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Abstract. In many readings of Gödel’s first incompleteness theorem it is usual to
find the claim that the theorem proves the existence of arithmetic statements which
are true but unprovable. This intuitive reading has often obscured the understanding
of the theorem. In this paper we will argue in favour of a disentanglement of truth
from undecidability.
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1. Introduction

In the first paragraph of the famous 1931 article, Gödel does expound
the first incompleteness theorem by means of an informal explanation
[3]. The argument can be rebuilt as follows. Let PA denote the formal
system of first order arithmetic and let

ϕ ≡ ϕ is not provable in PA

be the well-known gödelian proposition; let’s now ask ourselves whether
ϕ is provable or not in PA.

− Suppose that ϕ is provable. Then, for what it literally says, it would
be a false statement. This would mean that PA is unsound inasmuch
it allows a false statement to be proved. Hence: if PA is sound, then
ϕ is unprovable in it.

− Now suppose that ϕ is unprovable in PA. Then, it is a true statement
and its formal negation ¬ϕ will be false, because the negation of
a statement is false if and only if this statement is true and vice
versa. Again, if PA is sound, then ¬ϕ is unprovable.

Therefore, there exists a proposition ϕ such that neither ϕ nor its
negation ¬ϕ are provable in PA, so that PA is syntactically incomplete.
Moreover, since ϕ is a true statement, PA is also semantically incomplete,
i.e. there exists a true statement that PA cannot prove.

c© 2011 Kluwer Academic Publishers. Printed in the Netherlands.

Disentangling.tex; 3/01/2011; 22:34; p.1



2 M. Piazza and G. Pulcini

This informal argument that Gödel launches as a sort of guide for the
perplexed is clearly of a semantical kind to the extent to induce many
readers to shift toward semantical aspects instead of strictly dwelling
on the syntactical properties of PA in which Gödel frames the scenario
of incompleteness in the sequel of the article. Such a change of focus
has usually misguided the studies on the incompleteness as to generate
and support the myth that the first theorem proves the existence of
arithmetical statements which are true but unprovable and, therefore,
that truth the undecidability in the theorem are entangled, although via
a crushing mismatch. This popular reading, albeit intuitive, obscures
the correct interpretation of the Gödel theorem whereby – as we shall
argue in this paper – the disentanglement of truth from undecidability
is the very condition of making sense of the incompleteness.

Now, the supposed mismatch between truth and undecidability is
subsumed by the endorsement of an interplay between an outside di-
mension of truth (prior to any well-specified deductive argument) and
a inside dimension of provability (related with a specific deductive sys-
tem). So the outside conception of truth reflects the philosophical view
according to which a certain (mathematical) fact is true or false inde-
pendently from any possible (constructive or not) verification process
arranged into a mathematical proof; hence its true pervades the whole
domain of mathematical disciplines without exceptions. Nevertheless,
in this paper we show that as the line of reasoning that bears on
incompleteness becomes more and more convincing and precise, the
corresponding conception of truth ends by losing traces of an outside
character. Moreover, we bring this inside view of truth into alignment
with Gödel’s earlier works on the incompleteness of arithmetic. In par-
ticular, we take into account the Princeton lectures of 1934 [4] by
focusing on:

− the footnote 21, designed to clear up that the representability of
the primitive recursive functions in PA is not strictly required for
obtaining undecidable propositions,

− the paragraph 7, entitled Relations of the foregoing arguments to
paradoxes.

On the one hand, the footnote 21 considers an inside version of truth
that essentially corresponds to the provability in elementary number
theory; on the other hand, in paragraph 7, Gödel recalls that the disen-
tanglement of the truth notion from that one of provability enables to
avoid the riproposition of the liar paradox in his logical construction.
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2. Technical Preliminaries

In this section, we recall some basic logical relations holding between
the familiar context of elementary number theory – represented by the
standard model N – and its formal counterpart given by PA [6, 7]. These
two contexts will be clearly distinguished by writing strings of symbols
from PA in typewrite style. The proofs for the incompleteness theo-
rems are here just sketched; the reader can find all the complementary
technical details in [9].

DEFINITION 1 (Peano Arithmetic). The language of PA is formed by
the usual language of first order logic with identity enriched by the in-
dividual constant “0”, the unary functional symbol “x′” (the successor)
and the two binary functional symbols “+” and “·”. Moreover, PA is
deductively defined by the following nine axioms [6].

1. `PA x = y→ (x = z→ y = z)

2. `PA x = y→ x′ = y′

3. `PA 0 6= x′

4. `PA x′ = y′ → x = y

5. `PA x + 0 = x

6. `PA x + y′ = (x + y)′

7. `PA x · 0 = 0

8. `PA x · y′ = (x · y) + x

9. For every formula α(x) of PA such that x occurs free in α,

`PA α(0)→ (∀x(α(x)→ α(x′))→ ∀xα(x)).

DEFINITION 2 (structure N ). The structure N = (N, 0,+, ·) is formed
by the set of non-negative integers N = {0, 1, 2, . . .}, the distinguished
number 0 ∈ N and the usual symbols + and − for sum and product.

Notation. We abbreviate with n the numeral 0′′...′ resulting from n
applications of the successor function to the constant 0. For any pair of
terms t and s, t 6= s is intended to be equivalent to ¬(t = s).

THEOREM 1. N � PA, i.e. N is a model for PA.
Proof. The structure N does interpret PA as follows:

− 0N = 0,
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− for each n ∈ N: nN = n,

− sum “+” and product “·” in N respectively interprets their formal
counterparts “+” and “·” in PA.

The proof consists in showing that PA is sound w.r.t. N , in other
words: if `PA α, then N � α. We proceed as usual by induction. It is
immediate to check that N satisfies axioms 1-8. As far as the induction
principle is concerned (axiom 9), since the domain of N coincides with
the set of naturals N, the inductive mechanism is indeed able to cover
the totality of the elements of N so as to justify the introduction of the
universal quantifier.

THEOREM 2. PA admits non-standard models, namely models non-
isomorphic to the standard one.

Proof. Consider the theory PA∞ obtained from PA by expanding its
language with the constant c and by adding the following infinite set of
axioms:

for all n ∈ N: `PA c > n.

Consider now the generic subsystem PA∞↓k of PA∞ obtained by taking
a finite subset of the new axioms as follows:

`PA c > 0, `PA c > 1, , . . . , `PA c > k.

The model N ∗ = (N, 0, k,+, ·), where k ∈ N interprets the constant c,
satisfies PA∞↓k.

Finally, the compactness theorem ensures the existence of a model
M � PA∞ and soM � PA. Moreover,M is clearly non isomorphic to N
since there is an element a ∈ |M|\N “bigger” than any positive integer.

REMARK 1. Since PA does admit non-isomorphic structures among
the range of its models, it is said to be a non-categorical theory. It
means that the formal system of first order arithmetic is not able to
univocally grasp the mathematical structure of N but among a series of
other “bizarre” non-standard structures.

The reader should also remark that, whereas the proof of N � PA is
developed by following the inner deductive mechanism of PA, M � PA
comes through the external contribution of the compactness theorem.
This is due to the fact that a recursive argument working axiom by
axiom would fail when considering the induction principle expressed by
axiom 9. In other words, the inductive mechanism is not able to cover
the non-standard elements belonging to |M|.

PROPOSITION 1. Let n,m ∈ N and t, s, r closed terms:
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1. if N � n = m, then `PA n = m,

2. if N � n 6= m, then `PA n 6= m,

3. `PA t = s→ s = t,

4. `PA t = r→ (t = s→ r = s).
Proof. The reader can find all the proofs in [6].

LEMMA 1. Let t, s be two closed terms:

1. if N � t = s, then `PA t = s,

2. if N � t 6= s, then `PA t 6= s.
Proof. At first we prove a weaker version of the two claims in which

s = n ∈ N.
Let N � t = n, then `PA t = n can be easily proved by induction

on the number of sums and products occurring in t and Proposition
1.1 gives the basis. Now suppose that, for a certain pair n,m ∈ N,
N � t 6= n, N � t = m and N � n 6= m. By the just proved
property and Proposition 1.2, it is `PA t = m and `PA n 6= m. Then,
through Proposition 1.4, we obtain `PA (t = m ∧ n 6= m)→ t 6= n and so
`PA t 6= n.

At this point, we generalise these properties as follows.
(Prop. 1.1) Let N � t = s, it means that there is an n ∈ N

such that N � t = n and N � s = n. By the just proved prop-
erty, we deduce both `PA t = n and `PA s = n; by Proposition 1.3,
it is `PA n = t and `PA n = s. We apply Proposition 1.4 obtaining
`PA n = t→ (n = s→ t = s) and consequently `PA t = s.

(Prop. 1.2) Let N � t 6= s, it means that there is an m ∈ N such
that N � t = m and N � s 6= m; by the just proved properties,
we have `PA t = m and `PA s 6= m. Through Proposition 1.4, we obtain
`PA (t = m ∧ s 6= m)→ t 6= s and finally `PA t 6= s.

DEFINITION 3 (arithmetical hierarchy). A formula is called ∆0 if all
its quantifiers are bounded. We call a formula Σ1 (resp. Π1) if it has
the form ∃xα (resp. ∀xα) with α ∈ ∆0.

REMARK 2. Whereas α ∈ Σ1 if, and only if, ¬α ∈ Π1 – the set of ∆0

formulas is closed under negation. Moreover, it is ∆0 ⊂ Σ1,Π1.

THEOREM 3 (∆0-syntactical completeness). PA is ∆0-syntactically com-
plete i.e., if α ∈ ∆0, then either `PA α or `PA ¬α.
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Proof. Let α ∈ ∆0; we proceed by induction on the number of logical
connectives occurring in α.

Base. If no logical connective does occur in α, then α ≡ t = s with
t, s closed terms. It is either N � t = s or N � t 6= s and so Lemma 1
gives us the basis.

Step. By means of the following conversions

∃x ≤ kα(x)↔ α(0) ∧ α(1) ∧ . . . ∧ α(k)
∀x ≤ kα(x)↔ α(0) ∨ α(1) ∨ . . . ∨ α(k),

any quantified ∆0-formula can be rewritten into an equivalent one with-
out quantifiers. Then it is easy to see that any boolean composition of
decidable proposition is, in turn, decidable.

DEFINITION 4 (deductive independence). A formula α is said to be
independent from PA if 0PA α and 0PA ¬α.

DEFINITION 5 (ω-consistency). A theory T is ω-consistent if the fol-
lowing two conditions are mutually excluding:

− for all n ∈ N, `T α(n),

− `T ∃x¬α(x).

THEOREM 4 (first incompleteness theorem). There exists a formula
ϕ ∈ Π1 such that, if PA is ω-consistent, then ϕ is independent from PA.

Proof. The proof is developed through the following five points.

1. There exists a 1-1 assignment of natural numbers to formulas and
demonstrations of PA. pαq and pαq respectively indicate the number
associated with α (its gödelian code) and its corresponding numeral.

2. It is possible to define in the language of PA a binary ∆0-predicate
Dem(x, y) such that `PA Dem(n, m) if, and only if, n encodes a
demonstration of the formula α with pαq = m;

3. Consider the Σ1-predicate Theor(y) ≡ ∃xDem(x, y), its negation
admits a formula ϕ as fixed point, i.e.:

`PA ϕ↔ ¬Theor(pϕq).

4. If PA is consistent, then `PA ϕ implies `PA ¬ϕ and so 0PA ϕ.

5. If PA is ω-consistent, then 0PA ϕ implies 0PA ¬ϕ.
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THEOREM 5 (second incompleteness theorem). Consider the formula

ConsPA ≡ ¬Theor(0 = 1)

asserting the consistency of PA: it is independent from PA.
Proof. The proof consists in showing that ConsPA is provably equiv-

alent to ϕ, i.e. `PA ConsPA ↔ ϕ. In such a way, `PA ConsPA and `PA
¬ConsPA would respectively imply `PA ϕ and `PA ¬ϕ, against the first
incompleteness theorem.

REMARK 3. By definition of the predicate Theor(x), we have that

ConsPA ≡ ∀x¬Dem(x, 0 = 1)

so that ConsPA ∈ Π1.

THEOREM 6 (Σ1-completeness). PA is Σ1-complete w.r.t. the stan-
dard model N , i.e. for any formula α ∈ Σ1, if N � α, then `PA α.

Proof. At first, we show that PA is ∆0-complete w.r.t. N . Suppose
α to be a ∆0-formula such that N � α, but 0PA α. Since PA is ∆0-
syntactically complete, it would be `PA ¬α and so N � ¬α.

We proceed by absurd again: let N � ∃xα(x), but 0PA ∃xα(x). For
N � ∃xα(x), there is an n ∈ N such that N � α(n). Since α(n) ∈ ∆0,
we can apply the just proved ∆0-completeness and obtain `PA α(n). As
a matter of logic, we finally obtain `PA ∃xα(x) which contradicts our
assumption that 0PA ∃xα(x).

REMARK 4. Σ1-completeness cannot be generalised to the whole range
of PA models: we can take as counterexamples all those non-standard
models in which the unprovable proposition ¬ϕ ∈ Σ1 turns out to be
satisfied [7]. By looking at the previous demonstration, the key point
consists in the application of the ∆0-completeness which allows to pass
from N � α(n) to `PA α(n). Consider a generic non-standard model
M: the formula ∃xα(x) may be instantiated by a non-standard element
a ∈ |M|\N. Yet in such a case we could not pass from M � α(a) to
its syntactical side, since PA lacks the linguistic resources to express the
formal counterpart of the element a. In other words, in case of non-
standard models, the interpretation function is not surjective and this
induces the failure of the Σ1-completeness.

COROLLARY 1. If α ∈ Π1 is independent from PA, then N � α. In
particular, we have that N � ϕ and N � ConsPA.

Proof. By the Σ1-completeness, we obtain N 2 ¬α from 0PA ¬α, and
so N � α. Both the gödelian propositions ϕ and ConsPA instantiate the
just explained case so that N � ϕ and N � ConsPA.
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The following table summarises the technical results since now re-
called:

∆0 Σ1 Π1 higher levels

syntactical completeness yes no no no

semantical compl. w.r.t. N yes yes no no

soundness w.r.t. N yes yes yes yes

We conclude this section by recalling the Tarski’s theorem about the
undefinability of the truth within PA. While the incompleteness theo-
rems underline the deductive limits of PA, the next result singles out an
expressive limit of the theory.

DEFINITION 6. (truth definition) An unary predicate Tr(x) is said
to be truth definition for a theory T if, for any formula α, it is `T
Tr(pαq)↔ α.

THEOREM 7 (Tarski’s theorem). If PA is consistent, then it does not
admit a truth definition.

3. Gödel’s Princeton Lectures: Footnote 21.

In this section, we provide a technical explanation of the footnote 21
appearing in the notes taken by Kleene and Rosser of the lectures that
Gödel gave at the Institute for Advanced Study during the spring of
1934 [4]. Our primary concern is to isolate the original gödelian notion
of arithmetical truth. As we will remark in the next section, the content
of the footnote 21 strictly reflects what Gödel says at length later, in
the paragraph 7 of the same notes, considering classical paradoxes.

In order to simplify our notation, we deal with 1-argument functions
(any n-adic function can be in fact always reduced to an 1-adic one by
a suitable encoding). According to the standard notation, we denote
with PR the class of primitive recursive functions. We report below the
claim of the representation theorem which plays a key role in Gödel’s
construction. It states that PA is sufficiently powerful to express the
whole range of PR functions [3, 4, 6]. Formally:

THEOREM 8 (representation). For each function f ∈ PR there is a
formula φf (x, y) ∈ Σ1, such that, for any pair n,m ∈ N,

N � f(n) = m⇒ `PAφf (n, m).
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At the end of the proof, Gödel adds a footnote at Theorem 7, the
number 21, where he remarks that:

[...] this proof is not necessary for the demonstration of the existence
of undecidable arithmetic propositions in the system considered. For,
if some recursive function were not “represented” by the correspond-
ing formula [...], this would trivially imply the existence of undecid-
able propositions unless some wrong propositions on integers were
demonstrable1.

In practice this remark amounts to stating the following:

THEOREM 9. Suppose that the system PA is not able to “represent” the
totality of PR functions; then, there exists a proposition φ independent
from PA.

Proof. Suppose that the representation fails for a certain function f ∈
PR over a certain pair a, b ∈ N, namely N � f(a) = b, but 0PA φf (a, b).
By the Σ1-completeness, we obtain N 2 f(a) = b from 0PA φf (a, b) and
so N � f(a) 6= b against our assumption.

REMARK 5. It is worth noting that the independence phenomenon
induced by the failure of the representation is not related to the specific
range of axioms which constitutes the deductive system at issue. As a
matter of fact, nothing prevents the deductive hole

0PA φf (ai, bi)

from being limited to finitely many pairs of values ai, bi (i = 1, . . . , k):
in such a case, we could easily recover the syntactical completeness by
adding k further axioms:

`PA φf (ai, bi).

In principle, this kind of undecidability is not intrinsically insurmount-
able.

On the contrary, the undecidable proposition ϕ constructed by Gödel
involves the predicate Theor(x) which is strictly depending on the set of
axioms of PA, so that it gives rise to an independence phenomenon which
is intrinsically insurmountable. That is to say, we can consider the
enriched formal system PA′ = PA∪{ϕ} in which ϕ appears as an axiom
and iterate Gödel’s construction so as to produce another independent
proposition ϕ′. Since 0PA′ ϕ′ and `PA′ ϕ, we clearly have ϕ′ 6= ϕ, namely
the deductive hole replicates itself into a new independent proposition.

1 K. Gödel. On Undecidable Propositions of Formal Mathematical Systems. In M.
Davis The Undecidable, Raven Press, New York, 1965, p. 59.
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4. Five Views of Truth

In this section, we briefly analyse the five fundamental arguments in
favour of the truth of ϕ arose in the debate on incompleteness:

1. The classical view. The first incompleteness theorem (Theorem
4) states the independence of ϕ from PA, i.e. 0PA ϕ and 0PA ¬ϕ.
In classical perspective, we know that either ϕ or ¬ϕ must be true
and so, in such an obvious way, Gödel shows the existence of a
true yet unprovable proposition. Remark that in the present case
we are not able to indicate which one between ϕ and ¬ϕ is the
true proposition. This argument expresses the platonistic point of
view, according to which mathematical truth is prior to any kind
of verification process, irrespective to any lack of information about
this process.

2. The autoreferential view. On this view, ϕ is a true sentence,
because ϕ says of itself that it is unprovable and it is indeed un-
provable. Though informally, such an argument can be precised by
looking at the proof of the first incompleteness theorem in which
`PA ¬ϕ is deduced from the hypothesis by absurd that `PA ϕ. This
clearly contradicts the consistency of PA and so we are forced to
conclude that ϕ cannot be provable [8].

3. The extendend autoreferential view. In [5], Longo has pro-
posed to stress the role of second incompleteness theorem (Theorem
5) in order to precise the autoreferential argument. The second
incompleteness theorem states that `PA ConsPA → ϕ; from a se-
mantical point of view N � ConsPA → ϕ, and so, if N � ConsPA,
then N � ϕ. In conclusion: assuming the consistency of PA, we
immediately have the truth of ϕ.

4. The model-theoretical view. As already seen, an easy conse-
quence of the Σ1-completness (Theorem 6) is that any formula
α ∈ Π1 independent from PA, turns out to be true in N (Corol-
lary 1). Therefore, since ϕ ∈ Π1, we have N � ϕ . This is just
a refinement of the argument proposed in point 1: we still stress
the excluded middle (see the proof of Theorem 6), but here the
Σ1-completeness enable us to pick up the true formula.

5. The provability view. The notion of truth coincides with the
provability within PA. Thus, a sentence is true just in case is deriv-
able from Peano Axioms, and false just in case its negation is so

Disentangling.tex; 3/01/2011; 22:34; p.10



Disentangling Truth from Undecidability 11

derivable. It follows that undecidable sentences are neither true nor
false.

To pursue Point 1 is to make sense of incompleteness in terms of
notions too much philosophically compromised to act at the same level
with the other points. Briefly, we consider the remaining four points.
Following the argument suggested by Longo, point 2 can be reduced to
the number 3, or better, this latter gives a precise logical meaning to the
autoreferential argument: N � ϕ is obtained from N � ConsPA → ϕ,
by assuming N � ConsPA. We can perform one more step in the same
direction, by remarking that it is not needed to assume N � ConsPA,
since it is just a consequence of Corollary 1. In such a way, point 3 is
in turn reduced to point 4. The argument proposed in point 4 is a real
proof of N � ϕ displayed within the specific resources of model theory.
This leads us to trace point 4 back to point 5.

We conclude this section by remarking that Gödel’s incompleteness
results constitute a particular case in which the naive achievement of
the truth (point 2) agrees with that one suggested by model-theoretical
considerations (points 3 and 4). Nevertheless, there are no reasons to
consider such an agreement to be generally valid and the naive argument
may constitute a very misleading approach. Consider for instance the
intuitionistic first order calculus LJ. The proposition ψ ∨ ¬ψ turns out
to be independent from LJ and, in particular, the fact 0LJ ψ ∨ ¬ψ
is obtained by stressing a well-known argument by absurd. Now, the
excluded middle should be considered as a true principle (I used it for
proving the independence of ψ ∨¬ψ !), but the model-theoretic version
diverges from such an immediate intuition since Heyting algebras do
not recognise ψ ∨ ¬ψ as a valid formula [2].

5. Conclusions

The truth of the gödelian proposition ϕ turns out to be necessarily
internal. Because of its logical dependence to the Σ1-completeness w.r.t.
N , the truth of ϕ must be confined to the range of the standard model
of formal arithmetic (Remark 4) and, moreover, it comes at the end of
a well-defined model-theoretic argument (Theorem 6 and Corollary 1).

Rereading Gödel’s 1931 work in this light, we can clearly distin-
guish the awareness of the discrepancy between an inside and outside
conception of truth and their respective connections with the concept
of provability. Gödel, in fact, understands that an inside conception
of truth would have once again involved the risk of the liar’s paradox
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and it would have made a demonstration of the first incompleteness
theorem in PA impossible. Although, in fact, semantic proofs of Gödel’s
theorems2 are possible, their formalization in PA would require to define
in PA the notion of truth for the statements of PA, which is excluded by
Tarski’s theorem on the indefinability of truth (Theorem 8). In contrast,
a syntactic proof, as Gödel deftly showed, can be easily formalized in
PA and this syntactic proof can only be linked to a local notion of
truth which comes close to explaining the paradox without actually
doing it, and which constitutes, as pointed out by Floyd & Putnam, a
metaphysical statement which is distinct from the actual mathematical
result (the undecidability).

Therefore, the substantial discrepancy between an inside and an
outside conception of truth arises primarily from the need to distinguish
between a notion that cannot be defined in PA without contradiction,
and a notion, like provability in PA, which is semi-representable in PA.
This point clearly emerges, for example, from reading the 48th note of
Gödel’s work of 1931:

As will be shown in Part II of this paper, the true reason for the
incompleteness inherent in all formal systems of mathematics is
that the formation of ever higher types can be continued into the
transfinite (see Hilbert 1926, page 184), while in any formal system
at most denumerably many of them are available. For it can be shown
that the undecidable propositions constructed here become decidable
whenever appropriate higher types are added (for example, the type
w to the system P), An analogous situation prevails for the axiom
system of set theory3.

The reference to appropriate higher types is precisely the means
which enable to define the notion of truth for the PA and then decide
ϕ which is unprovable in PA. The concept of truth itself is undefinable
in PA because of Tarski’s theorem, therefore ϕ must be decided in a
context where we can express the semantic reasoning that leads us to
prove the truth of ϕ.

Therefore, there are good reasons to disentangle truth from undecid-
ability as well as to think that Gödel endorses the distinction between
inside and outside views of truth.

2 See R. Smullyan, Gödel’s Incompleteness Theorems, Oxford University Press,
1992, ch. X.

3 Gödel K., Über formal unentscheidbare Sätze der Principia mathematica und
verwandter Systeme, Monatshefte für Mathematik und Physik, 1931, 38, pp. 173-
198; also in Gödel K., Collected Works, I, Oxford: Oxford University Press, 1986,
pp. 144-195, p. 18.
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