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Abstract. Permutative logic (PL) is a noncommutative variant of mul-
tiplicative linear logic (MLL) arising from recent investigations concern-
ing the topology of linear proofs. Permutative sequents are structured as
oriented surfaces with boundary whose topological complexity is able to
encode some information about the exchange in sequential proofs. In this
paper we provide a complete permutative sequent calculus by extending
that one of PL with rules for additives and exponentials. This extended
system, here called permutative linear logic (PLL), is shown to be a
conservative extension of linear logic and able to enjoy cut-elimination.
Moreover, some basic isomorphisms are pointed out.

1 Introduction

Linear logic (LL) presents a remarkable skill in emphasizing geometrical fea-
tures of logical proofs. LL comes in fact with a double syntax: the usual one in
terms of sequential rules, and a more geometrical one, constituted by a set of
links which allow to turn sequential proofs into graphs called proof-nets. Proof-
nets quotient on the class of linear demonstrations enabling to avoid pointless
syntactical bureaucracies [9], [7].

Studies on logical noncommutativity take advantage from this more geomet-
rical approach due to the fact that the use of the exchange in a sequential proof
affects the genus of its corresponding net. Cyclic logic (namely, linear logic in
which only cyclic exchanges are allowed) [16] constitutes a limit case in which
cut-free proofs always induce planar proof-nets [1]. This kind of results have
been progressively generalized by topological investigations on linear proofs due
to Bellin, Fleury [6], Melliés [12] and Métayer [13]. In particular, Métayer has
proposed a way to translate any proof-net I into a (compact and orientable)
surface with boundary .%(IT), such that:

— the rank of .’(II) constitutes a lower bound for the complexity of the ex-
change inside the proof 7 sequentialisation of IT [13];

— (II) represents the minimal surface on which IT can be drawn without
crossings [8].
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By stressing the fact that topology tells about exchange, the above-mentioned
works have induced the following non-commutative variants of MLL: planar logic
[12], the calculus of surfaces 8] and, later, permutative logic [5]. Such calculi stand
out for dealing with sequents structured as orientable surfaces with boundary.
Being more precise, each sequent turns out indexed by a natural number (count-
ing the handles) and with formulas grouped into disjoint cycles forming in this
way a permutation (denoting, cycle by cycle, each boundary-component). Such
structures (permutations with attached a natural number) have been called ¢-
permutations [5] and separately studied in [14].

Unlike planar logic and the calculus of surfaces, PL comes with two explicit
structural rules of divide and merge (topologically corresponding to an amal-
gamated sum) and it enjoys the two fundamental proof-theoretical properties
of cut-elimination and focussing. Moreover, thanks to permutative modalities
and constants, PL provides a specific mechanism able to manage (topological)
resources during proof-construction [5].

This paper should be considered as the continuation of the first one in which
the multiplicative fragment of permutative logic has been introduced [5]. We
propose in fact an enrichment of the PL calculus with rules for additives and
exponentials, here called permutative linear logic (PLL). On the one hand, addi-
tives pose the problem of establishing when two PL sequents can be considered
as having same context with respect to a fixed formula in each one of them.
There are in fact two ways to introduce the &-rule in the context of PL: ei-
ther by requiring the two premises to share their permutative structure or by
enabling two premises having different structures to be "mixed". In accordance
with the fact that the &-rule should be negative in sense of Andreoli’s property
of focussing, we decide to "officially" adopt the first solution. Nevertheless, we
also propose an alternative version of the &-rule in which structural rules are
compacted and optimized: this version would be useful towards both a seman-
tics and a theory of proof-nets for PL (remark that, in proof-nets, structural
transformations should not explicitly appear). On the other hand, exponentials
are treated in the standard way, i.e. as central elements essentially aside from
the inner structure of sequents [15]. The inference system obtained in this way
is shown to be a conservative extension of LL and able to enjoy cut-elimination.
By stressing this latter property, we recall the notion of logical isomorphism and
we point out some basic permutative isomorphisms.

The extension we propose in these pages is legitimate by the need of having a
complete counterpart of non-commautative logic [2] in which, instead of the usual
approach rooted in serial and parallel combinators, logical non-commutativity
is approached from the more geometrical point of view afforded by topology.
In our opinion, this change of viewpoint may offer an interesting framework in
which reconsider some of the typical problems related with non-commutativity,
for instance, problems arising in studies on linguistics and concurrency.



2 Multiplicative Permutative Logic

2.1 The Sequent Calculus

The well-known classification theorem for 2-dimensional surfaces says that any
compact and connected orientable surface turns out to be homeomorphic to a
sphere or to a connected sum of tori possibly with boundary [11]. If we consider
an orientable surface . as the final result of identifying edges having same
label in a set of polygons forming an its topological presentation, we have that
each boundary-component will be formed by at least one edge. Let 0. be the
set of labels occurring on the boundary of .#: since fixed an orientation, we
can notice that . induces a cyclic order on each one of the subsets of 9.7
corresponding to boundary-components. In other words, we obtain nothing else
but a permutation on 0.%. The idea leading to the notion of g-permutation
is that the basic information concerning any orientable connected surface .7
can always be encoded by a very easy mathematical structure consisting in
a permutation o (denoting cycle by cycle the boundary 9.) together with a
natural number ¢ counting the number of tori in the connected sum forming .#.
Remark that the number of connected tori forming a surface . corresponds to
the number of handles appearing on .. In this way, q-permutations are able to
characterize orientable connected surfaces modulo isomorphism, namely modulo
homeomorphisms preserving the inner structure of the boundary together with
an orientation.

Definition 1 (g-permutation, PL sequent). A g¢-permutation is a triple
(X,0,p), where X is a finite set, o is a permutation on X and p € N. A PL
sequent is nothing else, but a ¢-permutation in which the support X is a set of
linear formulas.

Ezample 1. Tt is easy to check that the surface proposed below is well-characterized
by the g-permutation {(a,b,¢), (d,e)},2.

Notation. — Capital Greek letters I', A, A, ...denote series of elements,
whereas (I') means that the series I' is taken modulo cyclic exchange; X, =
¥, ...denote sets of cycles. g-permutations are indicated with small Greek
letters «, 3, 7, ... Moreover, |a| and afa] respectively denote the support of
a and that a € |a|. In the sequel of this paper, it will be useful to adopt
a simplified notation for g-permutations obtained by omitting the support:
(X,0,p), inwhicho = (I1)(I3) ... (Iy), will become {(I), (I2),...,(Iy)},p.
For any permutation o, ¢® denotes the number of its cycles.



— PL sequents will be denoted in two ways. We write -, (I), (I32),..., (Iy) for
the PL sequent corresponding to the g-permutation {(I1), (I%2),..., Iy}, p.
Otherwise, we directly write F « for indicating the PL sequent corresponding
to a certain g-permutation a.

Thanks to classification theorem, the topological complexity of an oriented sur-
face . can be expressed by a couple of parameters (p, q), called the genus of the
surface, such that p € N is the number of handles of . and ¢ € N the number
of pieces in which its boundary turns out to be decomposed. The rank can be
straightforwardly obtained by the genus: rk(”) = 2p 4+ ¢ — 1, if ¢ is non-zero;
2p, otherwise. Clearly we can associate genus and rank with g-permutations too.

Ezample 2. If a = {(a,b),(c),(d,e)},2, then its genus is given by the couple
(2,3) and rk(o) = 6.

The multiplicative permutative calculus is recalled in Table 1; moreover, the
involutive duality is given by De Morgan rules:

(A Byt =B+t ® A+ (AL =#A+ rt=h L1t=1
(A® Byt = Bt o A+ (#A)L =bA+ hrt=n 1t=1.

By the fact that basic commutations are not provable keeping the lowest topo-
logical complexity, PL turns out to be an inference system able to deal with
logical noncommutativity. As suggested by some of the next propositions, basic
commutations can be recovered throughout the two permutative modalities b
and #. It is easy to check in fact that formulas marked with permutative modal-
ities behave as central elements, namely they can be freely moved inside sequents
without any cost in terms of topological complexity.

Notation. A;,..., A, F B denotes the sequent o (A7, ..., ALt B)and A B
denotes the two sequents A+ B and B F A.

Proposition 1. [5] The following sequents are provable in PL:

AFbHA bAF AR hA 4 b#A

(A B)»C-H- A (B%C) bhA H-bA AwbB—H-bB A
Ag LA bl -+ L b(A2bB) 4-bARDB
1oA4A bh - R b(A® B) 4+ b(Bw A).

We can easily prove that PL without specific constants and modalities and with
indexes fixed in 0, exactly corresponds to Mellies’ planar logic; if we require in
addition the rank of sequents to be null, we just obtain cyclic logic [5].

2.2 Relaxation

We call relazation the relation induced on g-permutations by the two structural
rules divide and merge. In particular, we say that a g-permutation 5 relaxes
another g-permutation «, a > [, if a can be rewritten into § throughout a
series of stuctural rules. A more formal definition is provided below.



Table 1. The sequent calculus of permutative logic.

Identities

ax. ——————— , a5 (1 A) Fe ©,(A, A*)
Fo (4, 47) . Fare 5,0,(T,4)

Structural rules

ba X, (15 A) Fa X, (), (4)
divide merge
Fd 27(F),(A) I7d+1 27(F7A)

Logical rules

}_dzv(FaAvB) ® }_dzv(FvA) '_SQv(AvB)

. 2, (I, A% B) Fare 2,0, (A1, A® B)
Faq Z,(F),(A) 4 Fq 27(F,A)
Fqa X, (1,0 A) Fa X, (1), (#A)
Far1 X, (D) h—
a2, (1) 1 (h)
Fa 27 (F) 1
Fa 5, (1 1) Fo (1)

Definition 2. [5] Relaxation is the smallest reflexive transitive relation = on
q-permutations such that:

- divide: (X,0,p) = (X,0',p), where o’ is obtained from o dividing one cycle
(I, A) of o into two: (I') and (A);

- merge: (X,0,p) = (X,0',p+ 1), where o’ is obtained by o merging two
cycles (I') and (A) of o into one: (I, A);

— degenerate merge: (X, 0,p) = (X,0,p+ 1), namely we can always merge an
empty cycle to a cycle of o increasing of one the number p.

Remark 1. The last point of the previous definition (degenerate merge) is based

on the idea that a PL sequent may be presented in various different ways: -,
X, (I) as well as -, X, (I), ().

Remark 2. Any application of a divide or merge (possibly degenerate) rule on a
certain g-permutation increases its rank and this is the reason for which relax-
ation induces a partial order on the set of g-permutations [5].

Theorem 1 (decision of relaxation). [5],[14] For any pair of g-permutations
a=(X,0,p) and 8= (X, 71,q), we have:
n—(c7l7)* +o°—71°

2

a=f & qg-p=



3 Permutative Additives and Exponentials

3.1 The Sequent Calculus

Negative (resp. positive) connectives are those ones having a reversible (resp.
not reversible) introduction rule. These notions arise inside the framework of
Andreoli’s studies on the property of focussing which allow to eliminate redun-
dant non-determinism during proof-construction, by imposing a rigid alternation
between clusters of negative and positive connectives [3]. The introduction of the
basic version of the &-rule in which premises share their permutative structure
(Definition 3), allow to classify the &-connective as a negative one, without al-
tering the fundamental symmetry between negative and positive connectives we
have in linear logic. It is easy to see that structural rules commute with negative
ones; in the perspective of a focussed calculus, this aspect bears out our choice:
it means that structural rules can be relegated between generalized positive and
negative connectives, as a sort of shift rule changing the polarity.

Definition 3 (permutative additives). Rules for additives are introduced as
follows.

l_sz(FaA> FPE,(F,B)
DL @r
Fp (I A® B) Fp, 2, (I A® B)
Hp 2, (1 A) Fp 2, (I, B)
b, X, (I, A&B)
T, 2 (1T true (no rule for zero).

Definition 4 (permutative exponentials). Rules for permutative exponen-
tials are introduced as follows.

b, X, (1 A Fp 2, (1) .
u dereliction — P~ weakening
bp X, (I,7A) bp 2, (I, 7A)
F, X, (1,74),(7A, A) Fo?X, (71, A) )
contraction ————————— promotion
Fp 2, (1,74),(4) Fo?X, (71,1 A)

Remark 3. By making the following two rules of center derivable, contraction
rule induces the following two rules of center.

Fp X, (1,74, A) K
Fy 2, (1,74, A) F, 5 (1,74, A, 74) o
center(1) divide
bp X, (1, A, 7A) P 2, (1A, 74),(04)
F, = (1A, 74) o
Fp X, (I0,74), (A)
center(2) = Fp X, (1,74A), (74, A)
Fp X, (1), (7A, A)

1%

Hp X, (15,74),(4)
Fp 2,(10), (74, 4)




As for the two permutative modalities b and #, formulas marked with exponen-
tials behave as central elements, in other words they turn out to be essentially
aside from the inner permutative structure of sequents. This is consistent with
the standard treatment of exponentials in non-commutative systems, for instance
in non-commutative logic [15]. In spite of their centrality, permutative modalities
and exponentials remain two distinct logical objects. In fact, unlike permutative
modalities, permutative exponentials allow to recover the basic properties con-
cerning exponentials we have linear logic. In particular, as we will show in the
next theorem, we can provide a proof for bA F?A, but the converse does not
hold.

Theorem 2. The following propositions are provable in PLL.

— Commutations: A&B - B&A; 'A® B 4+ BR!A; (A® B) (B ® A).
Associativity: A&(B&C) 4+ (A&B)&C.

— Distributivity: A® (B&C) 4 (A B)® (A® C).

Constants: 'T 4+ 1; A&T 4= A; AT 4= T.

— Exponentials: 1A 4H1A; (A&B) 4 (1A) @ (1B); 1A Fb?A; PAR?A.

Proof. We respectively report the proofs of the sequents A&B + B&A, A +
AR A, MAFDH?A'A® BF BR!A and A+ DbA.

ax, ——— — aX.

Fo (B*, B) Fo (A1, A)
Fo (BX @ A+, B) Fo (B @ A+, A)
Fo (BY @ A', B&A)

®r

—  ax. —— axX
Fo (A, AY) Fo (AL, A)
ax. T T der. ] der.
o O (At A) Fo (A, 7A%) N Fo (AL, 74)
er. 1v.
Fo PA%,4) ko (A), (24D Fo (#45),(74)
Fo (PAT, A0 4),0AT) Fo (1#AY), (74)
contr.
Fo (7AT, A® A) Fo (14 A+ b?7A)
—_— aX
'_O (A7 AL)
—————"—der.
Fo (4,74%) e
Fo (14,74%) Fo (A*, A)
ax. div. L oA der.
o (B5B) ko (14),(24%) _Fo(atra)
Fo (BL, BolA), (TAY) Fo (#A%), (7A)
weak, | —————————— center(2)
Fo (B, 74", B®lA), (7A*) o (#AL,74)
contr. ’
l_O (BL7 ?ALv B®'A)
Fo (B1974%, Bo!A)




3.2 Embedding Linear Logic

Definition 5. We define the function "pl" from LL to PL formulas in the fol-
lowing way. If p is an atom or a constant, then pP* = p; moreover:

(AJ_)pé — (ApZ)J_

(A B)Pt = APY9bBPt (A ® B)Pt = # AP @ BP*

(A&B)P* = APt & BP! (A@ B)Pt = APt g BP!

(7A)Pt =7 AP! (1A)Pt =1AP*
This function can be extended to sequents by mapping any set of formulas X
into the identical permutation, namely: if ¥ = Ay, As,..., Ay, then XP¢ =
(AVY), (AB%), ..., (A").

Theorem 3. A sequent - X is provable in LL if, and only if, o 2Pt is provable
in PLL.

Proof. (=) We proceed by induction on the length of the LL proof = - X. The
base is easily verified as follows:

— aX
—ax. p¢ Fo (A, At
HA, A — 0(72 divide
Fo (A), (A7)

Then we consider some induction steps; the missing cases are immediate.

F Pt (AP, (BPY)
B TP (AP b BPY)
kPt (AP 5 b BPY)

FT,A,B pe
_— | —
FI,A%B

Fo I'P%, (APY)
o IP¢, (#AP") o (BPY), AP
Fo I'PY, (#AP* ® BPY), AP

FIA kB, A ot #
—
FILA® B, A

LA FIB pt ko TP (AP ko I, (BP)
[ —

F I, A&B Fo I'P¢, (AP'& BPY)
Fo I'PE, (APY)
FI,A N vl o TP (74P, 2570) weak.
= 1 55 weak. , (7 , !
HI,A,B > divide

o I, (7A7°), (7B™)

(<) It is sufficient to remark that any PLL proof 7 o I'?* can be turned into an
LL proof 7' F I' simply by removing all the superfluous information: structural
rules together with permutative decorations.



3.3 An Alternative Approach to Additives

In order to perform a &-rule involving two premises having different structures,
we have to relax sequents since we arrive to a compromise, a common form
allowing the application of the basic &-rule. This process of "approaching" se-
quents throughout structural rules is formalized by the set of the nearest common
stops introduced in Definition 7. Before introducing this notion some technics
concerning chains of structural transformations are required.

Notation. Let o and § be two g-permutations such that o > (. With € :
a ~q/m 3 we denote a chain of g-permutations rewriting « into 3, such that
each step of ¥ corresponds to an application of either divide or merge rule.

Definition 6 (minimal chain). A chain is said to be minimal, if it consists
in a minimal number of steps.

Procedure 4 (computing chains) [14] Let a and 3 be two g-permutations
such that o = 8 We can obtain a chain € : o ~q,y B simply by arbitrarily
applying the following three specific versions of divide and merge rules. T denotes
the permutation of (3.

{27 (a, F’ b7 A)}7p ..
Ifr(a)=b: divide(1);
“ {2, (a,0,4), (I}, p

2’ F7A b . .
if I' s a cycle of T: {2 Jhp divide(2);

{27 (I‘%(A)},p

ZfT(a):b {27 (Faa)v(baA)}ap merge.
' (2, (Ia,b, A)},p+ 1

Ezample 3. Procedure 4 is here applied in order to produce a chain € : a ~q/,,

s.
a={(a,b,c,d,e)},0

divide(1)
{(a.d,e), (b, 9)}1,0 divide(2)
(@D, 0010
{(a.d), (e,b, )} 1 divide(2)

B ={(a,d),(e,b),(c)}, 1
Theorem 5. [14] If € is a chain afforded by Procedure 4, then it is minimal.
If we ignore the superfluous information concerning indexes, the divide\mer-

ge rewriting system can be seen as directly working on permutations. In this
way, any chain of g-permutations € : o ~~ 4/, 3, where a = (X, 0,p) and 3 =



(X,7,q), is implicitly a chain of permutations o ~~4/, T too. Moreover, remark
that, unlike chains of g-permutations, any chain of permutations o ~~4,,, T can
be reversed into a chain 7 ~»;/,, o such that, if o ~4/,, 7 is minimal, then
T ~q/m O is minimal too.

Theorem 6. [14] Any chain of permutations implicit into a minimal chain of
g-permutations, is minimal too.

Definition 7 (nearest common stops). Let o and 8 be two g-permutations
sharing the support. A q-permutation & belongs to the set of the nearest common
stops of @ and 3, denoted with ncs(a, ), if, and only if, o, 8 = £ and rk(§) is
minimal.

Proposition 2. For any pair of g-permutations o and (8 sharing the support,
we have:

1. ncs(a, B) =nes(fB, a);

2. ncs(a, fB) # 9;

3. if &, & €ncs(a, f), then they are incomparable;
4. if a = 3, then ncs(a, B) = {B}.

Now we aim to provide an effective procedure able to reach elements in any set
ncs(a, 8). For a and (8 such that « = 3, we know that ncs(a, ) = {8}. The
next theorem deals with the case in which a and 3 are incomparable.

Theorem 7. Consider two incomparable g-permutations o = (X, 0,p) and 8 =
(X,7,q), and a third one & obtained as follows.

According to Procedure 4, we start rewriting « in order to reconstruct
the permutation T expressed by B: we call £ the first g-permutation we
meet such that it relazes (3.

We have that € € ncs(a, 3).

Proof. Consider three g-permutations a = (X, 0,p), § = (X, 7, ¢) and £ obtained
from a and (8 according to the claim of the theorem. Suppose by absurd that
¢ ¢ ncs(a, ) and consider any 0 € ncs(a, 8) (by Proposition 2.2, we know that
ncs(a, 3) # @). Now consider the chain € : a ~~ g/, ', where 3’ = (X, 7,q+k),
computed in order to obtain . By the fact that 8 € ncs(a, 8) and rk(0) < rk(£),
there exist two chains €1 : a ~q/, 0 and 63 : B ~»4/,, 0 respectively shorter
than €} : « ~4;, & and €3 : B ~4/m, €. So, we have a chain of permutations
0 ~~q/m T shorter than that one implicit in 4" which is, by Theorem 6, absurd.

Ezample 4. Consider the following chain performed in order to compute an ele-
ment ¢ € ncs(a, 3), where a = {(a,b,¢,d)},0 and 5 = {(a,d, c), (b)},0. The first
line we meet such that it relaxes 3 is the third one and so £ = {(a,d,¢,b)}, 1.

a={(a,b,c,d)},0

divide
(@, (.30 o
={(a,d,c,b)},1
= i divide

ﬁ, = {(a” d, C)7 (b)}7 1



At this point, we have at disposal a complete technical background for providing
a version of the &-rule, denoted with [&], which enables to mix two premises
having different structures by compacting and optimizing structural rules.

Definition 8. We write o [a’/a] for the g-permutation obtained from a by re-
placing an element a of its support with another one a'. The [&]-rules is here
introduced by indicating sequents as q-permutations.

Fa g
F ¢ € nes(a [A&B/A], B [A&B/B))

[&], where |a[\{A} = [B\{B}.

Ezample 5. Below we propose a concrete application of the [&]-rule together
with an its "extracted" version.

Fo (a,b,¢, f1) Fo (b), (¢, a, f2)

[&] =
ki (¢, b, a, fi& f2)
divid }_0 (a7b7czf1)
1wviae
~ merge Fo (a,fl), (b, C) Fo (b)7 (C7a7f2) merge
F1 (¢, b,a, f1) F1 (¢, b, a, f2)

F1 (c,b,a, fi&fa)

Thanks to the main result provided in the next section (Theorem 8), we can
easily notice that cut-elimination is preserved by replacing the basic version of
the &-rule with that one just provided in Definition 8. Remark that, unlike the
basic &, the [&] connective cannot be catalogued as a negative one because of
the fact that different conclusions may be in accordance with the same pair of
premises.

4 Cut Elimination and Isomorphisms

4.1 Cut Elimination

Theorem 8. Any PL proof m b, X can be rewritten into a PL proof n’ F, X
without cuts.

Proof. Here we extend the proof already provided in [5] for the limited case of
multiplicatives. Our proof is organized in two steps. At first we remark that
cut-elimination for LL [9] implies that any PLL proof m F « can be reduced
into a PLL proof 7' F 8 without cuts, such that |a| = |8|. In other words, cut-
elimination preserves multisets of formulas. The second step consists in showing
that cut-elimination preserves permutative structures too. It is easy to check;
we illustrate below just some key cases of symmetric reductions.

— Contraction/promotion.



Fp 5, (1, 724), (A, 7A) Fo?ZE, (74, AT)

tr. —
oM T TS (T 7A4), (A) Ho?E, (74,14Y)
Fp 2,72, (1, 74),(4) o
Fo?2, (74, AT)
Fp X, (I, 7A), (A, 74) Fo?73, (24,141 . Fo?5, (74, A%) |
-~ F, 2,75, (1, 74), (A, 7A) W hrE oA 1At .
Fy 2,75, 75, (I, 74), (4, 74) i
contr.
Fp 2,72, (1, 74),(A)
— Weakening/promotion.
LS Fo?Z, (74, A+
weak. pi’() 2 ( L) ! Fp X, (1)
Fp X, (1,74) Fo?Z, (TA1AT) ~ — weak.
= cut '_P 27 ?':7(F7 ?A)
Fp 3,22, (1,74)
- &/@.
o 2 5 A) -, 5, (I, B) b Z,(4,BY) -
Fp 2, (I, A&B) Fo 2,(A, B AY) . ~
cu

}_PJﬁq 2753(F7A)

'_P 27(F7B) |_q E7(A7BL)
'_P+q 2753 (FvA)

~

cut.

4.2 Some Isomorphisms

Definition 9 (n-expansion). We inductively define the function n which as-
sociates to each PL formula F' a PL proof n(F), n-expansion of F.

— For every atom A: n(A) = n(At) = o (A, A1) ar:

- ()= ) !

— ) = T m) "

- (M) = 1+, 2 (,T) T

— For every formula F: n(F) = n(FY) and, if F = (Fy,...,F,) with 1
positive n-ary connective, then:

n(F) . n(Fn) "
n(F): V(.. Fy), Fib, ... Ft N

IZJ(Fla--an)awl(FlLa'--vFL)

n



Definition 10 (isomorphism). Consider the proofs Ao o (AL, A) and 7o
A ko (B, B) obtained from the two proofs ® o (A, B) and X\ o (B*, A)
respectively by cutting B with B+ and A with AL. A 4+ B is said to be an
isomorphism if, and only if, mo A =n(A) and Aow =n(B).

Theorem 9 (multiplicative isomorphisms). The following equivalences are
isomorphisms:

(A B)eCH-A» (BwC) bhA H-bA AwbB H-bB A
Ag 1l A bl -+ L b(A2bB) 4-bAbB
1eA-4 A bh - b(A® B) H-b(B 7w A)

Proof. We detail below just the case of A9 L+ A.

— aX
'_0 (ALvA)
ax.
Fo (1) Fo (AT, A) - Fo (AT, A, L)
Fo (1® AL, A) Fo (A%, A 1)
Fo (1@ AL A9 1)

1

cut

ax.

1 Fo (1) Fo (AL, A)

Fo (1 X AJ',A)
Fo (1® AL A, L)
Fo (1@ AL, A9 1)

— aX
Fo (A, A1)
ax.
l_0 (1) '_0 (AL7 A) ® '_0 (A7 J~7 Al)
Fo (A4,1® A1) Fo (A L, AY)
}_O (A7 AL)

1

~

cut

ax.

e Fo (A7 Al)

Example 6. b#A 4 bA constitutes an example of an equivalence which is not
an isomorphism too. The reduced proof on the right is not an n-expansion of
b#A, in fact it presents an application of the b rule which interrupts a block of
positive rules.



— aX
|_O (A7 AL)

AT e () (ah) Ve _haah
o (A, 0 , .
:0(;31)»(;4#)) m # 7 o (#4), 04
0 : n 0 ’ — }_0 (#A),(#bAL)
Fo (b#A,#A™) Fo (hA,#bAT) cut Fo (b#A, #bAL)

Fo (b#A, #bA1)

Theorem 10 (additive and exponential isomorphisms). All the equiva-
lences listed in Theorem 2 are isomorphisms too.

5 Future Work

A focussed version of the PLL calculus should be defined by extending that one
already existing for PL [5].

Semantical issues (phase and denotational semantics) together with possible
topological interpretations of proof-nets with additives are still waiting to be
explored. The alternative approach to additives outlined in Subsection 3.3 would
be useful in both these directions. In particular, in order to translate proof-nets
into topological surfaces [13], we should be able to associate with each link of
the net, its corresponding cell. Because of in proof-nets structural rules do not
explicitly appear, the problem of associating a cell with a &-link requires to take
in account the involved structural rules, exactly what the [&]-rule makes.

Concerning exponentials, the solution proposed in these pages should be con-
sidered as a "minimalist" one, i.e. in Section 3.2 we have showed that, in order
to embed LL into PLL, it is sufficient to consider exponential formulas as es-
sentially gathered into multisets associated with ordinary permutative sequents.
However, it would be worthwhile to define exponentials in a genuine permutative
way, really sharing the permutative structure with other formulas: a deductive
system in which, for instance, rules for duplicating and absorbing formulas work
taking in account their position. In this direction, the main obstacle to overcome
consists in defining a deductive system which is still a conservative extension of
LL. In our opinion, an in-deep investigation on the relations between permutative
modalities and exponentials could be useful. Moreover, in terms of geometry, an
extension of our structures including also non-orientable surfaces might offer a
wider framework in which this kind of problems could be more properly placed.
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