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Introduction

The purpose of this short report is to investigate the relation between coherence
(an algebraic relation between two points of a coherent space) and acyclicity
(a geometrical property of graphs) for a specific class of graphs, first defined in
1987 by J.Y. Girard, called proof structures: we are going to show how both
these properties allow to isolate among proof structures the ones coming from
linear logic proofs (also called proof nets).

Proof nets were first defined in 1987 by J.Y. Girard, in [Gir87]; the definition
was simplified in [Dan90] introducing the Danos-Regnier correctness criterion,
which uses simple geometrical properties like acyclicity to characterize proof
nets among proof structures. The denotational semantics of proof structures
was also defined in 1987 by Girard (cf. [Gir87]), with the experiment method,
which assigns to each proof structure a set of points of a coherent space as its
interpretation. What we actually hold in this report is that for a proof structure
to have no cycles and to be interpreted by a clique (i.e. a set of points pairwise
coherent) are the two sides of the same coin: we then get a semantical way to
discriminate between “good” proof structures (which correspond to proofs) and
“bad” proof structures (which do not correspond to proofs).

There are also other ways of testing the “goodness” of a proof structure,
based on the cut-elimination procedure, (see for example [Bech98]), that are
interactive (we refer to [Gir01] for a general analysis of the notion of interaction
in logic). The existence of both a semantical and an interactive criterion is not
surprising at all: in fact it’s well known from denotational semantics that the
semantics of a proof takes in account all the possible interactions of the proof
with an environment.

The proof that the interpretation of a proof net of MLL is a clique was first
given by Girard in [Gir87], using the correctness criterion of trips; a proof of
the extension of the theorem for MELL can be found in [Bar01]. Christian
Retore, in [Ret97], proved, using the Danos-Regnier correctness criterion, that
the interpretation of a proof structure of MLL which is not a proof net is not a
clique.

In this report we prove an analogue of the theorem of Girard, and of its ex-
tension to MELL, using the Danos-Regnier criterion, and we give an alternative
proof of the theorem of Retore for MLL, illustrating the differences between the
two approaches; finally we explain why the extension for MELL is not straight-
forward from the result for MLL.

2



The report is divided in four parts:

Chapter 1 : In this chapter, after some basic definitions, we first define proof
structures, then proof nets, both for MLL and MELL; we define altogether
some important properties of proof nets, like the splitting property.

Chapter 2 : In this chapter we first present the coherent semantics of the
formulas of linear logic, then we present the experiment method to define
the interpretation of a proof structure in the coherent semantics, both for
MLL and MELL.

Chapter 3 : In this chapter we prove the correspondence between coherence
and acyclicity for the proof structures of MLL. The proof splits in two
parts: we first prove that the interpretation of a proof net is a clique; then
we prove that the interpretation of a “bad” proof structure is not a clique.

Chapter 4 : In the final chapter we prove that the interpretation of a proof
net of MELL is a clique; then we explain why one cannot prove that the
interpretation of a “bad” proof structure of MELL is clique by a straight-
forward extension of the proof for MLL.
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Chapter 1

Proof nets

In this chapter, after introducing some basic definitions, we will define the notion
of proof structure and of proof net, introducing the correctness criterion, both for
MLL and MELL; we will also introduce some interesting geometrical property
of the proof nets, namely the splitting property.

1.1 Syntactical preliminaries

We define the language of the fragments of linear logic we are interested in,
i.e. propositional multiplicative linear logic without constant, and propositional
multiplicative and exponential linear logic without constant.

Definition 1. Let V = {X, Y, Z, . . .} be a numerable set of propositional
variables; the formulas of MLL are defined as follows:

• X, Y, Z, . . . and X⊥, Y ⊥, Z⊥, . . . are formulas of MLL

• if A and B are formulas of MLL, then A

&

B, A⊗B are formulas of MLL

Linear negation is the connective defined from the following De Morgan laws:

(A ⊗ B)⊥ = A⊥

&

B⊥

(A

&

B)⊥ = A⊥ ⊗ B⊥

Definition 2. Let V = {X, Y, Z, . . .} be a numerable set of propositional
variables; the formulas of MELL are defined as follows:

• X, Y, Z, . . . and X⊥, Y ⊥, Z⊥, . . . are formulas of MELL

• if A and B are formulas of MELL, then A

&

B, A ⊗ B are formulas of
MELL

• if A is a formula of MELL, then ?A and !A are formulas of MELL

4



Linear negation is the connective defined using the following De Morgan laws:

(A ⊗ B)⊥ = A⊥

&

B⊥

(A

&

B)⊥ = A⊥ ⊗ B⊥

(!A)⊥ =?A⊥

(?A)⊥ =!A⊥

We briefly recall the derivation rules of MELL in linear sequent calculus:

` A, A⊥
(Ax)

` Γ, A ` ∆, A⊥

` Γ, ∆
(Cut)

` Γ, A ` ∆, B

` Γ, A ⊗ B, ∆
(⊗)

` Γ, A, B

` Γ, A

&

B
(

&

)

`?Γ, A

`?Γ, !A
(promotion)

` Γ, A

` Γ, ?A
(dereliction)

` Γ

` Γ, ?A
(weakening)

` Γ, ?A, ?A

` Γ, ?A
(contraction)

In order to deal with proof structure we define another rule called Hyp

` Γ
(Hyp)

Finally, we introduce another rule called mix rule to allow proof structures
unconnected

` Γ ` ∆

` Γ, ∆
(Mix)

.

1.2 MLL proof nets

Definition 3 (Proof structures). A proof structure of MLL is an oriented
graph whose nodes are called links and whose edges are typed with MLL formulas;
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Fig.1 : the links of MLL

every link has a given number of incident edges, called the premises of the link,
and a given number of emergent edges, called the conclusions of the link. The
links are the following:

• the Axiom link has no premise and two conclusions typed by dual formulas;

• the Cut link has two premises typed by dual formulas and no conclusion;

• The Hypothesis link (or H-link) has no premise and n ≥ 1 conclusions,
each of them typed by a formula;

• the Tensor link has two premises and one conclusion: if the left premise
is typed by the formula A and the right premise is typed by the formula B,
the conclusion is typed by the formula A ⊗ B;

• the Par link has two premises and one conclusion: if the left premise is
typed by the formula A and the right premise is typed by the formula B,
the conclusion is typed by the formula A

&

B.

Furthermore, a proof structure must satisfy the following conditions:

1. every edge is the conclusion of a unique link;

2. every edge is the premise of at most one link;

the edges which are not premise of a link are called the conclusions of the proof
structure, and the links they emerge from are called terminal links

Definition 4 (Switching and correction graph). Given a proof structure
G we call switching for G a function S assigning to every instance of a Par link
in G a value L (left) or R (right): if S is a switching for G, then the graph S(G)
obtained erasing for every instance of a Par link in G the left premise if S(

&

) =
R or the right premise if S(

&

) = L, is called correction graph.
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Definition 5 (Proof net). Let R be a proof structure without Hypothesis link
; R is a proof net (resp. AC proof net) if and only if every correction graph
S(R) is acyclic and connected (resp. acyclic).

A proof net is a proof structure which correspond to a proof of linear sequent
calculus; as we have noticed before, an AC proof net, instead, is a proof structure
which corresponds to a proof of linear sequent calculus with the adjunction of
the mix rule.

Definition 6 (Splitting link). Let R be a proof structure; a Cut link or a
Tensor link of R is said to be splitting for R, if the removal of the link yields
two disjoint proof structures R1 and R2; a Par link of R is said to be splitting
when the removal of the link yields two disjoint proof structures, R1 and R2,
one having among the conclusions the premises of the Par link and the other
having the conclusion of the Par link as the conclusion of an Hypothesis link .

For the proof of the following lemma , we refer to the work of Vincent Danos
[Dan90]

Lemma 1 (Splitting Par). Let R be a proof net; if R has at least one Par
link, it has a splitting par link.

1.3 MELL proof net

Definition 7 (MELL proof structure). A proof structure of MELL is an
oriented graph whose nodes are called links and whose edges are typed with MELL
formulas; every link has a given number of incident edges, called the premises
of the link, and a given number of emergent edges, called the conclusions of the
link. We add the following links to those of Definition 3:

• The !-link has one premise and one conclusion; if the premise is typed by
the formula A, then the conclusion is typed by the formula !A

• The ?de-link has one premise and one conclusion; if the premise is typed
by the formula A, then the conclusion is typed by the formula ?A

• The ?w-link has no premise and one conclusion typed by the formula ?A
for some formula A

• The ?co-link has k ≥ 2 premises and one conclusion, all typed by the
formula ?A for some formula A

• the pax link has one premise and one conclusion both typed by the formula
?A for some formula A.

Besides those of Definition 3, a proof structure R of MELL must satisfy the
following conditions:

1. !-box condition:

7



Ax

Cut

A A

T

A A

T

H

A A1                                n

A

A B

B

&

A

A       B

&

B

?co

?A

?A

?A1 n

.....

?A

...

?w

?de

A

?A

!

A

!A

pax

?A

?A

Fig.2 : the links of MELL

(a) with each !-link n is associated a unique sub-graph B of R s.t. one
among the conclusions of B is the conclusion of n and every other
conclusion of B is the conclusion of a pax link; B is called an expo-
nential box and n is called the principal door or pal door of B

(b) with each pax link n is associated an exponential box B of R s.t. one
among the conclusions of B is the conclusion of n; the link n is called
auxiliary door or pax door of B

2. nesting condition:

two boxes are either disjoint or included one in the other.

We shall say that a link or an edge of a given proof structure R has depth
n in R, if it is contained in exactly n boxes of R; for a box B we shall say that
B has depth n in R, if it is contained in exactly n boxes of R, all different from
B. The depth of a proof structure is the maximal depth of its boxes.

Definition 8 (Graph with pairs). The couple (G,App(G)) is called a graph
with pairs when G is an oriented graph and App(G) is a set of n-tuples (n ≥ 2
) of coincident edges, i.e. edges with the same target. Let R be a proof structure
and let B1, . . . , Bk be the boxes of R with depth 0. We are going to associate
with R a set App(R) and a graph with pairs Rap = (GR, App(R)).

The graph GR is obtained from R in the following way:
- substitute for each box Bi with pi conclusions (i ∈ {1, . . . , k}), an H-link with
pi conclusions

The set App(R) contains the following (and only the following ) m-tuples:
- the couples of premises of every Par link of R at depth 0
- the p-tuples of premises of every ?co-link of R at depth 0.
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Fig.3 : a box of MELL

Definition 9 (Correctness graph). Let R be a proof structure and let B1, . . . , Bk

be the boxes at depth 0 in R . Let Rap = (GR, App(R)) be the graph with pairs
associated with R. A switching S for R is the choice of an edge for every
n-tuple of App(R). With each switching S is associated an unoriented graph
S(R), called correctness graph (which we will denote S(R)): for every n-tuple
of App(R), erase the edges of GR which are not selected by S, and forget the
orientation of the edges of the graph.

Definition 10 (Proof net). Let R be a proof structure which contains no
instances of the H-link, and let B1, . . . , Bk be the boxes at depth 0 in R. We
say that R is an AC proof net when the following conditions are satisfied:

1. for every switching S of R, the correctness graph S(R) is acyclic;

2. for every box Bi ∈ {B1, . . . , Bk}, the proof structure Ri contained in Bi is
an AC proof net.

Definition 11 (Splitting link ). Let R be a proof structure; a Cut link at depth
0 or a Tensor link at depth 0 of R is said to be splitting for Rap , if the removal
of the link ,with its conclusion, yields two disjoint proof structure R1 and R2;
a ?co-link at depth 0 or a Par link at depth 0 n of R is said to be splitting for
Rap when the removal of the link yields two disjoint proof structures, R1 and
R2, one having among the conclusion the premises of n and the other having
the conclusion of n as the conclusion of an Hypothesis link .

Lemma 2 (Splitting lemma). Let R be a proof net; if R contains at least
one Par link or ?co-link of depth 0, then one among these links is splitting for
Rap.
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Chapter 2

Experiments

In this chapter, after giving some generalities about coherent denotational se-
mantics for MLL and MELL, we introduce the notion of semantics of a proof
structure, using the experiment method, both for MLL and MELL; we also make
a specific choice about the kind of coherent space we are going to use to interpret
the atoms

2.1 Semantical preliminaries

Definition 12 (Coherent space). A coherent space A is the data of a set |A|,
called the web of A, and of a binary reflexive and symmetric relation denoted
by

_
^A, called the coherence relation on |A|

Notation 1. We use the following conventions:

• x _A y stands for x
_
^A y and x 6= y

• x ^A y stands for ¬(x
_
^A y)

• x �A y stands for x ^A y or x 6= y.

Definition 13 (Clique). A clique of A is a multiset of elements of |A| pairwise
coherent; we denote equally by A the set of the cliques of A.

An interpretation of MLL formulas is defined by induction on their com-
plexity in this way: one associates some arbitrary coherent spaces with atomic
formulas (we call such a choice atom-interpretation of MLL; obviously for ev-
ery such choice one gets a different interpretation). Then the coherent spaces
associated with compound formulas are defined as follows:

• |A⊥| = |A|, and for every x, y ∈ |A|, one has x
_
^A⊥ y iff x �A y

• |A ⊗ B| = |A| × |B|, and for every x, x′ ∈ |A| and y, y′ ∈ |B|, one has
(x, y)

_
^A⊗B (x′, y′) iff x

_
^A x′ and y

_
^B y′

11



• |A

&

B| = |A| × |B|, and for every x, x′ ∈ |A| and y, y′ ∈ |B|, one has
(x, y)

_
^A

&

B (x′, y′) iff x _A x′ or y _B y′

To extend the semantics of MLL to MELL, we have to add the definitions
of the meaning of the exponential connectives ! and ? to the previous:

• |!A| = Af whose elements are the finite elements of A, and for every
x, y ∈ |!A| one has x

_
^!A y iff x ∪ y ∈ A;

• |?A| = A⊥
f whose elements are the finite elements of A⊥, and for every

x, y ∈ |!A⊥| one has x
_
^?A y iff x ∪ y 6∈ A⊥.

2.2 Experiments for MLL proof structures

Notation 2. Let A be any MLL formula. By |A| we mean the web of the
coherence space A associated with A by the coherent denotational semantics of
MLL.

Definition 14 (Experiments). Let R be a proof structure and e an application
associating with every edge a of type A of R an element of |A|; e is an experiment
of R when the following conditions hold:

• if a = a1 is the conclusion of an Axiom link with conclusions the edges a1

and a2 of type A and A⊥ respectively, then e(a1) = e(a2).

• if a is the premise of a cut link with premises a and b, then e(a) = e(b).

• if a is the conclusion of a Par (resp. Tensor) link with left premise a1 and
right premise a2, then e(a) = (x1, x2), where e(a1) = x1 and e(a2) = x2.

If the conclusions of R are the edges a1, . . . , al of type respectively A1, . . . , Al

and e is an experiment of R such that ∀i ∈ {1, . . . , l} e(ai) = xi then we say
that (x1, ..., xl) ∈ |A1

&

...

&

Al| is the conclusion or the result of the experiment
e of R, and we will denote it by |e|; the interpretation [R] of a proof structure
R is defined as the set of his results.

Notation 3. We adopt the following conventions:

1. Given a proof structure R with conclusions Γ and e1, e2 any two experi-
ments of R, by |e1|

_
^ |e2| (resp. by |e1| _ |e2|, |e1| ^ |e2|, |e1| � |e2|,

|e1| = |e2|), we mean that |e1|
_
^ &

Γ |e2| (resp. that |e1| _ &

Γ |e2|,
|e1| ^ &

Γ |e2|, |e1| � &

Γ |e2|, |e1| = &

Γ |e2|).

2. To make things simpler, we will often refer to an edge by its type, when
it can be done without ambiguity ( for example we write “the link n
with premises A1, . . . , An and conclusion A” instead of “the link n with
premises a1, . . . , an of type A1, . . . , An and conclusion the edge a of type
A”.)
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3. Following the previous convention, given an edge a of type A of a proof
structure R and two experiments e1, e2 of R, by e1(A)

_
^ e2(A) (resp.

e1(A) _ e2(A), e1(A) ^ e2(A), e1(A) � e2(A), e1(A) = e2(A)) we mean
that e1(a)

_
^A e2(a) (resp. e1(a) _A e2(a), e1(a) ^A e2(a), e1(a) �A

e2(a), e1(a) =A e2(a)).

2.3 Experiments for MELL proof structures

Definition 15 (Experiment). Let e be an application which associates with
every edge a of type A of a proof structure R of depth p a multiset e(a) of
elements of |A|, in such a way that when a has depth 0 in R the multiset e(a)
contains exactly one element. The application e is an experiment of R when
the following conditions hold:
if p = 0 , then:

• if a = a1 is the conclusion of an Axiom link with conclusions the edges a1

and a2 of type A and A⊥ respectively, then e(a1) = e(a2).

• if a is the premise of a cut link with premises a and b, then e(a) = e(b).

• if a is the conclusion of a Par (resp. Tensor) link with left premise a1

and right premise a2, then e(a) = {(x1, x2)},where e(a1) = {x1} and
e(a2) = {x2}.

• if a is the conclusion of a ?de-link with premise a1 , then e(a) = {{x1}},
where e(a1) = {x1} .

• if a is the conclusion of a ?w-link, then e(a) = {∅}.

• if a is the conclusion of a ?co-link of arity k (k ≥ 2), with premises
a1, . . . , ak , then e(a) = {x1 ∪ . . . ∪ xk}, where e(ai) = {xk} (for every
i ∈ {1, . . . , k}).

If p > 0 then e has to satisfy the same conditions as in case p = 0. Moreover,
for every box Bn with depth 0 in R and whose pal door n has conclusion c of
type !C and whose pax doors have conclusions a1, . . . , am ( m > 0 ) of type
, respectively, ?A1, . . . , ?Am, let Rn = RBn

be the biggest sub-proof structure
of R contained in Bn (a sub-proof structure of R is a subgraph of R which is
also a proof structure). Let c′ be the premise of the !-link n and (for every i ∈
{1, . . . ,m}) let a′

i be the premise of the pax link of Bn having ai as conclusion.
Clearly c′ and a′

1, . . . , a
′
m are the conclusions of the proof structure Rn. In order

for the application e to be an experiment of R, for every such box Bn there has
to exist a unique multiset {e1, . . . , ekn

} ( kn > 0) of experiments of Rn satisfying
the following conditions:

• for every edge a of Sn, e(a) = e1(a) ∪ . . . ∪ ekn
(a),

• e(c) = {{x1, . . . , xkn
}}, where ej(c

′) = {xj} ( ∀j ∈ {1, . . . , kn}),
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• ∀i ∈ {1, . . . ,m} one has e(ai) = {xi
1 ∪ . . . ∪ xi

kn

}, where ∀j ∈ {1, . . . , kn}

we have ej(a
′
i) = {xi

j}.

The result of an experiment is defined in the same way as in 2.2.

Remark 1. We notice that the previous definition implies that the following
conditions are fulfilled (inductively, with respect to the depth):

• the label x1 ∪ . . . ∪ xk of the conclusion a of type ?C of a ?co- link with
depth 0 satisfies x1 ∪ . . . ∪ xk ∈ |?C| = C⊥;

• the label {x1, . . . , xkn
} of the conclusion a of type !C of a !-link with depth

0 satisfies {x1, . . . , xkn
} ∈ |!C| = C

• the label xi
1 ∪ . . .∪xi

kn

of the conclusion ai of type ?Ai of a pax link with

depth 0 satisfies xi
1 ∪ . . . ∪ xi

kn

∈ |?Ai| = A⊥
i .

References
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sentation we refer to [Tor01].

14



Chapter 3

Semantical characterization

of acyclicity in MLL proof

nets

In this chapter we will prove that the to be a proof net for a proof structure R
of MLL corresponds to the fact that the results of all experiments of R form a
clique; we first prove that the result of all the experiments on a proof net are
a clique; then we prove that this holds only for the proof nets, and not for any
proof structure.

3.1 The interpretation of a proof net is a clique

Remark 2. Let R be a non-empty proof structure, n one of his axiom links
with conclusions A,A⊥, and, let e1, e2 be any two experiments of R in any atom-
interpretation of MLL. Then e1(A) ^ e2(A) if and only if e1(A

⊥) _ e2(A
⊥).

Remark 3. In a proof net R without Par link, every terminal Tensor link or
Cut link n is splitting (otherwise there would be a cycle passing trough n).

Theorem 1. Let R be a proof structure with conclusions Γ; if R is an AC proof
net, then for all e1, e2 experiments of R in any atom-interpretation of MLL
|e1|

_
^ |e2|

Proof. By induction on the number of the Par links and the number of the Cut
links plus the number of the Tensor link of R, lexicographically ordered (#

&

,#
cut +# ⊗) :

• (0,0): in this case all the links of R are axiom links: let’s reason by
contradiction and suppose that |e1| ^ |e2|, that is, there is a conclusion
A of R s.t. e1(A) ^ e2(A) and for every other conclusion B ∈ Γ of R,
e1(B) � e2(B); but A is a conclusion of an axiom link n, and by Remark
2 there is a conclusion A⊥ of R s.t. e1(A

⊥) _ e2(A
⊥): contradiction.
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• (0,n + 1) : By the absence of Par links, every Cut link is splitting for
R (otherwise there is a cycle in R passing trough n), and every terminal
Tensor link is splitting for R (by the Remark 3); we will distinguish two
cases, depending on the number of cut links in R:

1. if #Cut 6= 0: we take any cut link n, with premises A, A⊥; n is
splitting and by removing it, we get two disjoint proof structures
R′, R′′ with conclusions respectively Γ′, A and A⊥, Γ′′, with Γ =
Γ′, Γ′′; the experiment e1 (resp. e2) splits in two experiments e′1,
(resp. e′2) of R′ and e′′1 (resp.e′′2) of R′′. R′ and R′′ are both AC
proof nets and by induction hypothesis, |e′1|

_
^ |e′2| and |e′′1 |

_
^ |e′′2 |.

Let’s look at what we get if we join R′ and R′′ via the link n: if
|e′1| = |e′2| and |e′′1 | = |e′′2 | then |e1| = |e2|, by definition of experiment.
Otherwise, let’s suppose |e′1| _ |e′2| and for every A′ ∈ Γ′, e′1(A

′) �
e′2(A

′) (if there is an A′ ∈ Γ′ s.t. e′1(A
′) _ e′2(A

′) we are already
done); then it must be e′1(A) _ e′2(A), and then e′′1(A⊥) ^ e′′(A⊥):
so, there is an A′′ ∈ Γ′′ such that e′′1(A′′) _ e′′2(A′′), and then |e1| _
|e2| .

2. if #Cut = 0: then any link in R is either an Axiom or a Tensor
link. We know by Remark 3 that there is a terminal splitting Tensor
link n with conclusion A ⊗ B and by removing it and its conclusion
we get two proof structures R′, with conclusions Γ′, A, and R′′ with
conclusions B,Γ′′; the experiment e1 (resp. e2) splits in two exper-
iments e′1, e

′′
1 (resp. e′2, e

′′
2). R′ and R′′ are both proof nets and by

induction hypothesis, |e′1|
_
^ |e′2| and |e′′1 |

_
^ |e′′2 |. We join R′ with

R′′ via the link n and we get back the proof net R with conclusions
Γ′, A ⊗ B, Γ′′ : if |e′1| = |e′2| and |e′′1 | = |e′′2 |, then |e1| = |e2|, and
we are done; if there is an A′ ∈ Γ′ s.t. e′1(A

′) _ e′2(A
′) or if there

is an A′′ ∈ Γ′′ s.t. e′′1(A′′) _ e′′2(A′′) then |e1| _ |e2|, and we are
done. Otherwise,let’s suppose e′1(A) _ e′′1(A) and e′′1(B)

_
^ e′′2(B);

then e1(A ⊗ B) _ e2(A ⊗ B), and |e1| _ |e2|.

• (n+1,k ): let’s suppose that for all conclusion C ∈ Γ of R, e1(C) � e2(C).
To conclude we have to prove that for all C e1(C) = e2(C). We know by
Lemma 1 that in R there exists a Splitting Par link p, with premises A
and B and conclusion A

&

B; we remove it, in order to get two proof
structures Ra, with conclusions Γ′, A, B , and Rb with conclusions Γ′′,
in which the conclusion A

&

B of p is the conclusion of an H link h (we
assume Γ = Γ′, Γ′′). It’s easy to see that Ra is a proof net; in order to
make Rb a proof net too, we change the link h in an Axiom link n adding
to it a conclusion A⊥ ⊗ B⊥, which becomes a conclusion of Rb. We call
e′1 and e′2 (resp. e′′1 and e′′2) the experiments obtained by restricting ( and
extending) e1 and e2 to Ra ( Rb ): Ra and Rb are both proof nets and
by induction hypothesis, |e′1|

_
^ |e′2| and |e′′1 |

_
^ |e′′2 |. Now we erase n and

its conclusion A⊥ ⊗ B⊥, we join Ra with Rb via p and we look at the
coherence of e1 with e2 in A

&

B. Remember that for every C ∈ Γ we have
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e1(C) � e2(C) and then for every C ∈ Γ′, e′1(C) � e′2(C) and for every
C ∈ Γ′′, e′′1(C) � e′′2(C). We have then three cases:

1. e1(A

&

B) _ e2(A

&

B): then e′′1(A⊥ ⊗ B⊥) ^ e′′2(A⊥ ⊗ B⊥) in Rb

and that’s not possible by induction hypothesis;

2. e1(A

&

B) ^ e2(A

&

B) : then e′1(A) � e′2(A) and e′1(B) � e′2(B); fur-
thermore, e′1(A) ^ e′2(A) or e′1(B) ^ e′2(B), and that’s not possible
by induction hypothesis;

3. e1(A

&

B) = e2(A

&

B): it’s the only possible case. If this holds, by
induction hypothesis and the hypothesis that for all conclusion C ∈ Γ
of R, e1(C) � e2(C), we get for all A′ ∈ Γ′ , e′1(A

′) = e′2(A
′) and for

all A′′ ∈ Γ′′ , e′′1(A′′) = e′′2(A′′). Then for all C ∈ Γ , e1(C) = e2(C).

3.2 The interpretation of a cyclic structure is

not a clique

Remark 4. In this section, we assume that the coherent spaces we are working
with, are s.t. in every coherent space S, there are at least two points of the web
coherent and at least two points of the web incoherent; we call the two coherent
spaces minimal (in the sense of the number of points of the web) with respect
to this condition CoH and InCoH, defined as follows:

1. CoH: its web is composed by three points α, β, γ, with the following
coherence relation: α _CoH β, α _CoH γ, β ^CoH γ.

2. InCoH: the dual of CoH.

γ

Coh

α
β

α α
β

γ

InCoh

            Fig.4 : the coherent spaces Coh and InCoh

Definition 16. A 3-interpretation of MLL is an atom-interpretation of MLL
which assigns to every atomic formulas one of the coherent spaces CoH and
InCoH.

Proposition 1. Given a 3-interpretation of MLL, for the interpretation A of
any formula A of MLL the following property holds:
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• in |A| there are at least two points strictly coherent, and at least two points
strictly incoherent.

Proof. By induction on the complexity of A:

1. if A = CoH or A = InCoH then we are done;

2. If A = C ⊗ D, then for coherence we take two points (x, y) and (x′, y′),
where x, x′ are two points of |C| coherent (they exists by induction hy-
pothesis on C) and y, y′ are two points of |D| coherent (they exists by
induction hypothesis on D), so (x, y) and (x′, y′) are coherent in C ⊗ D;
for incoherence we take two points (x, y) and (x′, y′), where x, x′ are any
two points of |C| and y, y′ are two points of |D| strictly incoherent (they
exists by induction hypothesis on D), so (x, y) and (x′, y′) are incoherent
in C ⊗ D;

3. If A = C

&

D, then for coherence we take two points (x, y) and (x′, y′),
where x, x′ are two points of |C| strictly coherent (they exists by induc-
tion hypothesis on C) and y, y′ are any two points of |D|, so (x, y) and
(x′, y′) are coherent in C

&

D; for incoherence we take two points (x, y)
and (x′, y′), where x, x′ are two points of |C| incoherent (they exists by
induction hypothesis on C) and y, y′ are two points of |D| incoherent (they
exists by induction hypothesis on D), so (x, y) and (x′, y′) are incoherent
in C

&

D;

Lemma 3. Let R be an AC proof net without Cut and Par link and connected.
Then for every A, B distinct conclusions of R there exist two experiments e1,
e2 of R in any 3-interpretation of MLL s.t e1(A) ^ e2(A), e1(B) _ e2(B) and
for all other conclusion E 6= A,B of R, e1(E) � e2(E).

Proof. The proof is by induction on the number n of Tensor links in R:

• if n = 0, then the lemma follows by Remark 2;

• Otherwise, there is a terminal Tensor link with conclusion C ⊗ D which
is splitting for R, and it joins a proof net R1 with conclusions Γ, C with
a proof net R2 with conclusions D, ∆ . We have three cases:

1. A,B ∈ Γ (A,B ∈ ∆): then by induction hypothesis, there exist e′1,
e′2 experiments of R1 s.t. e′1(A) ^ e′2(A) and e′1(B) _ e′2(B), while
e′1(C) � e′2(C); now if we take e′′1 , e′′2 two equal experiments of R2,
from e′1, e′′1 and e′2, e′′2 we get two experiments e1, e2 for R such
that e1(C ⊗ D) � e2(C ⊗ D) and we are done (same reasoning for
A,B ∈ ∆);
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2. A ∈ Γ, B = C ⊗ D (A ∈ ∆, B = C ⊗ D): then by induction
hypothesis for R1 there exist two experiments e′1, e′2 s.t. e′1(A) ^
e′2(A), e′1(C) _ e′2(C) and for every E ∈ Γ, E 6= A, C e1(E) �
e2(E); now if we take e′′1 , e′′2 two equal experiments of R2, from
e′1, e′′1 and e′2, e′′2 we get two experiments e1, e2 for R such that
e1(C ⊗D) _ e2(C ⊗D) and we are done (same reasoning for A ∈ ∆,
B = C ⊗ D);

3. B ∈ Γ, A = C ⊗ D (B ∈ ∆, A = C ⊗ D): then by induction
hypothesis for R1 there exist two experiments e′1, e′2 s.t. e′1(B) _
e′2(B), e′1(C) ^ e′2(C), and for every E ∈ Γ, E 6= B, C e1(E) �
e2(E); now if we take e′′1 , e′′2 two equal experiments of R2, from
e′1, e′′1 and e′2, e′′2 we get two experiments e1, e2 for R such that
e1(C⊗D) ^ e2(C⊗D) and we are done (same reasoning for B ∈ ∆,
A = C ⊗ D);

4. A ∈ Γ, B ∈ ∆ (B ∈ Γ, A ∈ ∆): then by induction hypothesis
for R1 there exist two experiments e′1, e′2 s.t. e′1(A) ^ e′2(A) ,
e′1(C) _ e′2(C) and for every E ∈ Γ, E 6= A, C e1(E) � e2(E),
and by induction hypothesis for R2 there exist two experiments e′′1 ,
e′′2 s.t. e′′1(D) ^ e′′2(D) , e′′1(B) _ e′′2(B) and for every E ∈ Γ, E 6=
B, D e1(E) � e2(E) ; from e′1, e′′1 and e′2, e′′2 we get two experiments
e1, e2 for R s.t. e1(C ⊗ D) ^ e2(C ⊗ D) and we conclude (same
reasoning for B ∈ Γ, A ∈ ∆).

Remark 5. In the proof of Lemma 3, our choice of CoH and InCoH as the
coherent spaces interpreting the atomic formulas, is exactly what make the proof
work; if we had chose coherent spaces smaller, (for example of two points), the
theorem would be trivially false.

To see it, is sufficient to take a proof net consisting only of an Axiom link
whose edges A,A⊥ are of atomic type; if one interprets A, A⊥ with coherent
spaces of two points, which are incoherent in A, coherent in A⊥, the Lemma
doesn’t hold; to make it work, we have to consider coherent spaces with at
least three points, two points incoherent and two points coherent, i.e. CoH and
InCoh.

Definition 17. Let R be a proof structure, and n be a link of R. If n is different
from an Axiom link or an H-link, and if the unique conclusion of n is a premise
of the link n′ of R, we say that n′ is the successor of n.

Definition 18. Let R be a proof structure and a, a′ be two edges of R. We
say that there is a direct path from a to a′ when there is a path from a to a′

following the orientation of R (if it exists, this path is unique by definition of
proof structure).

Remark 6. Given a proof structure R with conclusions Γ and without Cut
links, and given an edge a of R, there is a unique C ∈ Γ s.t there exist a direct
path from a to C, and we call it the conclusion of R reachable from a.
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Definition 19. Let R be a cut-free proof structure with conclusions Γ, a be an
edge of R, and C ∈ Γ the conclusion of R reachable from a; the cluster of links
associated with a is the set of links of R belonging to the direct path from a to
C.

Definition 20. Let R be a cut-free proof structure which contains a non-
terminal Par link n with conclusion A

&

B; we define the proof structure R

&

from R as follows:

1. select one of the premises of n: call it asel;

2. erase the link n with its conclusion, and join asel with the successor n′ of
n, if it exists (otherwise asel is a conclusion of R

&

);

3. replace every edge d of type D of the direct path from A

&

B to the con-
clusion of R reachable from asel by the same edge but now with type
D[A/A

&

B] (resp. D[B/A

&

B])

4. the premise not chosen at point 1 is a new conclusion of R

&

.

We call such an operation

&

-opening of n in R (the inverse operation,which
allows to get back from R

&

to R, is called

&

-closing of n in R).

A B

C

A B

R1

Γ

∆ ∆

Γ

R2

R R1

R2

C[A/ A     B]

... ...
&

&

A    B

&

&

R

&

n

Fig.3:     −opening  of n in R

Remark 7. Notice that:

1. If R is an AC proof net (resp. a proof net) then R

&

is an AC proof net
(resp. a proof net)

2. If R is not an AC proof net (resp. a proof net) then it is always possible
to choose the edge asel of the previous construction in such a way that
R

&

is not an AC proof net (resp. a proof net) too.
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Theorem 2. Let R be a proof structure with conclusions Γ and without Cut
links; for all e1, e2 experiments of R in any 3-interpretation of MLL, if |e1|

_
^

|e2|, then R is an AC proof net.

Proof. The proof is by contraposition, i.e., we prove that if R is not an AC proof
net, then there exist two experiments e1, e2 of R s.t. |e1| ^ |e2|. We reason by
induction on the number of the Par links and number of the Tensor link in R,
lexicographically ordered ( #

&

,# ⊗ ):

• ( 0, 0) If there are only Axiom links, R is correct;

• ( 0, n + 1) We have two cases:

1. there exists a terminal Tensor link n with conclusion A ⊗ B such
that its removal yields a proof structure R1 with conclusions Γ, A ,
B, which is still incorrect; then by induction hypothesis, there exist
two experiments e1, e2 of R1 such that |e1| ^ |e2|, that is there exists
a conclusion C s.t. e1(C) ^ e2(C) , and for every conclusion D of R1,
e1(D) � e2(D). If e1(A) � e2(A) and e1(B) � e2(B) then joining
A with B via n yields e1(A ⊗ B) � e2(A ⊗ B); if e1(A) ^ e2(A) or
e1(B) ^ e2(B), then joining A with B via n yields e1(A ⊗ B) ^
e2(A ⊗ B);

2. otherwise, we choose one terminal Tensor link n with conclusion A⊗B
such that by removing it we get a proof structure R1 of conclusions
Γ, A, B, which is acyclic; the conclusions A and B have to be in
the same connected component R′

1 of R1 ( otherwise there would
not be a cycle passing trough n ); but then R′

1 is an AC proof net,
connected and without Cut and Par links, and by Lemma 3 there
exist two experiments e1, e2 s.t. e1(A) ^ e2(A), e1(B) _ e2(B) and
for all other conclusions D of R′

1, e1(D) � e2(D); then adding the
link n the same two experiments give e1(A ⊗ B) ^ e2(A ⊗ B);

• ( n+1, k): We select a Par link n of type A

&

B such that n is a terminal
link, or has below it only Tensor links (obviously such a link necessarily
exists).

– If n is a terminal link, then we erase n with its conclusion, and
we get a new proof structure R′ with conclusions Γ, A, B; R′ is
incorrect too (erasing n doesn’t eliminate any cycle) then we can
apply the induction hypothesis; so there are two experiments e1, e2

of R′ s.t. |e1| ^ |e2|, that is there exists a conclusion C of R′ s.t.
e1(C) ^ e2(C), and for every conclusions D of R′, e1(D) � e2(D).
If e1(A) ^ e2(A) or e1(B) ^ e2(B) then if we join A with B via n
the same two experiments give e1(A

&

B) ^ e2(A

&

B) in R, and we
are done; if e1(A) � e2(A) and e1(B) � e2(B) then there exist one
C ∈ Γ s.t. e1(C) ^ e2(C) in R′ and so in R too while the same two
experiments give e1(A

&

B) � e2(A

&

B) in R, and we are done.
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– Otherwise, we

&

-open n, selecting the premise of n in such a way
that R

&

is still incorrect (following Remark 7). Suppose for exam-
ple that the selected premise is A; we get a proof structure R

&

of
conclusions Γ, B, which is incorrect too. We are in condition to ap-
ply the induction hypothesis, so there exist two experiments e1, e2

of R

&

s.t |e1| ^ |e2|, that is there exists a conclusion C of R

&

s.t.
e1(C) ^ e2(C), and for every conclusions D of R

&

, e1(D) � e2(D).
Now to conclude we have to prove that, when we

&

-close n, e1 and
e2 are the experiments of R we are searching for; first notice that

&

-closing n has the only effect of (possibly) changing the coherence
relation on the edges of the direct path from A

&

B to the conclusion
of R reachable from A

&

B: everywhere else nothing changes in R
w.r.t. R

&

. Then we have three cases, depending on the coherence
relation of e1 and e2 in A:

1. e1(A) ^ e2(A): then in the conclusion C reachable from A in
R

&

, e1(C) ^ e2(C), because in the cluster of links associated
with A there are only Tensor links; then

&

-closing n we get
e1(A

&

B) ^ e2(A

&

B) and for the same reason e1(C) ^ e2(C)
in R, and we are done;

2. e1(A) _ e2(A): then in the conclusion C reachable from A in
R

&

, e1(C) ^ e2(C), because e1(A) 6= e2(A); so there is necessar-
ily a premise d of a Tensor link in the direct path from A to C s.t.
e1(d) ^ e2(d); so if we

&

-close n we get e1(A

&

B) _ e2(A

&

B)
and for the same reason (i.e. thanks to the coherence relation on
d), e1(C) ^ e2(C) in R, and we are done;

3. e1(A) = e2(A): then in the conclusion C reachable from A in R

&

,
e1(C) � e2(C); here we have to look at the coherence relation of
e1 and e2 in B, and there are two subcases:

(a) e1(B) = e2(B): then if we

&

-close n we get e1(A

&

B) =
e2(A

&

B), and this doesn’t modify the coherence relation
of e1 and e2 in C nor in any other conclusion, which means
that there exists a conclusion D of R

&

and of R s.t. e1(D) ^
e2(D).;

(b) e1(B) ^ e2(B): then if we

&

-close n we get e1(A

&

B) ^
e2(A

&

B), and this forces e1(C) ^ e2(C) because in the
cluster of link associated with A

&

B there are only Tensor
links.

3.3 Comparison with Retore’s proof

In [Ret97] Christian Retore gives a proof of Theorem 2 that is very similar to
this, but which differs for some features. Essentially, Retore proves the theorem
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cd
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cd

Fig.6 : the two dual coherent spaces N and Z

in such a way that one can extract an algorithm out of it, which decides whether
a proof structure is a proof net or not. In order to do that, he does the following
things:

• he chooses a different kind of coherent spaces, that he calls N and Z, to
interpret atomic formulas; the peculiarity of this two dual coherent spaces
is that every point of the web is coherent with exactly one point and
incoherent with exactly another point.

• given this interpretation (that he calls NZ-interpretation), he states an
analogue of Lemma 3: given any experiment e1 of a proof net R, possibly
containing

&

-links, there exists another experiment e2 of R such that
for every A, B conclusions of R, s.t. there is a path from A to B in a
correction graph of R, e1(A) _ e2(A), e1(B) ^ e2(B) and for all other
conclusions C of R, e1(C) � e2(C).

What we want to stress here is that the lemma, formulated this way,
doesn’t hold in our setting due to the different choice of atom-interpretation
we made: in fact in CoH and InCoH there is a point α which is respec-
tively coherent with all the others in CoH, and incoherent with all the
others in InCoH; so if we take a proof net consisting in only an axiom
link with conclusions A, interpreted by InCoH and A⊥, interpreted by
CoH, if e1(A) = α then the lemma doesn’t hold.

• then he uses this lemma to prove the theorem using the same kind of
formulation; the proof is by contraposition, as in our case, so what he
actually proves is that, if R is a proof structure which is not a proof
net, given any experiment e1 of R in any NZ-interpretation, there exists
another experiment e2 of R s.t. |e1| ^ |e2|.

The theorem too, formulated in this way, don’t holds in our setting, due
to a simple counter example: let’s take a cyclic proof structure like this
one:

23



A

T

A

T

A

T

A

T

AA

A A

Ax Ax

Given this structure, if we interpret A⊥ with InCoH, and we fix an ex-
periment e1 such that e1(A

⊥) = α for both the instances of A⊥, then
there isn’t any other experiment e2 s.t. e1(A

⊥⊗A⊥) ^ e2(A
⊥⊗A⊥) and

e1(A⊗A) ^ e2(A⊗A). This proves that the setting of Retore is the best
possible (in terms of number and coherence of the points of the coherent
spaces interpreting the atomic formulas) in order to prove the theorem in
the way he proves it.

Proving the theorem using Retore’s method, provides a simple algorithm to
verify the correctness of a proof structure R: it simply consists of :

1. Choose an arbitrary NZ-interpretation

2. Choose an experiment e1 of R

3. Check that any other experiment e2 of R satisfies |e1|
_
^ |e2| (the number

of possible e2 is finite, because N and Z are finite).

This algorithm, although simple, is not very efficient; if the proof struc-
ture has N Axiom links, one must verify 4N possible experiments, making its
complexity altogether exponential.

References

A different, stronger version of Theorem 1 was first proved in [Gir87]; for the
proof of Theorem 2 we have been inspired from [Ret97].
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Chapter 4

About the extension to

MELL

In this chapter first we will state the extension of theorem 1 to MELL; then we
show that the extension of Theorem 2 is not straightforward.

4.1 The interpretation of a proof net of MELL

is a clique

Remark 8. In a proof net R without Par link and ?co-link at depth 0, every
terminal Tensor link or Cut link at depth 0 n is splitting (otherwise there would
be a cycle in some correction graph passing trough n).

Proposition 2. Let R be proof structure of depth 0, and e1, e2 any two exper-
iments of R in any atom-interpretation of MELL. If for all the Axiom links n
of R with conclusions a, a′ , e1(a) = e2(a) = e1(a

′) = e2(a
′), then |e1| = |e2|.

Proof. Trivial, due to the fact that, at depth 0, once a value for the conclusions
of the axiom links is given, building an experiment is a deterministic operation.

Remark 9. The ?de-link preserves the coherence relation between the values
assigned by any two experiments on its premise: if R is a proof structure, e′, e′′

any two experiments of R, a any edge of R premise of a ?de-link with conclusion
c, if e′(a) _ e′′(a) (resp. e′(a) ^ e′′(a), e′(a) = e′′(a)), then e′(c) _ e′′(c) (resp.
e′(c) ^ e′′(c), e′(c) = e′′(c)).

Theorem 3. Let R be a proof structure of MELL with conclusions Γ; if R is
an AC proof net then for all e1, e2 experiments of R in any atom-interpretation
of MELL, |e1|

_
^ |e2|.
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Proof. By induction on the depth p of R, the number of the Par links plus
the number of the ?co-links at depth 0 and the number of the Cut links plus
the number of the Tensor links at depth 0 of R, lexicographically ordered (p,
#

&

+#?co, #cut + #⊗):

• (0,0,0) : let’s suppose that for all Axiom links n of conclusions a, a′,
e1(a) = e2(a) and e1(a

′) = e2(a
′); then by Proposition 2 and Remark 9

we know that |e1| = |e2|; otherwise for some n, e1(a) _ e2(a) or e1(a) ^
e2(a). In the first case, by Remark 9, there is a C ∈ Γ s.t. e1(C) _ e2(C),
and we are done; in the second case, by Remark 3 e1(a

′) _ e2(a
′) and we

conclude as in the previous case; in any case the presence of any ?we-link
does not influence the coherence of |e1| and |e2|.

• (p,0, n + 1) : by the absence of any Par link or co-link at depth 0 in R we
know by Remark 8 that every terminal Tensor link and every Cut link is
splitting for R; we will distinguish two cases, depending on the number of
Cut links at depth 0 in R:

1. if #Cut 6= 0 : we take any cut link n, with premises A, A⊥; n is
splitting and by removing it, we get two disjoint proof structures
R′, R′′ with conclusions respectively Γ′, A and A⊥, Γ′′, with Γ =
Γ′, Γ′′; the experiment e1 (resp. e2) splits in two experiments e′1,
(resp. e′2) of R′ and e′′1 (resp. e′′2) of R′′. R′ and R′′ are both
AC proof nets and by induction hypothesis, |e′1|

_
^ |e′2| and |e′′1 |

_
^

|e′′2 | . Let’s look at what we get if we join R′ and R′′ via the link
n: if |e′1| = |e′2| and |e′′1 | = |e′′2 | then |e1| = |e2|, by definition of
experiment. Otherwise, let’s suppose |e′1| _ |e′2| and for every A′ ∈
Γ′, e′1(A

′) � e′2(A
′) (if there is an A′ ∈ Γ′ s.t. e′1(A

′) _ e′2(A
′)

we are already done); then it must be e′1(A) _ e′2(A),and via the
Cut link n, e′′1(A⊥) ^ e′′(A⊥): so, there is an A′′ ∈ Γ′′ such that
e′′1(A′′) _ e′′2(A′′), and then |e1| _ |e2| .

2. if #Cut = 0: if there is a terminal Tensor link n with conclusion
A ⊗ B, then it is splitting by Remark 8 and removing it and its
conclusion we get two proof structures R′, with conclusions Γ′, A,
and R′′ with conclusions B,Γ′′; the experiment e1 (resp. e2) splits
in two experiments e′1, (resp. e′2) of R′ and e′′1 (resp. e′′2) of R′′. R′

and R′′ are both proof nets and by induction hypothesis, |e′1|
_
^ |e′2|

and |e′′1 |
_
^ |e′′2 |. We join R′ with R′′ via the link n and we get back

the proof net R with conclusions Γ′, A ⊗ B, Γ′′: if |e′1| = |e′2| and
|e′′1 | = |e′′2 |, then |e1| = |e2|, and we are done; if there is an A′ ∈ Γ′ s.t.
e′1(A

′) _ e′2(A
′) or if there is an A′′ ∈ Γ′′ s.t. e′′1(A′′) _ e′′2(A′′) then

|e1| _ |e2|, and we are done. Otherwise, let’s suppose e′1(A) _ e′′1(A)
and e′′1(B)

_
^ e′′2(B); then e1(A ⊗ B) _ e2(A ⊗ B), and |e1| _ |e2|.

If there is not any Terminal tensor link, then there is an edge a
conclusion of a Tensor link at depth 0 of R s.t. every link below a
is a ?de-links; then we consider the proof net R∗ obtained erasing all
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the ?de-links below a in R; for R∗ |e1|
_
^ |e2| and then by Remark 9,

this holds for R too.

• (p, m + 1, 0) : Let’s suppose that for all conclusion c of type C ∈ Γ of R,
e1(c) � e2(c). To conclude we have to prove that for all c e1(c) = e2(c).
We know by Lemma 2 that in R there exists a splitting Par link p, or
there exists a splitting ?co-link n; so we have two cases:

1. if there exists a splitting Par link p , with premises a of type A and b
of type B and conclusion d of type A

&

B we remove it, in order to get
two proof structures Ra, with conclusions Γ′, a of type A, b of type
B, and Rb with conclusions Γ′′, in which the conclusion d of type
A

&

B of p is the conclusion of an H link h (we assume Γ = Γ′, Γ′′).
It’s easy to see that Ra is a proof net; in order to make Rb a proof net
too, we change the link h in an Axiom link n adding to it a conclusion
f of type A⊥ ⊗ B⊥, which becomes a conclusion of Rb. We call e′1
and e′2 (resp. e′′1 and e′′2) the experiments obtained by restricting (
and extending) e1 and e2 to Ra (Rb): Ra and Rb are both proof nets
and by induction hypothesis, |e′1|

_
^ |e′2| and |e′′1 |

_
^ |e′′2 |. Now we

erase n and its conclusion f of type A⊥ ⊗ B⊥, we join Ra with Rb

via p and we look at the coherence of e1 with e2 in d of type A

&

B.
Remember that for every c ∈ Γ we have e1(c) � e2(c) and then for
every c′ ∈ Γ′, e′1(c) � e′2(c) and for every c′′ ∈ Γ′′, e′′1(c′′) � e′′2(c′′).
We have then three cases:

(a) e1(d) _ e2(d): then e′′1(f) ^ e′′2(f) in Rb and that’s not possible
by induction hypothesis;

(b) e1(d) ^ e2(d) : then e′1(a) � e′2(a) and e′1(b) � e′2(b); further-
more, e′1(a) ^ e′2(a) or e′1(b) ^ e′2(b), and that’s not possible by
induction hypothesis, applied to Ra;

(c) e1(d) = e2(d): it’s the only possible case. If this holds, by the
hypothesis that for all conclusion c of type C ∈ Γ of R, e1(c) �
e2(c), applying the induction hypothesis to R′, we get for all a′

of type A′ ∈ Γ′ , e′1(a
′) = e′2(a

′) and applying the induction
hypothesis to R′′ for all a′′ of type A′′ ∈ Γ′′ , e′′1(a′′) = e′′2(a′′).
Then for all c of type C ∈ Γ , e1(c) = e2(c).

2. if there exists a splitting ?co-link n with premises ?A1, . . . , ?An and
conclusion ?A we remove it, in order to get two proof structures Ra,
with conclusions Γ′ and a1, . . . , an of type ?A1, . . . , ?An , and Rb

with conclusions Γ′′ ,in which the conclusion a of type ?A of n is
the conclusion of an H link h. It’s easy to see that Ra is a proof
net; in order to make Rb a proof net too, we change the link h in an
Axiom link k adding to it a conclusion b of type !A⊥, which becomes a
conclusion of Rb. We call e′1 and e′2 (resp. e′′1 and e′′2) the experiments
obtained by restricting ( and extending) e1 and e2 to Ra ( Rb ): Ra

and Rb are both proof nets and by induction hypothesis, |e′1|
_
^ |e′2|
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and |e′′1 |
_
^ |e′′2 |. Now we erase k and its conclusion b of type !A⊥, we

join Ra with Rb via n and we look at the coherence of e1 with e2 in
a of type ?A. Remember that for every c ∈ Γ, we have e1(c) � e2(c)
and then for every c′ ∈ Γ′, e′1(c

′) � e′2(c
′) and for every c′′ ∈ Γ′′,

e′′1(c′′) � e′′2(c′′). We have then three cases:

(a) e1(a) _ e2(a): then e′′1(b) ^ e′′2(b) in Rb and that’s not possible
by induction hypothesis;

(b) e1(a) ^ e2(a) : then there exist an l ∈ {1, . . . , n} s.t. e′1(al) ^
e′2(al) while for all k ∈ {1, . . . , n} e′1(ak) � e′2(ak) in Ra , and
that’s not possible by induction hypothesis.

(c) e1(a) = e2(a): it’s the only possible case. If this holds, by the
hypothesis that for all conclusion c of type C ∈ Γ of R, e1(c) �
e2(c), applying the induction hypothesis to R′ we get for all a′

of type A′ ∈ Γ′ , e′1(a
′) = e′2(a

′) and applying the induction
hypothesis to R′′ for all a′′ of type A′′ ∈ Γ′′ , e′′1(a′′) = e′′2(a′′).
Then for all c of type C ∈ Γ , e1(c) = e2(c).

• (p, 0, 0): In this case suppose that there is some box B of R of depth 0 s.t.
its conclusions p1, . . . , pn of type respectively ?P1, . . . , ?Pn and c of type
!C are conclusions of R (by simplicity’s sake, we say that they are all the
conclusions of R; once proven in this case the case in which there are also
other conclusions is trivial); we call R′ the maximal proof net contained
in B, with conclusions the premises p′1, . . . , p

′
n of the auxiliary doors with

conclusions p1, . . . , pn of B, and the premise c′ of the principal door with
conclusion c of B; we know by induction hypothesis that for every e′, e′′

experiments of R′, |e′|
_
^ |e′′|. Let e1, e2 be any two experiments of R

with result γ1, (resp.γ2) ∈ |!C
&

?P1
&

. . .
&

?Pn|; we want to prove
that, if e1, e2, |e1| � |e2|, then |e1| = |e2|. If |e1| � |e2| this means that
∀i ∈ {1, . . . , n}, e1(pi) � e2(pi) and e1(c) � e2(c). Let’s suppose that
e1(c) = ∅: then e2(c) = ∅; otherwise, by the fact that e1(c) ^ e2(c),
e1(c) ∪ e2(c) would not be a clique; but that’s not possible, for e2(c) is
a clique. Then if one among e1(c), e2(c) is empty then they are both
empty, but then |e1| = |e2|. Now suppose that e1(c), e2(c) are both
non-empty: we know then that ∀i, e1(pi) = {e1

1(p
′
i) ∪ . . . ∪ ek1

1
(p′i)} and

e2(pi) = {e1
2(p

′
i) ∪ . . . ∪ ek2

2
(p′i)}, where for all l ∈ {1, . . . , k1}, and for

all m ∈ {1, . . . , k2} el
1 and em

2 are experiments of R′; if e1(pi) � e2(pi)
this means that e1(pi) ∪ e2(pi) is a clique of P⊥

i , and by the fact that
every subset of a clique is a clique too, ∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , k1},
∀m ∈ {1, . . . , k2} el

1(p
′
i) � em

2 (p′i). Now we have two cases, depending on
the coherence relation of e1 and e2 in c:

1. e1(c) ^ e2(c): in this case e1(c) = {x1, . . . , xk1
}, where for t ∈

{1, . . . , k1}, et
1(c

′) = {xt}, and e2(c) = {y1, . . . , yk2
}, where for s ∈

{1, . . . , k2} es
2 = {ys}, and e1(c) ∪ e2(c) is not a clique of C; then

there are some et
1, es

2 s.t. et
1(c

′) ^ es
2(c

′) while for all l ∈ {1, . . . , k1},
for all m ∈ {1, . . . , k2} and for all i ∈ {1, . . . , n}, el

1(pi) � em
2 (pi);
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this imply |et
1| ^ |es

2| in R′ and that’s not possible by induction
hypothesis: contradiction.

2. e1(c) = e2(c): this is the only possible case. If this holds, e1(c) =
{x1, . . . , xk1

}, e2(c) = {y1, . . . , yk2
}, and k1 = k2 = k; we reorder

{x1, . . . , xk} and {y1, . . . , yk} in such a way that x1 = y1, . . . , xk =
yk; if e1

1(c
′) = x1, . . . , e

k
1(c′) = xk and e1

2(c
′) = y1, . . . , e

k
2(c′) = yk

then ∀i ∈ {1, . . . , k}, ei
1(c

′) = ei
2(c

′). We already know that for all the
p′1, . . . , p

′
n premises of the auxiliary doors of R, for all j ∈ {1, . . . , n},

ei
1(p

′
j) � ei

2(p
′
j), and by induction hypothesis that |ei

1|
_
^ |ei

2|; by this,

and the fact that, ∀i, ei
1(c

′) = ei
2(c

′), we can say that, ∀j, ei
1(p

′
j) =

ei
2(p

′
j); this implies that for all p1, . . . , pn conclusions of the auxiliary

doors of R, ∀j ∈ {1, . . . , n}, e1(pj) = e2(pj), and then |e1| = |e2|.

If there is not a box at depth 0 whose conclusions are all conclusions of
the proof net, then there must be some cluster of ?de-links below some
of the conclusions of the box; in this case we erase the clusters, getting a
proof net R∗ s.t. |e1| = |e2|; by Remark 9 this holds for R too. In case
there are several boxes of depth 0, we argue in the same way for each of
them.

4.2 Is it the case that the interpretation of a

cyclic structure of MELL is not a clique?

We just stated and proved the extension of Theorem 1 to MELL, and so it
would be reasonable to imagine that Theorem 2 has a straightforward extension
to MELL; unfortunately, that’s not the case, and now we will briefly show why.

The proof of Theorem 2 is a proof by contraposition (i.e. given a cyclic
structure R we search for two experiments on R whose results are incoherent)
and by induction (on the depth of R); to extend it to MELL, in the induction
step, we have to deal with the case of the presence of some ?co-link at depth 0.

The most natural way to deal with this case, is to argue as in the case of the
Par link, designing a procedure of ?co-opening of a ?co-link, in any way similar
to that of

&

-opening, state the induction hypothesis for the opened structure
R′, and then prove that ?co-closing R′ preserves the induction hypothesis.

Here we have the first problem: the induction hypothesis for R′ tell us that
there are two experiments of R′ whose results are incoherent; but when we
?co-close R′, not necessarily all experiments of R′ become experiments of R; in
fact in the case of the ?co-link, if {x1}, . . . , {xn} are the labels assigned by an
experiment e to the premises ?A1, . . . , ?An of a ?co-link of R, e is an experiment
of R iff the label {x1∪. . .∪xn} assigned by e to the conclusion ?A of the ?co-link
is a clique of A⊥; and that’s not the case for all experiments of R′; so the two
incoherent experiment of R′ we get from the induction hypothesis may not be
experiments of R too.
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The problem can be partially solved if, instead of any two experiments, we
search for two experiments simple (see [Tor01]): an experiment e is simple
when it is obsessional (see [Tor01]) and ∀a, a′ edges of the same atomic type
of R such that a 6= a′, the unique element of e(a) is equal to the unique element
of e(a′).

In this case, there is a lemma, proven in [Tor01], which says that ∀a, b edges
of type ?A of R, if e is a simple experiment, then e(a) � e(b); using this lemma
in our proof, we can say that every simple experiment of R′ is an experiment of
R too, and the case of the ?co-link can be handled straightforwardly.

But, if we want modify our proof in order to search only for simple experi-
ments, we have to modify consequently all the lemmas we use in the proof, in
particular Lemma 3, which has to be restricted only to the case of simple ex-
periments; unfortunately (again!), this cannot be done, because the restriction
of Lemma 3 to simple experiments is trivially false: as a very simple counterex-
ample one can consider the following proof net, interpreting A with InCoH:

A

T

A

T

A

T

A

T

Ax Ax

AA

.

We then showed that it’s not possible extend our theorem in a direct way;
this don’t close the door to other ways of extending it, (very probably it can be
extended), but the extension is not an immediate consequence of the result for
the multiplicative fragment.

References

An alternative proof of Theorem 3 is given in [Bar01]; a complete extension of
Theorem 2 to MELL for pure proof nets is given in [DuqVdW].
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