that of the local confluence of the exponentiattiesh in MELL given

by V. Danos in his PhD thesig]. The local confluence of™%, can be reduced to the
following diagram:

(o, £) —= (ma, L)

lstrl Estrl*

This immediately entails local confluence for genefabks
The proofis by inspection of all possible cases, we treagtaitionly the following
two critical pairs (the considered cuts have ddpih «).

strl str

1. If {a, ) — (m1,¢1) is the reduction of a cut of type (!/!) and{(«, ¢) —
(72, £2) is the reduction of a cut of type (!/!) and if the two cuts are in opposi-
tion as pictured below:

then the reduction afwill bring a copy ofv in each slices of the ps associated
with o and it will transform the premiseof the cutr in an auxiliary conclusion
of the residue of thé&link o in (71, ¢1). On the other hand the reduction of
in {a, £) will bring a copy ofu in each slicey of the $ps associated with.
The <ps (n3, £3) is obtained from(7s, £5) by reducing the (unique) residue of
tin (m, £3), which results in bringing, and hence, in each slice of the‘ps
associated witf:




The $ps(r3,£3) can also be obtained froka;, ;) in two steps (recall we are

proving only local confluence 0f¢—M>): first, we reduce the residue ofin
(m1, 1) thus obtaining for each slicé in the box ofo a cut between an aux-
iliary conclusion of a copy oft and a copy of:, and then we reduce every such
cut, thus bringing a copy af in every slicey in the boxes of the various copies

of v, as sketched in the above figure.

1f (o, ) =25 (my, 1) is the reduction of a cutof type (I/?¢) and(a;, £) <=5

(72, £2) is the reduction of a cut of type (!/!) and if the two cuts are in opposi-
tion as pictured below:

then the reduction of will duplicateo in {71, ¢1) and will transform the cut
in a cut of type(!/?c) between the residue of thdink « and a createdc-link
with premises the auxiliary conclusions corresponding ¢é the two copies of
o. On the other hand, the reductionsoin («, ¢) will bring a copy ofu in each
slice 3 of the $ps associated with. The $ps(n3, £3) is obtained from(m, £5)
by reducing the (unique) residue bin (2, ¢2), which duplicate®, and hence
u:

The <ps (n3, £3) can also be obtained froia, ¢1) in three steps (also in this
case we have only local confluence and not strong confluefics):.we reduce
the residue of in (w1, £1), which is a cut of type!/?¢); this duplicates: and
creates two cuts of typ€/!), one between the first copies efand« and the
other one between the second copies ahdu. We obtain(rs, ¢5) by further
reducing the twd!/!) cuts.
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The critical pairs treated in the proof of Lemmadl4are counter-examples to the
strong confluence of™=%.

Proposition 4.15. The reduction®™% is confluent on the‘gs satisfyingAC.

PrROOF Consequence of Lemm&l4 Proposition3.10 and the Newman Lemma
(Lemma2.7). O
Commutation of and =%, The last step allows to merge®- and =% to-
gether, proving that the two reductions commute (Lemiria): this is achieved by

applying a lemma by Di Cosmo, Piperno and Geser (here LethByavhich reduces
strl

the commutation of2%% and =% to the diagranil) of Lemma2.9.

Like in the proof of confluence forel, (and contrary to the proof of confluence for

2*7,) the AC condition is not needed in this paragraph.

Lemma 4.16. For every $ps the following diagram holds:

() — > (75, )

lstrl Estrl*

PrROOFE Also for this lemma we restrict ourselves to the césgl) is a slice(a, ¢):
the general case follows immediately.
strl

Let ¢ (resp.r) be the cut link ofa reduced in{a, ¢y —— (m1,¢1) (resp. in

(o, £) Logt, (ma, £2)). The proof is by induction on the depth af We split the proof

in three cases.

Case (i). The cutr is at depthd in («, £): this case is immediate, since the reduction
of ¢t does not affect. The only slightly delicate case is wheris of type(!/?d) (so
that its reduction duplicates, ¢)) andt is duplicated a number of times equal to the
number of slices, say, of the opened exponential box, = >_." | «;. Sincer is a
non erasing cut link, we have > 1. In particular, Iett_f, ce EL) be then residues
of t in (m, £3). We first prove that the diagram holds without labels, byidiggishing
two subcases: (i) if is of type(!/!) and one of the two premises bfs an auxiliary
conclusion of the-link opened by the reduction of then we do not need to reduce
the residues of to close the diagramrs = 7, 28; (i) otherwise the reduction of the
residues of in m; gives as result the same sps as the one given by the reduttioa o
(unique) residue of in 7r;. Notice thatrs has exactly: slices:ms = Zle B;.

Concerning the labels, let’s cal] the x-link at depth0 of the slicea; of 7o andw
the -link of «. Similarly, let us call; the x-link at depth0 of the sliceg; of w3. The

28Notice that in this case (and only in this case) théseesidues might also be non reducible cuts.
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computation of the label af! yields (for both the considered reductions framno 3)
£(v) + £(7;) + 2. Since the label of everylink of 73 different fromv! is the same as
the one of its ancestor im, the diagram holds also with labels.

Case (ii). Botht andr are cuts in boxes af. Leto (resp.u) be thel-link at depth
0 of a containingt (resp.r). If o andu are different-links, then this case is imme-

diate; if they are the samnldink o, let (7°, ¢°) be the box associated with We have

(e, £°) 22N (w8, £9) and(x®, £°) Logt, (g, £9). We apply the induction hypothesis
and we obtain ar'gs (g, £3) s.t. (19, ) “E5, (79, ¢2) and(ng, £3) = (x9, 09).

The $ps(ms, £3) is then obtained fronir, ¢) by associating witt the Sps (7§, £3).

Case (iii). The cutt is at depthd andr is contained in a-link o at depth0 of a:
then we can have two critical pairs, since tHamk o may be involved in the reduction
of t.

One critical pair is when is of type(!/?¢) ando is the!-link which is duplicated
by the reduction of:

(OF]

The reduction of duplicates), hencer, in (1, ¢1), but does not change the content of
the box nor the labels of thelinks. On the other hand, the reductionvofhanges the
s'ps associated with, without affecting the cut nor the label of the-link at depth

0 of a, but possibly changing the labels of thdinks insideo. Reducing the two

residues of- in (71, ¢1) gives the same resultrs, /3) as reducing the residue ofn

(ma, £2). By the way notice that the reductidn , ¢1) Logtt, (w3, £3) costs two steps,

due to the duplication of.

The other critical pair is whetis of type(!/!) ando (the!-link whose box contains
r) is one of the twd-links involved in the reduction aof(i.e. in the figure below = u
oro =v):

The reduction oft brings one copy of: in each slice of the box associated with

(notice thatv contains at least one slice, sin€&% is a non-erasing reduction step):
however, this reduction does not change tipssissociated with nor the labels of the
#-links. On the other hand the reductionoih («, £) changes the‘ps associated with
u or that associated with, depending on whether= u oro = v.
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The case» = u is simple: let7 1, ..., 7, (wheren > 1, as we noticed above) be
the residues of in (71, ¢1). Reducing these cuts gives the same result as reducing
the unique residue dfin (2, £2).

If o = v, then one has to notice that even if the reduction ohanges the box
¥ associated withv (bringing “insidev” the !-link ), cuts andk-links of 7 are not

affected by this reduction. In particular we can reduce #sdue ofr in (71, ¢1) like

the reduction stepa, ¢) Logt, (9, £3) does, thus obtaining thégss (3, £3) which is

also the result of reducing the residue af (72, £2). O

Lemma 4.17. The reductions™™% and =% commute (see Figur(d)).

PROOF It is a consequence of Lemndalg Prop.3.4 and a Lemma by Di Cosmo,
Piperno and Geser (here Lem\4). O

Theorem 4.18. The reduction is confluent on‘ps satisfyingAC.

PrROOF Consequence of Prog.13 Prop.4.15 Lemma4.17and the Hindley-Rosen
Lemma (Lemma.8). O

Remark 4.19. One can easily adapt Theorefrii8and prove the confluence 6t

for T-free sps satisying.C: just check that>%: and =% are locally confluent (i.e. add
the erasing steps to the proof of Lemma2and Lemmat.14) and that they commute.
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Figure 17: Grammar of LL formulas

5. Strong Normalization for Linear Logic

We now want to apply our (rather general) main result (Theote?) in order to
prove strong normalization for full second order LL (Theuarg.12. As proof-nets,
we take here the most general currently used notion, olitdgecombining 7], [9]
and P], and by generalizing théccad) and the(T /cc) reduction steps (see below).
These proof-nets are defined B4[: let’s call them simplynets and denote them with
initial Greek lettersy, 3. ..

This last section requires some knowledge on nets, maimhesscquaintance with
the additive and second order cut-elimination and the natiosequentialization: all
the precise definitions are i24).

5.1. The syntax of nets

There are two main differences between nets and sps: (ianetyped by second
order LL formulas (Figurel7 recalls the grammar of LL) and (ii) nets use additive
boxes to handle th& rule. Let us comment this last feature.

In the framework of nets§-links behave like-links (see Figurel8): they have)
premises ana. + 1 conclusions, a distinguished one (the main conclusioredypy
a &-formula, sayA & B) and possibly others (the auxiliary conclusions); withrgve
&-link with n + 1 conclusions are associated two ngtsand 3., calledfirst (or left)
andsecond (or rightcomponent of th&:-link. The nets3;, and 3, have the same
conclusions as the auxiliary conclusions of &adink (called the auxiliary conclusions
of the component of th&-link) and one distinguished conclusion (of type respedyiv
A andB, and called the main conclusion of the component othienk).

The presence of additive boxes has two main consequendas dtefinition of the
cut-elimination steps: (1) there is a unique additive st&p®;) which combines an
erasing feature (like the stéfr, /@ ;) with i # j, in sps) and a non-erasing feature (like
the step(&;/®;) in sps); (2) it yields a new type of reduction step, callechd), which

Figure 18: An example of additive box
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Figure 19: The reduction steps associated with the additixe

is the nightmare of this way of representing proofs (the shatés for the(T /cc) step
of Definition2.12).

The step(&/®;). A redex of type(&/®;) is made of a cut, a&-link and a®;-link
such that one premise ofs the main conclusion of thi-link and the other premise of
t is the conclusion of they;-link (see Figurel9). The contractum is defined by erasing
the @;-link, by substituting thek:-link with its i** component and cutting the premise
of the erasedp;-link and the main conclusion of th&" component of thé:-link. As
already mentioned, this reduction step is both erasingdites one component of the
&-link) and non-erasing (it modifies the cut formula like fosenple the(® /%) step).
This mix is critical with respect to standardization, as wl giscuss in details in the
next Subsectiob.2

The step(ccad). A redex of type(ccad) is made of a cut, a&-link [ and a nety not
containingl; moreover, one premise of call it a, is an auxiliary conclusion df, and
the other premise dfis conclusion ofx (see Figurel9). The contractum is defined as
follows. We substituté, the cut linkt anda by a new&:-link (which we still calli),
having the same conclusions as the originahere we have substituted the edgey

the conclusions of: (different fromt’s premise). The&!” component of the new link

is obtained by cutting the conclusion corresponding to tlgee of thei** component

of the originall and the conclusion af which is a premise of. Notice that a cut of
type (ccad) of a net can be associated with different redexes, since it is natrcle
which subnetv of 8 should be selected (for example, il [ is theempire ofa, in
[24] « is any subnet having among its conclusions). We take here the (more general)
option of [24], which is also applied to théT /cc) step. Notice that, as fofT /cc)
(Remark2.13, the presence dtcad)-reduction steps entails the failure of confluence.
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(a) example in MELL (b) example with additive boxes

Figure 20: Untyped nets which a¥€N but notSN (¢ is defined in Figuré®)

Despite these differences, the cut-elimination proceftnrsps is the key tool to
prove SN for nets. We associate (Subsecti®id) with every nets its set of slices
sl(8) (which is an sps), and we prove thate SN by proving thatl(3) € SN. More
precisely, we prove that for every net

(i) sl(B) satisfiesAC,
(i) B €SNifsl(3) € SN,
(i) sl(B) € SN if sl(3) € WN™®,
(iv) sl(3) € WN™.

Point (i) is trivial (Propositiorb.1); point (ii) is Proposition5.6; point (iii) is a
consequence of point (i) and of our standardization thediidmoremy.2), this is the
real missing point in Girard’s original proof; point (iv) ike “difficult” part of theSN
proof (which is outside Peano arithmetic): one uses Gisareducibility candidates
to provesl(8) € WN™. Itis well known that this kind of tool is very powerful and
can be adapted to a lot of different situations. Indeed,r@sgroof of [7] works per-
fectly well if one substitutes “strong normalization” wittveak normalization”, and
the reader acquainted with reducibility candidates is pbbpalready convinced that
the changes needed to prai€d) € WN ™ (instead ofg € WN) present no major
difficulty. We nevertheless give the precise definition afueibility candidate (Def-
inition 5.10 that we need in order to prove Theorénil (that is point (iv)), thus
concluding with the strong normalization theorem for setonder LL nets (Theo-
rem5.12.

At first sight, an alternative solution was to use Theorefin order to prove the
original Girard’s standardization theorem (Theorem 4.22pf [7]). We explain in
the next Subsectiob.2why this alternative fails.

5.2. Adigression on standardization
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Before proving the points (i)-(iv) stated in Subsectf, let us discuss the alter-
native solution mentioned, namely to use Theo#rkthin order to prove the original
standardization theorem (Theorem 4.25 p.7279f [We claim that this approach fails,
since the original standardization is based on a “wrong'nitésin of standard reduc-
tion. To help the reader, we reproduce verbatim Definiti@#4nd Theorem 4.25 p.72

of [7].

4.24. Definition. A contraction istandardwhen it does not erase any
symbolCUT besides the one explicitly considered. Concretely, thiamee
that some parts of the configuration we replace have to b&esaithamely:

- in (&/ @1 —SC), B2 must be cut-free,
- in (&/ @2 —SC), p1 must be cut-free,
- in (I/?w — SC), p1 must be cut-free,
- in (T — SC), eA+ must be cut-free.
A reduction is standard when made of standard contractions.

4.25 Theorem (Standardization Lemmiagt 5 be a proof-net and assume
that there is a standard reduction frofhto a cut-free’. Theng is SN.

The problem with the above definition of standard reductmm({ractionin the
language of T]) was already pointed out ir2] in the restricted MELL framework:
recall the sliceds of Figure9, which can be considered an “untyped MELL rfét”

As we pictured in Figurd0, we havess <2£. 55. Now consider the untyped net

0 of Figure20(a) By reducing the cup of 5 one obtains a strongly normalizing
untyped net; howeves is not strongly normalizing (reduce the cgtand you will
get a net having the néb of Figure9 as subnet), despite the fact that the reduction
step associated withis standard in Girard’s sense (Definition 4.24 p.727®@¥.[From
our point of view, this means that Theorem 4.25 p.727%ig “morally wrong”, even
though it is “technically correct” (it deals only with typetets, so its conclusion is
true...). The solution proposed i@l][was to freeze the cut link and consider “strict”
reductions, that is the rewriting rule obtained by forbyli! /?w) reduction steps: this
leads to théoréme 8.31 p.64 @ [allowing to proveSN for MELL nets.

In presence of the additives, the same phenomenon occaitheasolution cannot
be that simple, as we now explain. Consider the untyped mét-igure20(b) Again,
by reducing the cup one obtains a strongly normalizing untyped net; howeyés
not strongly normalizing (reduce the cytand the(ccad) created by the reduction
of ¢), despite the fact that the reduction step associatedmighstandard in Girard’s
sense. Following Danos, one would be tempted to freelat this wouldn’t be correct.
Indeed, we should then freeze all the cuts of tyfg®;), and such a freezing hides
infinite reduction sequences. For instance, the untyped néFigure20(b)would be

291N this short discussion, we use the expression “untypet] referring to the untyped version of the
nets considered in this Subsectidri. An untyped net is not necessarily an sps because of thenoesé
additive boxes.

52



in normal form w.r.t. the rewriting rule induced by this fr#eg, despite the fact that
B ¢ SN. The difference between the reduction sté8w) and(&/9;) is that while
the first one is purely erasing, the second one is both erasidgion erasing. A key
feature of the introduction of slices is precisely to sefmthe erasing aspect of the
(&/@®;) reduction step (taken into account by ttée; /®;) steps withi # j) from its
non erasing aspect (taken into account by(the/&;) steps).

For this reason the standardization theorem for full LL carcbrrectly stated only
for sliced pure structures (as we did in Theor€1#) and not for nets.

Another attempt to prove SN for LL (in presence of the addgjvis contained in
Okada’s work L8]. The method proposed is to use phase semantics, which wedks
for WN, but for SN the same problem as ifj prises (the proof of the standardization
theorem), and we have to mention here that (like i@y {fhe way Okada argues on
this point cannot be considered as convincing (the authosélif uses the expression
“Sketch of proof”). Indeed:

1. Okada claims that (in certain circumstances) i /' and the reduced cut is
of type(!/!) andif 3’ € SN, theng € SN (“Sketch of Proof” of lemma 6.6 p.364
case (4) of 18]). Of course (like Theorem 4.25 p.72 df]] the statement above
is true since eventually all nets turn out to be strongly redizable. However,
the author claims that it is possible to “simulate” any retthresequence of by
a reduction sequence of. This is as difficult as proving standardization, and
it is the motivation for theéoreme 8.31 p.64 @] in order to solve the problem
Danos had to make the first very sharp analysis of the regnitife induced by
LL cut-elimination (in particular he had to prove conflueficeMELL);

2. in presence of the additivesvary “restricted” cut-elimination procedure is de-
fined (see the &-box entering rule” of p.373 of1[8])%, so that even in case
the proof were considered convincing (and we believe it Ehdube) it would
still be incomplete. With respect to this restricted pragedhe extension to the
additives is analysed (“Sketch of Modified Proof of lemma’ §.879 of [18]).
Actually, Okada'’s restriction is a way to eliminate the insic difficulty of the
(ccad) reduction step: in the present paper we found a way to keejpat@m
this step in presence of all the other LL connectives.

5.3. Slicing nets

Let us come back to the proof 8N for nets. We hinted in Subsectidnl that
the SN of a net is related to theN of the sps “associated with” that net. Indeed, a
net 5 can beslicedin an spssl(3) which has the same number of conclusionsias
(an example is given in Figur2l). Following [7] we definesl(8) by induction on a
sequentialization of:3!

300kada’s procedure does not always allow to reduce all cgsetare proof-nets with cuts to which the
procedure cannot be applied.

31The procedure délicing is actually independent from the chosen sequentializatiwhit can be applied
also to non-sequentializable proof-structures (468 .[

53



Figure 21: An example of slicing a net

e if §is anaz-link (resp.1-link, T-link), thensl(3) has only one slice, consisting
of anaz-link (resp.1-link, T-link);

e if §is a&-link [ with associated left (resp. right) componghiresp.3”), then
sl(B) is obtained by adding &;-link (resp. &-link) to every slice ofsl(3’)
(resp.sl(8”)) and by taking the union of these multisets of slices (wit &p-
propriate equivalence on the conclusions, see Defingi@h

e if Jis al-link [ with associated net’, thensl(3) has only one slice consisting
of al-link corresponding t@ and s.t. with that link is associatet{5’);

e if a conclusion of3 is conclusion of &-link (resp. of al -, ®;-, Tw-, 7d-, 7c-
link) , let 3’ be the subnet gf obtained by erasingj(and its conclusion), then
sl(B) is obtained by adding to every slice €@f5’) the 2-link (resp. L-, ®;-,
?w-, 7d-, ?¢-link) corresponding t@;

if a conclusion of3 is conclusion of &/- or 3-link [, let 3’ be the subnet off
obtained by erasing(and its conclusion), thesi(5) = sl(5');

if 3 is the union of two disjoint subnet$, 3” and of ag-link (resp. cut), then
sl(B) is obtained by connecting every slicesdfs’) and every slice ofl(5”) by
means of thex-link (resp. cut) corresponding {qand by defining the appropri-
ate equivalence on the conclusions, see Defini2i@h

We first note that the slicing of a net is switching acyclic:

Proposition 5.1. If 3 is a net, therl(3) satisfiesAC.
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PROOF By the correctness criterion for nets (s€g[R4]) and the definition ofl. [

Remark 5.2. If 3is anet, then by Propositidn1sl(5) is deadlock free. Furthermore,
a net is typed by second order LL formulas (remember Figdyewhich implies that
sl(B) is also clash free. This means that every cutl@$) is reducible, and thad(5)

is a normal sps iffl(3) is cut free (which is not the case for general sps).

Then we turn to the crucial point: the cut-elimination ofsiean be simulated by
that of its slicing, i.e. the following diagram commutes

ﬂ cut /8/

bk
sl(8) = s1(9)

An example of this simulation is given in Figue®. The reader should notice that

a sequence of steps of typecad) or (v/3) (denoted by°“™/*".) is “invisible” in

sps: this might be a problem to derigec SN from sl(3) € SN, but actually it isn’t
thanks to Lemm&.5.

We actually have something more than a simulation propegta(l that (5’) refers
to the result of reducing a cuain 3’, Definition2.12):

Lemma 5.3 (Simulation). Let¢ be a cut link of a nefs. If ¢ is of typeccad or V/3,
thensl(3) = sl(t(3)); otherwisesl(3) < sl(t(8)).

PrROOF Straightforward, by inspection of cases. O

We now want to prove that there is no infinite sequence of réalusteps of type

(ccad) or (¥/3), and we use for this purpose (a straightforward variantraf)separa-
tion property proven in4:
Lemma 5.4. Let3 be a net. If3 {ocad)V/3, B andl}, I, are two (different) residué$
in 5" of a&-link [ of 3, then there exists &-link m’ of 3’ whichseparates; and/},
i.e.l] (resp.l}) is a link of the componerit(resp.j) of m’ andi # j (in particular, I}
cannot be a link of a componentif nor the converse).

PrROOF By induction on the length of the reduction sequeﬂcéc% 3, see p4].
O

Lemma 5.5. There is no infinite sequence of reduction steps of fypad) or (V/3)
starting from a net.

32\Ve refer here to the obvious adaptation to nets of the notisnduced in Definitior2.14for sps.
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PROOF. Let us define thedditive depthof a link [ of a netg as the number of:-
components of} containingl, and the additive depth g¥ as the maximal additive
depth of its links.

The separation property (Lemndad) implies that for every net which contains

n &-links, if 8 (ccad)¥/3x, 3, then the additive depth @f is at mostn. This allows
to define a size on everfgcad), (V/3)-reduct of 3: consider thex-tuple whose*”
component is the number of links of the net having additivetldé, and order these
n-tuples lexicographically. It is easy to show that this sheinks at everyccad) or
(V/3) step: suppose thﬁm B 5 p". If xis (¥/3), then at some (additive)
depth0 < i < n the number of links of3” is strictly less than the number of links of
depthi of 3, and for eveny) < j # i < n the number of links of depthin 8’ and3”
is the same. Ik is (ccad), then let; be the depth of thé&-link I’ of 5’ playing the role
of the link! in the (ccad) step of Figurel9: at depthj < i the number of links ofs’
andg” is the same, at depththere are strictly less links i’ than ing3’, so that also
in this case the previously defined size shrinks. d

We can conclude the subsection with the expected result:
Proposition 5.6. Let 3 be a net. I&1(3) € SN thens3 € SN.

PrROOF Immediate consequence of lemm&atdand5.5. O

5.4. Strong normalization for nets

Finally we prove thatl(3) € WN™¢, for every netd (Theorem5.11). Here we
need Girard’s reducibility candidates. We give the palticdefinition of reducibility
candidates (Definitio.10 required to prove Theoref 11, and then we just sketch
the proof of the theorem, which is standard aftér [

Definition 5.7. A term of typeA is a nets together with a distinguished conclusion
which is labelled byA. If 3 (resp.3’) is a term of typed (resp.A'), we denote by
CUT(B, 8) the net obtained by connectilgands’ by means of a cut with premises
the two distinguished conclusions A~.

Definition 5.8 (duality). Let X be a set of terms of typd; we defineX* as follows:
X+ = {# s.t.3 term of typeA* and sl(CUT(8, 3')) € WN™° for every3 € X }

Proposition 5.9. Let X be a set of terms of typé:

1. if X contains the axiom link with conclusioh A+, then for every3 € X one
hassl(3) € WN™¢;

2. if for every3 € X one hassl(3) € WN™°, then X+ contains the axiom link
with conclusion4, A+,

PrROOE Immediate from the definitions. O
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Definition 5.10 (reducibility candidate). A reducibility candidate of typel is a set
X of terms of typeA s.t.:

1. X #0;
2. foreverys € X, one hasl(8) € WN™;
3. X =X+t

Theorem 5.11 WN° theorem). If 8 is a net, theml(3) € WN°.

PrRoOOF Girard’s proof of Theorem 4.267]) works perfectly if one substitutess“is
SN” with “sl(8) € WN™". We just give here the idea of how to adapt the original
proof. In what follows we use the notations and definitionf/pf

Let 5 be a net with conclusion€ (whereC = C4,...,C, is a sequence of LL
formulas), we prove that is reducible which means that the following holds (see Def-
inition 4.26.8 of []): leta (= ay, . . ., a,,) be the list of all free variables &, then for
every sequence of formul® (= B, ..., Bn,), every sequencX (= X1,...,Xn)
of reducibility candidates of typeB and every sequence of termg= t1,...,t,)
in RED(C* [X/a]) (see Definition 4.26.6 of7]), one hassl(CUT(3[B/a];t)) €
WN™. The netCUT (3 [B/a] ; t) is obtained by:

e substituting ing the free variablesa,, .. ., a,, with the formulasBy, ..., B.,:
this yieldss [B/a]

e given a term; € RED(C;* [X/a]) for every conclusiorC; [B/a] of 5 [B/a],
cutting all thet; with 3 [B/a].

The proof thatsl(CUT (8 [B/a];t)) € WN™° is by induction on a sequential-
ization of 3, hence it splits in16 cases (the number of rules of Lluz, cut, ®,
1L, %, L, & T, @1, @, !, 2w, 7d, ?c, V2, 3?). In every case, we have to prove
thatsl(CUT(6[B/a] ; t)) € WN™® whatevert; ¢ RED(C;* [X/a]) has been se-
lected. However, a simplification is often useful (and poigdi for example in case
C;t = A ® B one needs to prové(CUT(3[B/a];t)) € WN™ only for thoset;
belonging toRED(C;* [X/a]) and such that; can be obtained by performingsa
link between somé! € RED(A [X/a]) and some? € RED(B[X/a]). We shall
use this simplification in the sequel of the proof. We consaidy two cases: thé&-
and!-cases, which show how works our version of reducibilitydidates. Since the
substitutions play no active role but make everything hartetad (and to write), we
shall not indicate them (thus working withED(C+), etc...). We also use the fact that
by definition of RED (see Definition 4.26.6 of7]), one haRED(C+) = RED(C)*.

&-case: 3 is obtained froms; and 32 by the &-box in Figurel8. After simplifi-
cation, we see that we have to check tHa€CUT(5; c, ®:t)) € WN and
sI(CUT(B; ¢, dau)) € WN™ for anyc € RED(C)*, t € RED(A)+, and
u € RED(B)*. By induction hypothesisl(CUT(8;;c,t)) € WN™ and
sl(CUT(B2;¢c,u)) € WN™ for anyc € RED(C)+, t € RED(4)+, and
u € RED(B)*. Sinceu can be chosen as an axiom, by Proposiiddwe de-
duce thasl(CUT(f32; c)) € WN°. Since by Definitiorb.10the slicing of every
element of a reducibility candidateW§N ¢, we also havel(®t) € WN™°.
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Consider nowsl(CUT(8; ¢, ®1t)) = o = o1 + 02, Whereoy (resp.os) is
the multiset of the slices dfUT(S3; c, ®1t) which contain the componesy

(resp.3;) of the &-box. Notice thatr; LZYAN sl(CUT(B4;¢,t)), hencer; €

WN™®. But pay attention that we cannot yet infer that als& WN™°, be-
cause for reducing to sl(CUT(f;;c,t)) we should perform severék,/®1)
reductions, which are erasing. Nevertheless we deducerthatWN ° since
sl(CUT(f2;¢)) € WN™° andsl(®,t) € WN° ando, is obtained by con-
necting every slice ofl(CUT(82; ¢)) and every slice ofl(¢1t) by means of a
(&2/1) cut link. We conclude thal (CUT(53; ¢, ®1t)) € WN .

For symmetric reasonsl(CUT(8; ¢, ®au)) € WN .

l-case: 3 is a!-link with conclusionslA4, 7C4, ..., ?C,, whose associated box is the
nets’. The induction hypothesis is thalf CUT(5"; c,t)) € WN ™ forall c €
RED(?C)* andt € RED(A)+; and we want to conclude tha{ CUT(5; c, u))
€ WN™ forall c € RED(?C)* and for allu in RED(!4)L. Now, it is easy to
show that we can make a simplification on the whole sequencamely that
is of the form!d, ford € RED(C)*. By several!/!) reduction steps we reduce
CUT(B; c,u) to CUT (! CUT(5'; ¢), u), wherel CUT((’; c) is the net consist-
ing in a!-link with conclusion! A, whose associated box is the G&7T(3’; c)
with conclusions4. Now, by induction hypothesi€UT(5’;c) € RED(A),
hencd CUT((’;c) € |RED(A) C RED(!A). Sosl(CUT(! CUT(8';¢c),u)) €

WN"®. Finally, sincesl(CUT(8;c,u)) 2% sI(CUT(ICUT(F:c),u)), we
conclude thagl(CUT(3; c,u)) € WN™™ .

We can eventually conclude:
Theorem 5.12 6N theorem). If 3 is a net, therg € SN.

PrROOF If § is a net, thersl(3) satisfiesAC (Proposition5.1) andsl(5) € WN™°
(Theorem5.11). We can then apply Theoreth?2 and prove thatl(3) € SN, from
which we conclude that € SN (Propositiorn.6). O
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