
A Denotational Semantics for the

Symmetric Interaction Combinators

Damiano Mazza

April 25, 2006

Abstract

The symmetric interaction combinators are a variant of Lafont’s interac-
tion combinators. They enjoy a weaker universality property with respect
to interaction nets, but are equally expressive. They are a model of de-
terministic distributed computation, sharing the good properties of Tur-
ing machines (elementary reductions) and of the λ-calculus (higher-order
functions, parallel execution). We introduce a denotational semantics for
this system, inspired by the relational semantics for linear logic, proving
an injectivity and full completeness result for it. We also consider the al-
gebraic semantics defined by Lafont, and prove that the two are strongly
related.

1 Introduction

Interaction nets [Laf90] are a model of distributed deterministic computation.
Based on graph-rewriting, they can be seen as a generalization of multiplicative
linear logic proof-nets [Gir87b, DR89, Laf95].

Interaction nets are interesting for several reasons:

• They are highly expressive: Turing machines, cellular automata, and a
number of word or term rewriting systems can all be seen as special in-
stances of interaction nets. By this we mean more than just the existence
of some (maybe impractical) encoding: in many cases, interaction nets
are able to “implement” a computational model preserving its fundamen-
tal properties (like sequentiality, parallelism, complexity, etc.).

• They have been shown to be the “true” syntax underlying Girard’s Geom-
etry of Interaction [Gir89, GAL92]. This is potentially of great theoretical
interest, since the geometry of interaction is a semantics which attempts
to give a mathematical meaning to the execution of a program, rather
than just to its final result; therefore, it may offer a powerful instrument
to study the dynamics of computation, like its complexity, etc.

• Their logical roots facilitate the task of finding sensible type disciplines,
which help in building programs and proving their soundness.

• From a more applicative point of view, they can be seen as a program-
ming paradigm, and can be turned into a practical programming language,

1

in which important properties (like deadlock-freeness) are automatically
checked through similar techniques to those used in linear logic (i.e., cor-
rectness criterions).

Among all interaction net systems, the interaction combinators [Laf97] stand
out as particularly interesting, because they are universal, in the sense that all
other interaction net systems can be “compiled” in them; again, this compila-
tion process preserves the basic properties of parallelism and complexity of the
original system.

As a consequence, the interaction combinators can be seen as a computa-
tional model of their own, combining in some sense the good properties of Turing
machines (local execution, transitions of elementary complexity, strong deter-
minism) with those of the λ-calculus (higher-order functional programming,
possibility of “parallelizing” the execution).

From this it would appear that studying a denotational semantics for the
interaction combinators may be, at least in principle, as interesting as studying
the denotational semantics of the λ-calculus. And yet to this day there have
been very few efforts in this direction; the only work dealing directly with the
semantics of the interaction combinators is Lafont’s original paper, in which
a path semantics for nets of combinators is introduced, and an interpretation
in terms of stack automata is given. Another contribution of semantical flavor
is that of Maribel Fernández and Ian Mackie [FM03], in which the fundamen-
tal operational equivalences for the interaction combinators are obtained as an
application of more general results.

Our work aims precisely at deepening the semantical study of the interac-
tion combinators. In a previous paper [Maz06], we have analyzed the notion of
observational equivalence for nets of combinators. A congruence analogous to
βη-equivalence is defined, and an internal separation result similar to Böhm’s
Theorem is proved for it. This paper takes this result as a basis for develop-
ing a denotational semantics, i.e., we find a mathematical structure in which
βη-equivalence becomes an equality.

More precisely, our semantics is inspired by the relational semantics for linear
logic: nets are interpreted as subsets of a certain domain D, called interaction
sets, which do not need to have any particular structure apart from the existence
of two bijections between D ×D and D itself, verifying a certain condition. As
expected, this semantics is proved to be injective with respect to βη-equivalence,
i.e., two nets are βη-equivalent if and only if they have the same semantical
interpretation. Moreover, we prove a full-completeness result with respect to a
certain class of subsets, called balanced, which is reminiscent of a similar result
proved by Michele Pagani for multiplicative proof-nets [Pag06].

We also consider interaction sets with a minimum of algebraic structure,
namely that of a monoid. These structures, called interaction monoids, have
the property of naturally inducing an algebraic semantics for the combinators,
which is a model of the geometry of interaction described by Lafont. In this
semantics, a net µ is interpreted as a pair of monoid endomorphisms (u, σ),
where σ = 0 (the everywhere-zero endomorphism) means that µ is in normal
form. In case σ 6= 0, and if µ does have a normal form, the endomorphism
interpreting it can be computed by means of an execution formula Ex(u, σ).

The denotational and algebraic semantics are tightly connected to each
other: we prove in fact that, if µ is a net admitting a normal form, given (u, σ),

2

the denotational semantics of µ is equal to the submonoid of the fixpoints of
Ex(u, σ); conversely, the denotational semantics of µ defines the endomorphism
interpreting its normal form.

There is an important technical point which must be clarified though: the
semantics we discuss here does not deal with the interaction combinators, but
with a slightly different variant, which we call the symmetric combinators. This
interaction net system, also introduced by Lafont [Laf97], is not universal in
the same sense of the interaction combinators, but is just as expressive. In
particular, every application of the interaction combinators found so far (for
instance Mackie and Pinto’s encoding of linear logic and the λ-calculus [MP02])
can be reformulated with virtually no change using the symmetric combinators.
Of course also our work mentioned above on observational equivalence applies
mutatis mutandi to this system.

By the way, the symmetric combinators are tightly connected to the directed
combinators [Laf97], which are an extension of multiplicative linear logic proof-
structures, and may therefore have interesting logical properties.

Contents of the paper. Section 2 contains the introductory material nec-
essary to develop the rest of the paper. The exposition is as self-contained as
possible, so even a reader completely unfamiliar with interaction nets should
be able to follow the technical contents. In particular, in Sect. 2.4 we give an
explicit proof of the expressiveness of the symmetric combinators, by encoding
the SK combinators in them, and in Sect. 2.5 we briefly recall the main results
of the above mentioned paper [Maz06], which we use later in one of our proofs.

Section 3 is the heart of the paper, and contains the definition of our denota-
tional semantics, together with the injectivity and full completeness proofs. In
Sect. 4 we introduce interaction monoids, and develop the algebraic semantics
described in Lafont’s original paper, proving the relationship between this and
our denotational semantics.

Section 5 concludes the paper with a discussion on the technical reasons
behind our choice of the symmetric combinators instead of the “standard” in-
teraction combinators, and gives some hints on future work.

2 The symmetric interaction combinators

2.1 Cells, wires, nets

The symmetric interaction combinators, or, more simply, the symmetric combi-
nators, are the three following cells:

δ ε ζ

Each cell has a number of ports; δ and ζ have three, ε has only one. The
fundamental property of cells is that exactly one of their ports is principal
(drawn at the bottom in the above graphical representation), the others being
auxiliary.

The auxiliary ports of the two binary combinators are ordered; to distinguish
them, we call one the left port and the other the right port. Of course it is

3

arbitrary which one is “left” and which one is “right”, as long as the convention
is set once and for all. In this paper, we use this terminology in reference to
the picture above: when cells are drawn like this, left ports are actually on the
left, and right ports actually on the right. Notice however that if a cell is drawn
“upside-down” with respect to the above representation, its left port will be on
the right of the picture, and vice-versa.

Ports may be used to plug cells1 together by means of wires to form nets,
as in the following example:

δ

δ ζ ζ

ζ

ζ

δ

ε

ε

ε ε

Wires can have one or both of their extremities not connected to any cell, in
which case the net has a free port, principal or auxiliary (or neither) depending
on the nature of the port of the cell connected to the other extremity of the
wire. The net above has for example 7 free ports, of which 1 is principal and 4
are auxiliary. The free ports of a net are referred to as its interface. The set of
all ports of all cells contained in a net µ, with the addition of its free ports, is
denoted Ports(µ).

2.2 Interaction rules

The distinction between principal and auxiliary ports comes into play when
defining the dynamics of nets. As a matter of fact, when two cells are connected
through their principal ports, they form an active pair, and they may be replaced
by another subnet according to the appropriate interaction rules.

There are six interaction rules, one for each possible active pair. Interaction
rules are divided into two groups: the annihilations, describing what happens
when two cells of the same kind form an active pair, and the commutations,
describing what happens if the active pair is composed of two cells of different
kinds.

If we put α ∈ {δ, ζ}, the six rules can be condensed into four basic schemes:
the annihilations

→
ε

ε

→

α

α

and the commutations
1Here, and all throughout the rest of the paper, we shall make systematic confusion between

cells and occurrences of cells.

4

→
ε

α

ε ε→

ζ

ζ ζ

δ δ

δ

When a net µ′ is obtained from µ after the application of one of the above
rules, we say that µ reduces in one step to µ′, and we write µ → µ′. We can
then define the reduction relation →∗ as the reflexive-transitive closure of →.
We write µ 'β µ′ iff there exists µ′′ such that µ →∗ µ′′ and µ′ →∗ µ′′.

Notice that interaction rules are purely local; if we add to this the fact that
cells have exactly one principal port, we immediately obtain

Proposition 1 (Strong confluence) The relation → is confluent, i.e., if
µ, µ1, µ2 are distinct nets such that µ → µ1 and µ → µ2, then there exists
µ′ such that µ1 → µ′ and µ2 → µ′.

Proposition 1 means that the reduction process, i.e., the relation →∗, is strongly
confluent. Confluence implies that 'β is an equivalence relation, and that the
system is deterministic in the sense that each net has at most one normal form.
Strong confluence reinforces this determinism, because it implies that also the
computation is unique, up to permutation of rules.

We remark here a substantial difference with respect to the λ-calculus, which
is the absence of a meaningful concept of strategy, at least as far as the efficiency
of reduction is concerned. All reductions leading from a net to its normal form
have the same length and require the same work; in particular, if a net is
normalizable, then it is strongly so.

2.3 Basic nets

Vicious circles and cut-free nets. A net may contain configurations which
cannot be removed through interaction, like

ζ

ζ

ζ

ζ

in which clearly no cell can interact first (there is a sort of deadlock). The
following case is yet simpler:

Deadlocked configurations like those above are called vicious circles.

5

Definition 1 (Straight path) Let µ be a net, let i, j ∈ Ports(µ), and let p be
a path from i to j in the graph-theoretical sense. We say that p is straight
iff whenever p enters a cell through one of its auxiliary ports, it exits it by its
principal port, and whenever p enters a cell through its principal port, it exits it
by one of its auxiliary ports.

Notice that the last requirement implies that a straight path can never “bounce
back” out of an ε cell.

Definition 2 (Vicious circle) A vicious circle is a cyclic straight path never
crossing two principal ports in a row.

A net containing no active pair and no vicious circle is said to be cut-free.2 A net
admitting a cut-free form through reduction (necessarily unique by confluence)
is said to be total.

Cut-free nets are the “true” normal forms of the reduction; they can be seen
as the final result of a computation. On the other hand, non-total nets represent
error-bound computations, either diverging or leading to a deadlock.

Wirings. A net containing no cells but just wires will be called a wiring. We
shall represent the generic wiring as

ω

. . .

The following is an example of wiring:

We also allow the free ports of a wiring to belong to ε cells, in which case we
speak of an ε-wiring and we use the notation ω̃. The following is an example of
ε-wiring:

ε ε

Trees. Trees are defined inductively as follows. The wiring

is a tree with one leaf (it is arbitrary which of the two extremities is the root
and which is the leaf). If τ1 and τ2 are two trees with resp. n1 and n2 leaves,
then we can define a tree τ with n1 + n2 leaves as

2Lafont uses the term reduced ; we use cut-free because it makes sense (even though there
is no room for explanations here) to say that vicious circles actually hide irreducible logical
cuts.

6

τ

τ1 τ2

α

=

. . .

.

where α ∈ {γ, δ}.
It is not hard to verify that any cut-free net ν with n free ports can be

decomposed in terms of trees and ε-wirings as follows:

ω̃

τ1 τn
. . .

.

. . .

ν =

Principal nets, tests, packages. A principal net of arity n is either a single
wire (in which case n = 1), or a cut-free net with n free auxiliary ports and 1
free principal port. If n = 0 (resp. n = 1), we say that the net is a package (resp.
a test). Principal nets can be seen as “compound” cells, and will be drawn just
like ordinary cells.

Notice that trees are special examples of principal nets. A particular family
of principal nets of arity n ≥ 0, the members of which are denoted Zn, and
which are trees for n ≥ 1, is defined as follows:

=Z0 ε

Zn

ζ

. . .

Zn+1

. . .

=Z1 =

The reader can check that Zn trees have the following annihilation property:

Zn

→∗

. . .

. . .

. . .

. . .

Zn

2.4 Expressive power

In spite of their great simplicity, the symmetric combinators are Turing-
complete. This is a consequence of the following more general result:

Theorem 2 (Universality, Lafont [Laf97]) Any polarized interaction net
system can be translated into the symmetric combinators.

7

The symmetric combinators are a particular example of non polarized interac-
tion net system; their polarized version is what Lafont calls the directed combi-
nators [Laf97].

The definition of generic and polarized interaction net systems, and of trans-
lation from an interaction net system to another are beyond the scope of this
paper. To understand the amplitude of Theorem 2, it is enough for the reader to
know that Turing machines, one-dimensional cellular automata, the SK combi-
nators, linear logic proof-nets and the λ-calculus can all be seen as polarized in-
teraction net systems (for the latter two, see for example Lafont’s survey [Laf95],
the work of Ian Mackie and Jorge Pinto [MP02], and the work of Sylvain Lippi
[Lip02]).

Even though Theorem 2 will not be proved here, and its meaning left to the
intuition of the reader, we shall nevertheless give a direct proof of the expressive
power of the symmetric combinators. As a matter of fact, in the remaining part
of the section we shall see how the call-by-name SK combinators can be encoded
inside this system.

First of all, let us introduce a fundamental construction due to Lafont
[Laf97]. Take a generic package π containing n δ cells; we can always write
π as

δ δ
. . .

π′

=π

where π′ contains no δ cell. We want to “abstract” the δ cells contained in π,
forming a package !π which does not contain δ cells, but from which π can be
recovered.

Using the notations introduced above, we define

Zn Zn

Zn

. . .

.

. . .

π′

=∂π

Then, we put

8

Z4

δ

!π

∂π

= =
Z4

D

The reader can check that we have

!π

D

π→∗

The package !π is called the code of π, and the principal net D is called the
decoder.

The following lemma is not hard to prove:

Lemma 3 (Erasure and duplication) Let π be a package, and π′ a package
containing no δ cells. Then, we have

π′

π′ π′→∗

δ

π

ε

→∗

As a consequence, a package of the form !π can be erased and duplicated.
Now we build the two packages

Z3

D ε

=K

and

9

S

δ

Z4

Z4

Z4

ζ

ζ

ζ

D

=

and we define the translation [·] from strings of SK combinators to nets:

[K] = K [S] = S [xy]

[x]

![y]

ζ=

If x, y are strings of SK combinators, we write x Â y if x reduces to y through
call-by-name reduction. For example, K(KSK)S Â KSK, but K(KSK)S 6Â
KSS.

The translation defined above has the following property:

Theorem 4 Let x, y be strings of SK combinators. Then, x Â∗ y implies
[x] →∗ [y].

Proof. It is enough to check that, for all expressions x, y, z,

[Kxy] →∗ [x]

and
[Sxyz] →∗ [xz(yz)].

The first verification is easy and is left to the reader; Lemma 3 is needed for
erasing. Here we shall concentrate on the second, which is more complex.

We have

10

ζ

ζ

ζ

=
Z4

![x] ![y] ![z]

S

![x] ![y] ![z]

S

=[Sxyz]

The Z4 tree annihilates with the Z4 tree contained in S (see p. 7), and we obtain

δ

Z4

Z4

ζ

ζ

ζ

D

![z]

![x]

![y]

Now the decoder extracts [x] from its code, and by Lemma 3 the code of [z] is
duplicated, so we get

11

Z4

![z]

![z]

[x]

Z4

ζ

ζ

ζ

![y]

At this point, the “topmost” Z4 tree annihilates with the Z4 tree inside ![y],
and we are left with

Z4

![z]

![z]

[x]

ζ

ζ

ζ

∂[y]

Remember that ![z] does not contain any δ cell; this means that

![z]

ζ∂[yz]

∂[y]

=

Therefore, the last net obtained is indeed equal to [xz(yz)]. ¤

2.5 Observational equivalence

In a recent work [Maz06], we have shown that there is a notion of observational
equivalence for the symmetric combinators3 which can be defined directly on

3Actually our results were originally formulated for the interaction combinators, but they
apply without any problem to the symmetric combinators.

12

the syntax, and which is maximal on total nets with at least one free port.
We define the relation 'η as the reflexive, transitive, and contextual closure

of the following equations:

ζ

ζ ζδ δ

δ

'η

α

'η 'η

ε ε

α
ε

α

As usual, α ∈ {δ, ζ}. The above rules where already known to Lafont (top-right
and bottom [Laf97]) and to Fernández and Mackie (top-left [FM03]). What
is interesting is that they define an equivalence relation which is much like
η-equivalence in the λ-calculus (this is the reason behind our notation).

We define 'βη as the transitive closure of 'β ∪ 'η. Let θ be a test (principal
net of arity 1) and π a package; we can form a net µ with one free port by
plugging π into the only free principal port of θ (or to any free port if θ is a
wire). If µ is total, we write θ[π] for the cut-free form of µ.

In the following, ε stands for the package consisting of the sole ε combinator,
while δ stands for the the package containing one δ cell whose auxiliary ports
are connected by a wire.

Theorem 5 (Internal separation [Maz06]) Let π, π′ be two packages such
that π 6'βη π′. Then, there exists a test θ such that θ[π] = ε and θ[π′] = δ, or
viceversa.

The above result, similar to Böhm’s Theorem for the λ-calculus, is of funda-
mental importance for the theory of observational equivalence. In particular, it
implies the following:

Proposition 6 (Maximality) 'βη is the greatest non-trivial congruence on
total nets respecting reduction, i.e., if ≈ is a congruence on total nets such that
'β⊆≈, then either ≈⊆'βη, or µ ≈ µ′ for all total nets µ, µ′ with the same
number of free ports.

Proof. Suppose that ≈6⊆'βη. This means that there exist two total nets µ, µ′,
both with n ≥ 1 free ports, such that µ ≈ µ′ but µ 6'βη µ′. First of all, take any
tree τ with n leaves and build the packages π, π′ by “closing” resp. the cut-free
form of µ and µ′. Since ≈ is a congruence, we have π ≈ π′; moreover, it can be
proved that just adding a tree “below” µ and µ′ does not alter their differences
with respect to 'βη, so we still have π 6'βη π′. Therefore, Theorem 5 applies,

13

giving us a test θ such that, for example, θ[π] = ε and θ[π′] = δ. Since ≈ is a
congruence, and since 'β⊆≈, ε ≈ δ. But then consider the principal net

Zm Zm
.

ν

δ

=ν′

where ν is any total net with m ≥ 1 free ports. If we plug ε into the only free
principal port of ν′ we obtain a net which is β-equivalent to a net consisting
of m ε cells, which we call εm; on the other hand, if we do the same operation
with the package δ, we obtain a net β-equivalent to ν. Hence, again by the fact
that ≈ is a congruence containing 'β , for any total ν with m ≥ 1 free ports,
ν ≈ εm; by transitivity of ≈, we get the thesis. ¤

The results of this section will guide us in our search for a denotational
semantics for the symmetric combinators. In fact, once a good observational
equivalence like 'βη is found, the goal of denotational semantics can be seen as
the individuation of a mathematical structure in which 'βη becomes an equality.

3 Denotational semantics

As already recalled, interaction nets are a generalization of multiplicative proof-
nets. Thus, in seeking a denotational semantics for the symmetric combinators,
it seems natural to draw inspiration from linear logic.

The simplest denotational semantics of linear logic is the relational seman-
tics4, which in the multiplicative case is obtained from coherent spaces by simply
ignoring the coherence relation: a formula A is interpreted by a set |A|, and a
proof of A by a subset of |A|; no particular structure is attached or required
on |A|. In categorical terms, the denotational interpretation takes place in the
category Rel of sets and relations.

The denotational interpretation of a sequent calculus proof is, as usual, de-
fined by induction. More interestingly, the interpretation can also be defined
directly on proof-structures (so, in particular, on proof-nets) by means of ex-
periments [Gir87a]. This will be our main source of inspiration, as a sequent
calculus is obviously not available in our framework.

3.1 Companion bijections

The relational semantics of linear logic is typed; in particular, the two multi-
plicative connectives (which are the only ones of interest to us) are interpreted
by the cartesian product : if the formulas A and B are interpreted resp. by |A|

4To our knowledge, relational semantics has not been formally introduced in any particular
work. The best way to see it is perhaps as “coherent spaces without coherence”; it has been
considered by many as the starting point for building other denotational semantics of linear
logic (semantics = relational semantics + structure), as for example in the work of Ehrhard
[Ehr05].

14

and |B|, then A ⊗ B and A � B are interpreted by |A| × |B|. Our nets are
not typed, which means that if we see our binary combinators as multiplicative
rules, the natural thing to do would be to consider a set D in bijection with
D ×D, i.e., any infinite set.

The presence of two combinators actually requires two bijections, and the
δζ commutation inspires the following:

Definition 3 (Companion bijections) Let D be an infinite set and

〈·, ·〉, [·, ·] : D ×D → D

two bijections. 〈·, ·〉 and [·, ·] are said to be companions iff, for all a, b, c, d ∈ D,

〈[a, b], [c, d]〉 = [〈a, c〉, 〈b, d〉].

Companion bijections do exist, as proved by the following example. Let A
be any infinite set, and let β : A×A → A be a bijection. We denote by S(A)
the set of all infinite sequences of elements of A. Now define two functions from
S(A)× S(A) to S(A) as follows:

〈d, e〉n =
{

dk if n = 2k
ek if n = 2k + 1

[d, e]n = β(dn, en)

In other words, 〈·, ·〉 takes two sequences and builds a new one by interleaving
them, while [·, ·] simply superposes the two sequences using the bijection β. The
two functions are clearly bijections; moreover, given four sequences a, b, c, d, for
even indexes we get

〈[a, b], [c, d]〉2k = [a, b]k = β(ak, bk) = β(〈a, c〉2k, 〈b, d〉2k) = [〈a, c〉, 〈b, d〉]2k,

and similarly for odd indexes, which proves that the two bijections are indeed
companions.

If A has a distinguished element, which we call zero, the same example
can be built on Φ(A), the set of infinite sequences of elements of A which are
almost everywhere zero. So companion bijections exist on countable sets as
well, in particular on Φ(N), which by the fundamental theorem of arithmetics
is isomorphic to N∗, the strictly positive integers.

3.2 Experiments and interpretation

The previous section suggests the following definition:

Definition 4 (Interaction set) An interaction set is an infinite set D with a
distinguished element 0, admitting two companion bijections 〈·, ·〉, [·, ·] : D×D →
D such that 〈0, 0〉 = [0, 0] = 0.

The examples above show that interaction sets exist; for instance, in Φ(N), 0 is
the everywhere-zero sequence.

In the following, D will be an interaction set.

Definition 5 (Experiment) Let µ be a net. An experiment on µ is a function
e : Ports(µ) → D such that:

15

(a) if i, j ∈ Ports(µ) are connected by a wire, then e(i) = e(j);

(b) if i, j, k ∈ Ports(µ) are resp. the left auxiliary, right auxiliary, and principal
port of a δ cell of µ, then e(k) = 〈e(i), e(j)〉;

(c) if i, j, k ∈ Ports(µ) are resp. the left auxiliary, right auxiliary, and principal
port of a ζ cell of µ, then e(k) = [e(i), e(j)];

(d) if i ∈ Ports(µ) is the principal port of an ε cell, then e(i) = 0.

If k1, . . . , kn are the free ports of µ, with n ≥ 1, the tuple (e(k1), . . . , e(kn)) is
called the result of the experiment and is denoted by |e|.
In the following, we write Dn for D × · · · × D n times.

Definition 6 (Interpretation) Let µ be a net with n ≥ 1 free ports. The
interpretation of µ in D, written JµK, is defined to be the subset of Dn containing
the results of all possible experiments on µ:

JµK = {|e| ; e experiment on µ}.

We can give a few examples to see some concrete applications of the above
definition. Consider the package ε consisting of a single ε cell. There is only one
possible experiment on it, which assigns 0 to the principal port of the ε cell and
to the free port of the package, so JεK = {0}. If we take the package δ consisting
of a single δ cell whose auxiliary ports are connected by a wire, we clearly have
that all possible experiments are of the following form:

δ

d d

〈d, d〉

〈d, d〉

so JδK = {〈d, d〉 ; d ∈ D}. Just as an axiom in linear logic, the net ω with 2
free ports consisting of a single wire is interpreted by the diagonal relation in
D ×D: JωK = {(d, d) ; d ∈ D}. The following is a more involved example:

ζ ζ δ

ε ε〈a, a〉
0 0

[a, 0]

[0, 〈a, a〉]
[〈a, a〉, 0] = 〈[a, 0], [a, 0]〉

In the above picture, a label d on a wire means that the two ports connected
by the wire have both been assigned the element d by the experiment; a is a
generic element of D. We therefore see that, if we call µ the above net, we
have JµK = {[0, 〈a, a〉] ; a ∈ D}. The reader can check that this is also the
interpretation of the following net

16

δ

ζ

ε

which is the cut-free of form of µ.
As a matter of fact, the interpretation is a denotational semantics for the

symmetric combinators, i.e., it is preserved under reduction. Additionally, it
also models 'η.

Lemma 7 Let µ, µ′ be two nets with at least one free port. Then, µ → µ′

implies JµK = Jµ′K.
Proof. We need to show that for any experiment e on µ, there exists an
experiment e′ on µ′ yielding the same result, and vice-versa. Since the rewriting
is local, it actually suffices to show that, for all reduction rules, the assignment
given by the experiment e on the interface of the left member of the rule can be
reproduced by e′ on the interface of the right member, and vice-versa; at this
point e and e′ can be assumed to be equal everywhere else, which guarantees
that the results are the same.

The case of the εε annihilation is trivial: e′ is just e restricted to the ports
which do not disappear after the application of the rule.

The δδ and ζζ annihilations are structurally identical, so we shall only con-
sider the first one:

b′ a′

a b

〈a, b〉
δ

δ

a

a′b′

b

→
〈a′, b′〉

Here, a, b, a′, b′ are generic elements of D. The assignment on the left hand side
must satisfy 〈a, b〉 = 〈a′, b′〉, which by the injectivity of 〈·, ·〉 implies a = a′ and
b = b′, therefore the assignment on the right hand side is correct. The converse
is trivial.

For what concerns the commutations, the δε and ζε commutations are again
structurally identical, so we only need to consider the first one:

b a

δ

〈a, b〉

b a

0
→ ε ε

ε

17

Again, by injectivity of 〈·, ·〉, the requirement on the left hand side that 〈a, b〉 = 0
implies a = 0 and b = 0, so the assignment on the right hand side is correct.
The converse holds because of the hypothesis that 〈0, 0〉 = 0.

On the other hand, for the δζ commutation, we get

ba

b′ a′

δ δ

ζ ζ

a1a2

a′1 a′2b′1 b′2

b2 b1

a b

〈a, b〉
δ

b′ a′

ζ

→
[a′, b′]

In the left hand side we must have 〈a, b〉 = [a′, b′]. By surjectivity of 〈·, ·〉 and
[·, ·], there exist a1, a2, a

′
1, a

′
2, b1, b2, b

′
1, b

′
2 ∈ D such that a = [a1, a2], b = [b1, b2],

a′ = 〈a′1, a′2〉, and b′ = 〈b′1, b′2〉. The above equality and the fact that 〈·, ·〉 and [·, ·]
are companions imply [〈a′1, a′2〉, 〈b′1, b′2〉] = [〈a1, b1〉, 〈a2, b2〉], which by injectivity
of 〈·, ·〉 and [·, ·] in turn implies a′1 = a1, a′2 = b1, b′1 = a2, and b′2 = b2.
Therefore, the assignment defined above for the right hand side of the rule is
correct. Conversely, if we know from the right hand side that a′1 = a1 = c1,
a′2 = b1 = c2, b′1 = a2 = c3, and b′2 = b2 = c4, we have a = [c1, c3], b = [c2, c4],
a′ = 〈c1, c2〉, and b′ = [c3, c4], which means that 〈a, b〉 = 〈[c1, c3], [c2, c4]〉 and
[a′, b′] = [〈c1, c2〉, 〈c3, c4〉]. But since 〈·, ·〉 and [·, ·] are companions, this implies
that 〈a, b〉 = [a′, b′], so the assignment on the left hand side is correct. ¤

Lemma 8 (Extensionality) Let µ, µ′ be two nets with at least one free port.
Then, µ 'η µ′ implies JµK = Jµ′K.

Proof. The proof follows exactly the same argument used for Lemma 7. We
start by considering the η-expansion for δ, the corresponding rule involving ζ
being structurally identical:

δ

δ

a1a2

a′

a a

a′

'η
a′1 a′2

The left hand side imposes a′1 = a1 and a′2 = a2, which implies a = a′. Con-
versely, the right hand side imposes a′1 = a1; by surjectivity of 〈·, ·〉, a1 and a2

such that 〈a1, a2〉 = a exist, so the assignment on the left hand side is correct.
The cases of the δε and ζε commutations are trivial, and rest upon the fact

that 〈0, 0〉 = [0, 0] = 0.
The case of the δζ commutation is also trivial:

18

δ

δ δ

ζ

ζ ζ

'η

b c da b c da

〈[a, b], [c, d]〉 [〈a, c〉, 〈b, d〉]

The two experiments are the same thanks to the fact that 〈·, ·〉 and [·, ·] are
companions. ¤

Lemmas 7 and 8 together prove that our semantics models 'βη, and this
holds for any net. If we restrict to total nets, the internal separation result
stated in Sect. 2.5 (Theorem 5) ensures also the injectivity of the semantics,
i.e., if two total nets have the same interpretation, then they are βη-equivalent.
We first need the following result:

Lemma 9 Let π, π′ be two packages, θ a test, and let µ, µ′ be the nets obtained
by plugging resp. π, π′ into the free principal port of θ. Then, JπK = Jπ′K implies
JµK = Jµ′K.
Proof. An experiment on µ must be the union of an experiment e on π and an
experiment f on θ, such that, if i is the free port of π and j the free principal
port of θ, e(i) = f(j). The same holds for µ′, so we have

JµK = {d ∈ D ; (d, c) ∈ JθK and c ∈ JπK}
Jµ′K = {d′ ∈ D ; (d′, c) ∈ JθK and c ∈ JπK},

from which we clearly see that if JπK = Jπ′K, then JµK = Jµ′K. ¤

Theorem 10 (Injectivity) Let µ, µ′ be two total nets with at least one free
port. Then, µ 'βη µ′ iff JµK = Jµ′K.
Proof. As already said, the implication µ 'βη µ′ ⇒ JµK = Jµ′K is a con-
sequence of Lemmas 7 and 8. For the converse, which is the actual injectivity
property, we can restrict to packages, since:

• total nets containing active pairs can be reduced and their cut-free form
considered;

• cut-free nets with more than one free port can be “closed” by means of
any fixed tree, and the argument below can thus be easily generalized.

So take two packages π, π′ such that π 6'βη π′. By Theorem 5, there exists
a test θ such that θ[π] = ε and θ[π′] = δ (or viceversa, but we do not lose
generality in assuming this situation), where ε is the package consisting of a
single ε cell and δ is the package consisting of a single δ cell with its auxiliary
ports connected by a wire. If we call µ, µ′ the nets obtained by plugging resp.
π, π′ into the free principal port of θ, we therefore have

JµK = Jθ[π]K = {0}

19

Jµ′K = Jθ[π′]K = {〈d, d〉 ; d ∈ D}.
Since D is infinite, clearly JµK 6= Jµ′K, which by Lemma 9 implies JπK 6= Jπ′K. ¤

One may wonder whether injectivity with respect to 'βη can be extended
to non-total nets. The answer is in general negative, as the following example
shows. Let Φ(N) be the space of almost-everywhere-null sequences of natural
numbers. The distinguished element 0 is the everywhere-zero sequence. We
know that Φ(N) admits the two companion bijections defined in Sect. 3.1; in
particular, we recall the definition of 〈·, ·〉:

〈x, y〉n =
{

xk if n = 2k
yk if n = 2k + 1

The result below is not hard to verify:

Lemma 11 〈x, y〉 = x iff y = 0 and x is a sequence such that, for all n ≥ 1,
xn = 0.

Now consider the following non-total net µ:

δx

y

The labels indicate that the generic experiment on µ in Φ(N) assigns the se-
quence x on the left auxiliary and principal ports of the δ cell, and the sequence
y to the right auxiliary port of the δ cell and to the free port of µ. Therefore,
we have

JµK = {y ∈ Φ(N) ; ∃x ∈ Φ(N).〈x, y〉 = x}.
But Lemma 11 proves that the only possible such y is 0, so JµK = {0} = JεK,
where ε is the package consisting of the sole ε combinator. Now, both µ and
ε do not contain active pairs, hence the only hope of rewriting one into the
other is through η-equivalence. But a simple inspection of the η-rules of p. 13
reveals that the presence of ε cells is preserved by 'η: no rule can produce a
net containing no ε cell from a net containing one, and no rule can add ε cells
if there are none. Therefore, µ 6'βη ε, and yet JµK = JεK: this model is not
injective.

By the way, we remark that identifying the net µ above with the ε combinator
is observationally sound. Indeed, if we define a blind net as a net such that all of
its free ports are auxiliary and will never become principal through reduction,
then it is consistent to identify any blind net with n free ports to any net
βη-equivalent to the following:

ε ε

n

. . .

As a matter of fact, the reader can check that they interact in same way. In
particular, this means that Proposition 6 does not hold for generic nets.

20

3.3 Full completeness

If D is an interaction set, even denumerable, for obvious resons of cardinality
not every subset of Dn is the interpretation of some net. In this section we
characterize those that are interpretations of total nets.

In the following, D is a generic interaction set.

Definition 7 (Bracket expression) Let x range over a denumerable set of
variables. A simple bracket expression b is a syntactical expression belonging to
the following grammar:

b ::= x | 0 | 〈b, b〉 | [b, b]

A bracket expression is a tuple of simple bracket expressions.

We denote by var(b) the set of variables occurring in the simple bracket expres-
sion b. We define as usual the substitution of a variable y in place of x in b,
denoted b[y/x]. If x ∈ var(b) and z 6∈ var(b), then we say that b and b[x/z] are
α-equivalent.

Similarly, if B = (b1, . . . , bn) is a bracket expression, we define
var(B) = var(b1) ∪ · · · ∪ var(bn), i.e., variables are shared by the simple expres-
sions in the tuple, and substitution is performed on the whole expression;
α-equivalence is trivially extended, and bracket expressions are always consid-
ered modulo α-equivalence.

If B is a bracket expression containing n simple expressions such that
var(B) ⊆ {x1, . . . , xm}, and if d1, . . . dm ∈ D, we can define an element
B{x1 := d1, . . . , xm := dm} of Dn in the obvious way: just assign each di to xi,
and compute the expression considering the symbols 0, 〈·, ·〉 and [·, ·] as resp. the
distinguished element and the two bijections of D. For example, suppose that
d, e, f are three elements of D such that f = [〈d, e〉, d]; then, if B = [〈x, y〉, x], we
have B{x := d, y := e} = f . In this way, each bracket expression B containing n
simple bracket expressions and a total of m variables defines a function from Dm

to Dn. Because of the obvious shortage of bracket expressions, the assignment
cannot be surjective; it is not injective either, as the expressions 0 and 〈0, 0〉
show (they both represent the constant function 0).

In the following, occx(B) denotes the number of occurrences of the variable
x in the bracket expression B.

Definition 8 (Balanced bracket expression) A bracket expression B is
balanced iff, for any variable x, either occx(B) = 0 or occx(B) = 2. A function
from D2m to Dn is said to be balanced if it can be defined through a balanced
bracket expression containing n expressions using m variables. A set B ⊆ Dn is
called balanced if it is the codomain of a balanced function.

Theorem 12 (Full completeness) If µ is a total net with n ≥ 1 free ports,
then JµK is balanced. Conversely, if n ≥ 1, given a balanced set B ⊆ Dn, there
exists a cut-free net µ with n free ports such that JµK = B.

Proof. Since µ is total, we can consider its cut-free form ν. By Lemma 7,
JµK = JνK; now, if we remember that cut-free nets are trees of δ and ζ cells with
wires and ε cells “on top”, it is clear that the first statement is a straight-forward
consequence of the definition of experiment.

21

For what concerns the converse, let B ⊆ Dn be balanced, and let B be the
bracket expression such that B is the codomain of B. Simple bracket expressions
can obviously be provided with a complexity measure](·), which is the total
number of binary syntactical constructs used:

–](x) =](0) = 0;

–](〈b1, b2〉) =]([b1, b2]) =](b1) +](b2) + 1.

For an expression B = (b1, . . . , bn), we pose](B) =](b1) + · · ·+](bn).
We can then reason by induction on](B). If](B) = 0, knowing that B is

balanced, we can assume w.l.o.g. that B = (0, . . . , 0, x1, x1, . . . , xk, xk). It is
easy to see that if we interpret the net

. . .

k

ε ε

. . .

n′

(where n′ + k = n), we obtain exactly B.
If](B) > 0, then we can assume w.l.o.g. that B = (〈b′1, b′′1〉, b2, . . . , bn)

or B = ([b′1, b
′′
1], b2, . . . , bn). In both cases, the bracket expression B′ =

(b′1, b
′′
1 , b2, . . . , bn) has measure strictly smaller than B, so the induction hy-

pothesis applies, giving us a net µ′ with n + 1 free ports such that Jµ′K is the
codomain of B′. Clearly, adding a δ or a ζ cell (according to the shape of B) to
µ′ yields a net with n free ports µ such that JµK = B. ¤

The above proof actually tells us that, for n ≥ 1, the balanced subsets of Dn

are in bijection with the cut-free nets with n free ports. As an example, take
the balanced sets induced by the expressions [0, 〈x, x〉] and ([0, x], 〈x, 0〉); they
correspond to the following two nets:

δ

ζ

ε ε ε

ζ δ

This is not surprising at all: a balanced expression is just a list of trees, the
connections between leaves being expressed as pairs of occurrences of the same
variable. Therefore, balanced expressions are nothing but an alternative, linear
syntax for cut-free nets.

It must also be mentioned that this full completeness result is very similar to
that proved by Michele Pagani for multiplicative linear logic proof-nets [Pag06];
as a matter of fact, this strengthens the claim that the symmetric combinators
are an extension of multiplicative proof-structures, and may be deeply related
to them.

4 Algebraic semantics

In this section we develop an algebraic semantics for the symmetric combinators,
in the style of Girard’s Geometry of Interaction (GoI) [Gir89], already sketched

22

by Lafont [Laf97]. We do so in connection with the denotational semantics
introduced above, and prove that there is a strong link between the two.

4.1 Interaction monoids

Up to here, we have seen that any infinite set D can serve as the domain for
the denotational semantics of nets of symmetric combinators. We shall see that
it may be of interest to add some algebraic structure to D; the least we can
require is that D is a monoid.

In the following, the composition u ◦ v of two monoid endomorphisms is
denoted simply uv.

Definition 9 (Interaction monoid) An interaction monoid is a commuta-
tive monoid (M, +, 0) admitting eight endomorphisms c, c∗,d,d∗, f , f∗,g,g∗

such that the functions 〈x, y〉 = c(x) + d(y) and [x, y] = f(x) + g(y) are com-
panion isomorphisms between M ⊕M and M , and c∗,d∗ and f∗,g∗ are their
respective projections.

Proposition 13 A commutative monoid (M, +, 0) is an interaction monoid iff
there exist eight endomorphisms c, c∗,d,d∗, f , f∗,g,g∗ of M such that:

1. c∗c = d∗d = f∗f = g∗g = 1, where 1 is the identity on M ;

2. c∗d = d∗c = f∗g = g∗f = 0, where 0 is the everywhere-zero endomor-
phism on M ;

3. cc∗ + dd∗ = ff∗ + gg∗ = 1;

4. c, c∗,d,d∗ commute with f , f∗,g,g∗.

Proof. Let us first prove that Definition 9 implies the four statements above:

1. By definition, for every x ∈ M , c(x) = 〈x, 0〉, and by the hypothesis that
c∗ is the left projection of 〈·, ·〉, we obtain c∗c(x) = c∗(〈x, 0〉) = x. The
same applies to the other annihilations.

2. As above, for every x ∈ M we have d(x) = 〈0, x〉, from which we obtain
c∗d(x) = c∗(〈0, x〉) = 0. The same applies to the other annihilations.

3. From the surjectivity of 〈·, ·〉, given x ∈ M we know that there exist
y, z ∈ M such that x = 〈y, z〉. Then, we have

(cc∗ + dd∗)(x) = cc∗(x) + dd∗(x) = c(y) + d(z) = 〈y, z〉 = x.

The case ff∗ + gg∗ = 1 is identical.

4. To prove that c,d commute with f ,g simply consider that, by the com-
panion hypothesis, for all x ∈ M , 〈[x, 0], 0〉 = [〈x, 0〉, 0], from which
we get cf(x) = fc(x), and 〈[0, x], 0〉 = [0, 〈x, 0〉], from which we obtain
cg(x) = gc(x), and so on.

To prove that c,d commute to f∗,g∗ consider, given a generic x ∈ M , the
(unique) decomposition x = [y, z], so that

f∗c(x) = f∗cf(y) + f∗cg(z) = f∗fc(y) + f∗gc(z) = c(y) = cf∗(x),

23

where we have used point 1 and 2 proved above. The other cases are
handled similarly, as also the commutations between f ,g and c∗,d∗.

To prove that c∗,d∗ commute to f∗,g∗, we consider the same decomposi-
tion above for the generic x ∈ M , and we obtain

f∗c∗(x) = f∗c∗f(y) + f∗c∗g(z) = f∗fc∗(y) + f∗gc∗(z) = c∗(y) = c∗f∗(x),

and similarly for the other cases.

Assume now that the eight endomorphisms verify the four statements above.
The fact that the maps (x, y) 7→ c(x) + d(y) and (x, y) 7→ f(x) + g(y) are
homomorphisms from M ⊕ M to M is obvious; we need to prove that they
are bijective. We shall do it for the first map, the second being structurally
identical.

Suppose that, given x, x′, y, y′ ∈ M , c(x) + d(y) = c(x′) + d(y′); then,
applying c∗ (resp. d∗) to both sides of the equation and using points 1 and
2, we get x = x′ (resp. y = y′), which proves injectivity. For what concerns
surjectivity, by point 3 for any element x ∈ M there exist y, z ∈ M such that
x = c(y) + d(z): just pose y = c∗(x) and z = d∗(x). The fact that c∗,d∗ are
the projections associated to this isomorphism is trivial.

We are left to proving that the two isomorphisms are companions. If we
pose 〈x, y〉 = c(x) + d(y) and [x, y] = f(x) + g(y), using point 4 we have

〈[w, x], [y, z]〉 = cf(w) + cg(x) + df(y) + dg(z) =
fc(w) + fd(y) + gc(x) + gd(z) = [〈w, y〉, 〈x, z〉],

which completes the proof. ¤
If (A, +, 0) is a commutative monoid, then the set S2(A) of all sequences

of elements of A indexed by pairs of non-negative integers is an example of
interaction monoid. Addition is defined pointwise, and the neutral element is
the everywhere-zero sequence; the eight endomorphisms are defined as follows:

c(x)m,n =
{

xk,n if m = 2k
0 if m = 2k + 1 c∗(x)m,n = x2m,n

d(x)m,n =
{

0 if m = 2k
xk,n if m = 2k + 1 d∗(x)m,n = x2m+1,n

f(x)m,n =
{

xm,k if n = 2k
0 if n = 2k + 1 f∗(x)m,n = xm,2n

g(x)m,n =
{

0 if n = 2k
xm,k if n = 2k + 1 g∗(x)m,n = xm,2n+1

from which it is not hard to check that points 1, 2, and 3 of Proposition 13 are
satisfied. For what concerns point 4, just notice that c, c∗,d,d∗ and f , f∗,g,g∗

act on separate indexes, so all operations commute.
To better understand the example, observe that the two isomorphisms de-

fined above build a new sequence by interleaving two sequences; one of them
interleaves them “horizontally”, the other “vertically”. More precisely, our se-
quences being bidimensional, i.e., “sequences of sequences”, in the first case we
consider them as “sequences of columns”, and interleave them horizontally; in

24

the second case, we consider them as “sequences of rows”, and interleave them
vertically.

Notice that the same construction can be applied to almost-everywhere-
null bidimensional sequences; in case A is countable, this yields a countable
interaction monoid.

Interaction monoids are clearly interaction sets (the distinguished element
is the zero of the monoid), so Definitions 5 and 6 can be applied just as they
are, yielding a semantics that interprets a net with n ≥ 1 free ports as a subset
of Mn, where Mn = M ⊕ · · · ⊕M .

Since we are considering monoids, it makes sense to add experiments point-
wise, i.e., given a net µ and two experiments e1, e2 on µ over an interaction
monoid M , we can define the function e1 + e2 from Ports(µ) to M that asso-
ciates to a port i the element e1(i)+ e2(i). One may wonder whether this yields
another experiment; the answer is indeed positive:

Lemma 14 (Additivity) Let µ be a net, and e1, e2 two experiments on µ over
an interaction monoid M . Then, e1 + e2 is an experiment.

Proof. The fact that e1 + e2 respects conditions (a) and (d) of Definition 5 is
obvious. Conditions (b) and (c) are consequences of the fact that our companion
bijections are monoid isomorphisms. For example, in the case of a δ cell, whose
auxiliary and principal ports are resp. i, j, and k, we have

(e1 + e2)(k) = e1(k) + e2(k) = 〈e1(i), e1(j)〉+ 〈e2(i), e2(j)〉 =
= 〈e1(i) + e2(i), e1(j) + e2(j)〉 = 〈(e1 + e2)(i), (e1 + e2)(j)〉.

The case of a ζ cell is identical. ¤
Therefore, if µ is a net with n ≥ 1 free ports, JµK is not just any subset of Mn,
it is a submonoid :

Corollary 15 Let µ be a net with n ≥ 1 free ports, and M an interaction
monoid. Then, the interpretation of µ in M is a submonoid of Mn.

Proof. By the Additivity Lemma 14, the only thing left to verify is that
0 ∈ JµK, which is obvious. ¤

4.2 The GoI semantics

Given an interaction monoid M , we shall now define a semantics which interprets
a cut-free net with n ≥ 1 free ports as an endomorphism of Mn = M ⊕· · ·⊕M .
This is just a reformulation of what already done by Lafont [Laf97], so no proofs
will be given in this section.

In the following, we denote by W the sub-semiring (with unit) of End(M)
generated by c, c∗,d,d∗, f , f∗,g,g∗.

Definition 10 (Weight) Let M be an interaction monoid, µ a net, and p a
straight path of µ (see Definition 1. We define the weight of p in M , which is
an element of W and is denoted w(p), by induction on the length of p:

– p contains just one port: w(p) = 1 (the identity endomorphism);

– p = p′ · i, and the ending port of p′ and i do not belong to the same cell:
w(p) = w(p′).

25

– p = p′ ·i, p′ ends with the left (resp. right) auxiliary port of a δ cell, and i is
the principal port of the same δ cell: w(p) = cw(p′) (resp. w(p) = dw(p′));

– p = p′ · i, p′ ends with the principal port of a δ cell, and i is the left
(resp. right) auxiliary port of the same δ cell: w(p) = c∗w(p′) (resp.
w(p) = d∗w(p′));

– p = p′ ·i, p′ ends with the left (resp. right) auxiliary port of a ζ cell, and i is
the principal port of the same ζ cell: w(p) = fw(p′) (resp. w(p) = gw(p′));

– p = p′ · i, p′ ends with the principal port of a ζ cell, and i is the left
(resp. right) auxiliary port of the same ζ cell: w(p) = f∗w(p′) (resp.
w(p) = g∗w(p′)).

Given a graph-theoretical path, one can always consider its reversal, i.e., the
same path walked from target to source. Notice that the reversal of a straight
path is still straight. The unit semiring W can be equipped with an involution
(·)∗:

• (c)∗ = c∗, (c∗)∗ = c, and similarly for the other generators;

• 0∗ = 0, and for all u, v ∈ W , (u + v)∗ = u∗ + v∗;

• 1∗ = 1, and for all u, v ∈ W , (uv)∗ = v∗u∗.

It is then straight-forward to check the following:

Lemma 16 (Reversal) Let µ be a net, p a straight path of µ, and p′ the
reversal of p. Then, w(p′) = w(p)∗.

We are now ready to define the GoI interpretation of a cut-free net:

Definition 11 (GoI interpretation) Let M be an interaction monoid, let ν
be a cut-free net with n ≥ 1 free ports, and let Pji be the set of straight paths
of ν starting from the free port j and ending into the free port i. The GoI
interpretation of ν in M is an endomorphism of Mn, which we represent as a
formal n× n matrix ν•, whose entries are defined as follows:

ν•ij =
∑

p∈Pji

w(p).

i and j range over the free ports of ν, and the sum is intended to be equal to 0
(the everywhere-zero endomorphism) if Pji = ∅.
If A is a formal matrix with coefficients in W , we can define A∗ as the transpose-
involute matrix of A: (A∗)ij = (Aji)∗. Then, the following clearly holds from
Lemma 16 applied to Definition 11:

Proposition 17 If ν• is the GoI interpretation of a cut-free net ν, then

ν•∗ = ν•.

We can give a few examples to clarify the definition. If ε,δ, and ω are the
three nets defined in Sect. 3.2, p. 16, we have ε• = 0, δ• = cd∗ + dc∗, while ω•

is the endomorphism of M ⊕M represented by the following matrix:

ω• =
[

0 1
1 0

]
.

A slightly more complicated example is the net

26

δ

δ ζ

ζ
ε

ε

whose GoI interpretation is
[

g(cd∗ + dc∗)g∗ df∗

fd∗ 0

]
.

In all cases, the reader can check that Proposition 17 is verified.
The reader may wonder why we have restricted our interpretation to cut-

free nets, in sharp contrast to Definition 6, where the denotational semantics is
defined for any net. The reason is quite simple: in the absence of any restriction,
Definition 11 would not make sense in general, since Pji may contain an infinite
number of non-zero-weighing paths. As a matter of fact, consider the following
example:

δ ζ

There is obviously an infinite number of straight paths from, for instance, the
left free port to the right one; their weights are c∗(fd∗)ng, for every n ∈ N. No
element of W can be associated to the sum of all these paths, so the interpre-
tation would be undefined. On the other hand, the following result assures us
that Definition 11 is sound as we formulated it:

Proposition 18 Let ν be a cut-free net with at least one free port, and let i, j
be two free ports (maybe the same) of ν. Then, Pji is finite.

Proof. Remember the general decomposition of a cut-free net with n ≥ 1 free
ports: n trees τ1, . . . , τn with an ε-wiring ω̃ “on top”. Now, a straight path p
from port j to port i is necessarily of the following shape: p goes up along one
branch of τj from the root to its leaf, which is connected through a wire of ω̃
to a leaf k of τi; p follows this connection, and then goes down the branch of
τi leading from k to its root. Therefore, the number of straight paths in Pji is
bounded by the number of leaves of τj , which is of course finite. ¤

Any net with n ≥ 1 free ports and k active pairs and/or vicious circles can
be decomposed as follows:

27

.

ν

kn

where ν is cut-free and has n+2k free ports. Notice that, because of the possible
presence of vicious circles, ν is not unique in general. Nevertheless, given an
interaction monoid M and a net µ with at least one free port and k active
pairs and/or vicious circles, we can associate to µ at least one endomorphism
ν• of Mn+2k, which is the GoI interpretation of the net ν in one of the possible
decompositions; the association will be unique exactly when µ does not contain
vicious circles.

We also consider the endomorphism σn,k of Mn+2k defined by the formal
matrix

σn,k =

0
. . .

0
0 1
1 0

. . .
0 1
1 0

n

2k

(the entries not specified are 0) and the homomorphism πn,k, which is the
inclusion of Mn into Mn+2k:

πn,k =

1
. . .

1
0 · · · 0
...

...
0 · · · 0

n

2k

We just write σ and π when n and k are clear from the context, or when we do
not want to specify them.

We can now state the fundamental theorem of the geometry of interaction
semantics:

Theorem 19 (Lafont [Laf97]) Let µ be a net with n ≥ 1 free ports and k
active pairs and/or vicious circles, and let ν• be (one of) the endomorphism(s)
associated to µ in an interaction monoid M . Then:

1. µ is total iff σν• is nilpotent;

2. in that case, the GoI interpretation of the cut-free form of µ is given by
the execution formula

Ex(ν•, σ) = πt

(∞∑

i=0

ν•(σν•)i

)
π,

where πt is the transpose of π.

28

The result above comes from the fact that the execution formula is an invariant
of reduction. Therefore, if ν• is associated to a total net µ, then Ex(ν•, σ)
can be seen as a semantics for µ. In particular, if µ is cut-free, σ = 0 and
Ex(ν•,0) = ν•.

4.3 Relationship between denotational semantics and GoI

We shall now see that the two semantics defined in the previous sections are
strongly related to each other. We have already seen (Corollary 15) that, given a
net µ with n ≥ 1 free ports, the denotational semantics JµK of µ in an interaction
monoid M is a submonoid of Mn. In case µ is total, and if its GoI semantics in
M is ν•, then JµK is the submonoid of the fixpoints of Ex(ν•, σ).

We prove the result stated above for cut-free nets only; by the preservation
of both J·K and Ex(·, ·) under reduction, this is enough for the result to hold in
the more general case of total nets. In the following, we write fix(u) for the set
of fixpoints of a function u.

Theorem 20 Let ν be a cut-free net with n ≥ 1 free ports. Then

JνK = fix(ν•),

where the interpretations are taken in any interaction monoid M .

Proof. We prove both inclusions be induction on the number m of binary cells
of ν. If m = 0, then ν is an ε-wiring, containing n′ ε cells and k wires, with
n′ + 2k = n. We can assume w.l.o.g. that ν has the following shape

. . .

k

ε ε

. . .

n′

hence ν• = σn′,k. Now, if x ∈ JνK, then

x = (0, . . . , 0︸ ︷︷ ︸
n′

, x1, x1, . . . , xk, xk),

so that we obviously have ν•(x) = x. Conversely, it is trivial to check that every
fixpoint of σn′,k is of this form.

Now let m > 0; then, since ν is cut-free, at least one of its free ports is the
principal port of a binary cell. Suppose it is a δ cell; we can assume w.l.o.g.
that ν has the following shape

δ

ν′

. . .

where ν′ is also cut-free. Now, if we order from left to right the free ports of ν
and ν′, we have that their GoI interpretations are given by the following formal
matrices:

ν′• =

h u∗ A∗

u k B∗

A B C

29

ν• =
[

chc∗ + du∗c∗ + cud∗ + dkd∗ cA∗ + dB∗

Ac∗ + Bd∗ C

]
.

We have used the block notation to represent an arbitrary number (even zero)
of entries in the bottom-right part of the matrices, corresponding to the n − 1
ports that are free both in ν and ν′. Here, h, u, and k are endomorphisms
of W , with h∗ = h and k∗ = k, while A,B and C are resp. (n − 1) × 1 and
(n− 1)× (n− 1) matrices with entries in W , with C∗ = C.

Let us now take x ∈ JνK. We know that x is an element of Mn, so x = (y, z),
where y ∈ M and z ∈ Mn−1. Moreover, since y is associated to the free
ports of a δ cell, we have y = c(y′) + d(y′′) for some y′, y′′ ∈ M such that
x′ = (y′, y′′, z) ∈ Jν′K. If we apply ν′• to x′, we get

h u∗ A∗

u k B∗

A B C

 ·

y′

y′′

z

 =

h(y′) + u∗(y′′) + A∗(z)
u(y′) + k(y′′) + B∗(z)
A(y′) + B(y′′) + C(z)

 .

But by induction hypothesis, ν′•(x′) = x′, so the following equalities hold:

h(y′) + u∗(y′′) + A∗(z) = y′

u(y′) + k(y′′) + B∗(z) = y′′

A(y′) + B(y′′) + C(z) = z .

From this, if we compute ν•(x), we get
[

chc∗ + du∗c∗ + cud∗ + dkd∗ cA∗ + dB∗

Ac∗ + Bd∗ C

]
·
[

c(y′) + d(y′′)
z

]
=

=
[

c(h(y′) + u∗(y′′) + A∗(z)) + d(u(y′) + k(y′′) + B∗(z))
A(y′) + B(y′′) + C(z)

]
= x.

Consider now a fixpoint x of ν•. Again, this is an element of Mn, and can be
decomposed into (y, z) with y ∈ M and z ∈ Mn−1. Now, by surjectivity there
exist y′, y′′ ∈ M such that y = c(y′)+d(y′′), so we can define x′ = (y′, y′′, z), for
which the same computations done above show that ν′•(x′) = x′. By induction
hypothesis, x′ ∈ Jν′K, which means that there is an experiment of ν′ with result
(y′, y′′, z); the “same” experiment then gives (y, z) on ν, which proves that
x ∈ JνK.

The proof in the case of a ζ combinator is identical: we just need to replace
c,d with f ,g. ¤

Theorem 20 tells us that, for any cut-free net ν with at least one free port,
if know ν•, we also know JνK. Is the converse true? The rest of the section is
devoted to prove that it is actually the case.

Let M be an interaction monoid, and let ν be a cut-free net with n ≥ 1 free
ports. By Theorem 12, we know that the elements of JνK are described by a
balanced bracket expression B. From this expression, it is not hard to build an
endomorphism φ of Mn such that fix(φ) = JνK:

• Suppose that var(B) = {x1, . . . , xm}. We make a new expression B′ (no
longer balanced) which is structurally identical to B, but such that, for
each variable xi of B, one occurrence of xi is replaced by x′i and one by
x′′i , with x′i, x

′′
i distinct and fresh, and each occurrence of 0 is replaced

by a distinct fresh variable zj ; this is always possible since B is balanced.
Notice that B′ contains every variable at most once.

30

• From the fact that 〈·, ·〉 and [·, ·] are bijections, we know that, for each
d ∈ Mn, there exist unique d′1, d

′′
1 , . . . , d′m, d′′m, e1, . . . , ek ∈ M such that

d = B′{. . . x′i := d′i, x
′′
i := d′′i . . . zj := ej . . .} (see Sect. 3.3, p. 21). We

then define φ as follows:

φ(d) = B′{. . . x′i := d′′i , x′′i := d′i . . . zj := 0 . . .},

i.e., we “swap” the elements assigned to x′i and x′′i , and we set each zj to
0.

• Clearly, φ(0) = 0, and because 〈·, ·〉, [·, ·] are isomorphisms, we also have
φ(x + y) = φ(x) + φ(y), so φ is indeed an endomorphism of Mn (not
an isomorphism though, since in general some non-zero elements may be
mapped to zero). It is not hard to check that φ verifies φ3 = φ, i.e., it is
a partial symmetry.

• By construction, the fixpoints of φ are those elements described by B, so
fix(φ) = Im(B).

Let us look at an example to clarify the construction above. The balanced
expression ([0, x], 〈x, 0〉), which generates the interpretation of

ε ε

ζ δ

is turned into ([z1, x
′], 〈x′′, z2〉). Now, for each element x ∈ M ⊕M , there exist

unique z1, x
′, x′′, z2 ∈ M such that x = ([z1, x

′], 〈x′′, z2〉) (we have used the
same notations for the variables in the expression and the elements of M to
avoid writing the substitution explicitly). We then define φ so that

φ(x) = φ([z1, x
′], 〈x′′, z2〉) = ([0, x′′], 〈x′, 0〉).

The zero of M ⊕ M is (0, 0) = ([0, 0], 〈0, 0〉), hence φ(0, 0) = (0, 0), and if
we take x, y ∈ M ⊕ M , we decompose them as x = ([x1, x2], 〈x3, x4〉) and
y = ([y1, y2], 〈y3, y4〉), and we have x+y = ([x1 +y1, x2 +y2], 〈x3 +y3, x4 +y4〉),
from which we obtain

φ(x + y) = ([0, x3 + y3], 〈x2 + y2, 0〉) =
= ([0, x3], 〈x2, 0〉) + ([0, y3], 〈y2, 0〉) = φ(x) + φ(y),

so φ is an endomorphism of M ⊕M . We also have

fix(φ) = {([0, x], 〈x, 0〉) ∈ M ⊕M ; x ∈ M},

which is exactly the interpretation of the above net.
All that is left to do is verifying that φ = ν•. This is proved by induction

on the number m of binary cells in ν. If m = 0, ν is an ε-wiring, and its
interpretation can be assumed w.l.o.g. to be generated by a balanced expression
of the form

(0, . . . , 0, x1, x1, . . . , xk, xk),

31

where the symbol 0 appears n′ times, with n′+2k = n (the number of free ports
of ν). Then, φ is the endomorphism such that

φ(x1, . . . , xn′ , y
′
1, y

′′
1 , . . . , y′k, y′′k) = (0, . . . , 0, y′′1 , y′1, . . . , y

′′
k , y′k),

which is exactly the endomorphism we introduced at p. 28 under the name σn′,k,
and which is equal to ν•. If m > 0, calculations virtually identical to those of
the proof of Theorem 20 show that we have φ = ν• in this case as well; the
details are left to the reader.

5 Conclusions

Why the symmetric interaction combinators? The reader may won-
der why we have chosen to work with the symmetric combinators instead of
the “standard” ones, which enjoy a stronger universality property (Theorem 2
holds for any interaction net system, not just polarized ones). The answer is
technical: there is a detail in the reduction rules of the interaction combinators
which renders impossible the formulation of a relational semantics like the one
considered here.

We remind that the “standard” interaction combinators are defined exactly
as the symmetric ones, except that instead of ζ there is a binary cell γ, which
interacts with itself as follows:

γ

γ

→

All other interaction rules are unchanged. Notice that the above rule “ex-
changes” the auxiliary ports of the γ cell: according to our convention (p. 3),
the left port of each occurrence of γ is connected to the right port of the other
occurrence. On the contrary, the δδ (and ζζ) annihilation connects left with left
and right with right.

Now, in a relational semantics, reduction is modeled by composition of rela-
tions: if the “rightmost” free port of a net µ is connected to the “leftmost” free
port of a net µ′, the denotational semantics of the resulting net will be (see the
proof of Lemma 9)

JµK ◦ Jµ′K = {(a, c) ; (a, b) ∈ JµK, (b, c) ∈ Jµ′K}.

This is ensured by our definition of experiment. But if we try to define
experiments in the presence of the γγ annihilation, we see that the only way
for the interpretation to model reduction is that both of the auxiliary ports of
γ cells receive the same value. In fact, in the rule

32

γ

γ

→(a, b)

a b

b a b

a b

a

we clearly need a = b. This is an unreasonable restriction; for example, it would
imply that the following two nets receive the same semantical interpretation:

ε

εεγ ≈

These two nets are not βη-equivalent; from Proposition 6, we infer that in such
a situation, if we ever managed to model 'β , we would do so by identifying all
total nets with a non-empty interface.

The argument given here of course does not rule out the possibility of find-
ing a denotational semantics for the interaction combinators; it simply shows
that the standard definitions do not work, and justifies our shift towards the
symmetric combinators.

Further work. Our efforts are now concentrating on a typed semantics for
the symmetric combinators. This would not only yield a typing discipline for
the combinators, which would ensure good properties like deadlock-freeness and
termination, but more interestingly a new logical system, which should be an
extension of multiplicative linear logic.

The existence of such a system would be very intriguing, since it would
combine the simplicity of the multiplicative fragment of linear logic with the
high expressive power of the symmetric combinators. This is maybe the most
promising aspect of our ongoing work.

References

[DR89] Vincent Danos and Laurent Regnier. The Structure of Multiplica-
tives. Archive for Mathematical Logic, 28:181–203, 1989.

[Ehr05] Thomas Ehrhard. Finiteness Spaces. Mathematical Structures in
Computer Science, 15(4):615–646, 2005.

[FM03] Maribel Fernández and Ian Mackie. Operational Equivalence for
Interaction Nets. Theoretical Computer Science, 297(1–3):157–181,
2003.

[GAL92] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The Ge-
ometry of Optimal Lambda Reduction. In Conference Record of
the Nineteenth ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 92), pages 15–26. ACM Press, 1992.

33

[Gir87a] Jean-Yves Girard. Linear Logic. Theoretical Computer Science,
50(1):1–102, 1987.

[Gir87b] Jean-Yves Girard. Multiplicatives. In G. Lolli, editor, Logic and
Computer Science: New Trends and Applications, pages 11–34, 1987.
Rendiconti del Seminario Matematico dell’Università e Politecnico di
Torino.

[Gir89] Jean-Yves Girard. Geometry of Interaction I: interpretation of
System F. In Proceedings of the Logic Colloquium ’88, pages 221–260.
Noth Holland, 1989.

[Laf90] Yves Lafont. Interaction Nets. In Conference Record of POPL’90,
pages 95–108. ACM SIGACT and SIGPLAN, ACM Press, 1990.

[Laf95] Yves Lafont. From proof nets to interaction nets. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages
225–247. Cambridge University Press, 1995.

[Laf97] Yves Lafont. Interaction Combinators. Information and Compu-
tation, 137(1):69–101, 1997.

[Lip02] Sylvain Lippi. Encoding Left Reduction in the Lambda-
Calculus with Interaction Nets. Mathematical Structures in Com-
puter Science, 12(6):797–822, 2002.

[Maz06] Damiano Mazza. Observational Equivalence for the Interac-
tion Combinators and Internal Separation. In I. Mackie, editor,
Proceedings of TERMGRAPH 2006, Electronic Notes in Theoretical
Computer Science, pages 7–16. Elsevier, 2006.

[MP02] Ian Mackie and Jorge Sousa Pinto. Encoding Linear Logic with In-
teraction Combinators. Information and Computation, 176(2):153–
186, 2002.

[Pag06] Michele Pagani. Proofs, denotational semantics, and observa-
tional equivalence in multiplicative linear logic. To appear in
Mathematical Structures in Computer Science, 2006.

34

