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Introduction

“If you knew time as well as I do - said the Hatter - you wouldn’t
talk about wasting it. [...] Now, if you only kept on good terms
with him, he’d do almost anything you liked with the clock.”
(Lewis Carroll, Alice’s adventures in Wonderland.)

The topic of the present thesis is the relation between parallelism and
sequentiality in proofs. More precisely, in the framework of linear logic, we
study the connection between two of its most crucial discoveries: proof nets
and polarities.

Let us try to explain better the point. When we write down a proof of a
formula A, we may choose to depict it as a chain of inferences, ending with
an inference which concludes A; or rather, more finely, we could represent
the proof as a tree of inference rules, for instance in sequent calculus. How-
ever, such a style of representation does not seem to properly capture the
intrinsic nature of a proof, since it makes distinctions between proofs which
are “morally” the same: consider for example, two proofs of the same for-
mula differing only for some inessential variations in the order of application
of rules.

Following such an intuition, a proof does not appear to be intrinsically
tied to some specific succession of its inferences, but it resembles rather a
parallel process: as a matter of fact, if two inference rules in a proof are
mutually independent (that is, if we can permute them), we could imagine
of applying each of them separately, in parallel.

In other words, a proof is more than a plain, ordered sequence of logical
rules; linear logic provides mathematical substance to this claim, introducing
the notion of proof net.

Proof nets. In 1987, in the seminal paper [Gir87], Girard introduces linear
logic (briefly LL) from a fine analysis of intuitionistic and classical logic; such
a refinement provides a logical status to the structural rules (weakening and
contraction) of sequent calculus (due to the introduction of the exponential
connectives, ! and ? ) and splits the usual propositional connectives (“and”,
“or”) in two classes (the additives &, @, and the multiplicatives ®, ).
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The deep insight on the standard connectives operated by LL allows to
represent proofs as graphs called proof nets, whose nodes correspond to linear
logic rules and which satisfy some specific geometrical properties (called
correctness criteria); such a discovery brought to the fore the geometrical
nature of proofs.

The main characteristic of proof nets is to be modular, parallel objects:
in a proof net, there is no direct reference to the sequential succession of
steps which brought to its construction.

As a consequence, a proof net turns out to be a canonical representative
of a class of sequent calculus proofs equivalent modulo permutations of rules:
sequentialization, one of the key results in the theory of proof nets, allows
to recover a sequent calculus proof from a proof net, by proving that among
the nodes of the proof net one can be chosen as a sequent calculus last rule;
by iterated application of this property, it is possible to retrieve a proof in
sequent calculus from a proof net.

The discovery of proof nets becomes even more interesting if we con-
sider them in the light of the so-called Curry-Howard isomorphism, relating
computer science with proof-theory. This isomorphism associates programs
with proofs, and execution of programs with a procedure of transformation
of proofs called cut-elimination, enlightening in this way the logical meaning
of computation and the operational nature of proofs.

Cut-elimination in the setting of proof nets becomes a local, modular
rewriting of graphs, discarding all the bureaucracy of the sequent calcu-
lus (e.g. commutation of rules during cut-elimination); due to the Curry
Howard isomorphism, this provides then a parallel, geometrical account of
computation.

Nevertheless, we must remark that outside multiplicative linear logic
(briefly M LL), the beautiful theory of proof nets becomes less elegant and
in (some cases) quite complicated: for instance, the search of a proper rep-
resentation of additives in proof nets has been an open problem for a long
time, only recently solved by Hughes and Van Glaabeek in [HVGO03].

To sum up, proof nets allows to eliminate those naive aspects of sequen-
tiality which are not naturally inherent to the structure of proofs.

However there exists also another side of sequentiality, more intrinsic
than the simple ordered succession of rules. Such a meaningful notion of
sequentiality has been disclosed by the discovery inside linear logic of polar-
ities.

Polarities. LL, tampering the structural rules with the exponentials con-
nectives, allows for the first time to define an involutive negation indepen-
dent from structural rules, called linear negation.

In the framework of Curry-Howard isomorphism, such a discovery en-
lightened the operational meaning of negation as a change of viewpoint. In
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computer science, a program is executed in a given environment; this pro-
cess can be either analyzed from the point of view of the program or from
the one of the environment, and negation is here the switch between these
two positions.

It is worth mentioning that the above intuition contributed in a remark-
able way to the birth of game semantics, which interprets computation as
a game between two players, one representing the program, and the other
representing the environment (see [AMJ00], [HOO00]).

The refinement of usual negation inside LL was the starting point of a
deep analysis of the logical notion of duality, which eventually brought to
the discovery of polarities.

Multiplicative and additive connectives of LL naturally splits into two
dual families:

- Positives (or synchronous): ®,®;

- Negatives (or asynchronous): 2, &.

A formula is positive (resp. negative) if its outermost connective is pos-
itive (resp. negative).

The difference between positives and negatives relies in the fact that,
while the rules introducing negative formulas are reversible (that is, the
conclusion of the rule implies the premises), the rules introducing positive
formulas are irreversible.

Following this distinction, in [And92], Andreoli proved that any proof of
linear logic can be transformed modulo permutations of rules into a proof
which satisfies (bottom-up) the following discipline:

i) negative formulas, if any, are decomposed immediately;

ii) otherwise, one chooses a positive formula, and keeps decomposing it
up to its negative subformulas.

Such proofs are called focusing.

The alternation of positive and negative steps provides then a canonical
way to construct a sequent calculus proof, yielding an intrinsic, not trivial
notion of time in proofs, as pointed out by Girard in [Gir99].

Looking at focusing proofs through the lens of interaction, a positive
cluster of rules appears as the act of posing a question to an Opponent by
a Proponent, and a negative cluster of rules as the reception of an answer
from the Opponent; if we apply linear negation, we switch the point of view,
turning questions into answers and answers into questions.

The nature of a focusing proof then seems to be a dialogue, a strict
alternation of questions and answers; this startling discover opened the way
to game models of linear logic (see [Lau03] , [Lau04]) and to ludics [Gir01], a
reconstruction of multiplicative-additive linear logic (briefly M ALL) based
only on the notion of interaction.

To provide a canonical representation of focusing proofs in MALL,
in [Gir00] Girard introduced a calculus called hypersequentialized calculus
(briefly HS), using synthetic connectives (that is considering clusters of
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connectives of the same polarity as a single connective). The distinctive
feature of HS is the presence of only two kinds of logical rules (the positive
and the negative), one strictly alternating with the other.

Nevertheless, the hypersequentialized approach has its limitations: mainly,
it forces to leave aside the geometrical representation of proof nets, in spite
of the simplicity and elegance of its multiplicative part.

The mismatch. Clearly there is a mismatch regarding the nature of
proofs between proof nets and hypersequentialized calculus. Firstly, proof
nets exhibit an elegant geometrical structure which is absent in H.S; further-
more, while proof nets are timeless, parallel objects, in hypersequentialized
proofs there is an explicit marking of time, which makes them sequential in
a strong, natural sense.

The point is well captured in the following quoting of Girard, from
[Gir99]:

“We are perhaps explaining a sequential logic, and there might
as well be a parallel logic -without temporality-; [...] I think
that the ghost of an alternative parallel logic might vanish if
we succeed to depart from the game intuition, in which a strict
alternation of moves is so important.”

The aim of the present thesis is to try to reconcile this mismatch in
MALL, by proposing a notion of proof net for HS and recovering in this
way polarities (and time) in a geometrical, parallel setting. In our proof nets
positive and negative rules are still alternating, but not strictly, that is, the
set of rules following a given rule is partially ordered; as it is standard in
the theory of proof nets, any proof net in our setting can be sequentialized
into several different hypersequentialized proofs. In other words, time is still
present, but while in hypersequentialized proofs it is explicit, in our case it
is implicit.

The ideas underlying this work come from recent development of ludics,
namely the ludics nets (or L-nets) of Faggian and Maurel (see [FMO05]).

Ludics nets. Game models of sequential computation interpret a program
as a strategy in a game; from a geometrical point of view, usually such
strategies appear as trees, (for instance, innocent Hyland-Ong strategies,
see [HO00]), and composition between strategies yields a linearly ordered
set of moves.

In the area of game semantics, several proposals are emerging (see among
others [HS02, AM99, Mel04]) in order to capture more parallel forms of com-
putation; in these approaches, strategies are no more trees, but more gener-
ally graphs, so that the order between the actions is not completely specified:
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the composition between graph strategies yields a partially ordered set of
moves.

L-nets are a generalization of ludics designs (which correspond to Hyland-
Ong strategies, see [FHO02]) developed from the observation that a design is
a merging of two kinds of orders between actions, as pointed out by Faggian
in [Fag02]:

- the causal (or spatial) order, representing the causal dependencies be-
tween actions;

- the sequential (or temporal) order, representing how independent ac-
tions are scheduled.

L-nets are built from designs by relaxing the sequential order between
actions, in such a way to have still enough information to compute; the main
benefit of this approach is to provide an homogeneous space of strategies
with different levels of sequentiality, within which one can move by gradually
adding or relaxing sequential order. Such a space has as extremes from one
side L-nets with minimal sequentiality, from the other designs (see [CF05]);
by the way, designs are a special case of L-nets, as trees are a special case
of graphs.

Jumps: sequentializing a la carte. It is well known that a design in
ludics corresponds to an abstract, untyped hypersequentialized proof. What
we would like to achieve is a notion of proof net which corresponds to the
one of L-net, as an hypersequentialized proof corresponds to a design. In
order to accomplish this task, we must find a counterpart for both the causal
and the sequential ordering in the representation of proof nets. Concerning
the causal ordering, if we restrict to M ALL, we have already an answer in
the subformula relation induced by the structure of the links in a proof net.
The information provided by axiom links, instead, is closer to sequential
ordering; however, to properly characterize sequential order in proof nets,
we have to resort to the notion of jump (as observed in [FMO05]).

The idea of using edges to represent sequentiality constraints has been
widely used in the study of correctness criteria for proof nets: in [Gir91]
and [Gir96], Girard, as a part of the correctness criterion for proof nets,
introduces jumps: if a link n is a '@, &, L or V link, a jump is an untyped
edge between n and another link m, which represents a sequential ordering
between n and m; n precedes m (bottom-up) in every sequentialization.

Girard, in several occasions, suggested that it could be possible to re-
trieve a sequent calculus proof from a proof net just by fixing some temporal
information on it, using jumps.

Let us try to make this point clearer with an example; consider the sketch
of proof net below:
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We remark that such a configuration is forbidden in H.S: one must decide
which one of the two ® is the last rule. To retrieve an H.S proof then we
draw a jump between the leftmost (negative) e and the rightmost (positive)
®, meaning that the corresponding % rule must precede (bottom-up) the
corresponding ® rule in the sequentialization;

Now, the sequent calculus proof 7 induced by this proof net will have
as last rule the leftmost ®, followed respectively by the leftmost 2, the
rightmost ® and the rightmost ’®, so it respects the focusing discipline.
We remark that, instead of fixing the order in the way above, we could as
well draw a jump between the the rightmost (negative) & and the leftmost
(positive) ®, as below, obtaining a different focusing proof 7’

Furthermore, once fixed an order between links using jumps, some other
choices becomes unavailable: namely one cannot draw both the jumps above
at the same time, without creating a cycle, which would prevent us to get
an order.
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Once all possible jumps have been chosen, one directly retrieves in this
way an H.S proof.

J-proof nets. Now, our method of work should be clear: we will introduce
proof nets with jumps for the hypersequentialized calculus, called J-proof
nets, and we will gradually remove or add sequentiality between positive
and negative links, in the form of jumps, in order to get more parallel or
more sequential proofs, in the style of L-nets.

At any time, the information provided by jumps always makes possible
to retrieve a fully sequentialized J-proof net, that is, an hypersequentialized
proof: this key property of J-proof nets , stated in our main technical result,
called the arborisation lemma, provides a way to insert jumps in a J-proof
net, up to a maximum.

In this way, as in L-nets, we get an homogeneous space of J-proof nets
with different degrees of sequentiality, having as extremes from one side
J-proof nets with minimal sequentiality, from the other J-proof nets with
maximal sequentiality, which directly correspond to HS proofs.

Content of the thesis. The thesis is divided into three chapters: in the
first chapter we present the arborisation lemma, while in the remaining two
chapters we introduce J-proof nets respectively for the multiplicative and
the multiplicative-additive fragment of HS.

Chapter 1: The main contribution of this chapter is the proof of the ar-
borisation lemma. In section 1.1 we recall some preliminary notions of
graph theory; then, in section 1.2, we introduce a class of directed
acyclic graphs, called polarized graphs, as a sort of abstract proof
nets, and we present the arborisation lemma as a general property
of these graphs. Arborisation lemma states that, by inserting edges,
it is possible to transform a polarized graph into a forest, preserv-
ing a particular geometrical condition on the graph, called switching
acyclicity (which corresponds to the correctness criterion on proof nets,
see [Dan90]). Actually, we provide two different formulations of the
lemma: a stronger one, which constitutes the key of sequentialization
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in J-proof nets, and a weaker one, which will allow to provide a sim-
ple, alternative proof of the sequentialization theorem for the usual
multiplicative proof nets of linear logic.

Chapter 2: In this chapter we introduce J-proof nets for the multiplicative
fragment of the hypersequentialized calculus (briefly M HS). We start
by presenting in subsection 2.1.1 the usual M LL sequent calculus in
a slightly different way, by using synthetic connectives, and then we
retrieve the hypersequentialized calculus (in its multiplicative part).

In section 2.2 we define multiplicative J-proof nets, and in subsection
2.2.5 we prove the sequentialization theorem, using the strong arbori-
sation lemma; then in subsection 2.2.6 we study J-proof nets at a
dynamical level, proving that cut-reduction on them enjoys the usual
“good” properties: stability, confluence, strong normalization.

In section 2.3 we isolate a mathematical structure, called pointed set,
and we show that it describes what is invariant in a J-proof net under
cut-reduction; pointed sets so define a model of cut-reduction in J-
proof nets, called pointed semantics, which extends usual relational
semantics. Moreover, differently from the standard relational model,
pointed sets allow to semantically characterize jumps. In subsection
2.3.2 we show that pointed semantics is a faithful description of J-
proof nets, by proving that the model is injective with respect to J-
proof nets: namely, two J-proof nets with the same interpretation
in pointed semantics are syntactically equivalent. The results in this
section have been developed in collaboration with Pierre Boudes and
Damiano Mazza.

In section 2.4 we shift the focus on usual multiplicative proof nets,
and we use the weak arborisation lemma to give an alternative proof
of sequentialization theorem in this setting: in subsection 2.4.2 we
prove how two standard results in the theory of proof nets, namely the
splitting ® lemma and the splitting ’® lemma, are both consequences
of the arborisation lemma. Finally in subsection 2.4.3 we study the
relation between jumps and another standard notion in proof nets, the
one of empire (see [Gir87]).

Most of the results of this chapter are in [DGF06] and [DGF] (joint
works with Claudia Faggian).

Chapter 3: In this chapter we extend J-proof nets to the additive fragment
of hypersequentialized calculus.

First, in section 3.1, we present the full hypersequentialized calculus;
then in section 3.2 we introduce additive J-proof nets.

In section 3.3 we extend sequentialization to include additives; the
relevance of this result is clear, if one consider that the problem of
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sequentializing in presence of additives is one of the most difficult in
the framework of proof nets. In order to properly take into account
the superposition effects implicit in the structure of additives, we must
resort to the notion of slice (see [Gir87]) and to the one of sharing
equivalence (see [LTdF04]), defined in subsection 3.3.2.

In section 3.4 we study the dynamics of cut reduction in the additive
case; as in the previous section, our approach will be based on slices
(following [FMO05], [LTdF04]).

In section 3.5, we extend pointed semantics to additives, proving that
the injectivity result of the previous chapter is preserved.

Using injectivity of pointed semantics, in section 3.6, we will prove that
composition of J-proof nets is stable under cut reduction (a similar
strategy was used also by Laurent and Tortora de Falco in [LTdF04]).
The use of semantics to prove a syntactical property should not be
surprising; in the spirit of the program launched in [Gir99] by Girard,
syntax and semantics are just two different ways to describe the same
object.

Finally, in section 3.7, in the style of [CF], we isolate two classes of J-
proof nets, the ones with minimal (resp. maximal) sequentiality, and
we provide some indications to recover within J-proof nets some of
the usual syntaxes for additive proof nets; namely, additive boxes (see
[Gir87]) , multiboxes (see [TdFO03b], and sliced polarized proof nets
(see [LTAF04]).
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Chapter 1

The arborisation Lemma

In this chapter, after recalling some basic notions of graph theory, we in-
troduce a class of directed acyclic graphs called polarized graphs. In this
setting we state and prove the arborisation lemma, which will turn out
to be our principal tool in chapter 2.

1.1 Preliminaries on graphs

A directed graph G is an ordered pair (V, E), where V is a finite set whose
elements are called nodes, and E is a set of ordered pairs of nodes called
edges.

We will denote nodes by small initial Latin letters a,b,c,... and edges
by small final Latin letters ..., x,y, z.

To denote that there is an edge from a node a to a node b, we will write
a — b; we say that an edge = from a to b is emergent from a and incident
on b; b is called the target of x and a is called the source.

The in-degree (resp. out-degree) of a node is the number of its inci-
dent (resp. emergent) edges; two edges are coincident when they have the
same target.

Given a directed graph G a path (resp. directed path) r from a node
b to a node c is a sequence (ay,...,a,) of nodes such that b = a1, ¢ = ay,
and for each a;,a;41, there is an edge x either from a; to a;41, either from
ai+1 to a; (resp. from a; to a;41); in this case, x is said to be used by r;
given a path r = (aq,...,a,) we will say that r leaves a; and enters in a,,.
Morover, we require that all nodes in a path from a node b to a node ¢ are
distinct, with the possible exception of b and c.

If there is a directed path from a to b, we denote it by a b

A graph G is connected if for any pair of nodes a,b of GG there exists a
path from a to b.

A cycle (resp. directed cycle) is a path (resp. directed path) (a1, ..., a,)
such that a; = a,,.
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A directed acyclic graph (d.a.g.) is a directed graph without directed
cycles.

When drawing a d.a.g we will represent edges oriented up-down so that
we may speak of moving downwardly or upwardly in the graph; in the same
spirit we will say that a node is just above (resp. hereditary above) or below
(resp. hereditary below) another node.

Given a d.a.g. G and a node a of G, we will call cone of a in G (denoted
Ci(a)) the set of all the nodes hereditary above a; it is straightforward that
the set {C(a);a is a node of G} of the cones of a d.a.g. G is strictly ordered
by inclusion.

We recall that we can represent a strict partial order as a d.a.g., where
we have an edge b — a whenever a <; b (i.e. a < b, and there is no ¢ such
that a < ¢ and ¢ < b.) Conversely (the transitive closure of) a d.a.g. G
induces a strict partial order < on the nodes of G.

We call predecessor of a node ¢, a node which immediately precedes
(bottom-up) ¢ in <¢ (similarly for the successor).

An edge a — b is transitive if there is a node ¢ such that a ., ¢ and
c—b.

We call skeleton of a directed graph G, denoted Sk(G), the minimal
graph whose transitive closure is the same as that of G.

A root of a d.a.g. is a node with no predecessors.

A forest (resp. tree) is a d.a.g. G such that, given a node a and a root
b of G, there exists at most one (resp. exactly one) directed path from a to
b.

A strict order on a set is arborescent when each element has at most one
immediate predecessor; it is straightforward that if the order < associated
with a directed graph G is arborescent, the skeleton of G is a forest.

A graph G is bipartite when there is a partition of the set V' of its nodes
into two subsets V7 and Vs, such that every edge of G connects an element
of V7 with an element of V5.

A graph with pairs is a couple (G, App(G)) where G is a directed
graph and App(G) is a set of n-tuples of coincident edges of G.

Given a graph with pairs (G, App(G)), we call switching edge an edge
x belonging to a n-tuple of App(G). A switching path in (G, App(G)), is
a path which uses at most one switching edge for each n-tuple of App(G);
a switching cycle is a switching path which is a cycle; G is switching
acyclic when it does not contain switching cycles.

1.2 Polarized graphs

Definition 1 (Polarized graph) A polarized graph G is a directed acyclic
graph such that there is a partition of its nodes into three sets (I, N, P) which
satisfy the following constraints:
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e all the nodes in I (called initials) have in-degree 0 and out-degree 2;
e all the nodes in N have out-degree n < 1 and in-degree n > 1;
e all the nodes in P have in-degree n > 1;

e the graph G\ I which contains only the nodes in N and P is bipartite.

We say that the nodes in N have negative polarity, and that the nodes
i P have positive polarity.

o
N

T &N

Figure 1.1: Nodes of a polarized graph

Definition 2 (Balanced polarized graph) A polarized graph is balanced
when for each initial node a, its immediate predecessors have different po-
larity.

We can associate with a polarized graph G the structure of a graph with
pairs (G, App(G)), by taking as App(G) the n-tuples of the edges incident
on the same negative node. A polarized graph G is switching acyclic if and
only if the corresponding graph with pairs (G, App(G)) is switching acyclic.

Definition 3 (Saturated polarised graph) A switching acyclic polarized
graph G is saturated if for every negative node a and for every positive node
b of G, adding an edge from b to a creates a switching cycle or doesn’t in-
crease the order <pg.

Lemma 1 (Strong Arborisation Lemma) Let G be a balanced polarized
graph with at most one negative root. Then, if G is saturated, the order <g
s arborescent.

Proor.

Let us prove that if <¢ is not arborescent then G is not saturated, that
is there exists a negative node ¢ and a positive node b s.t. adding an edge
between b and ¢ doesn’t create switching cycles and makes the order increase.
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If <¢ is not arborescent, then in < there exists a node a with two
immediate predecessors b and ¢ (they are incomparable). Observe that b
and ¢ are immediately below a in Sk(G) and also in G.

If @ is an initial node, since G is balanced then necessarily b and ¢ are
respectively a positive node and a negative node; we add an edge between b
and ¢, this doesn’t create switching cycles and the order increases.

Otherwise, a is a positive node, and b and ¢ are two negative nodes; we
distinguish two cases:

1. either b or ¢ is a root in (G. Let assume that b is a root; then ¢
cannot be a root ( by hypothesis), and there is a positive node ¢
which immediately precedes c. If we add an edge between b and ¢/,
this doesn’t create cycles and the order increases (see fig 1.2).

A
SN

c

Figure 1.2:

2. Nor b nor ¢ are roots in G. Each of them has an immediate positive
predecessor, respectively ' and ¢’. Suppose that adding an edge from
b’ to c creates a cycle: we show that adding an edge from ¢’ to b cannot
create a cycle.

If adding to G the edge b’ — c creates a cycle, this means that there is
in G a switching path r» = (¢, ¢....b); if adding the edge ¢ — b creates
a cycle then there is a switching path ' = (b,V'...c) .

Assume that r and 7’ are disjoint: we exhibit a switching cycle in R
{e,d..bV...c) by concatenation of r and /. This contradicts the fact
that G is switching acyclic (see fig 1.3).

Assume that r and 7’ are not disjoint. Let d be the first node of r’
(starting from b ) where r and 7’ meet. Observe that d must be negative
(otherwise there would be a switching cycle (a,b,V, ..., ¢, a), since
a positive node has no switching edges). Each of 7,7’ uses one of the
edges incident on d (hence the paths meet also in the node below d).
From the fact that d is the first node of 7’ (starting from b) where r
and 7’ meet it follows that: (i) r’ enters in d using one of its incident
edges; (ii) each of r and r’ must use two different incident edges of d.
Then we distinguish two cases (see 1.4):
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e 1 enters d using one its incident edges; we build a switching cycle

taking the sub path (b, ....,d) of 7’ and the sub path (d,....,b) of
T

e 1 enters d using its emergent edge; then we build a switching cycle
composing the sub path of r (c,

...,d) , the reversed sub path of
r’ (d,...,b) and the path (b,a,c).

AN
’ L | l

b’ c
"

Figure 1.4:

O
The relation between arborescent order and saturation stated in the pre-

vious lemma actually holds only in the restricted case of balanced polarized
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graphs; it is easy to build a counterexample for the general case, using po-
larized graphs composed only of initial nodes and positive nodes.

However, even for not-balanced polarized graphs, the following property
holds:

Lemma 2 (Weak Arborisation Lemma) Let G be switching acyclic po-
larized graph with at most one negative root, and Ci(b), Ca(c) be the cones
of two negative nodes of G. Then if G is saturated, either Cq(b)NCq(c) =0,
or one among Cq(b),Cq(c) is strictly included into the other.

ProOOF.

Assume that Co(b)NCa(c) # 0, ¢ ¢ Cq(b) and b ¢ Ci(c); now consider
a node a in Cg(b) N Ca(c).

Every node in Cg(b) N Cg(c) is hereditary above both b and ¢, so there
is a a directed path 7" (resp. ') from a to b (resp. from a to c).

Let us assume that b, ¢ are not roots of G (otherwise, at most one of them
can be a root, so we reason as in the proof of lemma 1 and we find that G
is not saturated: contradiction), so they are respectively immediately above
two positive nodes V', ¢/, such that ' ¢ Cg(c) (resp. ¢ ¢ C(b)).

Since G is saturated , there is a switching path (c,¢/,...,b) connecting
¢ with b (otherwise we could add an edge from ¥’ to ¢, and G would not be
saturated); now this path cannot intersect r”, (otherwise there would be a
cycle), and if it meets a node d of 7/, it follows 7’ from d to b: we call this
path p’. In the same way we can build a switching path p” (b,¥', ..., ¢) from
b to c.

The rest of the proof is the same as the proof of lemma 1 ; p’ and p”
either do not meet on any node either they do; in any way, by composing
them we get a cycle.

O

Remark 1 [t easily follows from the lemma 2 that given a saturated po-
larized graph G, in the set {Cq(a);a is a node of G and a is negative} the
strict order provided by inclusion is arborescent; such a property does not
imply that the order associated to the graph is arborescent. From this we can
conclude that lemma 2 does not imply lemma 1, while, in case of balanced
graphs, the reverse implication holds.
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Chapter 2

J-proof nets: multiplicatives

In this chapter we introduce and study J-proof nets for the multiplicative
fragment of the hypersequentialized calculus. In section 2.1 we first present
MLL grammar and sequent calculus, then M H S in section 2.2 we define
J-proof nets, and we prove sequentialization using the strong arborisation
lemma. In section 2.3 we introduce pointed sets semantics and we prove
the injectivity of the model with respect to J-proof nets. Finally, in section
2.4, we present M LL proof nets, and we provide an alternative proof of the
usual sequentialization theorem using the weak arborisation lemma.

2.1 MLL and focusing proofs

In this section we present the language and the calculus of multiplicative
linear logic. The calculus we present here is slightly different from the usual
one and is based on the notion of synthetic connective introduced by Girard
in [Gir00]. We first present in subsection 2.1.1 a variant of usual MLL
grammar and calculus, where formulas are clustered modulo the associativity
isomorphisms of linear logic; then in subsection 2.1.3 we retrieve from M LL
the hypersequentialized calculus (in its multiplicative fragment) by assigning
a polarity to each formula.

2.1.1 MLL

Definition 4 Let V = {X, Y, Z,...} be a countable set of propositional
variables; the formulas of M LL are defined in the following way :

o Atoms: X,Y,Z,... and X+, Y+, Z+, ... are formulas of MLL
e synchronous formulas: given Aq,..., A, formulas (with n > 1)
such that each A; is either an atom or an asynchronous formula, then

®(A1,...,Ap) is a formula;
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e asynchronous formulas: given Ai,..., A, formulas (with n > 1)
such that each A; is either an atom or a synchronous formula, then
(A1, ..., Ay) is a formula;

Negation is defined as follows:

At =24

(®@(A1, ..., An))E =2(AT,..., A)

(2(A1, ..., An) " = @(AT, ..., AF)

Note.  We underline the following facts:

e By ®(Ay,...,A,) we indicate the synthetic connective which repre-
sents all possible combinations of the formulas Ay, ..., A, modulo the
associativity of the usual ® connective of LL.

e By 9(A44,...,A4,) we indicate the connective which represents all pos-

sible combinations of the formulas Ay, ..., A, modulo the associativity
of the usual ¥ connective of LL.

The calculus has the following shape (where the capital Greek letters

I' A, ... denote multisets of formulas) :
———a FT,A FAAL .
FAA FT.A cu
Iy, A FT,, A, FI,AL ... A,
(®) (®)

I_Fl,...,rn,®(A1,...,An) FF,’?(Al,An)

MLL can be enriched with the following rule, called Mix rule (see
[FR94)):

FT FA
FT,A
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2.1.2 Towards the hypersequentialized calculus

Let us consider the two following M LL proofs (that we denote respectively
71, m2) of the same sequent :

AL A +BLY.B FCt.C +D-.D
Fo(AL,BL,ct,DL), A, B, C, D
F (AL, B+, ct, DY), »(A, B), C, D
F®(AL, BL ct, DY), 9(A,B), 9(C,D) ? FE FL

ax

® e —
|_®(AJ_7BJ_70J_7DJ_)7 ?(AaB% ®(>?(C=D)7Fl)a F l_EvEJ_ ®

F®(AL, B+ 0+, DY), ®(9(A,B),EY), ®(9(C,D),Ft), F, E

FAYA +BY'B FC+,C +DH D
Fo(AL,BL,cL,DL), A, B, C, D

F (AL, B+ 0+, DY), A, B, »(C,D
F®(AL, B, ct, DY), A, B, @09

ax

FFEFt
C,D),Ft+), F

)g S
F@(AL, B0, DY), B(A,B), ®(3(C, D), F), F FE B

F (AL, B+, 0+, DY), ®(9(A,B),EY), ®09(C,D),Ft), F, E

The attentive reader has surely noticed the difference between m; and
m9; while in m; there are two consecutive * or ® rules, in m ’® and ® rules
are alternating. Now if we want to restrict the scope only to alternating
proofs, we must impose a constraint to M LL calculus, based on the notion
of polarity; in this way we will obtain the multiplicative hypersequentialized
calculus.

21.3 MHS

As we pointed out above, we assign a polarity to atoms, to their duals and
consequently to synchronous and asynchronous formulas. The formulas of
the multiplicative hypersequentialized calculus (M HS) are obtained by the
following restrictions on M LL formulas:

N == Xt | »(P,....P)
P ve
From now on, we will call the formulas in N negative and the formulas
in P positive.

The calculus of M HS (4 Mix) is the following:

29
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——w FT,A FA AL .
HPP FT.A cu
FI'v, Ny FT,., N, @ FT,P,..., P, o
I—I‘l,...,I‘n,®(N1,...,Nn) "F,?(Pl,Pn)
=T A
FT,A
with the constraint that all contexts I'; A, ... only contain positive for-

mulas.

Remark 2 We allow the unary case of @(A1, ..., Ay) (resp. ©(A1,...,An))
and we denote it by | A (resp. T A). In the calculus the unary '@, 1 (resp.
the unary ®, | ), plays the role of a negative (resp. positive) polarity inverter
(as in [Gir01]). This polarity inverter is usually called a negative (resp.
positive) shift.

Note It is easy to verify that all proofs in M HS (4+ Mix) sequent calculus
are alternating: a — rule (resp. a + rule) can never be performed just after
another — rule (resp. + rule). Moreover, in each branch of a proof, the
first rule applied is neither a — rule neither a Mix rule (that is, “positives
start”).

2.2 J-proof nets for MHS

The focus of this section is to provide a geometrical representation of proofs
in MHS. We start by defining in subsection 2.2.1 a class of typed graphs,
with labels in M HS, called proof structures; then in subsection 2.2.2 we
isolate some geometrical properties which allow to characterize all the proof
structures with a logical meaning, that is proof mets. In subsection 2.2.3,
we refine our definition of proof net into the one of J-proof net introducing
jumps; then in subsection 2.2.5 we prove that every J-proof net can be
sequentialized into a proof of M HS. Finally in subsection 2.2.6, we study
cut reduction on J-proof nets.

2.2.1 Proof structures

Definition 5 (Proof structure) A MHS proof structure (briefly proof
structure) is a directed acyclic graph with pending edges (that is some
edges have a source but no target) whose edges are typed by formulas of
MHS and whose nodes (also called links) are labelled by one of the symbols
ax,cut, 4, —.
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A

Figure 2.1: MHS links

The edges incident on a link are called premises and the edges emergent
from a link are called conclusions of the link; an edge which has no target is
called a conclusion of the proof structure and its source is called a terminal
link.

The label of a link imposes some constraints on both the number and the
types of its premises and conclusions:

e the ax-link has two conclusions labeled by dual formulas, but no premises;

e the cut-link has two premises labeled by dual formulas but no conclu-
S10MS;

e the negative link (or — link) has n premises and one conclusion. If
the i-th premise is labeled by a formula P; then the conclusion is labeled
by ?(Pl, - ,Pn),‘

e the positive link (or + link) has n premises and one conclusion. If
the i-th premise is labeled by the formula N; then the conclusion is
labeled by @(N1,...,Ny).

Moreover, we ask that in a proof structure there is at most one negative
conclusion.

Given a sequent calculus proof m of MHS (or MHS + Mix), we can
“desequentialize” it into a proof structure 7*, by induction on the height of
U

if n = 1, the last rule of 7 is an axiom with conclusions P, P*; then 7*
is an axiom link with conclusions P, P~.

Otherwise:

e If the last rule r of 7 is a — rule, having as premise the subproof 7/,
then 7* is obtained by adding to 7"* a — link corresponding to 7.
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e If the last rule of r is a + rule (resp. a cut rule) having as premises
the subproofs 7y, ..., m,, then 7 is obtained by connecting 77j,..., 75
by means of a + link (resp. a cut link) corresponding to 7.

e If the last rule of r is a Mix rule with premises the subproofs m; and
my, then 7* is obtained by taking the union of 7] and 73.

We stress that many different sequent calculus proofs can be “desequen-
tialized” into the same proof structure.

Definition 6 A proof structure R is sequentializable if there exists a proof
7w such that ™ = R; we call such a ™ o sequentialization of R.

By the above observation, it is straightforward that a single sequential-
izable proof structure may have many different sequentializations.

2.2.2 Correctness criterion

Our aim now is to define a correctness criterion, that is to isolate a geometri-
cal property allowing to characterize all proof structures which are logically
correct. Usually (in M LL + Mix, see [Dan90, FR94]) such a property is
determined by the switching acyclic condition.

We can associate with a proof structure R the structure of a graph with
pairs (R, App(R)), by taking as elements of App(R) the n-tuples of the
premises of a negative link; a proof structure R then is switching acyclic if
and only if the graph with pairs (R, App(R)) is switching acyclic.

Unlike MLL + Mix, the switching acyclic condition is not enough to
characterize all sequentializable proof structures: consider, for example, the
proof structures in fig. 2.2, which are switching acyclic, but clearly not se-
quentializable in M H S+ Mix. The reason why they are not sequentializable
is that in a proof of M HS a —rule or a Mix rule can be applied only after
a + rule has been applied.

In order to avoid this incongruousness, we must require one more con-
dition in the correctness criterion, called positivity condition, similar to
the homonymous condition on L-nets (see [FMO05]).

Definition 7 (Positivity condition) A proof structure R satisfies the pos-
itivity condition if

1. For every — link b, such that a premise of b is a conclusion of an ax
link a, there exists a positive link ¢ (called justifier of b) and a path
(b,a,...,c)y from b to ¢ which crosses only cut and ax links;

2. if R is composed by more than one connected component, then each
component contains at least one positive link.
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Ry

Ax)

TA

A

Figure 2.2: Two proof structures not sequentializable in M HS.

Using positivity condition we can forbid proof structures as the ones in
fig. 2.2.

Definition 8 (Proof net) A proof structure R is called a proof-net iff is
switching acyclic, and it satisfies the positivity condition.

Theorem 1 (Sequentialization) A proof structure R is sequentializable
if and only if it is a proof net.

The above theorem states that the purely geometrical condition of being
a proof net characterizes exactly all sequentializable proof structures. Prov-
ing the left to right direction is trivial; in section 2.2.5 we provide a simple
proof of the right to left one.

2.2.3 J-proof nets

Now we refine our definition of proof net, introducing jumps:

Definition 9 (J-proof structure) A J-proof structure (or proof struc-
ture with jumps) is a proof structure allowing untyped edges called jumps,
which are additional premises (resp. conclusion) of a negative (resp. posi-
tive) link. Given a J-proof structure R, and a negative (resp. positive) link
b (resp. a) we say that b jumps on a if there is a jump between a and b.

We remark that, since jumps are additional premises of negative links,
we can associate with a J-proof structure R a graph with pairs (R, App(R)),
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considering jumps as switching edges; in this way we can straightforwardly
extend the definition of proof net to the one of J-proof net:

Definition 10 (J-proof net) A J-proof structure R is called a J-proof-
net if it is switching acyclic, and it satisfies the positivity condition.

Proof nets are a special case (the one without jumps) of J-proof nets: in
the following, we will show how the introduction of jumps allows to strikingly
simplify the proof of the sequentialization theorem.

Note. By now, we will only consider J-proof nets without cut links, since
in this case it is simpler to prove sequentialization; we will speak about
sequentialization with cuts in section 2.2.6.

2.2.4 J-proof-nets and sequent calculus

In the next subsection we will induce a sequentialization of a proof net by
adding jumps. Let us start with an example.
Consider the proof-net in fig. 2.3:

TAL DL ®
v @J |

®AT,BL, ¢t DY)

®(%(A, B), BL) ®(8(C, D), FL)

Figure 2.3:

In order to retrieve an M H.S proof, we make the leftmost — link jump
on the middle + link, and the rightmost — link jump on the leftmost + link,
obtaining the J-proof net in fig 2.4;

Now we consider the partial order induced by the proof-net as a directed
graph; the order is arborescent, so the skeleton of the graph is the tree in
fig. 2.5.

Such a tree directly corresponds to the following sequent calculus proof:
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®(8(A, B), BL)

®(9(C, D), Ft)
Figure 2.4:
FAYA +BYB FC+H,C +DH D
Fe(AL, B cL, DY), A, B, C, D
— axr
F®(AL, B+, ct, DY), C, D, 9(A,B) FE E-
F®(At, B+ 0+, DY), O, D, ®(9(A,B),E*Y), E
— — axr
F®(AL, B CH DY), B(C, D), ®(%(A,B),EY), E - PPt

- ®(AL, B, 0+, DY), ®@(9(C, D), FL), ®@(9(A,B),E*), F, E

We remark that we could as well make the links jump as in fig 2.6
retrieving the following, different sequent calculus proof:

AL A +BLY,B FCt.C +D-D
Fo(AL,BL oL, DY), A, B, C, D
F (AL, B+ ct, DY), A, B, ®(C,D) FEFL
F®(AL, B+ 0+, DY), A, B, ®(9(C,D),F*), F
- ®(AL, BL, 0L, DY), 9(A, B), ®(9(C,D),FY), F - E, EL
F®(A+, B+, 0+, DY), @(9(A,B),EY), @(9(C,D),F'), F, E

ax

ax

To sequentialize a proof net, we will then consider the order associated
with a proof net as a directed acyclic graph, and add to it enough jumps,
to make the order arborescent, and hence proof-like.

To support our claim, let us show that if the order on the nodes of

a J-proof net is arborescent, it directly corresponds to a sequent calculus
derivation.

We have to prove first the following lemma:

Lemma 3 If R is a J-proof net with more than one link and without ter-
minal negative links, then all the conclusions of R are positive.
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@@

N

&

Figure 2.5:

PROOF. Suppose R has a negative conclusion; then by hypothesis it must
be conclusion of an ax link a. If R is composed by a single connected com-
ponent, there must exist a link b a premise of which is the other (positive)
conclusion of a, so b must be a negative link. But then by point 1) of the pos-
itivity condition on b, there must exists also a positive link d such that there
is a path (b, a,...,d), but this is impossible, since a is a terminal link : con-
tradiction. If R is composed by more than one connected component, then
by point 2) of the positivity condition, the connected component containing
a must contain also a positive link; this means that a cannot be the only
link in its connected component. Then there must exist a link b a premise
of which is the other (positive) conclusion of a, and b must be a negative
link; by point 1) of the positivity condition on b we find a contradiction, as
above. O

Now we are in the position to prove the following proposition:

Proposition 1 (A forest is a sequent calculus proof) Let R be a J-
proof net with conclusions Ay, ..., A, and such that Sk(R) is a forest.

We can associate with R a sequent calculus proof mf with conclusion
FAy,...,A, in MHS + Mix.

Moreover, if Sk(R) is a tree where each negative node has exactly one
incident edge, ™ is a sequent calculus proof in MHS (without Mix).

ProOOF.
First, we observe that given a J-proof net R:
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®(9(4A,B), L) ®(9(C, D), FL)

Figure 2.6:

e SK(R) is obtained from R by removing the edges which are transitive;
e Only an edge incident on a negative link can be transitive.

Then we reason by induction on the number of nodes in Sk(R):

1. n=1. The only node in R is an Axiom link with conclusions P, P=;
we associate with it W
2. n > 1; if R has a terminal negative link ¢ of type 2(Pi,...,P,),
then ¢ is a root of Sk(R) . Let Sk(R)" be the forest obtained by
erasing c; to this forest corresponds a subnet R’ of R with conclusion

I,P,...,P,. By induction we associate with R’ a proof 7 with
conclusion I', Py, ..., P,. 7% is
el
FT,P,..., P,

ET,e(Pr,..., By
whose last rule is a — rule on Py,... P, ;

If R has no terminal negative links, by lemma 3 we can suppose that all
the conclusions of R are positive. Now we reason by cases, depending
if Sk(R) is a tree or a forest:

o Sk(R) is a tree with root ¢ with conclusion ®(Ny,...,N,) : by
erasing ¢ we obtain n trees Sk(Ry),...,Sk(R,). Since Sk(R) is
obtained just by erasing transitive edges, to each tree corresponds
a different subnet R; of R, with conclusion I';, V;; by induction
we associate a proof mf% with each R;.

R .

T 18

R1 Ry

s ™
FTy,Ny Ty, N,
FIq,.., Ty, ®(N1,...,Nn)
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whose last rule is a 4+ rule on Ny,..., N,.

e Sk(R) is a forest; then to each tree corresponds a different subnet
of R; we apply to them the induction hypothesis, obtaining n
proofs , which we compose by using a sequence of Mix rules.

If SK(R) is a tree where each negative node has exactly one incident edge,
it is immediate that the last case of the inductive step is never applied, so
71 does not use the Mix rule. O

Remark 3 [t is easy to observe that the correspondence between arborescent
J-proof nets and M HS proofs established by proposition 1 is a bijection.

2.2.5 Sequentialization

It is obvious that, if we do not consider cut-links, J-proof structures are
balanced polarized graphs (whose edges are labelled by M HS formulas)
where the ax links are I nodes, 4+ links are P nodes and — links are N
nodes; this observation allows the following definition:

Definition 11 (Saturated J-proof net) A J-proof net R is saturated if
for every negative link a and for every positive link b, making a jump on b
creates a switching cycle or does not increase the order <p.

Given a J-proof net R, a saturation Sat(R) of R is a saturated J-proof
net obtained from R by adding jumps.

Our sequentialization argument is then as follows:

e given a proof net R, we can obtain a saturation Sat(R) of R by adding
jumps;

e the order associated with a saturated J-proof net is arborescent;

e if the order induced by a J-proof net as a d.a.g. is arborescent, we can
associate with it a sequent calculus proof;

e if 7 is the proof associated with Sat(R), then 7" = R.

The central point of the argument is the emphasized one; the atten-
tive reader has surely noticed that it corresponds to the strong arborisation
lemma of the previous chapter.

Lemma 4 (Arborisation) Let R be a J-proof net. If R is saturated then
<R 1s arborescent. Any J-proof net can be saturated.

PRrROOF. It is obvious that a saturated J-proof net is a saturated, balanced
polarized graph with at most one negative root; then the proof follows from
the strong arborisation lemma. O
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In order to complete our sequentialization argument, first we give an
immediate proof of the usual splitting Lemma, then we prove that the se-
quentialization we have defined is correct w.r.t. Definition 6; finally, we get
rid of the Mix rule.

The novelty here is the argument: when adding jumps, we gradually
transform the skeleton of a graph into a tree. We observe that some proper-
ties are invariant under the transformation we consider: adding jumps and
removing transitive edges. Our argument is always reduced to simple obser-
vations on the final tree (the skeleton of Sat(R)), and on the fact that each
elementary graph transformation preserves some properties of the nodes.

Splitting

We observe that given a d.a.g., adding edges, or deleting transitive edges,
preserves connectedness. The following properties are all immediate conse-
quences of this remark.

Lemma 5 (i) Two nodes in a d.a.g. G are connected iff they are connected
in the skeleton of G.

(i) Given a J-proof net R, if two nodes are connected in R, then they
are connected in Sat(R).

(11i) If R is connected as a graph so are Sat(R) and Sk(Sat(R)).

The above lemma allows to give a simple proof of a standard result, the
Splitting Lemma, which we state below.

Definition 12 (Splitting) Let G be a d.a.g., ¢ a root, and by,..., b, the
nodes which are immediately above c. We say that the root c is splitting
for G if, when removing ¢, any two of the nodes b;, by, become not connected.

Remark 4 [t is immediate that if R is a J-proof net without negative con-
clusions, and c is splitting, the remowval of ¢ splits R into n disjoint compo-
nents Ry, ..., Ry, and each component is a J-proof net.

Lemma 6 (Splitting positive lemma) Let R be a J-proof net without
negative conclusions, and Sat(R) a saturation such that Sk(Sat(R)) is a
tree; the minimal link ¢ of Sat(R) (i.e. the root of Sk(Sat(R))) is splitting
for R.

PROOF. Observe that ¢ is obviously splitting in the skeleton of Sat(R), be-
cause c is the root of a tree. Hence it is splitting in Sat(R), as a consequence

of Lemma 5, (i). Similarly, ¢ must be splitting in R, as a consequence of
Lemma 5, (ii). O
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G] G2 Gn

Figure 2.7: An example of splitting node

Sequentialization is correct

Proposition 2 Let R be a proof-net with conclusions I'. For any saturation
Sat(R) of R, if m = 5B then (7)* = R. Any proof net is sequentializable.

PROOF.

The proof is by induction on the number of links of R.

1. n = 1: then R consists of a single Axiom link with conclusions P, P+,

d 7 is th ding Axi le —————.
and  is the corresponding Axiom rule - PPl

2. n > 1. if R has a terminal negative link ¢ then ¢ is the root of

Sk(Sat(R)); observe that the last rule r of 7 is the rule which cor-
responds to the root c¢. Assume that ¢ is a — link with conclusion
2(Pr,...,P,). We call Ry the saturated J-proof net with conclu-
sions I', P, ..., P, obtained erasing ¢ from Sat(R); the forest obtained
erasing ¢ from Sk(Sat(R)) it is clearly equal to Sk(R{J)), so by propo-
sition 1 we associate with R‘OI a proof my. We call Ry the subnet
with conclusions I', P, ..., P,, obtained by removing ¢ from R. Now,
R{ = Sat(Ry), so by induction hypothesis 7y = Ro. By applying the —

0
FT,P,.... P,
, we get a proof which is equal to m and such that that R = 7*.

rule r with conclusion - I',’9(Py, ..., P,) to the proof

Otherwise, by lemma 3 all conclusions of R are positive; we reason by
cases, whether Sk(Sat(R)) is a tree or a forest:

e Sk(Sat(R)) isa tree with a + link ¢ with conclusion ®@(Ny, ..., Ny)
as root; observe that the last rule r of 7 is the rule which corre-
sponds to the root c. By erasing c from Sat(R) we get R”q,..., R/

saturated J-proof nets with conclusions respectively I'y, Ny ..., N,,.
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Erasing the root ¢ in Sk(Sat(R)) we get n trees, such that each

tree is the skeleton Sk(R]) of an R7;; let us call 7; the proof

associated with each R;’ by proposition 1.

By the splitting lemma, c is splitting in R; let Ry, ..., R, bethen

sub nets with conclusions respectively I'y, Ny ... T, N,, obtained

by removing ¢ from R. Now for each R/, R/ = Sat(R;) so by

induction hypothesis 7 = R; ; by applying the + rule r with

conclusion - I'y, ... T, ®(Ny,..., N,) to the proofs ﬁ , we
get a proof which is equal to m and such that that R :Z;T*.Z

e Otherwise, Sk(Sat(R)) is a forest, and by lemma 5 each tree
corresponds to a different connected component of Sat(R), and
to a different sub-net of R; we conclude by applying induction

hypothesis on them, followed by a sequence of Mix rules.

Connectedness

We now deal with a more peculiar notion of connectedness, to get rid of the
Mix rule, as is standard in the theory of proof-nets.

Definition 13 (Correction graph) Given a J-proof net R (resp. its skele-
ton Sk(R)), a switching s is the choice of an incident edge for every nega-
tiwe link of R (resp. Sk(R)); a correction graph s(R) (resp. s(Sk(R))) is
the graph obtained by erasing the edges of R (resp. of Sk(R)) not chosen by
s.

Definition 14 (s-connected) A J-proof net R is s-connected if given a
switching of R, its correction graph is connected.

Remark 5 We only need to check a single switching. The condition that a
proof structure has not switching cycles is equivalent to the condition that
all correction graphs are acyclic.

A simple graph argument shows that assuming that all correction graphs
are acyclic, if for a switching s the correction graph s(R) is connected, then
for all other switching s', s'(R) is connected.

Proposition 3 If R is s-connected, then the skeleton of Sat(R) is a tree
which only branches on positive nodes (i.e., each negative link has a unique
successor).

PRroOOF. First we observe that:
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e any switching of R is a switching of Sat(R), producing the same cor-
rection graph. Hence if R is s-connected, Sat(R) is s-connected.

e Given a J-proof net R, any switching of its skeleton is also a switching
of R, because the skeleton is obtained by erasing the edges which are
transitive. A transitive edge can be premise only of a negative node.

As a consequence, any switching of Sk(Sat(R)) induces a correction
graph which is a correction graph also for Sat(R) and hence is connected
(so Sk(Sat(R)) must be a tree). Moreover, we observe that there is only one
possible switching. In fact, since Sk(Sat(R)) is a tree, we cannot erase any
edge and still obtain a graph which is connected; so each negative link has
a unique successor.

From Proposition 1, it follows that

Proposition 4 If R is s-connected, and Sat(R) a saturation, we can asso-
ciate with it a proof w3 R) which does not use the Mix rule.

Partial sequentialization and Desequentialization

Our approach is well suited for partially introducing or removing sequential-
ity, by adding (deleting) a number of jumps.

Actually, it would be straightforward to associate with a sequent calculus
proof 7 a saturated J-proof net. In this way, to m we could associate either
a maximal sequential or a maximal parallel J-proof net.

Given a J-proof net R, let us indicate with Jump(R) (resp. DeJump(R))
a J-proof net resulting from (non deterministically) introducing (resp. elimi-
nating) a number of jumps in such a way that every time the order associated
increases (decreases).

The following proposition applies to J-proof nets of any degree of se-
quentiality.

Proposition 5 (Partial sequentialization/desequentialization.) Let R, R’
be J-proof nets:

e if R = Jump(R) then there exists an R" = DeJump(R') such that

R"=R;
e if R = Dejump(R) then there exists an R" = Jump(R') such that
R’ =R.
Proor. Immediate, since we can reverse any step... O
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2.2.6 Cut
Sequentialize with cuts

We have already observed that J-proof nets correspond to balanced polarized
graphs only if there are not cut-links. Since we use the strong arborisation
lemma, in order to extend our proof of sequentialization in presence of cut-
links, we have to establish a correspondence between J-proof nets with cuts
and balanced polarized graphs.

Hence we define a procedure to turn a J-proof net R with cut-links into
a balanced polarized graph RP°, following these three consecutive steps on
the links of R, depicted in fig. 2.8 :

1. if ¢ is a cut link of R, whose premises are typed by P, P and such
that the link whose conclusion is P is a + link b, we substitute b and
¢ with a single positive node ¥’ in RP?, labeled by +* | as in fig. 2.8;

2. if ¢ is a cut link of R whose premises are typed by P, P' and such
that the link whose conclusion is P is an ax link a and the link whose
conclusion is Pt is a — link b, we consider the maximal connected
substructure R’ containing a and only cut and axiom links. If there
are n—1 cut links in R, we substitute R/, b and ¢ with a single negative
node ¥ in RP?, labeled by —¢ as in fig. 2.8;

n

3. if ¢ is a cut link of R whose premises are typed by P, P' and such
that the link whose conclusion is P is an axiom link a and the link
whose conclusion is P* is an axiom link b, we consider the maximal
connected substructure R’ containing a,b,c and only cut and axiom
links. If there are n cut links in R/, we substitute R’ with a single
initial node ¥’ of RP?, labeled by az¢™, as in fig. 2.8.

n

Now RP° is a balanced polarized graph, so we can apply the arborisation
lemma; when we get a saturated graph Sat(RP°), whose associated order is
arborescent, it is easy to check that the graph obtained by reverting each
+ qzf" and —¢" node into the former links of R is a saturated J-proof
net Sat(R).

We can now prove the extension in presence of cut links of proposition
1; before doing that we must prove the extension of lemma 3 in presence of

cut links.

Lemma 7 If R is a J-proof net with more than one link such that RP?" has
no negative roots, then all the conclusions of R are positive.

Proor.
Suppose R has a negative conclusion; then by hypothesis is conclusion
of an ax link a. If R is composed of a single connected component, since it
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Figure 2.8: Turning R into R*.

has more than one link, there must exist a link b a premise of which is the
positive conclusion of a, and b is either a negative link, either a cut-link. If
b is a negative link by point 1) of the positivity condition on b, there must
exist also a positive link d such that there is a path (b, a,...,d), but this is
impossible, since a is a terminal link : contradiction. Now suppose b is a
cut link: the other premise of b is negative and is the conclusion of a link ¢
which is either a negative link, either the conclusion of an az link. Now if
c is a negative link, by construction of RP? the link corresponding to ¢ in
RPO is a negative root —§*f, contradicting the hypothesis that R’ has no
negative roots. Otherwise ¢ is an axiom link: then we iterate the procedure,
and since R is finite, we eventually find a contradiction. If R is composed
by more than one connected component we just adapt the proof of lemma
3, reasoning as above.

O

Proposition 6 (A forest is a sequent calculus proof) Let R be a J-
proof net (possibly with cut-links) with conclusions Ay, ..., A, and such that
Sk(RP°Y is a forest.

We can associate with R a sequent calculus proof mf with conclusion
FA,...,A, in MHS + Miz.

PROOF. The proof is by induction on the number of nodes in Sk(RP°'); using
lemma 7, and having as reference the graph RP°, the only difference with
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respect to the proof of 1 is when the root ¢ of Sk(RP%) is a +°* an azrc™

—cut node. Then there are three possibilities:

or a

1. the root ¢ of Sk(RP?) is an azt" node whose edges are labelled by the

formulas P, P; then R is composed by n+1 ax links with conclusions

P, P+, connected together by n cut-links: 7% is the proof obtained by

applying to n + 1 axiom rules with conclusion P, P+ n consecutive cut
rules.

2. the root c of Sk(RP°) is a —% node; by erasing ¢ we obtain one forest

Sk(RgOl). To this forest corresponds a subnet Ry of R with conclusion

I',P,...,P, ; by induction we associate a proof 7% to Sk(RgOl). R

1S

mho
o -T,P,..., P,
FP,PL  FT,9(P,... ,Pn)(_)
-1, Pl (cut)

, with P+ =9(Py,...,P,) and where 7y is the proof obtained by
applying to n axiom rules with conclusion P, P+ n — 1 consecutive cut
rules.

3. the root ¢ of Sk(RP?) is a +““*-node: by erasing ¢ we obtain n+ 1 trees
SK(REY), SK(RYY), ..., SK(RE™) . To each tree among Sk(RP™), . .., Sk(RE™)
corresponds a subnet R; of R with conclusions I';, N;, fori € {1,...,n};
to Sk(RP™) corresponds a subnet Ry of R with conclusion A, P, where
P = ®(Ny,...,N,). By induction we get n+1 proofs 7o, zft1  7fin,
7t is

rh mhn
mlo FT,Ny  FT,..N,
FAPL Ty, Ty, ®(N,...,Ny,) (cut)
FTq,....T0, A

whose last rule is a cut rule on P, P+.

O

All the other results in subsection 2.2.5, can be straightforwardly gener-
alized in presence of cut links.
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Cut elimination

A proof structure without cut-links is called cut-free. Cut reduction
rules are graph rewriting rules which locally modify a J-proof structure R,
obtaining a J-proof structure R’ with the same conclusions.

There are two kinds of cut-elimination steps, the +/— step and the az
step, depicted in Fig. 2.9 and Fig. 2.10; we denote by R ~» R’ the relation
“R reduces to R’ in one step”.

____>

—(ew

Figure 2.9: ax cut reduction.

PJ@ ”.TPL P® ﬁj :PL ®P®
ol el et

Figure 2.10: 4+/— cut reduction.

The replacement of the jumps in the +/— step reflects the order induced
by the polarized graph associated with a J-proof net.

With respect to the rewriting rules +/— and az, reduction enjoys the
following properties:

Theorem 2 (Preservation of correctness) Given a J-proof structure R,
if R is a J-proof net and R ~ R', then R’ is a J-proof net.

PROOF. Checking the preservation of switching acyclicity is a straightfor-
ward generalization of the similar proof given by Danos in [Dan90] for M LL;
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we only have to verify that the jumps added in the +/— step do not intro-
duce cycles. Consider fig 2.10; if R ~~ R’ with a step +/— and b — a is a
jump added in the step, suppose b — a creates a switching cycle: then there
is a switching path r in R’ from a to b which does not use any switching
edge of a. If r does not cross any of the cut links generated by the +/— step
then r belongs to R too, and then we have a cycle also in R. Otherwise, let
¢ be the first cut link generated by the +/— step that we meet following r
from a to b, and d the node which precedes ¢ in r; obviously the conclusion
of d is a premise of c. Then consider the subpath r’ of r from a to d in R’;
it is a path of R too, so looking at fig. 2.10 it is easy to conclude that there
is a cycle in R too, contradiction.

Now we prove the preservation of point 1) of the positivity condition:
in the case of an ax step, the result is obvious. Concerning the +/— step,
consider a J-proof net R with a cut link ¢ between a positive link a and
a negative link b, such that a is the justifier of a negative link d, and R
reduces to R’ by reducing ¢: we prove that even if a has been erased in the
reduction step, d has still a justifier in R’. By reducing ¢, either d becomes
connected in R’ with a positive link ¥’ whose conclusion is a premise of b in
R, and then b becomes the justifier of d in R’, either d becomes connected
in R’ with an ax link a conclusion of which is a premise of b in R; then by
positivity condition on b in R, b has a justifier ¥’ in R, which becomes the
justifier of d in R'.

To prove the preservation of point 2) of positivity condition, let us con-
sider a J-proof net R with a cut link ¢ between a positive link a and a
negative link b such that by reducing ¢ with a +/— step we get a J-proof
structure R’ with more connected components than R: we prove that each
connected component of R’ contains at least one positive link.

If the premises of b are conclusions of positive links, then the result is
immediate; if a premise of b is the conclusion of an axiom link d, then by
the positivity condition on R, b has a justifier ¥’ which is connected with d
in R; then by reducing ¢, b’ will be in the same connected component as d
in R'. The case of the ax step is obvious. ]

Theorem 3 (Strong normalization) For every J-proof net R, there is
no infinite sequences of reductions R~ Ry ~> Ro ...~ R, ...

PROOF. By the fact that at each step the number of links decreases, and that
we never reach a deadlock (that is a cut-link whose premises are conclusions
of the same az-link) during reduction, by theorem 2 (see [Gir87]). O

Theorem 4 (Confluence) For every J-proof nets Ry, Rs and Rs, such
that Ry ~ Rs and Ry ~~ Rgs, there is a J-proof net Ry, s.t. Ro ~~ R4 and
R3 ~~ Ry.
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ProOOF.

It easily follows from confluence of usual multiplicative proof nets (see
[Gir87]) and from the simple observation that if R ~» R/, the replacing of a
jump after a +/— step does not influence the other jumps of R'.

Jumps and n-expansion

It is well known that the Curry-Howard isomorphism relates the S-reduction
of the A-calculus to the cut reduction in the proof nets; the n-expansion
corresponds to a rewriting rule of proof nets too, i.e. to the reduction of
complex axioms in simpler ones. Let us define the n expansion of an az link
as depicted in fig 2.11.

& r@
N
.

Pt Pt Py Py

Py 2(Pi, ... Pr)

%@(Pf,...,Pln) 9Py, ...

Figure 2.11: n expansion.

From a computational point of view, we should expect that in a J-proof
net the result of the reduction of cut against an ax link , and against its n
expansion are the same.

This is not the case, as we can see in figure 2.12, 2.13.

To avoid this incongruity and to make the 7 expansion of an axiom
behave as the identity, we must modify the positivity condition (and conse-
quently the 1 rewriting step) in the following way (as shown in fig 2.14):

Definition 15 (Extended positivity condition) A J-proof structure R
satisfies the extended positivity condition if and only if

1. For every — link b, such that a premise of b is a conclusion of an ax
link a, there exists a positive link ¢ (called justifier of b) and a path
(bya,...,c)y from b to ¢ which crosses only cut and ax links; moreover,
b jumps on c in R.

2. if R is composed by more than one connected component, then each
component contains at least one positive link.
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P

©

®(P], PL) ®(P1, Pa)

?@(Pﬁfiz) ?@(H,Pz)

Figure 2.12:

It is easy to verify that the extended positivity condition is stable in
one step both under cut reduction and under the procedure of progressive
sequentialization (modulo transitivity of jumps).

2.3 A denotational semantics for J-proof nets

In this section we provide a denotational semantics of J-proof nets, using a
variation of standard relational semantics based on the notion of pointed
set. The aim is to refine the relational model, in order to be able to seman-
tically characterize a sequential order, which in our setting is represented
by jumps; as a matter of fact, jumps usually are not captured by relational
semantics.

Actually, our approach is inspired by [Bou04], where a step is made in the
direction of developing a unified framework for both static (sets, coherence
spaces, etc) and dynamic (games) denotational semantics.

By now we will denote sets by A,B,C,... and elements of a set by
a,b,c,....

2.3.1 Pointed sets.

A pointed set A* is given by a set A U {0a+} where Oa+ is a distinguished

object which does not belong to A; this object is called the point of A*
The product A;*®...®A," of n pointed sets A1*, ..., A," is the pointed

set Ar* x ... x Ay® U{0a+ @ a,*} whose elements are the elements of the
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Ay
|
Py Py Ps- P L Py

—" B
®(P1L7PL2) R (P1, P2) &P, P*2) Cf’?(PlvPﬁ

Gﬁ ®(P1L,PJ‘2) Cf‘«?(Pl,Pﬂ

Figure 2.13:

cartesian product A;* x ... x A" (resp. the set of singletons of elements of
A" if n = 1) together with a distinguished fresh object Op, @. @ A, Which
does not belong to A1™ x ... x Ay*.

For simplicity’s sake we will often refer to the point Oax of a pointed set
A* simply as 0.

The formulas of M HS are interpreted in the following way:

e an atomic formula X (resp. X1) is interpreted by a pointed set X*;

e a positive formula ® (P, ..., P,) (resp. anegative formula ®(Ny,..., N,))
is interpreted by P} ® ... ® P}, (resp. N ® ... ® N7 );

Given a J-proof structure R, we define the interpretation of R in pointed
sets semantics, and we denote it by [R]; in case R has no conclusions, we
let [R] be undefined. Otherwise, let x; of type Ci,...,z, of type C), be
the conclusions of R; [R] is a subset of C; ® - - - ® C;, which we define using
the notion of experiment. Experiments have been introduced by Girard
in [Gir87], and extensively studied in [TdF00] by Tortora de Falco.

Definition 16 (Experiments) Let R be a J-proof structure and e an ap-
plication associating with every edge a of type A of R an element of A*; e is

an experiment of R when the following conditions hold:
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‘@(Pf,...

Figure 2.14:

e if x,y are the conclusions of an ax link then e(x) = e(y);

o if x,y are premises of a cut link with premises x and y, then e(x) =
e(y);

o if v of type R (A1,..., An) (resp. ®(A1,...,Ay)) is the conclusion of

a negative (resp. positive) link with premises x1 of type Ay,...,x, of
type Ay, and there exist an i € {1,...,n} such that e(z;) # Oa:, then
if e(r1) = a1,...e(x,) = ap, e(x) =< ay,...,a, >; otherwise either
e(z) =< Oar,...,0as > either e(x) = Oparq..@Ax;

e if a is a positive link with conclusion x of type A and b is a negative
link with conclusion y of type B, and b jumps on a, then if e(x) # Oax
then e(y) # Og=.

If the conclusions of R are the edges z1,...,x, of type respectively
Aq,..., A, and e is an experiment of R such that Vi € {1,...,n} e(z;) = a;
then we shall say that < ay,...,a, > is the conclusion or the result of the
experiment e of R, and we will denote it by |e|. The set of the results of all
experiments on R is the interpretation [R] of R.

In the following proposition we prove that pointed sets semantics is stable
under cut reduction:

Proposition 7 If R is a J-proof net, and R ~~ R, then [R] = [R'].

Proor.

If R ~ R’ with an ax step, the result is trivial. Having as reference
fig. 2.10 let us suppose that R ~» R’ with a +/— step reducing a cut in
R between a + link a with conclusion z of type ®(Ny,...,N,), and a —
link b with conclusion y of type 2(Py,..., P,); we denote the edges of type
Py,...,P, (resp. Ni,...,N,) by y1,...,ypn (resp. x1,...,x,).

Suppose that b jumps on a positive link ¢ of typed conclusion z and that
a negative link d with conclusion w jumps on a.

We must show that for every experiment e on R’, there is an experiment
¢/ of R with the same result, and vice versa.
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The delicate part is the one dealing with jumps, the rest of the proof
trivially following from the preservation of relational semantics under cut
reduction (see for instance [Gir87]). The cases to check are the following:

if e is an experiment of R’ such that e(w) = 0, then e(z) = 0, e(y1) =
0,...,e(yn) = 0 we can build an experiment ¢’ of R with the same values on
the same edges by assigning e(z) = 0 and e(y) = 0; if instead in R’ e(w) # 0,
e(z) =0e(y1) =0,...,e(y,) = 0, we can build an experiment €’ of R with
the same values on the same edges by assigning e(y) =< Opz,...,0px > and
e(zr) =< ONT’ . ’ONZ >.

O

Remark 6 (Pointed sets and n-expansion) We observe that pointed set
semantics is not stable under the n-expansion rewriting step; let us consider
the result of the experiments on the J-proof structure R in fig. 2.15 and
on its m-expansion R'; for the experiment e of R with result < Opr@py, <
Opx,0pz >> there is no corresponding experiment with the same result in R.
We remark here this fact, because semantics which do not validate 1 expan-
sion are rather uncommon; nevertheless, we leave a more precise analysis of
this property to future work.

(R
WAF

®(P; , PLy) (1, P2)

GEQ?(P]L»PLZ) B (P, Pz)

Figure 2.15:

2.3.2 Injectivity

Semantic injectivity has been studied in the setting of linear logic mainly
by Tortora (see [TAF00] and Pagani in [Pag06]; however, it is a traditional
question in the denotational semantics of A-calculus: Statman theorem, for
example, states that the relational model is injective for the simply typed
A-calculus ([Sta83]).

We remark also that the notion of semantic injectivity is deeply related
with the one of syntactical separability, stated in the Bdéhm theorem for
pure A-calculus ([Boh68]): if ¢, ¢’ are two closed normal A-terms, such that
t is not (Bn equivalent to ¢, then there are wuq,...,u, A-terms such that
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tuy...u, —g 1 and t'u; ... u, —3 0; that is, ¢t and ¢’ compute two different
functions on the A-terms, and wuq,...,u, are arguments on which ¢ and ¢’
give different values.

Furthermore, syntactical separability is also one of the main properties
in ludics (both of designs, see [Gir0l], and more generally of L-nets, see
[FMO5]).

For an extensive analysis of the relation between syntactical separability
and semantic injectivity in the framework of linear logic, we refer to [Pag06].

In this subsection we study the injectivity of pointed set semantics with
respect to J-proof nets. Given any two cut-free J-proof nets R, R/, we say
that R and R’ are syntactically equivalent when R = R’ ; we consider
this equality up to transitive jumps (a transitive jump of a J-proof net
R is a jump which is a transitive edge in R); we say that R and R’ are
semantically equivalent when [R] = [R].

We will prove that pointed sets semantics is injective with respect to
J-proof nets, that is for any two J-proof nets R, R’ , if [R] = [R/] then
R=R.

The proof follows the lines of the proof of injectivity of relational seman-
tics with respect to M LL proof nets provided in [TdF03a], with some more
details to take jumps into account.

Definition 17 (Relational result) Let R be a J-proof structure and |e|
the result of an experiment on R; |e| is relational if it does not contain any
occurrence of 0.

The set of relational results of experiments on a J-proof structure R is
called the relational part of [R]; we will denote it by [R].

Remark 7 Given two J-proof structures R, R', if [R] = [R'] then [R]%¢ =
[[R/]]Rd.

Remark 8 Let R be a J-proof structure and e, e’ be two experiments of
R. If |e| = |€/|, then e = €; in other words an experiment is completely
determined by its result.

Definition 18 (Injective result) Let R be a J-proof structure and |e| be
a relational result of an experiment on R; |e| is injective when no two
occurences of the same element of a pointed set X* interpreting an atomic
formula occur in |e|.

Given a J-proof net R, we denote by R~ the proof net obtained by
erasing all the jumps of R.

Lemma 8 Let Ry be a J-proof net without jumps; then for all J-proof nets
R, such that R~ = Ry, given an element v of [R] there exists a unique
experiment eg of Ry such that |eg| = .
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PrROOF. The proof follows from the observation that for any J-proof net
R, [R] € [R7] ( since each jump in R increases the constraints on the
construction of experiments on R, and in this way decreases the number of
possible experiments), and from remark 8.

Given a J-proof net R we denote its n expansion by R".

Lemma 9 Let R be a J-proof net and R’ be an n expanded proof net without
jumps with the same conclusions, such that [R]® = [R']®. Then R~ =
R'.

Proor.

Since for any J-proof net R, [R]® = [R"]f, the proof is a consequence
of injectivity of relational semantics for (n expanded) proof nets given by
Tortora de Falco in [TdF03a]; the proof uses the fact that an injective result
(which always exists) in the interpretation of a proof net allows to completely
determine the proof net modulo the n-expansion of the axioms.

O

Lemma 10 Given a J-proof structure R, a positive link a with conclusion
x and a negative link b with conclusion y, b jumps on a (possibly with a
transitive jump) iff for all experiments e of R, e(x) # 0 = e(y) # 0.

PROOF. The proof is an easy consequence of definition of experiment. [J

Theorem 5 (Injectivity) Let R and R’ be two cut-free J-proof nets with
the same conclusions. If [R] = [R'] then R = R'.

PROOF.

[[R]] — [[R']], S0 [[R]]Rel — [[R']]Rd.

Since [R"]7¢ = [RM~]% by lemma 9, R? ~ = R ~.

Now, by remark 8 , given an element 7 of [R] (resp. [R']) there exists
a unique experiment e of R" ~ (resp. of R ~) such that |e| = 7.

Starting from R7 ~ (resp. R ), we build a proof net R; (resp. Ra),
eventually with non atomic axioms, in the following way (using remark 6):
for any configuration of links as in fig 2.16, we check that for all elements
Y1, -+, Yn of [R] the unique experiment e; of R” ~ (resp. R ~) induced by
~; assigns the same values to the edges x,y; if it is the case we substitute
in R" ~ (resp. R ) the configuration of fig 2.16 with an axiom link with
conclusions z, y; otherwise we leave it as it is. Now Ry = R~ and Ry = R'™;
since [R] = [R] and R" — =R ~, R~ = R~

54



J-proof nets: multiplicatives

Ay
P Pt P
x
(P ,...,PL,) S(PL, ... Py)
Figure 2.16:

Now, by lemma 8 , given an element v of [R] (resp. [R']) there exists a
unique experiment e of R~ (resp. of R'~) such that |e| = ~.

Now, we build from R~ (resp. R'~) a J-proof net R’ (resp. R'/) in
the following way; for any positive link a of typed conclusion z and for any
negative link b of typed conclusion y, we check that for every element ~
of [R], given the unique experiment e of R~ (resp. R'~) induced by ~,
e(x) # 0 = e(y) # 0; if it is the case we make b jump on a in R~ (resp.
in R'7). By lemma 10, R/ = R, and R = R'; since [R] = [R'] and
R =R-,R=R.

O

The above result of injectivity allows also to semantically recognize if
a given J-proof net R’ is obtained from another J-proof net R by adding
jumps; it is enough to check that [R]7 = [R']%, so that R~ = R'~, and
that [R'] C [R], so that all the jumps of R are jumps of R’; if we add the
remaining jumps of R’ to R, we retrieve R'.

2.4 J-proof nets and MLL

In this section we discard the polarity constraints and we present M LL proof
nets, extending our proof of sequentialization with jumps in this setting.
More precisely, we show that both the splitting *® and splitting ® lemmas
(see [Gir87] and [Dan90]), which are two of the standard results used to
prove sequentialization, are consequences of the weak arborisation lemma.

2.4.1 MLL proof nets

An MLL proof structure is a proof structure in the sense of definition 5,
whose edges are labelled by M LL formulas instead of M HS (following the
grammar we introduced in subsection 2.1), and whose typing respects the
following constraints (see fig 2.17):
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Figure 2.17: MLL links

e the ax-link has two conclusions labeled by dual formulas, but no
premises;

e the cut-link has two premises labeled by dual formulas but no conclu-
sions;

e the '@ link has n premises and one conclusion. If the i-th premise is la-
beled by the formula A;, then the conclusion is labeled by ®(A1, ..., A,);

e the ® link has n premises and one conclusion. If the i-th premise is la-
beled by the formula A;, then the conclusion is labeled by ®(A44, ..., A,).

As in the case of M HS, we can associate with an M LL proof 7 a se-
quentializable proof structure 7* by induction on the height of .

We call JMEL_structures the generalization to M LL proof structures
of J-proof structures; it is straightforward that JML-structures (without
cut-links) are polarized graphs. Exactly as we did in subsection 2.2.2,
we can associate with a JMTIL structure the structure of a graph with
pairs (R, App(R)); then we will call JMIl_net a switching acyclic JMEFE-
structure. The notion of saturation, correction graph and s-connectedness,
are directly retrieved from the ones in subsection 2.2.5.

Remark 9 For the sake of simplicity, in this section we will consider only
cut-free structures; we will also assume w.l.o.g. that all our proof struc-
tures have at most one terminal '8 link (otherwise, we put together all
conclusions by substituting all terminal 7 -links with a single one).

2.4.2 Arborisation lemma and splitting lemmas

Lemma 11 Let R be a saturated J"F-net R and a a 9-link of R. If a
conclusion of a node b € Cr(a) is a premise of a link ¢ ¢ Cr(a), then ¢ is a
w-link.
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ProOOF.

Suppose ¢ is a ®-link; then by saturation, making a jump on ¢ would
create a switching cycle: but then there is a switching path r from a to ¢
which does not use any switching edge of a. Since b 5 qand b — c it is
straightforward that the existence of » would induce a switching cycle in R,
contradiction.

O

Definition 19 (Splitting *s-link) Given a JMLE-net R and a 2-link a,
we say that a is splitting for R if there exist two subgraphs G1,Gs of R,
such that Gy does not contain the conclusion of a, which is contained by Go,
and the only edge of R connecting a node in G1 with a node in Go is the
conclusion of a.

Lemma 12 (Splitting s-lemma) Given a saturated JM*F-net R with at
least one *-link, there exists a splitting '®-link.

PRrOOF.

Let us consider a ’g-link a such that Cr(a) is maximal with respect to
inclusion among all the cones of the *g-links in R; we prove that a is splitting
in R.

Suppose that a conclusion of a link in Cr(a) is the premise of a link
(different from a) which does not belong to Cr(a) so it must be a premise of
another ’-link b by lemma 11; now, Cr(a) N Cr(b) # 0, and b ¢ Cg(a) so,
since R is a saturated polarized graph with at most one negative root, by
the weak arborisation lemma Cr(a) C Cr(b), contradicting the maximality
of Cg(a).

We observe also that if a *@-link ¢ different from a jumps on a link d
which belongs to Cr(a), then ¢ € Cr(a); otherwise (that is if ¢ ¢ Cr(a)),
Cr(a) Nempr(c) # 0 and ¢ ¢ Cr(a) and again by the weak arborisation
lemma Cg(a) C Cr(c), contradicting the maximality of C'r(a).

So, each conclusion of a link in Cr(a) is a premise of a link in Cgr(a), or
a premise of a, or a conclusion of R.

Now, if we consider the subgraph G of R which corresponds to Cg(a),
by the above observations, all the paths connecting a node in G with a node
in R\ G must use the conclusion of a; but then a is splitting for R.

O

Lemma 13 (Splitting ® lemma) Given a saturated JM**-net R which
has only terminal ® links, there exists at least one splitling ® link.

PROOF.
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The proof is an adaptation of a similar proof in [CF]; we reason by
induction on the number n of *@-links in R. If n = 0, then it is easy to check
that all terminal ® links must be splitting. If n > 0, we consider a *@-link
a such that Cr(a) is maximal with respect to inclusion among all the cones
of the '@-links in R; the conclusion of a must be the premise of a terminal
® link b, which is not above any other ’-link of R, (otherwise C'z(a) should
not be maximal).

Now, reasoning as in the proof of lemma 12 we can conclude that any
path from a node in Cr(a) to any other node in R\ Cr(a) must pass trough
the conclusion of @ and go up trough b ; if b has only two premises, then it is
obviously splitting. Otherwise b has more than two premises; but then if we
disconnect the conclusion of a from b, and we modify consequently the type
of the conclusion of b, we get two disjoint JMI-nets R, Ry, respectively
containing a, b. By induction hypothesis on Ro, Ro has a splitting ® link
c. Now either ¢ # b, either ¢ = b; in any case the splitting ® link of Ry is
splitting also for R.

O

Remark 10 Given an M LL proof net R and a saturated JM*"-net Sat(R),
all splitting "®-links and splitting ®-links of Sat(R) are splitting also for R
(as a consequence of lemma 5); since any M LL proof net can be saturated,
lemma 13 and lemma 12 provides also a proof of the existence of both a
splitting '@ link and a splitting ® link for M LL proof nets.

Theorem 6 An M LL proof net is sequentializable.

PROOF.
By induction on the number n of links of the proof net (for simplicity,
we consider only the case where R is s-connected):

e if n =1 then R is composed by a single axiom link, trivial;

e if n > 1 then we consider two sub-cases:

— if R contains one terminal *® link, then we erase it getting a
proof structure R'; R’ is a proof net (erasing a ’® link cannot
create cycles); by induction hypothesis on R’, we get a proof 7’
such that 7* = R’; we add to ©’ a proper ’® rule to get a proof 7
such that 7" = R.

— Otherwise, R contains only terminal ® links, so by the splitting
® lemma and remark 10 there exists a splitting ® link n in R:
we erase it, getting n graphs Ry, ... R, which must be proof nets
(otherwise there would be a cycle in R); by induction hypothesis
on them we get n proofs my,...m, such that 7] = R;; we add to
them a proper ® rule to get a proof m = R*.
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2.4.3 Jumps and geography of subnets

Our object of study in this section will be the notion of empire, a class of
subnets which has been introduced by Girard in [Gir87] (and further studied
by Bellin and Van De Wiele in [BVDWO95]), to prove sequentialization.

In particular, we prove that a specific property of empires, the nesting
property, which is fundamental in the standard proof of sequentialization
(see [Gir87]), is a consequence of the weak arborisation lemma.

For sake of simplicity, in this subsection we will make the assumption
that all JMIL nets we consider are s-connected.

A sub-structure of a JMIL net R is a subgraph R’ of R which is a
J-proof structure and such that for any link a of R which belongs to R/, R’
contains also all the premises of a in R.

A sub-net of a JMEE pet R is a sub-structure which is a JMEpet.

Given a correction graph s(R) of a JMEE_net R, a path r (a,..,b) from
a link a with typed conclusion x to a link b is said to go up from a, when it
does not use neither x neither any untyped edge emergent from a; otherwise
r is said to go down.

In the following definition 20, we will modify the standard definition of
empire, in order to take into account jumps.

Definition 20 (Empire) Let z be a typed conclusion of a link a in a JMIL-
net R: the empire of x in R (denoted empg(x)) is the smallest substructure
of R closed under the following conditions:

e a belongs to empp(z);

e if b is a link of R connected with a with a path that goes up from a in
all correction graphs of R, then b € empg(z).

We call border of empr(z) the set of links aq,...,a, such that a; €
empp(z) and its conclusions either are conclusions of R either are premises
of a link b which does not belong to empg(x).

Remark 11 Of course for any typed edge x, empr(z) is a sub-net of R. It
is easy to check that if b is a link in the border of empr(x), and one of its
conclusion is premise of a link ¢ such that ¢ does not belongs to empr(z),
then ¢ must be a *®-link.

Lemma 14 Let R be a JM-net and b a *9-link with typed conclusion x:
given the JMEL _structure R’ obtained by making b jump on another link a,
then R is a JMIE net iff a € empr(z) .
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PRrROOF.

We first prove the right to left direction: if a € empg(x) this means that
for every correction graph of R (which is a correction graph of R’ too), there
is a path going up from b to a; if in R’ there were a cycle, this means that in
some correction graph of R’ there would be a path from b to a which doesn’t
uses any switching edge of b, so it’s also in a correction graph of R, but then
we have a cycle in some correction graph of R, contradiction. To prove the
other direction, we simply observe that if a does not belong to empgr(x) this
means that (by s-connectedness) there is at least one correction graph in R
such that there is a path from b to a which goes down; but then if we make
b jump on a we get a cycle.

O

Definition 21 (Kingdoms) Let x be a typed edge of a proof net R; the
kingdom of z in R (denoted kr(x)) is the smallest sub-net of R having x as
conclusion.

Proposition 8 Given a J™EE-net R for any typed edge x conclusion of a
link b, kr(z) C emppr(z).

PROOF. Let us suppose that there is a link ¢ which belongs to kr(x) and does
not belong to empr(z); so for some switching s in s(R) by s-connectedness
there is a path r which goes down from b to ¢. But then if we consider
the graph s(kgr(z)) (which is the correction graph obtained by restricting
the switching s to kg(x)) is not connected, and so kgr(z) is not a subnet,
contradiction. O

Definition 22 Let R be a JME L net and a a link of R with typed conclusion
x; we denote by Cr(x) the smallest sub-structure which contains only a and
the links in Cr(a).

Remark 12 In a JMEEpet R given a typed edge =, by definition of sub-
structure, Cr(z) C empgr(x) and Cr(z) C kr(x).

The following proposition will allow us to characterize saturated JM -

nets by the shape of the empires of their *@-links:

Proposition 9 A JMIL net R is saturated, iff for any 9 link a of typed
conclusion x, Cr(z) = kr(z) = empg(z).

PROOF.

To prove the left to right direction, let us assume R saturated, and
suppose empr(x) # Cr(x); obviously Cr(x) C empgr(z) . Now consider a
link b of emppg(z) which isn’t in Cr(z): if there is not such an element, then
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empp(z) = Cr(z); otherwise we make a jump on b , and by lemma 14 this
doesn’t create cycles so R is not saturated. Since Cr(x) C kr(x) C empr(x)
and emppr(z) = Cr(x) it follows that Cr(x) = kr(x) = empgr(x)

To prove the other direction, if one makes a jump on a link which is in
empp(z) then it is transitive by definition of C'r(z); if one makes a jump on
a link which is outside empgr(x) then it creates a cycle by lemma 14.

O

The following proposition is a standard property of empires in M LL
proof nets, which, in the case of saturated JMI-nets becomes a simple
consequence of the weak arborisation lemma.

Proposition 10 (Nesting of empires) Given a saturated JM " -net R and
two edges x,y resp. typed conclusions of two '8 links a,b, either emppg(x)
and empr(y) are disjoint, either one is strictly included into the other.

PRrROOF. By lemma 9, empr(x) = Cgr(z), and empgr(y) = Cr(y); since R

is a saturated polarized graph, the rest of the proof easily follows from the
weak arborisation lemma. ]

61



J-proof nets: multiplicatives

62



Chapter 3

J-proof nets: additives

In this chapter we introduce and study J-proof nets for the hypersequen-
tialized calculus. In section 3.1, as we did in chapter 1, we will present first
MALL grammar and sequent calculus, then HS; in section 3.2 we define
J-proof nets for HS and in section 3.3 we prove the sequentialization the-
orem, while in section 3.4 we study cut-reduction on J-proof nets, keeping
aside for the moment the question of the preservation under reduction of
the correctness criterion. In section 3.5 we extend pointed set semantics to
include additives, and we prove that the injectivity result of the previous
chapter still holds in the additive setting; in the following section 3.6 we
will use this result to prove that the correctness criterion is stable under
reduction. Finally in the last section 3.7, we provide a classification of J-
proof nets with respect to their degree of sequentiality, and we study the
correspondence between them and some of the usual syntaxes for additive
proof nets.

3.1 Hypersequentialized calculus

In this section we present multiplicative-additive hypersequentialized cal-
culus. As in section 2.1, we first present, in subsection 3.1.1, a variant of
usual M ALL grammar and calculus where formulas are clustered modulo
the usual associativity and distributivity isomorphisms of linear logic; then
in subsection 3.1.2, using polarities, we retrieve the hypersequentialized cal-
culus.

3.1.1 MALL

Definition 23 Let V = {X, Y, Z,...} be a countable set of propositional
variables; the formulas of MALL are defined in the following way:

e Atoms: X,Y,Z, ... and X+, Y+, Z+, ... are formulas of MALL
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e synchronous formulas: let N = {I,J,..., K} be a non-empty family
of index sets, and A; an atom or an asynchronous formula indexed by
some i € I € N; then @ren(®ier(Ai)) is a formula;

e asynchronous formulas: let N'={I,J,... , K} be a non-empty family
of index sets, and A; an atom or a synchronous formula indexed by
some i € I € N; then &1en(Ricr(A;p)) is a formula.

Negation is defined as follows:

At =4
(@1en(@ier(A4i)) T = &ren(Rier (A7)

(&ren(Bier(4)))" = Bren(@ier(47))
Note We remark the following facts:

e By &1en(®icr(A;)) we indicate the synthetic connective which rep-
resent all possible combinations of the formulas A;c7cn modulo the
associativity and distributivity properties of usual ® and & connec-
tives in LL; in case N is a singleton, we shall use the abbreviation
("®ic1(A;)); we denote the unary case of ('9;cr(A;)) as T A;.

e By @ren(®ier(V;)) we indicate the connective which represent all
possible combinations of the formulas A;c7ca modulo the associativity
and distributivity properties of the usual ® and @ connectives in LL;
in case N is a singleton, we shall use the abbreviation (®;er(4;)); we
denote the unary case of (®;ecr(4;)) as | A;.

The calculus is the following:

——az FT,A FA AL

l—A,AJ‘ l—PA cut
Ty, Ay FT,, A, /o) FD AL AL L B DVAR LA
FPl,...,Fn,@[eN((gie]Ai) 7 FF,&JeN(?jeJAi)

As for MLL, MALL can be enriched with the Mix rule:

FT FA
FT,A

mir
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3.1.2 From MALL to HS

As we did for the multiplicative fragment, we restrict the grammar and
calculus of MALL in order to make proofs alternating, retrieving in this
way the hypersequentialized calculus. The formulas of HS are obtained by
the following restriction on M ALL formulas:

N == Xt | &ren(8icr(P))
P = X | ©ren(®ier(N;))

From now on, we will call the formulas in N negative and the formulas
in P positive.
The HS (+ Mix) calculus is the following:

FT, A FA AL

T vl °
F X7 X E P, A cut
FTy, N .. FPliHﬂ FL,PLLL P . FFJT”WR&(im
l_rlu"'7rn7@I€N(®i€INi) FP,&JEN(?jeJR) 7
=T A
FT,A
where I', A, ... only contain positive formulas.

In the additive fragment, we restrict ourself to axioms introducing just
atomic formulas; the reason behind this choice will become clear in section
3.2.

Decomposing the additives. Before presenting J-proof nets, we want to
give a first intuition about two fundamental notions which naturally come
out dealing with additives: the one of slice and the one of superposition.
Let us consider the following sequent proof 7 of
Fe(@(XT, Xy), @(X5, X)), &(9(X1, Xs), 9 (X3, X4)):

axr axr axr axr
Xy, Xi F Xo, X5 e - X3, X5 F Xy, X}
+7 ) /!
Fo@ (X1, Xy ), ®(X5, X5)), X1, Xo Fe(@(X Xy ), ©(X5, Xq)), X3, Xy

F @(®(X1J_7X2J_)7 ®(X§_7Xi_))7&(?(X17X2)7 ?(X37X4))

(+{3.4})
(77{{172}7{374}})

Now, we choose a branch for each (—, ) rule, (in this case just one); by
erasing the right branch we get the following derivation si:
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axr ax
F Xy, Xi F Xo, X5
F 69((g)(‘XlLVXQJ_)a ®(X§_7Xi_))7X17X2
Fe(@(XT, X5),®(X5, X1)), &8 (X1, X»), 9 (X3, Xy))

(+{1,2})

and by erasing the left branch, we get the following derivation ss:

ax ax

- X3, X4 F X4, X1
F ®(®(X1L’X2l)’®(X3L’X4L))’X3,X4
H @(®(X1L’X2l)’ ®(X3l,X4l)),&(>?(X1,X2), ?(X3,X4))

(+{3.4})

In both s; and sg the (—, N)-rule is unary (as in MHS).

Following this observation, a (—, N')-rule appears as a set (superposition)
of unary rules having the same active formulas. If we consider a sequent
calculus derivation in HS, and for each (—,N)-rule we select one of the
premises, we obtain a derivation where all (—, A/)-rules are unary (as in the
multiplicative case). This is called a slice. Hence, an HS proof containing
some (—,N)-rule can be thought of as a superposition of multiplicative
proofs, (that is slices).

Actually, the notion of slice is as old as Linear Logic itself: it appears
for the first time in the seminal paper [Gir87]; it has been used by Laurent
and Tortora de Falco for studying normalization on polarized proof nets
(see [LTdF04]) and is a key notion of ludics and L-nets. Furthermore, as
observed by Pagani in his PhD thesis, (see [Pag06]) slices correspond to the
basic objects in the syntax of Hughes and Van Glabbeek additive proof nets,
namely linkings (see [HVGO3]).

The main point when one deals with additive proof nets is to properly
reconstruct the structure of the multiplicative proofs of which an additive
proof is composed, and to correctly superpose them; such a task is usually
fulfilled by boxes (as in [Gir87], [LTdF04], [TdF03b]) or by boolean weights
(as in [Gir96], [Lau99], [Mai07]), which provide enough “synchronization
points” to glue slices together. In additive J-proof nets this role will be
played by jumps.

3.2 J-proof nets

In this section we present J-proof nets for HS, using a syntax which is
directly inspired from L-nets.

Firstly, in subsection 3.2.1, we modify the definition of J-proof structure
given in the previous chapter, in order to take into account the “additive
contraction” effect induced by the (—, AV)-rule. While in others syntaxes (as
[Lau99]) this is done by introducing an explicit “additive contraction” link,
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we adopt the convention of incorporating contraction in the links, by enrich-
ing them with a structure of ports; to deal with contractions at the level of
the conclusions, we define the conclusions of a proof structure explicitly as
nodes instead of pending edges.

In subsection 3.2.2 we study the relation between J-proof structures and
H S, by defining sequentializable J-proof structures; then, in subsection 3.2.3,
we introduce the correctness criterion and we define J-proof nets.

3.2.1 J-proof structures

Definition 24 (Graph with ports) We call graph with ports a directed
graph where for each node b the edges incident on b are partitioned into
subsets called ports ; given a node b we denote its ports by b7, b* b

Definition 25 (Pre-proof structure) A pre-proof structure is a di-
rected acyclic graph with ports whose edges are possibly typed by formulas of
HS and whose nodes (also called links) are labelled by one of the symbols
azx,cut,+ren, —1en (we call such links logical links) or by a formula of
HS (we call such links conclusion links).

The edges incident on a link are called premises and the edges emer-
gent from a link are called conclusions; the label of a link imposes some
constraints on its ports and the number and the types of its incident edges
and emergent edges:

e an ax-link has two conclusions labeled by dual atomic formulas, but no
premaises.

e a cut-link has no conclusions, and two ports (called left and right),
one containing n > 1 premises all typed by a formula A and the other
containing k > 1 premises all typed by A*;

e a —jcn link b (also called negative link) has:

— one port b® for each i € I; each port b' contains n > 1 premises
which are typed by the same formula P; fori € I;

— one port b*, which contains only untyped edges (called jumps);

— exactly one conclusion, typed by a formula N.

If the premises in b' are typed by a formula P;, then the conclusion is
typed by &ren (Ric1(F))-

e a +ren link b (also called positive link) has:

— one port b* for each i € I; each port b contains n > 1 premises
which are typed by the same formula N; for i € I;
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T

&ren(Ricr(Pi)) Cren(®ier(N:))

C

C\/c

Figure 3.1: Links of a pre-proof structure

— n > 1 conclusions, exactly one among them typed by a formula
P.

If the premises in b are typed by a formula N;, then the conclusion is
typed by @ren (@ier(Ns))-

e a conclusion link with label A has no conclusions and one port con-
taining n > 1 edges all typed by the formula A.

A link whose conclusion belongs to a conclusion link is called a terminal
link; the types C1,...,Cy of the conclusion links are called conclusions of
the pre-proof structure.

The constraints and the links of definition 25 are synthetically repre-
sented in fig. 3.1; we denote ports by black spots, and we distinguish posi-
tive and negative links by their shape; following this graphical convention,
sometimes when drawing a proof structure we will label a positive (resp.
negative) link simply with I € A instead of 4+7cpr (resp. —renr).

To properly take into account the structure of additives (that is, to
retrieve slices), we must refine our definition of proof structure, as follows:

Definition 26 (Sibling links and negative rule) Given a pre-proof struc-
ture , two links a,b are sibling if the typed conclusion of a and the typed
conclusion of b belong to the same port of a link c.
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&9 (X1, X2), (X3, Xq))

A = &(9(X1, X2), ®(X3, Xq))

B = &(®(X{, X3), (X5, X1)

Figure 3.2: example of J-proof structure

A negative rule W is a maximal set {w1,...,w,} of negative sibling
links; the premises (resp. conclusion) of a megative rule are the premises
(resp. conclusion) of its elements.

An additive pair is a pair of negative links belonging to the same neg-
ative Tule.

Definition 27 (View) We call view of a link a (denoted a') the set of
links {b: a =, b} U{a}.

Definition 28 (J-proof structure) A pre-proof structure R is a J-proof
structure if it satisfies the followings:

Positivity: see definition 15.

Additives: if two links a,b of R belong to the same negative rule, then the
label of a is —'N and the label of b is =N and J £ J' ;

Views: given a link a , at doesn’t contain any two elements of the same
negative rule;

Contraction: given two non negative sibling links a,b, there exists an ad-

. ) + +
ditive pair wy,ws S.t. a — w1 and b — w,.

A negative rule containing terminal links is called o terminal negative
rule; in addition to the above conditions, a J-proof structure must have at
most one terminal negative rule.

Let us give some explanations on the conditions of definition 28:
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X i

&R (X1, X2), (X3, X4))

B(R(X{, X5), ®(X5, X7))

® ®

Figure 3.3: a slice of the J-proof structure in fig. 3.2

Positivity has the same function as the analogous condition on multi-
plicative J-proof nets; we chose to present it as a constraint on proof
structures to make clearer the relation between J-proof structures and
L-nets; as a matter of fact, in this way each condition of definition 28
corresponds to a condition in the definition of L-nets (see [CF05]).

The Additives condition allows to recognize the different components
of which a (—, N)-rule is composed, and to work independently with
each of them.

The Views condition assures that there cannot be conflicts between
components of the same negative rule; to give an intuition on the
meaning of this condition in the usual syntax of additive proof nets,
it is enough to consider the constraint of disjointness between the
different components of an additive box.

The Contraction condition assures that superposition is not “wild”;
each time two links are contracted, there is always at least one negative
rule which justifies the superposition.

Now we are in the position to define the notion of slice:

Definition 29 (Slice) A slice is a J-proof structure where all negative
rules are singleton; a slice of a J-proof structure R is a maximal subgraph S
of R, which is a slice with the same conclusions of R.

We remark that in this setting jumps have a more preeminent role with
respect to the multiplicative case; they not only graduate sequentiality, but
allow also to keep track of the additive structure, as it appears clearly from
fig. 3.2.
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3.2.2 J-proof structures and sequent calculus

As we did in the multiplicative case, we isolate the J-proof structures which
correspond to H.S proofs, introducing the notion of sequentializable J-proof
structure.

Given a J-proof structure R and a terminal link b of R we define the
removal of b in the following way:

e if b is a terminal link of type +7ens (resp. —renr) of R, the removal of
b is the substitution in R of b with one conclusion link for each port b’
of b fori e I.

e if bis a cut link, the removal of b is the substitution in R of b with one
conclusion link for each port of b.

Definition 30 (Scope) Let R be a J-proof structure and W = {wy, ..., wp}
a negative rule of R: we call scope of an element w; of W (denoted R;) the
graph obtained from R by erasing all w; and all the links of R above w; for

J# i
The following definitions are adapted from [Lau99].

Definition 31 (Sequentialization of a J-proof structure) We define the
relation “L sequentializes R in £”, where R is a J-proof structure, L is

a terminal link or a terminal negative rule of R and € is a set of J-proof
structures , in the following way, depending from L:

o If L is an axiom link, and is the only link of R, then L sequentializes
R into );

e if L is a cut link, and if it is possible to split the graph obtained by
removing L into two J-proof structures Ry, Ra, then L sequentializes

R into {Rl,RQ};

e if L is a positive link with n ports, and if it is it is possible to split
the graph obtained by removing L into n J-proof structures Ry, ..., Ry,
then L sequentializes R into {Ry,..., Ry} J-proof structures;

o if L is a terminal negative rule W = {wi,...w,} with conclusion
&1en(®icr(P;)) such that for each I € N there is an element w; of W,
we consider for each wj the scope R of wj; if R is a J-proof structure,
then L sequentializes R into {R'1,...,R'n} J-proof structures, where
R'; is the J-proof structure obtained by removing w; in R;.
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Definition 32 (Sequentializable J-proof structure) A J-proof structure
R is sequentializable if

e R has a terminal negative rule, which sequentializes R into a set of
sequentializable J-proof structures;

e R has no terminal negative rule and

— R is composed by a single connected component, and at least one
of its link sequentializes R into a set of sequentializable J-proof
structures or into the empty set;

— R is composed by more than one connected component and each
component is a sequentializable J-proof structure.

Proposition 11 If a J-proof structure R is sequentializable, we can asso-
ciate with it at least one proof m of HS, called sequentialization of R.

PrOOF.
The proof is an easy induction on the number of logical links of R:

1. n = 1: the only node in R is an Axiom link with conclusions X, X,
to which we associate —————.

- P, Pt

2. n > 1: suppose R contains one terminal negative rule W = {wy, ... w,}
with conclusion & jen (@ je.s(P;)); then by definition of sequentializable
J-proof structure, W sequentializes R into Ry,..., R, J-proof struc-
tures with conclusions respectively T, Pl,... Pkll, LI PP LB o
each R; by induction hypothesis we can associate a proof m; with con-
clusion - T, P}, ... Py... We obtain 7 by applying a (—, N) rule with
conclusion FT', & jen (R e (Py)) to all mq, ... my.

Otherwise R has no terminal negative rule; suppose R is composed by
a single connected component; since it is sequentializable there exists
at least one link L which sequentializes R. Then we reason by cases:

e L is cut link whose premises are typed by P, P'; then L se-
quentializes R into two proof structures Rj, Ro with conclusions
respectively T', P and A, P'; by induction hypothesis we asso-
ciate with Ry (resp. R2) a proof m; with conclusion F I', P (resp.
7y with conclusion = A, P1). We obtain 7 by applying to 71, 7o
a cut rule with conclusion - I', A;

e [ is a positive link 47 with conclusion @ repnr(®ier(N;)); we re-
call that each port of L corresponds to an ¢ € I. L sequentializes
Rinto Ry, ..., R, J-proof structures with conclusions respectively
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I'y,Ny...T'y, Ny; to Ry, ..., R, we can associate by induction hy-
pothesis n proofs 71, ..., 7, (one for each port of L) with conclu-
sion respectively - I'y, Ny, ... T, N,,. We obtain 7 by applying
a (+,1) rule with conclusion F TI'1,..., Ty, ®jen(®;cs(N;)) to

Tlyeeey Ty

Otherwise, R is composed by more than one connected component, and
each of them is a sequentializable J-proof structure; we conclude by applying
induction hypothesis on them, followed by a sequence of Mix rules.

O

Note Contrarily as we did in the previous chapter, we do not define the
“desequentialization” 7* of an H.S proof m, because we want to establish a
correspondence between H S proofs and J-proof structures of any degree of
sequentiality (not only the most parallel ones); nevertheless, in section 3.7,
we will show how to associate with an H.S proof a J-proof net with minimal
sequentiality. We stress also the fact that a sequentializable J-proof structure
a priori can have many differents sequentializations.

3.2.3 Correctness criterion

As we recalled in the previous chapter, a correctness criterion must allow
to characterize in an intrinsic, purely geometrical way all sequentializable
J-proof structures, that is the ones which correspond to HS proofs. The
correctness criterion for J-proof structures in the additive case is composed
by two conditions:

e a qualitative one, called cycles condition, (due to Curien and Faggian,
see [CF05]), which is a reformulation in our setting of Hughes and van
Glabbeek’s toggling condition (see [HVGO03));

e a quantitative one, called totality condition, which assures that in a
J-proof net there are enough slices to retrieve a sequent calculus proof.

One of the differences between J-proof nets and L-nets is the totality
condition, which is not required for proving sequentialization of L-nets (since
they are partial objects, in the sense of ludics); cycles condition instead is
identical to the homonymous condition on L-nets.

As we did for the multiplicative case, we can associate with a J-proof
structure the structure of a graph with pairs (R, App(R)), by taking as
elements of App(R) the n-tuples of the premises of a negative link; due to
the presence of additives, we have to modify our notion of switching path in
the following way:
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A
X, & it

1
i

\{ﬂ K {3,4} )

B(®(X{, X3, ®(Xz, X7))

& (X1, X2), ®(X3, X4), (X5, X)) B@(X{, X5, ®(X5, X))

® ®)

A =&(B(X1, X2), B(X3, X4), ®(X5, X¢))

B = &(®(X{, X5), ®(X5, X1))

Figure 3.4: example of J-proof structure which is not total

Definition 33 (Switching path and cycle) Given a J-proof structure, a
switching path is a path which never uses two different premises of the
same negative rule (called switching edges); a switching cycle is a switch-
ing path which is a cycle.

Definition 34 (Cycles-correct J-proof-structure) A J-proof structure
R is cycles-correct if, given a non empty union C of switching cycles of
R, there is a negative rule W € R not intersecting C' and a pair wi,ws € W
such that for some links c1,co € C', ¢1 -+, w1 and ¢y -+, wo; in this case
we say that the additive pair wi,ws € W breaks C.

Remark 13 The above condition deals with cycles which crosses different
slices of the same J-proof structure; it is well known, from [Gir96], that the
switching acyclicity of the single slices of a proof structure does not imply
the sequentiability of the whole proof net.

A &-resolution of a J-proof structure R, is the graph obtained by choos-
ing for each negative rule W with conclusion & jen (%9 jes(P;)) an I € N and
erasing each component w of W which is not labelled by I, together with
all the links hereditary above w.

Definition 35 (Total J-proof structure) A J-proof structure R is total
if each &-resolution of R yields a unique slice of R.

In figure 3.4 we show a J-proof structure R which is not total: each with
resolution yields a graph, which either is not a structure, either is not a slice
of R (since its conclusion are not the same as R). The J-proof structure in
figure 3.2 instead is total.
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Definition 36 (J-proof net) A J-proof net is a J-proof structure which
is total and cycles-correct.

Theorem 7 (Sequentialization) Let R be a J-proof structure; R is a J-
proof net iff is sequentializable.

The right to left direction is (as usual) trivial. In the next section we
provide a proof of the left to right one, using jumps.

3.3 Sequentialization

In this section we extend the technique of sequentialization used in the previ-
ous chapter to additive J-proof nets; that is, we prove that gradually adding
jumps to a J-proof net, we retrieve a sequent calculus proof. In subsection
3.3.1 we show that, if the order associated with a J-proof net R is arbores-
cent, then R is sequentializable, and the proof associated to it is unique
(that is, there is a bijection between “arborescent” J-proof nets and HS
proofs). Differently from the multiplicative case, in order to sequentialize
an additive J-proof net by adding jumps we must take into account the ef-
fect of duplication of the context induced (bottom-up) by a (—, N)-rule; to
properly deal with it, when adding a jump to a J-proof net R, we will add it
separately to each slice, and then we will superpose the slices so obtained. In
subsection 3.3.2, we define precisely the operation of superposition of slices;
then in subsection 3.3.3 we define the notion of bundle of jumps, which allow
to add a jump in all the slices of a J-proof net at the same time. Finally, in
subsection 3.3.4, we will prove that we can make arborescent the order of
any J-proof-net by adding bundles of jumps.

Note. By now, we will only consider J-proof nets without cut links; we
will speak about the question of sequentialization with cut-links in section
3.4.

3.3.1 Arborescence and sequent calculus

Due to the introduction of ports and conclusion links, we have to modify
the notion of order associated with a J-proof net and the one of skeleton.

A J-proof net R is a directed acyclic graph (d.a.g.); we define the order
<p associated with R as the strict partial order induced by R as a d.a.g.
restricted to the logical links of R (that is without conclusion links).

The skeleton of a J-proof net R (denoted as always Sk(R)) is the di-
rected graph with ports obtained from R by erasing all the edges which are
transitive and all conclusion links.

Since Sk(R) is obtained from R just by erasing transitive edges, the order
associated with Sk(R) as a d.a.g and the order < R associated with R are
equal; so if the order <p is arborescent, the skeleton of R is a forest.
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Now we prove that if the order associated with a J-proof net R is ar-
borescent, then R is sequentializable.
We first state the following lemma:

Lemma 15 If R is a J-proof net with more than one logical link and without
terminal negative links, then all the conclusions of R are positive.

PRrOOF. It follows from the positivity condition (the proof is the almost the
same as the one of lemma 3, differing only for some minor details). O

We modify definition 12 in order to adapt it to graphs with ports:

Definition 37 (Splitting node) Let G be a d.a.g. with ports and ¢ a node
with n ports, which is a root of G; let us call b}, e ,bé the nodes of G which
are sources of an edge belonging to the port ¢ of ¢ fori € {1,...,n}. We
say that c is splitting for G if erasing ¢, any two of the nodes bg, b%/ (with
Jj # k) become not connected. Ie. by erasing c, the graph splits into n
components, one for each port of ¢ .

Proposition 12 Let R be a J-proof net such that <gr is arborescent. Then
R is sequentializable, and the HS proof associated to R is unique.

ProOF.
The proof is by induction on the number of logical links of R:

n = 1: in this case, R is composed by just an axiom link, and it is trivially
sequentializable into a unique proof;

n = k + 1: suppose R has a terminal negative rule W, whose elements wy, . . .
are minimal in <p; then we consider for each i the graph R’; (which
is obtained by deleting w; from its scope R;). Due to totality, each
R’; is obviously a J-proof net whose order associated is arborescent, so
by induction hypothesis it is sequentializable and the proof associated
is unique; then R is sequentializable, and due to the single negative
conclusion constraint, the proof associated is unique. Otherwise, by
lemma 15, all the conclusions of R are positive; we reason by cases,
depending if R is composed by one or several connected component:

e if R is composed by a single connected component, there is a
single positive link ¢ which is terminal and minimal in <g. Ob-
viously c is splitting in Sk(R), (because in Sk(R), ¢ is the root of
a tree); since passing from R to Sk(R) we only erase transitive
edges, it is easy to check that the removal of ¢ from R splits R
into Ry,..., R, J-proof nets (one for each port of ¢), whose or-
der associated is arborescent, so by induction hypothesis they are
sequentializable and the proofs associated are unique; then R is
sequentializable, and due to the uniqueness of the positve root,
the proof associated is unique.
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e If R is composed by more than one connected component then
Sk(R) is a forest, and each tree of the forest corresponds to a
J-proof net whose order is arborescent. The result follows by a
simple application of the induction hypothesis.

3.3.2 Superposition

We define the operation of superposition of J-proof structures, using the
notion of sharing equivalence, which has been introduced by Laurent
and Tortora de Falco in [LTdF04], and refined by Pagani in [Pag06]; the
operation we define is analogous to the union of chronicles in ludics and
L-nets (see [CF]).

Let Ry,... R, be J-proof structures; two typed edges x,y of Ry,..., Ry,
premises respectively of two nodes b, ', are similar when

e cither b and V' are both conclusion nodes;

e cither b and b’ are both labelled by +7cn (resp. —ren) and z,y both
belong to the i-th port of b, b’ for i € I.

Given a J-proof structure R we say that a is a sublink of b when a typed
premise of b is a conclusion of a; a link a is an hereditary sublink of b
when there exists a sequence of links aq,...,a, such that a; is a sublink of
a;i+1 and a = ay, b= a,.

Given two nodes a, b in a J-proof structure R, we say that a is a sublink
of b due to an edge x , if x is both a typed conclusion of a and a premise
of b; we denote it by a — b.

Definition 38 (Sharing equivalence) Given Ry, ..., R, J-proof structures
with the same conclusions C1,...Cy, a sharing equivalence is an equiva-
lence relation = on the links of Ry, ..., Ry, such that for any link a,a’,b:

identity if a,a’ belong to the same R;, then a =d' iff a =d ;

bottom if a,da’ are conclusion links, then a = a’ iff a,a’ have the same label
among Cq,...,Ch;

bottom-up if b — a, and a = d', then for every link b such that b’ = a,
b="0iff

e b and b have the same label;

e 1z and ¥’ are similar;
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e for all edge b — c there exists an edge V' — ¢ such that ¢ = ¢
(and vice versa).

up-bottom ifa = b, and a = ' then there exists a link b such that o’ =y
and b="b.

If a = d, we say that a,a’ are superimposed by =. We denote by [a]
the equivalence class of a link a w.r.t. =.

Proposition 13 Let Ry, ..., R, be J-proof structures with the same conclu-
sions, = be the sharing equivalence on Ry, ..., R, and a,a’ be two nodes in
Ry,...,R,. If a = d then the types of the conclusions of a (resp. the type
of a if a is a conclusion link) and the types of the conclusions of a’ (resp.
the type of @’ if a’ is a conclusion link) are equal.

PRrROOF. We prove the proposition by induction on the number of links below
a. If a is a conclusion link, then the proposition is a consequence of condition
bottom. Otherwise, there exists a node b such that a = b and since a = o/,

by condition up-bottom there exist a node b’ such that a’ oy and b= ;
by induction hypothesis, the types of the conclusions of b and b’ are the
same. Hence, by condition bottom-up and by definition of similar edges,
z and z’ have the same type. Moreover, if a,a’ are axioms it is clear that
the other conclusions than x, 2’ are of same type too. ]

We can extend the sharing equivalence = to edges; if z, 2’ are two edges
of Ry,...,R,, we say that x = a’ iff z is a typed edge (resp. a jump)
conclusion of a node a and premise of a node b, 2’ is a typed edge (resp. a
jump) conclusion of a node @’ and premise of a node V' and a = d’, b = V';
we denote by [z] the equivalence class of an edge z w.r.t. =. By proposition
13 if z = 2’ then x and 2’ either have the same type either they are both
jumps.

Fact 1 Let Ry,..., R, be n J-proof structures with the same conclusions,
and let = denote the sharing equivalence on Ry, ..., Ry, extended to the edges
of Ri,...,Ry,. If x is an edge conclusion (resp. premise) of a link a, then

all the edges in [z] are conclusion (resp. premise) of links in [a].

Definition 39 (Superposition) Let Ry,..., R, be a set of J-proof struc-
tures with the same conclusions, and let = denote the sharing equivalence
on (Ry,...,Ry,) extended to the edges of (Ry,...,R,). The superposition
of (R1,...,Ry), denoted by () (R1,...,Ry), is the pre-proof structure whose
links (resp. edges) are the equivalence classes w.r.t. = of the links (resp.
edges) of Ry,...,Ry.

In particular if a is a link of Ry, ..., R,, then:
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1. in case a is an aziom with conclusions x,y, then [a] is an aziom of
0 (Ri,...,Ry) with conclusions [x], [y];

2. in case a is a +en link, then [a] is a +1epn link of § (Ry,...,Ry)
such that:

o for each typed edge x premise of a which belongs to a port a®, for
i € I, [x] is a premise of [a] which belongs to the port [a]’ for
i€ 1;

e for each edge y conclusion of a, then [y] is a conclusion of [a].

3. in case a is a —ren link, then [a] is a —ren link of § (Ry,...,Ry)
such that:

o for each typed edge x premise of a which belongs to a port a®, for
i € I, [x] is a premise of [a] which belongs to the port [a]’ for
i€ 1;

e for each jump x’ which belongs to the port a*, [x'] is a jump which
belongs to the port |a]*;

e if y is the conclusion of a, then [y] is a conclusion of [a].

4. if ais a conclusion link of type A, [a] is a conclusion link of () (Ry,...,Ry)
of type A, such that for each premise x of a, [x] is a premise of |al

Given a set Ry,..., R, of J-proof structures with the same conclusions
and the sharing equivalence =, we say that R; shares a link b of Ry, if there
is a link 0’ of R; such that b=10'.

Proposition 14 Let Ry, ..., R, be J-proof structures with the same conclu-
sions; then R =() (Ry,...,Ry) is a J-proof structure iff R satisfies condition
Contraction of definition 28.

Proor. Condition positivity and views are easily verified. Let us show the
preservation of condition additives. Suppose that [w], [w'] are two negative
sibling links in R. Then there exists in R; a w € [w] (resp. in R aw’ € [w'])
such that w = a in R; (resp. w' Z d in Ry), a = d' and z, 2 are similar,
but w and w’ are not sharing equivalent. Since w,w’ are negative links, they
have just one conclusion: but then in order to be not sharing equivalent they
must have two different labels J, K € N.

79



J-proof nets: additives

Remark 14 If Sy,...,S, are the slices of a total J-proof structure R, then
0 (S1,...,5.,) =R

Note. It should be clear now why me made the choice of considering only
n-expanded axioms: the presence of non atomic axioms would unnecessarily
complicate the definition of superposition of J-proof structures.

3.3.3 Bundle of jumps

Given a negative rule W : {wy,...,w,} of a J-proof structure R, we say
that a link ¢ depends from W if for some w; € W, w; € ¢t.

Definition 40 (Bundle of jumps) Given a J-proof net R, adding a bun-
dle of jumps in R between a positive link a and a negative link b sums up
to:

1. taking the set of all the slices S1,...,S, of R;

2. if b depends from some additive pair Wi ... Wy in R , we consider all

the slices containing some elements wy ... w, of Wi,... Wy;
3. for any slice S; containing a and some components wj, ..., wy of Wi, ...
we add a jump in S; between a and wj, ..., w; if S; contains b too,

we add also a jump between a and b: in this way we get a slice Si;

4. we take the superposition () (S,...,S)) of all S{,...,S), .
Proposition 15 Let R be a J-proof net, a a positive link and b a negative
link depending from Wy ... W,,; the pre-proof structure R’ obtained by adding
a bundle of jumps between a and b is a total J-proof structure.

Proor.

By proposition 14 we have to check only the preservation of contrac-
tion.

To do that, we just have to prove that for any two positive sibling links
c1,co in R there exists an additive pair wi,wo in R’ such that ¢y =, w1
and ¢y t, ws.

Let us consider two positive links a/, a” respectively belonging to two
slices S}, Sy, of R such that [a], [a”] are siblings in R': if [a'], [a”] were siblings
in R, we are done (by contraction condition on R). Otherwise it is easy to
check that @’ = a” in R; then in the slice S} obtained from S (resp. in the

slice S}, obtained from Sj) by definition of bundle of jumps o’ ! (resp.

a’ = w") where w', w" form an additive pair in R; but then [w/], [w"] form
an additive pair in R’.
Totality is trivially preserved.
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O

Given a cycles-correct J-proof structure, one adds a correct jump when
one adds a jump in such a way to get a J-proof structure R’ which is still a
J-proof net; given a J-proof net R, one adds a correct bundle of jumps,
when one adds a bundle of jumps in such a way to get a J-proof structure
R’ which is still a J-proof net.

Definition 41 (Strong switching path) Given a negative link w belong-
ing to a negative rule W of a J-proof structure, a strong switching path
(w,...,a) from w to a node b is a switching path which does not use any
switching edge of W .

Remark 15 Let a be a positive link and b a negative link depending from
some additive pairs Wy, ..., Wy of a J-proof net R; if there isn’t any strong
switching path from b to a in R, then there isn’t any strong switching path
from w; € W; to a in R.

Proposition 16 Let R be a J-proof net, a a positive link and b a negative
link of R; if there isn’t any strong switching path from b to a in R, then we
can add a correct bundle of jumps between a and b in R.

PRrROOF. By the above remark, every jump added by the bundle of jumps is

correct, so no new switching cycles are created; but then cycles condition is
preserved. O
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An example of sequentialization Now let us consider the J-proof net
R in fig 3.5; let us add a bundle of jumps between the leftmost terminal
positive link and the rightmost negative rule. To add the bundle of jumps ,
we consider separately each of the four slices Sy, So, 53,54 of R and we add
in each slice the jump induced by the bundle of jumps as in fig. 3.6; then
we superpose the slices to obtain the J-proof net R’ in fig. 3.7.

®

AT

8(A1, By)

*

F = &((®(Af, By )3, (B(AT, By))a)

Dsg

E = ®((&(A1, B2))s5,Cg)

©

G = @((&((®(AT, By ))s, (®(AT, B3))a)7, Dy)
Figure 3.5:

Observe that the bundle of jumps duplicates the leftmost positive ter-

minal link.
Now, if we consider the skeleton Sk(R') of R’ in fig. 3.8, it directly
corresponds to the following proof:

82



J-proof nets: additives

ax ax ax ax

A, Af F B2, By F Ay, AT - B2, By
(+.{1}H) T 1 T (+.{2}H) (+.{1}) T T (+.{2}H)
o kA1, ®(AT, By ) + Bz, ®(AT, By) kA1, @®(AT, By) Bz, ®(AT, By) o
’ oy DAL Ba) B(AT BY ) FCeCd L P &AL Bl &AL B T koot
_— F ®((&(A1, B2))s, Cg ), ®(AT, By ), Cg F ®((&(A1, B2))s, Cg), ®(AT, By ), Cg
-, ax
s F ®((&(A1, B2))s, Cf ), &(&(AT, B3 )3, (B(AL, B3 ))a), Co F Ds, Dg

F ®((&(A1, B2))s, Cq ), ®((&(B(AT, B3 ))s, (8(A1, B3 ))a)7, Dg ), Cs, Ds.

where N' = {{1},{2}}, M = {{3},{4}}, L ={7,8}, K = {5,6}.

We could as well add a bundle of jumps in R between the rightmost
terminal positive link and the leftmost negative rule, obtaining the J-proof
net R” in fig 3.9. Observe that this time we duplicate the rightmost terminal
positive link.

If we consider the skeleton Sk(R”) of R” in fig. 3.10 it directly corre-
sponds to the following proof:

ar — —————— ar —— ar — ax

F Ay, AF F Ay, AT + Ba, By - B2, By
(+.{1}H) T 1 R (+.{1}H) (+.{2}H) T 1 T (+.{2}H)
(g AL BT B3 F AL ®(AL, By) oy P B2 @A, By)  + By ®(AT, By)
o F &(®(AT, B3 )3, (B(AT, B3 ))a), A1 + Ds, Dg- ; F &(®(AT, B3 )3, (B(AT, B3 ))4), Ba + Dg, Dg-
oy BT, B3 )3, (B(AT, B3))a)7, D§ ), Ar, Ds F @((&((@(AT, By )3, (B(AT, B3 ))a))7, Dy ), B2, Ds
s F &(A1, Ba), @((&(®(AT, B3 ))s, (®(AT, B3 ))a))7, Dg), D F Cq, Cq

F ®(&(A1, B2))s, Cq ), ®((&((®(AT, B3 )3, (B(AT, B3 ))a))7, Dg), Ce, Ds-

where A" = {{1},{2}}, M = {{3},{4}}, L = {7.8}, K = {5,6).

3.3.4 Arborisation

Definition 42 (Saturated J-proof net) A J-proof net R is saturated if
for every negative link a and for every positive link b, it is not possible to add
any correct bundle of jumps between a and b such that the order increases.

Given a J-proof net R, a saturation Sat(R) of R is a saturated J-proof
net obtained from R by adding bundles of jumps.

As before, our sequentialization argument is the following:

e given a J-proof net R, we can obtain a saturation Sat(R) of R by
repeatedly adding correct bundles of jumps;

e the order associated with a saturated J-proof net is arborescent;

e if the order associated with a J-proof net is arborescent, then the J-
proof net is sequentializable;

e given a J-proof net R, if Sat(R) is sequentializable, R is sequentializ-
able.
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Sa

Al

S1

§{17} -
«Mz‘h»%

Figure 3.6: adding a bundle of jumps on R
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(ax)
Aq ™

G = ®&(®(ATL, B3 )3, (®(AL, B3 ))a)7, DE)

Figure 3.7: The superposition of Sy, Ss, 53,54

As in the multiplicative case, the central point is the emphasized one; in
order to prove it, differently from the previous chapter, we must deal with
the possible presence of “legal” switching cycles in J-proof nets, allowed by
the cycles condition. Lemma 17 below, has precisely this function.

Lemma 16 Let R be a cycles-correct J-proof structure, and C' a union of
switching cycles of R; then there exists an additive pair wy,wy € W in R
which breaks C and positive node ¢ € C' s.t.

1. =(c =+, wy) and —(c = wa);

2. ¢ belongs to a cycle C' € C which sees W (a cycle C" sees W iff there
exists a node d € C' which is hereditarily above wy or ws).

PRrOOF.
The proof is by induction on the number n of cycles in C:

n = 1: By the correctness criterion there exists in R an additive pair wy, wq €
W which breaks C. Let’s suppose by absurd that every link of C is
above wi or woy; then we can partition the nodes of C' in two sets,
A={a:a—> w}and B={b:b—> wy}, disjoint by condition
views of the definition of J-proof structure. Given any two elements
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1111
WJ

w@

Figure 3.8: The skeleton of R’

a € A and b € B, there exists a path r : (a...b) connecting them.
We consider the first edge of r starting from a which connects a node
d of A with a node d’ of B; either it is an incident edge d — d’, and
then d — wy and d =+, wo, or it is an emergent edge d « d’, and
then d — wy and d’ -+, wo; in any case we contradict the condition
views of definition 28, so there exists some link ¢ s.t. —(c =, w;).
Furthermore there has to be at least one positive link which enjoys
the property, otherwise C' would not be switching; C' obviously sees

w.

n > 1: By the correctness criterion there exists in R an additive pair wi, wq €
W which breaks C. If there is a node ¢ belonging to some cycle C' € C
which sees W and s.t. c¢is not hereditary above W, we have done. Oth-
erwise, we can partition the cycles of C' in three groups: Cy (the cycles
with all elements above w;), Co (the cycles with all elements above
wy) and Cy ( the cycles whose elements are neither above w neither
above ws). Now by induction hypothesis on Cy U Cjy there exists an
additive pair w},w) € W’ which breaks C; U Cp and a positive link
¢ belonging to some C’' € C; U Cy which sees W’ | such that ¢ is
not hereditary above W'; W' cannot belong to Cy, otherwise is above
wo, and then either there is some ¢; € Cy which is above w; and ws,
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Aq Ax

2
Ba-
2

{2}
®(AL, BF) ee(AL BF)\@(ATL, By i@ Bf

G = ®&((D(AT], B3 )3, (B(AT], BF))a)7, DF)

Figure 3.9: The J-proof net R” (modulo transitive jumps)

impossible, either there is some ¢y € Cy which is above ws, impossible;
so W’ breaks C' too, and we are done.

O

Lemma 17 Let R be a cycles-correct J-proof structure; if R contains a
switching cycle , then R is not saturated.

Proor.

We consider the union C' of all switching cycles of R (there is at least
one).There exists, by lemma 16, an additive pair W = {w, we} which breaks
C' and a positive link ¢, belonging to a cycle C’ of C' which sees W, such that
c is not above any of wy,ws; by the fact that C’ sees W, there exists a path
r’ from ¢ to W, which contains only nodes of C’ and nodes in a directed
path from some b € C’ to wy or ws.

Let’s suppose that W is a terminal negative rule of R: in this case we
can add a correct bundle of jumps between ¢ and W, this doesn’t create
cycles and increases the order.
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Figure 3.10: The skeleton of R”

If W isn’t a conclusion of R, we show that there cannot be any strong
switching path from a link in W to c¢. Let us suppose that there is a strong
switching path 7 : (wi(ws)...c) in R; now if r and " are disjoint by com-
posing them we get a switching cycle intersecting W, contradicting the fact
that W doesn’t intersect any switching cycle of R.

If r and ' do intersect, let’s take the first point d starting from wq(ws)
and going down on r where r meets C’ (if  doesn’t meet C’, this means that
r and 7’ intersect on the directed path from some node in C’ to w; or wy,
and so we have a cycle). The only interesting case is if d is negative: by the
fact that d is in a switching cycle where at least one node is above W, there
exists a strong switching path r” from d to W, so we compose the subpath
of r from wy(W3) to d with r” and we get a switching cycle, contradiction.

So there isn’t any strong switching path from w; to ¢, then by proposition
16 we can add a correct bundle of jumps from ¢ to W, which increases the
order.

O

Lemma 18 (Arborisation of J-proof nets) Let R be a J-proof net. If
R is saturated then <pg is arborescent.

PROOF.
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If R contains some cycles, then we apply lemma 17 and we have done; so
we can restrict ourselves to the case where R doesn’t contain any switching
cycle.

We prove that if <p is not arborescent, then there exists a negative link
c and a positive link b s.t. we can add a correct bundle of jumps between b
and ¢ which makes the order increase, the proof being just an adaption to
J-proof nets of the arborisation lemma.

If <p is not arborescent, then in <p there exists a link a with two
immediate predecessors b and ¢ (they are incomparable). Observe that b
and ¢ are immediately below a in Sk(R) and also in R; observe also that b
and ¢ cannot belong to the same negative rule and b (resp. ¢) cannot be
above any link in the same negative rule than ¢ (resp. b), by condition views.

Either 1) a is an axiom link, either 2) is a positive link, and b and ¢ are
two negative links; we consider just the case 2), the first one being slightly
simpler.

We have two possibilities:

1. either b or ¢ is terminal in R. Let assume that b is terminal; then ¢
cannot be terminal ( by definition of J-proof structure), and there is
a positive link ¢ which immediately precedes c. If we add a bundle
of jumps between b and ¢/, we preserve cycles condition and the order
increases (see fig 3.11).

e
SN

c

1

Figure 3.11:

2. Neither b or ¢ are terminal in R. Each of them has an immediate
positive predecessor, respectively ' and .

Now we want to prove that either we can add a correct bundle jumps
from ¥’ to ¢, either we can add a correct bundle of jumps from ¢’ to b.

Let’s suppose that we cannot add any correct bundle of jumps in R
from b’ to ¢; then by proposition 16 there is in R a strong switching
path r = (¢, ....b). If we cannot add a correct bundle of jumps from
d to b too, then there is a strong switching path ' = (b,¥...c) in R.

Assume that r and 7’ are disjoint: we exhibit a switching cycle in R
{e,d..bV...c) by concatenation of r and r/, contradicting the hypoth-
esis that R has no switching cycles (see fig 3.12).
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Figure 3.12:

If r and r’ are not disjoint, we reason as in the proof of lemma 1, and
and we still find a switching cycle .

O

Theorem 8 Let R be a J-proof net, and Sat(R) a saturation of R. If

Sat(R) is sequentializable then R is sequentializable. Any J-proof net is
sequentializable.

PROOF.

Let us take a saturation Sat(R) of R; we reason by induction on the
number of logical links in R:

n = 1: in this case, R is composed by just an axiom link, and is trivially
sequentializable;

n=k+ 1: if Sat(R) has a terminal negative rule W, ( whose elements
wi, ... w, are minimal in <g4(g)), then R too has a terminal negative
rule W’; due to totality, it is straightforward that W' sequentializes R
into {Ry, ... R,} J-proof nets, which are sequentializable by induction
hypothesis. Otherwise, by lemma 15 all conclusions of R are positive;
we reason by cases, depending if Sat(R) is composed by one or more
than one connected component:

e if Sat(R) is composed by a single connected component, there is
a terminal positive link ¢ with conclusion C; in Sat(R) which is
minimal in <g,(r) (and splitting in Sk(R)) whose removal splits
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Sat(R) into n J-proof nets; but then also the removal of the ter-
minal link ¢ with conclusion C; in R splits R into n J-proof nets
(otherwise, ¢ would not be splitting in Sat(R)) so ¢ sequential-
izes R into {Ry,...,R,} J-proof nets which are sequentializable
by induction hypothesis.

e if Sat(R) is composed by more than one connected component,
each component correspond to a subnet of R (so is sequentializ-
able by induction hypothesis). Then R is sequentializable.

O

J-proof nets and Mix The proof of sequentialization provided above,
could be easily adjusted in order to take out the Mix rule, just by properly
extending the notion of correction graph and s-connectedness, defined in
chapter 2.

3.4 Cut

In this section we extend our scope to J-proof structures with cut-links.

First in subsection 3.4.1 we deal with sequentialization in presence of cut
links; then in subsection 3.4.2 we study cut-elimination on J-proof struc-
tures.

3.4.1 Cut and sequentialization

Unfortunately, we cannot straightforwardly extend our proof of sequential-
ization in presence of cut-links. The problem relies in the operation of su-
perposition of slices, which allows to define the bundle of jumps: as a matter
of fact, superposing slices in presence of cut links is quite difficult. This is
not a novelty: actually, in the sliced polarized proof nets of [LTdF04], a
similar problem is present, which makes hard to conciliate the presence of
cuts inside proof nets and sequentialization.

The way out is to consider only cut-free J-proof nets (for which we can
prove sequenzialization), compose them using cut-links, and then reducing
the J-proof net obtained until we reach the normal form (which is cut-free,
so that we can deal with it again).

The central point of this argument is the preservation of the property of
being sequentializable under cut reduction; we prove this result in section
3.6 by using the injectivity of pointed semantics with respect to J-proof nets,
that we state in subsection 3.5.2; actually, this strategy is the same used by
Laurent and Tortora de Falco for sliced polarized proof nets, using relational
semantics.
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A A A A

Figure 3.13: ax cut reduction.

3.4.2 Cut elimination

Definition 43 Given two J-proof structures Ry, Ry with conclusions respec-
tively T, P and A, PL, the composition of Ry, Ry is the J-proof structure
obtained by :

1. erasing the conclusions links with label P, P+ of R1, Ra;

2. connecting the graphs so obtained with a cut-link with premises P, P+,

Remark 16 If Ry, Ry are sequentializable (i.e. J-proof nets) then their
composition R is sequentializable (i.e. a J-proof net).

Now we define cut elimination on J-proof structures. As in L-nets, re-
duction is defined on slices: so to reduce a J-proof structure R, we will
decompose R in slices, perform reduction separately on each of them, and
then superpose all the cut free slices so obtained.

We first begin by defining cut reduction on slices.

Cut elimination on slices In order to define cut elimination on slices,
we have to extend our definition of slice to include the empty slice with
conclusion C1,...,C,.

There are three kinds of cut-elimination steps (we denote by S ~» S’ the
relation “S reduces to S””), depicted in Fig. 3.13, Fig. 3.14 and fig. 3.15..

Definition 44 (Correct slice) A slice is correct iff it is switching acyclic.

With respect to the rewriting rules +7en/—r1en, +Ken/—Jen and ax,
reduction enjoys the following properties:

Theorem 9 (Preservation of correctness) Given a slice S, if S is cor-
rect and S ~ S’, then S’ is correct.

Theorem 10 (Strong normalization) For every correct slice S, there is
no infinite sequences of reductions S ~» Sy ~> Sy...~> S, ...
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&ren(®icr(N&))

Figure 3.14: +7en/—r1en cut reduction.

Theorem 11 (Confluence) For every correct slice S1, So and Ss, such
that S1 ~» Sy and S1 ~ Ss3, there is a slice Sy, s.t. So ~» Sy and S3 ~ Sy.

The proofs of the above theorems are straightforward generalizations of
the proofs of the analogous theorems of section 2.2.5.

Cut elimination on J-proof structures In order to properly define re-
duction, we require that J-proof structures satisfy a condition called weakly
correctness: this condition is necessary in order to be able to superpose
the slices of a J-proof structure, after performing all reductions separately
on each of them.

Definition 45 A total J-proof structure is weakly correct when all its
slices are correct.
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&ren(Rier(Ni))

Figure 3.15: +xen/—jen cut reduction (with J # K).

Let R be a weakly correct J-proof structure and {Si,...,S,} be the set
of the slices of R. If S/ is the cut-free slice obtained by reducing S; , we call
normal form of R ( denoted by [R]) the superposition {§ (S7,...,S]) of

1oy S

Now we must prove that reducing a weakly correct J-proof structure R
into a normal form [R] preserves weakly correctness; the delicate part is
proving that R is still a J-proof structure.

Given a link a of a J-proof structure R, we say that a belongs to the
right (resp. left) branch of a cut-link c iff there exists a link b, whose
conclusion belongs to the right (resp. left) port of ¢, such that a is an
hereditary sublink of b or a = b.

Given a J-proof structure R and a link a of R, we say that a is hidden
if a is an hereditary sub-link of a cut link of R, we call it visible otherwise.

A slice is persistent if it does not reduce itself to the empty slice.

If S is a persistent slice, and a is an hidden link in the right (resp. left)
branch of a cut-link of S, the opposite link of a is the link b in the left (resp.
right) branch of ¢ such that in a slice S” obtained by a sequence of reduction
from S, the conclusion of a and the conclusion of b become premises of the
same cut link ¢

Remark 17 Consider an hidden negative link a of a persistent slice S and
its opposite link b; a and b are hereditary sublink of the same cut-link c. Now
if there are two links a',b in S such that ' —— a and b —— V' and a',V/
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are not hereditary sublinks of c, it easy to verify, following the reduction

steps and the definition of opposite link, that there is a slice S’ obtained by

reducing S such that in S' @ —— V.

Proposition 17 Given a weakly correct J-proof structure R and a normal
form [R] =( (S7,...,S5)) of R, [R] is a weakly correct J-proof structure.

PROOF.

To check that [R] is a J-proof structure, by proposition 14, it is enough
to check that the condition contraction of definition 28 is respected. First
we observe that a weakly correct J-proof structure must contain at least one
persistent slice (by totality).

Now let us suppose that there is a positive link a € S;» and a positive
link b € S} such that [a] and [b] are siblings in [R].

Then a,b belong to two different persistent slices S, Sy, of R, such that
a, b are visible. Now we have the following cases:

1. there is in R a —jepn-link w; and a —gep-link wy, with J # K such

that w;, w;, are an additive pair and a =, w; in S; and b =, wy, in
Sk

C + . + .
If wj, wy, are visible in R, then a — wj; in S; and b — wy, in S}, and
we have done.

Otherwise, w;, wy are hidden; suppose they belong to the left branch
of a cut-link ¢ in R; then in the right branch of ¢ there are two positive
sibling links a’, b’ with label respectively + jen and + e, such that
a’ is the opposite link of w; in S}, and b’ is the opposite link of wy, in
Sy (because S, Sy, are persistent).

Since R is a J-proof structure, there exist in R two negative links
i
form an additive pair in R and they are not hereditary sublinks of ¢;

moreover, since R is weakly correct, w;, wy, # Wj, w.

w;-,w; with o — w; in S; and ¥ =, wj, in Sk, such that w’, wy

(a) Let us suppose that w’,w; are visible; since a =, wj and d =,
w; in S;, by remark 17 and theorem 11 it is easy to check that in

S%a =+, w’; similarly we can found that b =, w), in S}, so we
have done.

(b) If w;,w; are hidden, we search for their opposite positive links
in S;, S5, and we iterate the procedure on them, until we get a
visible additive pair w},wy of R, with w} € Sj,wy € S (it must
exists, by finiteness and switching acyclicity of S;, Si); by remark

17 and theorem 11 in S} a =+, w! and b =, wy in S}, and we

have done.
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2. the view of @ in S; (resp. the view of b in Sy) does not contain a link w;
(resp. a link wy) such that wj, wy, form an additive pair in R; it is easy
to check that in this case the view of a and the view of b contains the
same links of R, so a, b are two different occurrence of the same link
of Rin S;, Si. If all links in the view of a (resp. b) are visible, then a
and b must be sharing equivalent in S;», ... contradiction. Otherwise,
suppose that the view of a in S; contains a hidden negative link d,
hereditary sublink of a cut-link ¢ of R; then the view of b in Sy contains
d too. We have the following cases:

(a)

the opposite positive link d’ of d in S; is hereditary above a nega-
tive link w} and the opposite positive link d” of d in S, is heredi-
tary above a negative link wj, such that w}, w; forms an additive
pair in R and they are not hereditary sublinks of ¢; if w}, wj, are

visible, then by remark 17 and theorem 11, a =+, w;

+ . . .
b — wj, in S}, and we are done; if w},w; are hidden, then we
reason as in point 1-(b) and we conclude.

in S;- and

the view of the opposite link d’ of d in S; (resp. the view of the
opposite link d@” of d in Sy) does not contain a link w (resp. a
link w}) such that w;, wy, form an additive pair in R; it is easy to
check that in this case the view of d’ and the view of d” contains
the same links of R, so d’, d” are two different occurrence of the
same link of R in Sj, S. If all links in the view of d' (resp. d”)
are visible, then a and b must be sharing equivalent in S},S,;:
contradiction. Otherwise the view of d’ in S; contains a hidden
negative link e of R, and the view of d” in S, contains e too; then
we search for the positive opposite links of e in S;,S; and we
iterate the procedure on them until by finiteness of R either we
find a visible additive pair w7, w of R, with w} € Sj,w) € Sk,

"

(and then by remark 17 and theorem 11 a = w;

in S; and

b wy in S}), either we find a contradiction.

The property of being weakly correct is trivially preserved, due to theo-

rem 9.

PROOF.

O

Theorem 12 (Existence of a normal form) Given a weakly correct J-
proof structure R, there exists a weakly correct J-proof structure R’ such that

R =[R].

The proof is an easy consequence of theorem 10. U
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Theorem 13 (Confluence) If R, R', R" are weakly correct J-proof struc-
tures, such that R', R" are normal forms of R, then R’ = R".

ProOF. Trivial, from theorem 11. O

3.5 Pointed sets and injectivity

In this section we extend pointed sets semantics in order to prove the injec-
tivity of pointed semantics also in presence of additives.

In subsection 3.5.1 we define the interpretation of a J-proof structure in
pointed sets and we prove that it is stable under reduction; in subsection
3.5.2, we deal with injectivity.

By Ai* W ... W A,* we denote the pointed set obtained by taking the
disjoint union U,eqy. 3 ({1} X Ai") reunited with a distinguished element

OAl*H'J...H'JAn"< .
The formulas of HS are interpreted in the following way:

e an atomic formula X (resp. X 1) is interpreted by a pointed set X*;
e a positive formula @repn(®ier(NV;)) is interpreted by Wren (®ier(P));

e a negative formula &cp ("Ricr(F;)) is interpreted by Wrear(®icr(NY)).

3.5.1 Experiments

Given a J-proof structure R with conclusions C1,...,C,, we define the in-
terpretation [R] of R as in the multiplicative case, that is as a subset of
Ci ®---®Cy,, which we define extending the notion of experiment.

In defining the interpretation of R, given a pointed set A = Wren (®ier(A)))
which interprets a formula & e pn (®ier(A;)) (resp. aformula Gren (®ier(Ai)))
occurring in R, we will not make use of the point Owren (@icr(AD)) of A; so in
the following when we will refer to 0a we will mean one of the (I, 0g,_ (ax))
(for I € N') which belongs to A.

Definition 46 (Experiments) Let S be a slice and e an application asso-
ciating with every edge a of type A of S an element of A*; e is an experi-
ment of S when the following conditions hold:

e if x,y are the conclusions of an ax link then e(x) = e(y).

e if x,y are premises of a cut link with premises x and y, then e(x) =

e(y).

e if x is the conclusion of a negative link —rcpn with premises x1 of
type Py,...,x, of type P, and there exist an i € {1,...,n} such
that e(x;) # Opr, then if e(z1) = a1,...e(zn) = an, e(x) =< [,<
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a1, ...,ap >>; otherwise either e(x) =< I,< Ops,...,0px >> either
e(z) =< 1,0p:q. .@p; >;

e if = is the conclusion of a positive link +icnr with premises x1 of
type Ni,...,x, of type N, and there exist an i € {1,...,n} such
that e(x;) # On:, then if e(x1) = a1,...e(zn) = an, e(x) =< [, <
ai,...,ap >>; otherwise either e(x) =< I,< Ons,...,0nz >> either
e(m) =<1, 0NT®---®N¢L >.

e if a is a positive link with conclusion x of type A and b is a negative
link with conclusion y of type B, and there is a jump between b and a,

then if e(x) # Opx, e(y) # Og=.

If the conclusion links of .S have premises z1, ..., z, of type respectively
Aq,..., A, and e is an experiment of S such that e(z;) = a; then we shall
say that < ap,...,a, > is the conclusion or the result of the experiment
e of S, and we will denote it by |e|. The set of the results of all experiments
on S is the interpretation [S] of S; in case S is the empty slice, then its
interpretation is the empty set.

Let R be a total J-proof structure and {Si,...,S,} the set of slices of
R; the interpretation [R] of R is the union of [Si], ..., [Sy].

Proposition 18 If S is a correct slice, and S ~ S', then [S] = [9].

PRrOOF. Easily follows from the proof of proposition 7 an by definition of
normal form. O

Proposition 19 If R, R’ are weakly correct J-proof structures, such that
R' = [R], then [R] = [R'].

PRrROOF. The proof is a consequence of proposition 18. O

3.5.2 Injectivity
We first consider injectivity with respect to slices, then we extend the result

to J-proof nets.

Slices. The following definitions and theorems are straightforward exten-
sions of the ones in subsection 2.3.2.

Definition 47 (Relational result) Let S be a slice and |e| the result of
an experiment on S; |e| is relational if it does not contain any occurrence

of 0.

The set of relational results of experiments on a slice S is called the
relational part of [S]; we will denote it by [S]*.
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Definition 48 (Injective result) Let S be a slice and |e| be a relational
result of an experiment on S; |e| is injective when in |e| there are not two
distinct occurences of the same element of a pointed set X* interpreting an
atomic formula.

Lemma 19 Given a slice S, a positive link a with typed conclusion x and a
negative link b with typed conclusion y, there is a jump (eventually transitive)
between a and b iff for all experiments e of R, e(x) # 0 = e(y) # 0.

PRrROOF. The proof is an easy consequence of definition of experiment. [

Theorem 14 (Injectivity of slices) Let S and S’ be two cut-free correct
slices with the same conclusions. If [S] = [S'] then S = S’.

PROOF. It easily follows from the proof of theorem 5. O

Given a slice S, we denote by S~ the slice obtained by erasing all the
jumps of S.

Proposition 20 If S is a correct, cut free slice and S’ is a saturated, correct
cut-free slice with the same conclusions as S, such that [S]T = [S"]? and

15T € [S], then S" = Sat(S).

PROOF. Let e be an injective experiment on .S, which always exists. Since
the result of e is in [S]# = [S']#¢, then there is an experiment ¢’ on
S’, such that e and €’ have the same result. Now, let ¢ be a conclusion
link of S, and ¢ be the corresponding conclusion link of S’. Since ¢ and
c have same type, it is simple to note that the values of ¢ and €’ on the
correspondent premises of such links are equals. Hence by going from the
conclusions cy, ..., ¢, to the atomic edges, we can prove that S and S’ are
the same graph up to the axioms and jumps. Now since ¢ has the same
values as e, €’ is injective too, therefore the two slices have the same axioms,
that is S= = S’~. Since [S] C [S], using lemma 19 we can say that all
the jumps of S are jumps of S’. In order to saturate S, we just add to S
all the jumps of S’ which are not jumps of S; in this way we obtain a slice

Sat(S) = S'.

O

J-proof nets Given a J-proof structure R with conclusions I, a &-assignment
of R is a function ¢ associating with any formula of type &ren (Ricr(F;))
occurring in I' a J € NV.

It is easy to check that if R is total, to any &-assignment ¢ there corre-
sponds a unique slice S? of R, and to each slice of R there corresponds (at
least one) &-assignment ¢.
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Let us consider an element < J,6 > of a pointed set Wrepn (®ier(P))),
interpretation of a formula &7en("Ricr(F;)), and an element 7 of the in-
terpretation [R] of a total J-proof structure R with conclusions I'; we say
that v is compatible with a &-assignment ¢ on IT' iff for any occurrence
of < J,§ > in v, on the corresponding occurrence of &ren (Ricr(FP;)) in T,
(&ren (Bicr(F))) = J.

Proposition 21 Given a total J-proof structure R, an element v of [R] is

compatible with a &-assignment ¢, iff v is the result of an experiment on
Se.

PROOF. Suppose v is not a result of an experiment on S?; then it is a result
of an experiment on another slice S’ of R, which differs from S? for at least
one component of a negative rule. But then it is easy to observe that
cannot be compatible with S’. The other direction is trivial. U

Proposition 22 Given a total J-proof structure R and a &-assignment ¢,
[S?] = {v € [R] |7y is compatible with ¢}.

PRrROOF. Easy consequence of proposition 21. ]

Theorem 15 (Injectivity) Let R and R’ be two cut-free J-proof nets with
the same conclusions T'. If [R] = [R'] then R = R’.

PROOF.

Let us take the slice S? of R corresponding to the &-assignment ¢ of T,
and suppose S? does not belong to R’. By proposition 22 [S?] = {y € [R]|y
is compatible with ¢}. Since [R] = [R'], {v € [R]|y is compatible with
¢} = {v € [R']|y is compatible with ¢}; then for the unique slice S’ of R/
which corresponds to ¢ by proposition 22 [S’?] = {y € [R']|y is compatible
with ¢}, and [S’?] = [S?]; but then by theorem 14 S’¢ = S? so S?® belongs
to R/, contradiction.

O

Proposition 23 If R is a cut-free J-proof net and R’ is a saturated cut-free
J-proof net with the same conclusions as R, such that [R]F¢ = [R']® and
[R'] C [R], then R' = Sat(R).

PRrOOF.

We prove that for every slice S of R there exists a slice S’ of R’ such
that S" = Sat(S).

Let us take the slice S? of R corresponding to the &-assignment ¢ of T,
and suppose that for no slices S’ of R, S’ = Sat(S?). By proposition 22
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[S?] = {y € [R]|y is compatible with ¢}, and [S?]?¢ = {v € [R]"|y is
compatible with ¢}.

Since [R]% = [R']7, then {v € [R]®|y is compatible with ¢} =
{y € [R']"¢}7 is compatible with ¢} and since [R] D [R'], {y € [R]|y is
compatible with ¢} D {v € [R]|7 is compatible with ¢}; then for the unique
slice S’ of R’ which corresponds to ¢ by proposition 22 [S"®] = {vy € [R']|y
is compatible with ¢}, and [S"?]® = {y € [R']®|y is compatible with
¢}; so [S'?]Fl = [S?]F!, and [S’?] C [S?]; but then by proposition 20
S'¢ = Sat(S?), contradiction.

Similarly, we can prove that for every slice S’ of R’ there exists a slice S
of R such that S = Sat(S); but then it is immediate that R' = Sat(R).

O

3.6 Correctness criterion is stable under reduction

In this section we solve the question, left opened since subsection 3.4.1, of the
stability of correctness under cut-reduction. Our strategy is the following:
first in subsection 3.6.1 we prove that pointed semantics is a model also for
HS; then, in subsection 3.6.2 from this result and from injectivity of pointed
semantics we prove that the normal form of a sequentializable J-proof net
is still sequentializable.

3.6.1 Pointed set semantics and HS

We provide an interpretation [r]] of an HS proof 7 in pointed sets:

if 7 is a proof with conclusion F I', where I' is a sequence of formulas
A1, ..., Ay, then [r] is a subset of A ® ... ® A%, defined inductively in the
following way:

e if 7 is the proof

X xL
then 7] = {< a,a > |a € X*}.
e if 7w is the proof
T T2
FT,A FAA- .
FT,A “

then [7] = {< 7,0 > |Fa < v,a >€ [m]and < §,a >€ [m]}.
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if 7 is the proof

1 9
FT EA
FT,A

then [7] = {< 7,0 > |y € [m] and § € [ma]}.

if 7 is the proof

1 Tn
Ty, Ny FT,, N, D)
FT1, e T, @ren(®ier Ni)
then [7] ={<v1,..., W, < I,a >>| <~vy,a1 >€ [m],..., < Yn,an >€
[mn]}, where a = Onrg.@n: or @ =< ai,...,a, >; if a = Onze.eN,
then for all i, a; = ON;.
if 7 is the proof
1 Tn
FD,P}..., P} ... FL,Pr.. PP
b LAY

FT,&ien(®esP)

then [7] = Ujend{< 7. < Ia >> | < v,a},...,a}, >€ [m]} where

a=20 ki*ora:<ail,...,afi>;ifa:0 k;« then

Pl*®..®P; PI®...®P;
i) for all j, al = 0p;» and
i

ii) v =0c:,....0c; (ifT'=Cy,...,C).

In order to prove that pointed sets are a semantics for HS proofs, we

first prove that we can simulate cut-reduction on HS proofs using slices (for
a precise definition of cut-elimination in HS we refer to [Gir07]).

To an HS proof m we can associate a set of slices S(m) by induction on

the height of 7 in the following way:

let r be the last rule of the HS proof m. We define the set of slices S()

(with the same conclusions as 7) by induction on 7.

e If 7 is an axiom with conclusions X, X+, then the unique slice of S(r)
is an axiom link with conclusions X, X .

e If r is a a cut rule with premises the subproofs m and 79, then S(m)
is obtained by connecting every slice of S(m;) and every slice of S(m2)
by means of a cut-link.
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e if r is a Mix rule, with premises the subproofs m; and 7y, then S(m)
is obtained by taking for every slice in S(7;) and every slice in S(m2)
their disjoint union.

e If ris a (4, I)-rule with premises the subproofs 71, ..., m, , then S(r)
is obtained by connecting every slice in S(;) with every slice of S(7y,)
(with j # k) by means of a +ep-link.

e Ifrisa (—, N)-rule with premises the subproofs 7 . .. m, (one subproof
m; for each I € N), then S(w) is obtained by adding to every slice S
of S(?TZ)

— a —en-link by;

— for all a positive terminal link a of S, a jump between a and b;;

and then by taking the union of all these sets of slices.

Given a set of slice S, we say that S reduces to the set of slices S if S’
is obtained from S by reducing some (even none) of the slices of S.

Proposition 24 Let m be an HS proof, and 7' be a cut-free proof obtained
from 7 by one cut-elimination step. Then S(m) reduces to S(n').

PROOF.

If 7 reduces to 7’ with a commutative step then it is clear that S(w) =
S(7'); otherwise, the proof easily follows from the fact that to each slice S’
of S§(7’) corresponds a slice S of S(7) such that either S’ = S either S’ is
obtained from S by one reduction step. The slices of S(m) which are not (or
do not reduce to) slices of S(7’), are all the slices which reduce in one step
to the empty slice. O

Proposition 25 Let m be an HS proof, and S(mw) = S1,...,Sy the set of
slices associated with . Then [] = U,cqr, . oy ([9i])-

Proor. Easy induction on 7. O

Proposition 26 Let m be an HS proof and @' be a proof obtained by reduc-
ing a cut in w. Then [x] = [7'].

PROOF. By proposition 25 [7] = U,cqr,. ,y ([Si]) for S(m) = S1,..., 5y,

and [7'] = Ujeqr,. 1y ([S7]) for S(a) = S7,...,Sy; then the proof follows
from proposition 24 and theorem 18. U
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3.6.2 Stability of correctness

Proposition 27 If R is a J-proof structure sequentializable into a proof ,
then [r]fl = [R]%¢ and [x] C [R].

PROOF. Trivial, from the fact that any element of [7] induces an experiment
on a slice of R. O

Theorem 16 Given a sequentializable J-proof structure R, its normal form
[R] is sequentializable.

PRrOOF.

Since R is sequentializable, we can associate with it a proof 7, and by
proposition 27, [x] C [R]. We reduce 7 into a cut-free proof my; Since
semantics is preserved by cut-elimination by proposition 26, [#] = [mo].
Now consider the normal form Ry of R; by proposition 19 [R] = [Ry]

R — Ry

Lo

T —— M

If S(mp) = S1, ..., Sy it is immediate that the superposition () (Si,...,Sy)
is a saturated J-proof net R’, and obviously [m] = [R']. Since [R']? =
[ro ™! = [x]"! = [R]™! = [Ro] ™!, and [R'] = [ro] = [x] < [R] = [Ro]
by proposition 23 R’ = Sat(Rp); but then, Ry is sequentializable into .

3.7 J-proof nets and degrees of sequentiality

In this section we isolate some specific classes of J-proof nets, with respect
to their degree of sequentiality.

In subsection 3.7.1, we define two subsets of J-proof nets, the ones with
minimal sequentiality and the ones with maximal sequentiality, by providing
inductive procedures for constructing them. Such procedures are based on
the grammars for generating parallel L-nets and L-forests defined in [CF].
Then in the remaining two subsections we show how the notion of box can be
retrieved using jumps, by relating J-proof nets with sliced polarized proof
nets of [LTdF04] (in subsection 3.7.2) and with proof nets with additive
boxes, both the standard ones of [Gir87] and the multibozes of [TdF03b] (in
subsection 3.7.3).

For simplicity’s sake in this section we will deal only with cut-free J-proof
nets.
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3.7.1 Minimal and maximal sequentiality

Definition 49 A J-proof net with minimal sequentiality is a J-proof
net which is built inductively in the following way:

o An axiom link is a J-proof net with minimal sequentiality;

e If Ri,..., R, are J-proof nets with minimal sequentiality with conclu-
stons respectively I'1, ..., 'y, where the formulas in I'; are all positive,
the the union of Ry, ..., R, is a J-proof net with minimal sequentiality.

o If Ry..., R, are J-proof nets with minimal sequentiality with conclu-
sions respectively 'y, Ny, ... 1Ty, Ny then the J-proof net with conclu-
sions T'1,..., T, ®jen(®jcs(N;)) obtained by erasing from each R;
the conclusion link of type N; and then connecting all R; together with
a +ren-link with conclusion @ jen(®;er(Nj)), is a J-proof net with
minimal sequentiality.

o If Ri,..., R, are J-proof nets with minimal sequentiality with conclu-
stons respectively F,Pll,...Plil,...P,P{L...Pﬁn then the J-proof net
with conclusions I', & jen (R jes(Pj)) obtained in the following way is
a J-proof net with minimal sequentiality:

1. for each R; erase the conclusion links of type Py ... P,ﬁi and add
a —ren link b; with conclusion & jen (Rjes(P;)) in such a way
to get a J-proof net R.; with conclusions T',& jenr(0jcs(Fj)) for
each I € N ;

2. for every R, and for every positive link a of R, such that there
evist an R with i # j which does not share a, add a jump in R;
between a and b;, obtaining a J-proof net RY;

3. take the superposition of all RY,... Rl.

Definition 50 A J-proof net with maximal sequentiality is a J-proof
net which is built inductively in the following way:

o An azxiom link is a J-proof net with mazximal sequentiality;

o If Ry,..., Ry, are J-proof nets with maximal sequentiality with conclu-
sions respectively I'y, ..., 'y, where the formulas in I'; are all positive,
then the union of Ry, ..., Ry is a J-proof net with mazximal sequential-
1ty.

e If Ri..., R, are J-proof nets with maximal sequentiality with conclu-
sions respectively 'y, Ny, ... 1Ty, Ny then the J-proof net with conclu-
sions T'1,..., T, ®jen(®jcs(N;)) obtained by erasing from each R;
the conclusion link of type N; and then connecting all R; together with
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a +ren-link with conclusion ®jen(®jes(Nj)), is a J-proof net with
mazimal sequentiality.

o If Ry,..., Ry, are J-proof nets with maximal sequentiality with conclu-
sions respectively T, P}, ... Plgl, LI PP L Pl then the J-proof net
with conclusion I', & jen (R jes(P})) obtained in the following way is a
J-proof net with mazimal sequentiality:

1. for each R; erase the conclusion links of type P} ... P,ii and add
a —ren link b; with conclusion & jen(Rjer(Pj)) in such a way
to get a J-proof net R, with conclusions T',& jenr(®jcs(Pj)) for
each I € N;

2. for every R. and for every positive terminal link a of R., add a
Jump in R} between a and b;, obtaining a J-proof net RY;

3. take the superposition of all RY,..., Rl\.
Remark 18 A J-proof net with mazimal sequentiality is saturated.

Given a sequent calculus proof 7, we could either associate a J-proof net
Fmn either a J-proof net of maximal sequentiality
7% by induction on the height of 7 in the obvious way.

of minimal sequentiality

3.7.2 J-proof nets and polarized boxes

In [LTdF04] Laurent and Tortora de Falco introduced a notion of proof net
for the polarized fragment of linear logic, LL,q (see [Lau02]) as set of slices
glued together using exponential boxes; they called such a proof net sliced
polarized proof net.

In this subsection we study the relation between sliced polarized proof
nets of the fragment M ALL;il (that is, multiplicative-additive polarized
linear logic without structural rules) and J-proof nets.

We do not provide a direct translation of one syntax into the other;
nevertheless, we define a condition on J-proof nets (the polarized boxing
condition), and we show that this condition is analogous to the condition on
boxes in sliced polarized proof nets; furthermore we prove that the J-proof
nets which satisfy the polarized boxing condition are exactly the ones with
maximal sequentiality.

Definition 51 (Polarized box) Given a J-proof net R, we call polarized
box of a negative rule W = {wn,...,w,} the set of links hereditary above
some w; € W in R.

Definition 52 A J-proof net R satisfies the polarized boxing condition
if given two polarized boxes By, Bo of R, either they are disjoint, either one
of them is strictly included into the other.
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Proposition 28 A J-proof net R satisfies the polarized boxing condition iff
R is a J-proof net with mazimal sequentiality.

PRrROOF. The proof is an easy induction on R. O

Proposition 29 Let R be a J-proof net which satisfies the polarized boxing
condition: then each polarized box B of R can be decomposed into a set of
slices S(B).

PRrROOF. By proposition 28, R is a J-proof net of maximal sequentiality, so

by construction given a polarized box B of a negative rule W = wq, ..., w,
to each w; corresponds a subnet R; of R; we take as S(B) the set of slices
of each R;. O

Given a J-proof net R which satisfies the boxing condition, we define the
depth of a node b in R as the maximal number of polarized boxes containing
b. Given a node b which belongs to a polarized box B of R, the depth of
b with respect to B is the maximal number of boxes included in B which
contains b.

Proposition 30 In an s-connected J-proof net R which satisfies the polar-
ized boxing condition:

e there is at most one positive link at depth 0;

o for any slice in the set S(B) associated with a polarized box B of R
there is at most one positive link at depth 0 with respect to B.

PRrOOF. Using proposition 28 and 29, the proof is an easy induction on the
construction of R. ]

3.7.3 J-proof-net and additive boxes

The first solution proposed in [Gir87] to represent the &-rule in proof nets,
was to deal with it explicitly, using a box called additive box; analyzing
the interpretation of the &-rule in coherent semantics, Tortora de Falco in
[TdF03b] refined the notion of additive box in the one of multiboz, as the
superposition of several additive boxes.

In this subsection, as in the previous one, we do not give a direct trans-
lation of proof nets with additive boxes (resp. multiboxes) into J-proof nets;
we provide instead a condition on J-proof nets called additive boxing (resp.
multiboxing) condition, characterizing a subclass of J-proof nets.

The additive boxing (resp. multiboxing) condition is analogous to the
condition on boxes given in [Gir87] (resp. in [TdFO03b]).
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Definition 53 (Additive box) Given a J-proof net R, we call additive
box of a negative rule W = {wy, ..., w,} with n > 2 the set of links heredi-
tary above some w; € W in R; the i-th component of an additive box is the
set of links hereditary above w; € W in R.

Proposition 31 Let R be a J-proof net. Any two different components of
an additive box B are disjoint.

PROOF. An easy consequence of the condition views of definition 28.  [J

Given a J-proof net R:

i) R satisfies the additive boxing condition if given two additive boxes
B, By of a J-proof net R, either they are disjoint, either one of them is
strictly included into the other;

ii) R satisfies the additive multiboxing condition if given two addi-
tive boxes By, Bo, if they are not disjoint, they are equal. Given a maximal
set W1, ..., W, with the same additive box B, we call B the multibox of
Wi, ..., Why.

An example of J-proof net respecting the additive boxing (resp. the
multiboxing) condition is the one depicted in fig.3.8 (resp. 3.5). It is easy to
build an example of a J-proof net which does not satisfy neither the additive
boxing neither the multiboxing condition.

3.8 Final remarks

To conclude, let us spend a few words on some points which still need further
investigation:

e in the last section, we gave some hints on how to recover some standard
syntaxes for additive proof nets in the setting of J-proof nets; never-
theless, the relation between J-proof nets and the proof nets defined
by Hughes and Van Glabbeek still needs to be clarified. In this spirit,
our ongoing research aims to verify if our approach to sequentialization
can still be applied in their setting;

e ludics taught us the intrinsic interest of considering partial objects
in proof theory; discarding the constraint of totality from the cor-
rectness criterion for J-proof nets and introducing the Daimon rule
of ludics, may enlighten interesting computational features, bringing
J-proof nets closer to L-nets;

e both polarized and additive boxes in our framework are replaced by
jumps; such an approach could be extended to exponential boxes, in
order to make J-proof nets work also with exponential connectives.
In [BMO8] Baillot and Mazza, relaxing the sequentiality information
provided by exponential boxes, give some hints in this direction;
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e recent works by Faggian and Piccolo [FPO07] exploit the relation be-
tween L-nets and linear m-calculus, a typed m-calculus introduced by
Berger, Honda and Yoshida in [MBYO03], enlightening the operational
content of the additives as a kind of non-deterministic choice; the
bridge is the correspondence between L-nets and event structures, a
model of concurrency introduced by Nielsen, Plotkin and Winskel in
[MNW81]. Following this approach, the analysis could be extended to
the relation between event structures and J-proof-nets, in order to give
a proof theoretical characterization of terms in linear m-calculus; this
should contribute to the general purpose of bringing together proof
theory, game semantics and concurrency theory.
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