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Abstract. We consider the proof for the classification theorem of topo-
logical surfaces proposed by Massey in [1]. We arrange the proof at issue
(which stresses the standard word-based treatment of surfaces) into a for-
mal rewriting system R. Moreover, we study the computational proper-
ties of two variants of R: Ror, for dealing with words denoting orientable
surfaces, and Rnor, for dealing with words denoting non-orientable sur-
faces. We show how such properties induce a proof, alternative to that
one due to Massey, able to provide an algorithmic characterisation of the
classification theorem.

1 Introduction

By following the standard terminology, we use the term surfaces for indicating
compact and connected 2-manifolds. It is a well-known achievement in algebraic
topology that, when surfaces are considered modulo homeomorphisms, their ge-
ometrical information can be encoded by a specific class of finite words. Such
a word-based approach finds its most important theoretical application in the
proof of the classification theorem. The classification theorem establishes that
any surface is homeomorphic to exactly one of the following surfaces: a sphere, a
finite connected sum of tori, or a finite connected sum of projective planes; the
sphere and the connected sum of tori are orientable, whereas the conncted sum
of projective planes is non-orientable [1].

In the present work, we constantly refer to the proof of the classification
proposed by Massey in [1]; the demonstration consists in:

• showing that any surface is homeomorphic to the connected sum of a finite
number of tori and projective planes,

• establishing the basic homeomorphism between the connected sum of a torus
with a projective plane and the connected sum of three projective planes.

As a first contribution, we arrange the word-based approach stressed by
Massey into a formal rewriting system R: the basic idea is that the process
of normalisation in R represents the process of forming the quotient surface
? Research supported by the Mairie de Paris.
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associate with a certain polygon through identification of paired edges. We in-
vestigate the computational properties of R and we "formalise" the Massey’s
proof within it.

As a second contribution, we introduce two variants of R: Ror, for dealing
with words denoting orientable surfaces, and Rnor, for dealing with words de-
noting non-orientable surfaces. We single out the computational properties of
both Ror and Rnor and we deduce from them an alternative proof for the clas-
sification in which the basic homeomorphism used by Massey is not required. In
particular, we show that:

• in Ror, any word denoting an orientable surface can be transformed into
the empty one by exclusively using the torus rule which geometrically corre-
sponds to the formation of a torus (together with some other topologically
neutral transformations);
• in Rnor, any word denoting a non-orientable surface can be transformed into

the empty one by exclusively using the projective plane rule which geometri-
cally corresponds to the formation of a projective plane (together with some
other topologically neutral transformations).

Such a proof constitutes an attempt to provide an algorithmic character-
isation of the classification concerning the dynamical process that – through
identification of paired edges – allows to pass from polygons to quotient sur-
faces.

2 The Systems R, Ror and Rnor

2.1 Basic Definitions

Consider an alphabet A ∪ Ā, where A = {a, b, c, . . .} and Ā = {ā, b̄, c̄, . . .}; the
bar operation is an involution without fixed point: for any x ∈ A ∪ Ā, ¯̄x = x
and x 6= x̄. Finite words from A ∪ Ā are indicated with small Greek letters;
in particular, ε denotes the empty word. |α| is the multiset of letters occurring
in α. The concatenation of two words is simply indicated by juxtaposing them:
α ? β = αβ. Words included between round brackets have to be considered
modulo circular permutation of their letters: (αβ) = (βα); such words are called
cycles.

Definition 1 (TW, TC). The set TW of topological words is the smallest set con-
taining ε and such that: if αβγ ∈ TW, x ∈ A∪Ā and x /∈ |αβγ|, then αxβx̄γ ∈ TW
and αxβxγ ∈ TW. A cycle (α) is topological, (α) ∈ TC, if α ∈ TW.

Example 1. (āb̄cabc) ∈ TC; whereas (āb̄cab), (āb̄cabcb) /∈ TC.

Definition 2 (OTW and NTW, OTC and NTC). The set OTW of orientable topolog-
ical words, gathers all the α ∈ TW such that: if x ∈ |α|, then x̄ ∈ |α|. NTW, the set
of non-orientable topological words, is the complement of OTW, i.e. NTW = TW\OTW.
A cycle (α) is orientable, (α) ∈ OTC, (resp. non-orientable, (α) ∈ NTC) if α ∈ OTW
(resp. α ∈ NTW).
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Example 2. (ε), (aābb̄) ∈ OTC; whereas (aabb̄), (aabb) ∈ NTC.

Definition 3 (R, Ror, Rnor). Consider the following four transformations on
topological cycles:

– contraction: (αxx̄)→cont (α)
– permutation: (αxβγx̄)→perm (αxγβx̄)
– torus: (xαyβx̄γȳδ)→torus (αδγβ)
– projective plane: (αxβx)→pjp (αβ̄).

The three rewriting systems R, Ror and Rnor are defined according to the fol-
lowing table:

system terms transformations
R TC cont, torus, pjp
Ror OTC cont, torus
Rnor TC cont, perm, pjp

Remark 1. The reader can easily check that R, Ror and Rnor are indeed three
rewriting systems: it is sufficient to remark that the set TC is closed under the
four rules listed Definition 3 and that the set OTC is closed under the two Ror-
transformations cont and torus.

Definition 4 (segment). We say that β is a segment of (α), β v (α), if there
is a γ such that (α) = (βγ); we write β @ (α) for specifying that γ 6= ε.

Example 3. ε, a, b, ab, ba, aba, bab @ (abab) and abab, baba v (abab).

Definition 5 (block, blocked cycle). A word β constitutes a block if β ∈ OTW
and (β) cannot be transformed into (ε) by exclusively using cont transformations.
A cycle (α) ∈ TC is blocked if there is a β v (α) such that β is a block.

Example 4. (abāb̄) and (abāb̄cc) are both blocked.

Definition 6 (blocking pjp). A projective plane transformation (α)→pjp (α)′

is said to be blocking if (α) is non-blocked and (α)′ is blocked.

Example 5. The following is a blocking transformation: (abcacb)→pjp (c̄b̄cb).

Definition 7 (monad). A word µ ∈ TW is a monad if, for any β @ (µ), β /∈ TW.

Example 6. abāb̄ is an orientable monad; abc̄acb is a non-orientable monad.

2.2 Computational Properties

Notation. Consider a generic rewriting system R standing for R, Ror or Rnor
and a certain R-rule r:

– (α) →R (α)′ means that (α)′ is obtained by rewriting (α) through an R-
transformation;
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– (α) →∗R (α)′ means that there exists a chain (possibly empty) of R-trans-
formations rewriting (α) into (α)′;

– (α) →∗r (α)′ means that there exists a chain (possibly empty) made by
successive repetitions of the transformation r rewriting (α) into (α)′.

Moreover, →pjp[x] indicates the pjp transformation specifically involving the x-
letters, for instance: (αxβx)→pjp[x] (αβ̄).

Theorem 1. The system R strongly normalises.

Proof. Simply by remarking that, if we attach to (α) ∈ TC a size equal to
card(|α|), we have at disposal a measure which decreases for anyR-transformation
admitted by α.

Theorem 2. The system R enjoys the property of the uniqueness of the normal
form and, in particular, (ε) is the normal form common to all the (α) ∈ TC.

Proof. The proof consists in showing that if α 6= ε, then (α) admits at least one
of the three transformations forming R. If (α) ∈ NTC, by Definition 2, there is
a letter x such that {x, x} ⊆ |α| and so the transformation →pjp[x] is clearly
admitted. For (α) ∈ OTC, we proceed by induction. If card(|α|) = 2, then (α) =
(xx̄) and so we can apply a cont transformation. In case of card(|α|) > 2, let
(α) = (xβx̄γ): we distinguish two cases. If β /∈ TW, then (α) admits a torus
transformation; otherwise, β, γ ∈ OTW and so we can call up to the inductive
hypothesis.

Corollary 1. Theorems 1 and 2 hold true also when R is restricted to Ror.

Proof. Straightforwardly by Theorems 1 and 2 and by Remark 1.

Theorem 3. For any blocked (α) ∈ NTC there is a non-blocked cycle (α)′ such
that (α)→∗perm (α)′.

Proof. By Definition 7, we can suppose any orientable monad µ to be of the
shape µ = yµ1ȳµ2 with µ1, µ2 6= ε. Moreover, remark that if µ, ν @ (α) are two
monads, then µ = ν or |µ| ∩ |ν| = ∅.

Since (α) ∈ NTC, we can refer to a letter x such that {x, x} ⊂ |α| and write
α = xxxβxxxγ (the two letters x are emphasized in boldface style). Then consider an
orientable monad yµ1ȳµ2 occurring within the segment β, i.e. β = β1yµ1ȳµ2β2.
We transform (α) as follows:

(xxxβ1yµ1ȳµ2β2xxxγ)→perm (xxxβ1µ2β2xxxyµ1ȳγ).

We iterate this kind of permutation for all the orientable monads occurring in β
and then we proceed in the analogous way for all the orientable monads zν1z̄ν2

occurring in γ = γ1zν1z̄ν2γ2:

(xxxγ1zν1z̄ν2γ2xxxβ
′)→perm (xxxγ1ν2γ2xxxzν1z̄β

′).

By construction, the procedure ends with a non-blocked cycle (α)′.
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Example 7. We exemplify below the just illustrated de-blocking procedure:

(xxxabcāc̄b̄xxxded̄ē)→perm (xxxc̄b̄xxxabcāded̄ē)→perm (xxxded̄c̄b̄xxxabcāē).

Theorem 4. Let (α) be a non-blocked cycle: (α) admits a non-blocking pjp
transformation.

Proof. Suppose that (α) admits a blocking pjp transformation: by Definition 6,
there are two words β, γ @ (α) such that β̄γ forms a block (and clearly β, γ 6= ε,
otherwise (α) would be blocked). The proof consists in showing that there is
a letter t ∈ |β| ∩ |γ| such that →pjp[t] is non-blocking. Let (α) = (βδγη); we
proceed by induction on card(|β̄γ|).

Base. Since β̄γ forms a block, we have that card(|β̄γ|) ≥ 4; consider the
following three cases.

• β = tq and γ = qt. We perform the following transformation:

(tqδqtη)→pjp (tδ̄tη);

δ̄ and η do not contain blocks (otherwise (α) would be blocked), so →pjp[q]
is non-blocking.
• β = t and γ = qtq̄ (or vice versa). We perform the following transformation:

(tδqtq̄η)→pjp (q̄δ̄q̄η)

and so →pjp[t] is non-blocking as well.
• The case β = γ = tq has to be rejected, because the word q̄t̄tq is not a block.

Step. The non-blocked status of (α) ensures the presence of a letter t ∈
|β| ∩ |γ|; let (α) = (β1tβ2δγ1tγ2η), transform (α) as follows

(β1tβ2δγ1tγ2η)→pjp (β1γ̄1δ̄β̄2γ2η)

and suppose →pjp[t] to be blocking. Since β̄2t̄β̄1γ1tγ2 ∈ OTW, we have that z ∈
|β1γ̄1| ⇒ z̄ /∈ |β̄2γ2|, i.e. the two words β1γ̄1 and β̄2γ2 cannot share a block.
Moreover remark that, as (α) is non-blocked, the six words β1, γ̄1, δ̄, β̄2, γ2 and
η cannot contain blocks. At this point, it is easy to show that a block occurs in
β1γ̄1 or in β̄2γ2. We consider the following five cases:

• if β1γ̄1, β̄2γ2 6= ε, then clearly β1γ̄1 or β̄2γ2 contains a block;
• if β1γ̄1 = ε, then β̄2t̄tγ2 is a block and so is β̄2γ2;
• if β̄2γ2 = ε, then t̄β̄1γ1t is a block and so are β̄1γ1 and β1γ̄1;
• if β1 = ε and γ1 6= ε (or vice versa), then β̄2γ2 contains a block (recall that
β1 and γ1 cannot contain blocks);
• if β2 = ε and γ2 6= ε (or vice versa), then β1γ̄1 contains a block (recall that
β2 and γ2 cannot contain blocks).

For concluding, in every case there are two words β′i, γ′i @ (α), with i ∈ {1, 2},
such that: |β′i| ⊆ |βi| and |γ′i| ⊆ |γi|, β̄′iγ′i forms a block and, since card(|β̄iγi|) <
card(|β̄γ|), we have card(|β̄′iγ′i|) < card(|β̄γ|).
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Corollary 2. If (α) ∈ NTC, then (α)→∗Rnor
(ε).

Proof. At first remark that, by Definition 5, if (α) ∈ OTC does not form a block,
then (α)→∗cont (ε). For any (α) ∈ NTC, we can produce a chain (α)→∗Rnor

(ε) by
combining Theorems 3 and 4 as indicated in Figure 1.

(α) ∈ NTC

is (α) 
blocked?

cluster of perm 
transformations

(Theorem 3)

yes

no

apply a 
non-blocking

pjp (Theorem 4)

is the
cycle in

OTC?

(ε)

cluster (possibly 
empty) of cont 

transformations

yes

no

Fig. 1. The normalisation algorithm for non-orientable cycles.

Remark 2. Unlike R and Ror, the system Rnor does not strongly normalise;
this is due to the fact that Rnor includes the perm transformation whose effect
simply consists in permuting some letters inside a cycle without decreasing the
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cardinality. Moreover, in Rnor, we also lose the uniqueness of the normal form;
consider the following example:

• (aabcb̄c̄)→pjp (bcb̄c̄),
• (aabcb̄c̄)→perm (abcb̄ac̄)→pjp (bc̄b̄c̄)→pjp (bb)→pjp (ε).

The table below summarises the results obtained in this section:

system normalisation normal form reduction chain
R strong unique →∗pjp→∗torus→∗cont
Ror strong unique →∗torus→∗cont
Rnor weak not unique →∗perm→∗pjp→∗cont

3 Geometrical Interpretation

According to the instructions reported below, we can associate to any (α) ∈ TC
a polygon having the edges labelled and oriented.

1. Consider a polygon having card(|α|) edges.
2. Let α? be the sequence obtained from α by forgetting everywhere the bar;

start from an arbitrary edge and label all the edges by following the clockwise
order: if α? = a1a2 . . . an, label the first one with a1, the second one with a2

and so on.
3. For all the 1 ≤ i ≤ n: if ai occurs in α without the bar, orient the ai-edge

according to the clockwise direction; otherwise, follow to the anticlockwise
direction.

According to the standard terminology, we refer to compact and connected
2-manifolds by simply calling them surfaces; in the sequel of this paper, surfaces
are always considered modulo homeomorphisms. We write U(α) for denoting
the quotient surface associated with the cycle\polygon (α); this is the surface
obtained, as usual, through identification of paired edges according to their ori-
entation [1].

Example 8. We associate with the topological cycle (abāb̄) the square reported
below; as the reader can see, the resulting quotient surface U(abāb̄) is a torus.

b

aa

b

a

b

b

b

identify the
a-edges

identify the
b-edges

We recall two basic achievements in algebraic topology [1]:
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• for any (α) ∈ TC, the surface U(α) is unique,
• the set {U(α) : (α) ∈ TC} ranges over the whole class of surfaces.

The spere, the torus and the projective plane are respectively indicated with
S , T and P; U #V denotes the connected sum of the two surfaces U and V ;
U n, with n ∈ N+, stands for the connected sum of n copies of U . The set of
topological surfaces together with the connected sum operation form a monoid
in which S plays the role of the neutral element: for any U , U #S = U [1].

The next theorem provides a geometrical interpretation of the rules listed
in Definition 3: the basic idea is that the process of normalisation (in R, Ror
and Rnor) represents, step by step, the process of forming the quotient surface
associate with a certain cycle\polygon, through identification of paired edges.

Theorem 5. • If (α)→cont (α)′, then U(α) = U(α)′ ;
• if (α)→perm (α)′, then U(α) = U(α)′ ;
• if (α)→torus (α)′, then U(α) = U(α)′#T ;
• if (α)→pjp (α)′, then U(α) = U(α)′#P.

Proof. The reader can find all the details in [2, 3].

Remark 3. Theorem 5 induces a very easy algorithm for computing the quo-
tient surface U(α) associated with any cycle\polygon (α) ∈ TC. At first re-
mark that U(ε) = S : (x, x̄) constitutes the canonical cycle denoting the sphere,
U(x,x̄) = S [1]; therefore, by Theorem 5, we have U(x,x̄) = U(ε) = S . Then,
normalise (α) through a chain (α) →∗R (ε) and suppose that in such a chain
p torus applications and q pjp applications occur. By Theorem 5 we have:
U(α) = S #T p#Pq = T p#Pq.

3.1 The Classification Theorem

Lemma 1. T #P = P3.

Proof. We normalise the cycle (abcacb) by following the two chains below:

• (abcacb)→pjp (c̄b̄cb)→torus (ε);
• (abcacb)→pjp (abāb)→pjp (aa)→pjp (ε).

By Remark 3, we have: U(abcacb) = T #P and U(abcacb) = P3; since the quo-
tient surface associated with (abcacb) is unique: T #P = P3.

Theorem 6 (classification). For any surface U :

• U = S or
• U = T p, with p ∈ N+, or
• U = Pq, with q ∈ N+.

Proof (Massey). Let p, q ∈ N+; the proof can be easily obtained by combining
the following three propositions:
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1. if (α) ∈ OTC, then U = S or U = T p (Remark 3 and Corollary 1);
2. if (α) ∈ NTC, then U = Pq or U = T p#Pq (Remark 3 and Theorem 1);
3. T p#Pq = P2p+q (Lemma 1).

Proof (algorithmic characterisation). The proof comes straightforwardly by the
following two propositions:

1. if (α) ∈ OTC, then U = S or U = T p (Remark 3 and Corollary 1);
2. if (α) ∈ NTC, then U = Pq (Remark 3 and Corollary 2).

Remark 4. With respect to Massey’s proof, this latter alternative demonstration
provides some new information concerning the dynamical side of the classifica-
tion, i.e. the side concerning the process that – through identification of paired
edges – allows to pass from polygons to their corresponding quotient surfaces.
In detail:

• if (α) ∈ OTC, then (α) can be transformed into (ε) by exclusively achieving
tori;
• if (α) ∈ NTC, then (α) can be transformed into (ε) by exclusively achieving

projective planes.
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