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Dipartimento di Matematica, Università degli Studi di Trento and COSBI, Italy

We relate two contract models: one based on event structures and game theory, and the other one
based on logic. In particular, we show that the notions of agreement and winning strategies in the
game-theoretic model are related to that of provability in the logical model.

1 Introduction

Contracts are gaining an increasing relevance in the design and implementation of concurrent and dis-
tributed systems. This is witnessed by the proliferation of proposals of models and standards for contracts
appeared in the literature in the last few years. For instance, choreography languages like WS-CDL [21],
BPEL4Chor [16] and Scribble [19] can be used to specify the overall interaction protocol of a set of Web
services. By projecting a choreography on each of the participants, we obtain the specification of the
behaviour expected from each single service involved in the application. These projections can be in-
terpreted as contracts: if the actual implementation of each Web service respects its contract, then the
overall application is guaranteed to behave correctly; otherwise, the service violating its contract may be
responsible (and punishable) for the global failure. On a more theoretical side, formal models for con-
tracts have been devised by adapting and extending models of concurrent systems, such as Petri nets [1],
event structures [18, 8], process algebras [12, 13, 14, 15, 20], timed automata [22, 24], and by extending
various logics, such as modal [2], intuitionistic [3, 11], linear [3], and deontic [23, 17] logics (just to cite
a few recent approaches).

A main motivation for using contracts resides in the fact that large distributed applications are often
constructed by dynamically discovering and composing services published by different organizations.
The larger an application is, the great the probability that some of its components deviates from the ex-
pected behaviour (either because of unintentional bugs, or maliciousness of a competing organization).
Hence, it becomes crucial to protect oneself from other participants’ misbehaviour. Standard enforce-
ment mechanisms do not apply, because of the total lack of control on code run by mutually untrusted,
distributed participants. Instead, contracts may offer protection by legally binding the participants in a
service composition to either behave as prescribed, or otherwise be blamed for a contract breach [4].

In this methodology, contracts are the pillars which support the reliability of distributed applications,
hence the choice of the actual contract model to be used is critical. However, the ecosystem of contract
models proposed in the literature is wide and heterogeneous, and the actual properties and the relations
among different models are not clearly established. In particular, there is a gap between the two main
paradigms for modelling contracts, i.e. the one which interprets them as interactive multi-agent systems,
and the one where contracts are rendered as formulae of suitable logics. To contribute towards reduc-
ing this gap, in this paper we consider two recent models for contracts — one based on game-theoretic
notions and the other one on logic — and we formally relate them. More precisely, we show that a cor-
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respondence exists between the fundamental notions in the first model (namely, agreements and winning
strategies) and provability in the logic-based model.

In the first model [9], the behaviour of a set of interacting participants is specified as a concurrent
multi-player game. The plays of the game are traces of an event structure (ES) which models the causal
relations among the actions of the participants. Intuitively, an enabling X ` e in an ES models the fact
that the action e becomes an obligation after all the actions in X have been performed. A participant A
wins in a play when (i) her payoff (defined by a given function Φ) is positive in that play, or (ii) some
participant (but not A) can be blamed for a contract violation. Indeed, if some B 6= A has violated his
contract, an external judge may eventually provide A with the prescribed compensation (and B with the
respective punishment).

Two key notions in this model are that of agreement and protection. Intuitively, given a set of con-
tracts, the agreement property guarantees that each involved participant has a winning strategy. Instead,
protection is the property of a single contract C of A ensuring that, whenever C is composed with any
other contract (possibly that of an adversary), A has a non-losing strategy. In [9] it is shown that agree-
ment and protection cannot coexist in a broad class of contracts where the obligations are modelled as
Winskel’s ES [26]. Roughly, to be protected one should wait until the conditions X in some enabling
X ` e are satisfied before doing the event e. If all participants adhere to this principle, agreement is
not possible. To reconcile agreements with protection, an extension of Winskel’s ES has been proposed,
which allows for decoupling a conditional promise (e.g., doing e in change of X) from the temporal order
in which events are performed. In an ES with circular causality (CES for short), an enabling b a means
that “A will do a if B promises to do b”. This contract protects A, and when composed with the contract
a  b of B, it admits an agreement. More in general, in [9] a technique is proposed which, given the
participants payoffs, synthesises a set of contracts which guarantee both agreement and protection.

The second model we consider is an extension of intuitionistic propositional logic (IPC), called
Propositional Contract Logic (PCL [11]). PCL features a “contractual” form of implication, denoted
by �. The intuition is that a formula p� q entails q not only when p is provable, like standard in-
tuitionistic implication, but also in the case that a “compatible” formula is assumed. This compatible
formula can take different forms, but the archetypal example is the (somewhat dual) q� p. While
(p→ q)∧ (q→ p)→ p∧ q is not a theorem of IPC, (p� q)∧ (q� p)→ p∧ q is a theorem of PCL.
The logic PCL is decidable [11].

A first observation about these two models is that they both allow for a form of “circular” assume-
guarantee reasoning. Consider, for example, a participant A which promises to do a provided that she
receives b in exchange, and a participant B which, dually, promises to do b in exchange of a. In the
game-theoretic model, these obligations are represented by a CES with enablings b a and a b. Given
the intended payoff functions, this contract admits an agreement. The winning strategies of A and B
prescribe both participants to do their events (without waiting for the other to take the first step), so
leading to a configuration {a,b} of the CES. In the logical model, the scenario above is represented by
the PCL formula (b� a)∧(a� b). As noted above, this formula entails both a and b in the proof system
of PCL. Hence, a connection seems to exist between the agreement property in the game-theoretic model
and provability in PCL.

A main contribution of this paper is to formalise this connection. More precisely, Theorem 4.5
shows that agreement in conflict-free contracts corresponds to provability in Horn PCL theories. This
correspondence has an important consequence, since it provides us with a polynomial algorithm for
provability in Horn PCL (in contrast with the fact that provability in full PCL is PSPACE-complete, as
well as in IPC and in its implicational fragment [25]). We illustrate this point with the help of some
examples (Ex. 4.1 and 4.2) where we show that apparently hard questions in PCL admit an easy answer
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when passing to the realm of contracts.
We deepen the above-mentioned correspondence by relating winning strategies for the game-theoretic

contracts with proofs in PCL. The idea is that a proof in the logic induces an ordering among the atoms.
For instance, to use the elimination rule of → in a proof of ∆,a→ b ` b, one must first construct a
proof of a (similarly to the ordering imposed by an enabling a ` b), whereas in a proof of ∆,a� b ` b
the proofs of a and b can be interleaved (i.e. a can be proved after b, similarly to the fact that a  b
allows a to be done after b). We introduce in Section 3 the notion of proof traces, that represent the
sequences of atoms respecting the order imposed by proofs in PCL. Theorem 4.9 states that proof traces
correspond, in the contracts realm, to the plays where all participants are innocent. Since these plays can
be constructed with a polynomial algorithm, this result is significant, because it allows for performing a
non-trivial task in Horn PCL (i.e., constructing proof traces), through an easier one in contracts. Finally,
Theorem 4.11 establishes that, whenever a contract admits an agreement, proof traces can be projected
to winning strategies for all participants.

Because of space constraints, the proofs of our results are available in [5].

2 Background

2.1 Contracts

We briefly review the theory of contracts introduced in [9]. A contract is a concurrent system featuring
obligations (what I must do in a given state) and objectives (what I wish to obtain in a given state).

Obligations are modelled as event structures with circular causality (CES). A comprehensive account
of CES is in [7]; here we shall only recall the needed definitions. Assume a denumerable universe of
atomic actions a,b,e, . . .∈E, called events, uniquely associated to participants A,B, . . .∈A by a function
π : E → A. We denote with # ⊆ E ×E a conflict relation between events, namely if a#b then a and b
cannot occur in the same computation. For a set X ⊆ E, the predicate CF(X) is true iff X is conflict-free,
i.e. ∀e,e′ ∈ X : ¬(e#e′). We denote with Con the set {X ⊆fin E |CF(X)}.

Definition 2.1 (CES). A CES E is a triple 〈#,`,〉, where

• # ⊆ E×E is an irreflexive and symmetric conflict relation;

• ` ⊆ Con × E is the enabling relation;

• ⊆ Con × E is the circular enabling relation.

The relations ` and  are saturated, i.e. ∀X ⊆ Y ⊆fin E. X ◦ e ∧CF(Y ) =⇒ Y ◦ e, for ◦ ∈ {`,}.

A CES is finite when E is finite; it is conflict-free when the relation # is empty. We write a ` b for
{a} ` b, and ` e for /0 ` e (similar shorthands apply for ).

Intuitively, an enabling X ` e models the fact that, if all the events in X have happened, then e is an
obligation for participant π(e); such obligation may be discharged only by performing e, or any event in
conflict with e. For instance, an internal choice between a and b is modelled by a CES with enablings
` a, ` b and conflict a#b. After the choice (say, of a), the obligation b is discharged. The case of circular
enablings X  e is more complex: e is an obligation if it is a prudent event (see Def. 2.5). Very roughly,
e is prudent when one can perform it “on credit” and be guaranteed that, in all possible executions of the
contract, either the credit will be honoured, or the debtor will be culpable of a contract violation. For
instance, in the contract with enablings b  a and a ` b, the first enabling models the fact that a can be
done on credit, on the guarantee that the other participant will be obliged to do b. The event a is prudent
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Figure 1: Graphical representation of CES. An hyperedge from a set of nodes X to e denotes an enabling
X ◦ e, where ◦ = ` if the edge has a single arrow, and ◦ =  if it has a double arrow. A conflict a#b is
represented by a wavy line between a and b.

in the initial state, because after doing it the other participant has the obligation to perform b (not doing
b will result in a violation).

Besides the obligations, the other component of a contract is a function Φ which specifies the ob-
jectives of each participant. More precisely, Φ associates each participant A with a set of sequences in
E∞ (the set of finite or infinite sequences on E), which represent those executions where A has a positive
payoff.
Definition 2.2 (Contract). A contract C is a pair 〈E,Φ〉, where E is a CES, and Φ : A →℘(E∞)
associates each participant with a set of traces.

We interpret a contract as a nonzero-sum concurrent multi-player game. The game involves the
players in A concurrently performing actions in order to reach their objectives. A play of a contract C is
a conflict-free sequence σ ∈ E∞ without repetitions. For σ = 〈e0 e1 · · ·〉 ∈ E∞, we write σ for the set of
events in σ ; we write σi for the subsequence 〈e0 · · ·ei−1〉. If σ = 〈e0 · · ·en〉, we write σ e for 〈e0 · · ·en e〉.
The empty sequence is denoted by ε .

Each play σ = 〈e0 · · ·ei · · ·〉 uniquely identifies a computation in the CES E. This computation has
the form ( /0, /0) e0−→ (σ1,Γ(σ1)) · · ·

ei−→ (σi+1,Γ(σi+1)) · · ·. The first element of each pair is the set of events
occurred so far; the second element is the least set of events done “on credit”, i.e. performed in the
absence of a causal justification. Formally, for all sequences η = 〈e0 e1 · · ·〉, we define Γ(η) = {ei ∈ η |
ηi 6` ei ∧ η 6 ei}. Notice that e 6∈ Γ(η) iff either e is `-enabled by the past events ηi, or it is -enabled
by the whole play.
Example 2.3. Consider the CES in Fig. 1. The maximal plays of E1–E4 are 〈ab〉, 〈ba〉, for which we
have the following computations:

E1 : ( /0, /0) a−→ ({a}, /0) b−→ ({a,b}, /0), ( /0, /0) b−→ ({b},{b}) a−→ ({a,b},{b}).

E2 : ( /0, /0) a−→ ({a},{a}) b−→ ({a,b},{a}), ( /0, /0) b−→ ({b},{b}) a−→ ({a,b},{b}).

E3 : ( /0, /0) a−→ ({a},{a}) b−→ ({a,b}, /0), ( /0, /0) b−→ ({b},{b}) a−→ ({a,b},{b}).

E4 : ( /0, /0) a−→ ({a},{a}) b−→ ({a,b}, /0), ( /0, /0) b−→ ({b},{b}) a−→ ({a,b}, /0).
The maximal plays of E5 are 〈ab〉, 〈ba〉, 〈ac〉, 〈ca〉. For 〈ab〉, 〈ba〉, the computations are as those of E3,
while for 〈ac〉, 〈ca〉 the computations are as those of E2 (with c in place of b).

A strategy Σ for A is a function which associates to each finite play σ a set of events of A such that
if e ∈ Σ(σ) then σe is still a play. A play σ = 〈e0 e1 · · ·〉 conforms to a strategy Σ for A if, for all i ≥ 0,
if ei ∈ π−1(A), then ei ∈ Σ(σi). A play is fair w.r.t. a strategy Σ when there are no events in σ which are
perpetually enabled by Σ.
Definition 2.4 (Fair play). A play σ = 〈e0 e1 · · ·〉 is fair w.r.t. strategy Σ iff:

∀i≤ |σ |.
(
∀ j : i≤ j ≤ |σ |. e ∈ Σ(σ j)

)
=⇒ ∃h≥ i. eh = e
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Before setting up the crucial notion of prudent events, we provide some underlying intuitions. The
definition of prudent strategies and of innocent participants is mutually coinductive. A participant A is
considered innocent in a play σ when she has done all her prudent events in σ (otherwise A is culpable).
Hence, if a strategy tells A to do all her prudent events, then in all fair plays these events must either
become imprudent, or be fired. Given a finite play σ of past events, an event e is said prudent in σ

whenever there exists a prudent strategy Σ which prescribes to do e in σ . A strategy for A with past σ

(namely, conform to σ ) is prudent whenever, in all fair extensions of σ where all other participants are
innocent, the events performed on credit by A are eventually honoured; at most, the credits coming from
the past σ will be left. Notice that we neglect those unfair plays where an action permanently enabled
is not eventually performed. Indeed, an unfair scheduler could perpetually prevent an honest participant
from performing a promised action.

Definition 2.5 (Prudence). A strategy Σ for A with past σ is prudent if, for all fair plays σ ′ extending σ ,
conform to Σ, and where all B 6= A are innocent,

∃k > |σ |. Γ(σ ′k)∩π
−1(A) ⊆ Γ(σ)

An event e is prudent in σ if there exists a prudent strategy Σ with past σ such that e ∈ Σ(σ).
A participant A is innocent in σ = 〈e0 e1 · · ·〉 iff:

∀e ∈ π
−1(A). ∀i≥ 0. ∃ j ≥ i. e is imprudent in σ j

Notice that the empty strategy is trivially prudent.

Example 2.6. Consider the obligations modelled by the five CES in Fig. 1, where π(a) = A and π(b) =
π(c) = B:

• in E1, the only prudent event in the empty play is a, which is enabled by /0, and the only culpable
participant is A. In 〈a〉, b becomes prudent, and B becomes culpable. In 〈ab〉 no event is prudent
and no participant is culpable.

• in E2, there are no prudent events in ε . Instead, event a is prudent in 〈b〉, while b is prudent in 〈a〉:
this is coherent with the fact that the prudence of an event does not depend on the assumption that
all the events done in the past were prudent. In 〈ab〉 and 〈ba〉 no events are prudent.

• in E3, event a is prudent in ε: indeed, the only fair play aη where B is innocent is 〈ab〉, where
Γ(ab) = /0. Instead, b is not prudent in ε , because b ∈ Γ(bη) for all η . Event b is prudent in 〈a〉.
• in E4, both a and b are prudent in ε .

• in E5, a is not prudent in ε , because if B chooses to do c, then the credit a can no longer be
honoured. Actually, no events are prudent in ε , while both b and c are prudent in 〈a〉, and a is
prudent in both 〈b〉 and 〈c〉.

We now define when a participant wins in a play. If A is culpable, then she loses. If A is innocent,
but some other participant is culpable, then A wins. Otherwise, if all participants are innocent, then A
wins if she has a positive payoff in the play, and the play is “credit-free”.

Definition 2.7 (Winning play). Define the function W : A→℘(E∞) as follows:

WA = {σ ∈ΦA | A credit-free in σ , and all participants are innocent in σ} ∪
{σ | A innocent in σ , and some B 6= A is culpable in σ}

where A is credit-free in σ iff: ∀e ∈ π−1(A). ∀i≥ 0. ∃ j ≥ i. e 6∈ Γ(σ j).
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A key property of contracts is that of agreement. Intuitively, when A agrees on a contract C, then she
can safely initiate an interaction with the other participants, and be guaranteed that the interaction will
not “go wrong” — even in the presence of attackers. This does not mean that A will always succeed in all
interactions: in case B is dishonest, we do not assume that an external authority will disposses B of b and
give it to A. Participant A will agree on a contract where she reaches her goals, or she can blame another
participant for a contract violation. In real-world applications, a judge may provide compensations to A,
or impose a punishment to the culpable participant.

We now define when a participant agrees on a contract. We say that Σ is winning for A iff A wins in
every fair play which conforms to Σ. Intuitively, A is happy to participate in an interaction regulated by
contract C when she has a strategy Σ which allows her to win in all fair plays conform to Σ.

Definition 2.8 (Agreement). A participant A agrees on a contract C whenever A has a winning strategy
in C. A contract C admits an agreement whenever all the involved participants agree on C.

Example 2.9. Consider the contracts Ci where the obligations are specified by Ei in Fig. 2.6, and let the
goals of A and B be as follows: A is happy when she obtains b (i.e. ΦA= {σ | b ∈ σ}), while B is happy
when he obtains a (ΦB= {σ | a ∈ σ}).

• C1 admits an agreement. The winning strategies for A and B are, respectively,

ΣA(σ) =

{
{a} if a 6∈ σ

/0 otherwise
ΣB(σ) =

{
{b} if a ∈ σ and b 6∈ σ

/0 otherwise

Roughly, the only fair play conform to ΣA and ΣB where both A and B are innocent is σ = 〈ab〉.
We have that A and B win in σ , because both participants are credit-free in σ (see Ex. 2.3), and
σ ∈ΦA∩ΦB.

• C2 does not admit an agreement. Indeed, there are no prudent events in ε , hence both A and B are
innocent in ε . If no participant takes the first step, then nobody reaches her goals. If a participant
takes the first step, then the resulting trace is not credit-free. Thus, no winning strategy exists.

• C3 admits an agreement. The winning strategies are as for C1 above: A first does a, then B does b.
While C1 and C3 are identical from the point of view of agreements, they differ in that C3 protects
A, while C1 does not. Intuitively, the enabling ` a in C1 models an obligation for A also in those
contexts where no agreement exists, while b  a only forces A to do a when b is guaranteed.

• C4 admits an agreement. In this case the winning strategies for A and B are:

ΣA(σ) =

{
{a} if a 6∈ σ

/0 otherwise
ΣB(σ) =

{
{b} if b 6∈ σ

/0 otherwise

That is, a participant must be ready to do her action without waiting for the other participant to
make the first step.

• C5 does not admit an agreement. Since no events are prudent in ε , both participants are innocent
in ε , but if they cannot reach their goals by doing nothing. If A does a, then B can b can choose to
do c. This makes B innocent (and winning), but then A loses, because not credit-free in 〈ac〉.
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∆ ` q
∆ ` p� q

(ZERO)

∆, p� q, c ` p
∆, p� q, q ` c� d

∆, p� q ` c� d
(LAX)

∆, p� q, r ` p
∆, p� q, q ` r

∆, p� q ` r
(FIX)

Figure 2: Sequent calculus for PCL (rules for�; the full set of rules is in [5]).

∆ ` q
∆ ` p� q

(�I1)
∆ ` p′� q′

∆, p ` p′

∆,q′ ` p� q
∆ ` p� q

(�I2)
∆ ` p� q ∆,q ` p

∆ ` q
(�E)

Figure 3: Natural deduction for PCL (rules for�; the full set of rules is in [5]).

2.2 Propositional Contract Logic

We briefly review Propositional Contract Logic (PCL [11]), PCL extends intuitionistic propositional
logic IPC with the connective�, called contractual implication. We assume that the atoms of PCL are
the events in E. The formulae of PCL are defined as follows:

p,q ::= ⊥ | > | a | ¬p | p∨q | p∧q | p→ q | p� q

A proof system for PCL is defined in [11] in terms of Gentzen-style rules (Fig. 2), which extend those
of IPC. In all the rules, ∆ is a set of PCL formulae. Decidability of PCL has been established in [11] by
proving that the Gentzen-style proof system of PCL enjoys cut elimination and the subformula property.

In this paper we shall mainly consider the Horn fragment of PCL, which comprises atoms, conjunc-
tions, and non-nested →/� implications. Let α,β range over conjunctions of atoms. A Horn PCL
theory is a set of clauses of the form α → a or α � a. The clause a is a shorthand for >→ a. We shall
denote with α the set of atoms in α .

3 Proof traces in PCL

In this section we introduce the notion of proof traces, namely the sequences of atoms respecting the
order imposed by proofs in PCL. To do that, we first define a natural deduction system for PCL, which
extends that of IPC with the rules in Fig. 3. In all the rules, ∆ is a set of PCL formulae. Provable formulae
are contractually implied, according to rule (�I1). Rule (�I2) provides � with the same weakening
properties of→. The crucial rule is (�E), which allows for the elimination of�. Compared to the rule
for elimination of→ in IPC, the only difference is that in the context used to deduce the antecedent p,
rule (�E) also allows for using as hypothesis the consequence q.

Example 3.1. Let ∆ = a→ b,b� a. A proof of ∆ ` a in natural deduction is:

∆ ` b� a
∆ ` a→ b ∆,a ` a

∆,a ` b
(→E)

∆ ` a
(�E)

The natural deduction system of Fig. 3 is equivalent to the Gentzen calculus of [11].

Theorem 3.2. Thre exists a proof π of ∆ ` p in natural deduction iff there exists a proof π∗ of ∆ ` p in
the sequent calculus of [11].
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ε ∈ J∆K
(ε )

α → a ∈ ∆ σ ∈ J∆K α ⊆ σ

σ a ∈ J∆K
(→)

α � a ∈ ∆ σ ∈ J∆,aK α ⊆ σ

σ | a ⊆ J∆K
(�)

Figure 4: Proof traces of Horn PCL.

For proving atoms (or their conjunctions) in Horn PCL theories, a strict subset of the natural deduc-
tion rules suffices.
Lemma 3.3. Let ∆ be a Horn PCL theory. If ∆ ` α in natural deduction, then a proof of ∆ ` α exists
which uses only the rules (ID), (∧I), (∧E1),(∧E2), (→E), and (�E).

A key observation is that each proof in Horn PCL induces a set of atom orderings which are compat-
ible with the proof. Each of these orderings is associated with a sequence of atoms, called proof trace.
To give some intuition, consider the elimination rule for→:

∆ ` α → a ∆ ` α

∆ ` a
(→E)

The rule requires a proof of all the atoms in α in order to construct a proof of a. Accordingly, if σ is a
proof trace of ∆, then σa if a proof trace of ∆.

Consider now the elimination rule for�

∆ ` α � a ∆,a ` α

∆ ` a
(�E)

Here, the intuition is that α needs not necessarily be proved before a: it suffices to prove α by taking a
as hypothesis. Assuming that σ is a proof trace of ∆,a, the proof traces of ∆ include all the interleavings
between σ and a.
Definition 3.4 (Proof traces). For a Horn PCL theory ∆, we define the set of sequences of atoms J∆K by
the rules in Fig. 4. For σ ,η ∈ E∗, we denote with ση the concatenation of σ and η , and with σ | η the
set of interleavings of σ and η . We assume that both operators remove duplicates from the right, e.g.
aba | ca = ab | ca = {abc,acb,cab}. We call each σ ∈ J∆K a proof trace of ∆.

Example 3.5. Consider the following Horn PCL theories (recall that a,>→ a):

∆1 = {a→ b, a} ∆2 = {a→ b, b→ a}
∆3 = {a→ b, b� a} ∆4 = {a� b, b� a}

(notice the resemblance with the CES E1–E4 in Fig. 1). By Def. 3.4, we have:

J∆1K = {ε, a, ab} J∆2K = {ε}
J∆3K = {ε, ab} J∆4K = {ε, ab, ba}

For instance, we deduce ab ∈ J∆3K through the following derivation:

b� a ∈ ∆3

a→ b ∈ ∆3,a
>→ a ∈ ∆3,a ε ∈ J∆3,aK

(ε )

a ∈ J∆3,aK
(→) a⊆ a

ab ∈ J∆3,aK
(→)

b⊆ ab
ab = ab | a ∈ J∆3K

(�)

Notice that ba 6∈ J∆3K: indeed, to derive any non-empty α from ∆3 one needs to use both a→ b and
b� a, hence all non-empty proof traces must contain both a and b; since b does not occur at the right
of a contractual implication, it cannot be interleaved; thus, ba is not derivable.
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We now define, starting from a set X of atoms, which atoms may be proved immediately after while
following some proof trace. We call these atoms urgent, and we denote with UX

∆
the set of urgent atoms

in X . For instance, with ∆1 in Ex. 3.5, we have U /0
∆1

= {a}, U{a}
∆1

= {b}, U{b}
∆1

= {a}, and U
{a,b}
∆1

= /0.

Definition 3.6. For a set X ⊆ E and a Horn PCL theory ∆, we define UX
∆

as:

UX
∆ = {a 6∈ X | ∃σ ,σ ′. σ = X ∧ σ aσ

′ ∈ J∆,XK}

Theorem 3.11 below characterizes urgent atoms in terms of provability. This is obtained by a suitable
rewriting of Horn PCL theories, which separates the urgent atoms from the provable ones.

Technically, in Def. 3.7 we introduce an endomorphism [·]U of Horn PCL theories. Let ? ∈ {!,R,U}.
We assume three injections ? : E→ E, such that !E, RE and UE are pairwise disjoint. For a set of atoms
X ⊆ E, we denote with ?X the theory {?e | e ∈ X}. We denote with atoms(∆) the set of all atoms in ∆.
We assume that atoms(∆)∩ ?E = /0, and that a stands for an atom not in ?E. For a set X ⊆ !E∪RE∪UE,
we define the projection X? = {e ∈ E | ?e ∈ X}. When α = a1∧·· ·∧an, we write ?α = ?a1∧·· ·∧?an.
When n = 0, ?α =>.

Definition 3.7. The endomorphism [·]U of Horn PCL theories is defined as:

[∆,α ◦a]U = [∆]U , [α ◦a]U , Ω(atoms(α ◦a)) for ◦ ∈ {→,�}
Ω(X) = {!a→Ua | a ∈ X} ∪ {Ua→ Ra | a ∈ X}

[α → a]U = {!α →Ua, Rα → Ra}
[α � a]U = {Rα �Ua}

Intuitively, the atoms of the form !a correspond to actions already happened in the past, the atoms
Ua correspond to the urgent actions (also including the past ones), while the atoms Ra are those actions
which can be eventually reached by performing the urgent ones. The encoding of an implication α → a
contains !α→Ua, meaning that a becomes urgent when its preconditions α have been done, and Rα→
Ra, meaning that a is reachable whenever its preconditions are such. The encoding of a contractual
implication α� a contains Rα�Ua, meaning that a is urgent when its preconditions are guaranteed to
be reachable.

Example 3.8. For the PCL theory ∆3 = {a→ b, b� a} in Ex. 3.5, we have:

[∆3]U = {!a→Ub, Ra→ Rb, Rb�Ua,

!a→Ua, !b→Ub, Ua→ Ra, Ub→ Rb}

We have that [∆3]U ` Ua and [∆3]U 6` Ub; also, [∆3]U , !a ` Ub. Notice that if the clause b� a were
mapped by [ ]U to Rb→Ua (without contractual implication), then no atoms would have been provable
in [∆3]U .

The following lemma states that the atoms a for which Ra is derivable from [∆]U are exactly those
atoms which occur in some proof trace of ∆.

Lemma 3.9. a ∈
⋃

J∆K ⇐⇒ [∆]U ` Ra

The following lemma relates proof traces with urgent atoms derivable from [∆]U . The (⇐) direction
states that (any prefix of) a proof trace is made by urgent atoms in sequence. The (⇒) direction states
that a sequence of urgent atoms can be extended to a proof trace.
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Lemma 3.10. Let σ = 〈e0 · · ·en〉. Then,

∀i ∈ 0..n. [∆]U , !σi `Uei ⇐⇒ ∃η . ση ∈ J∆K

The main result about the endomorphism [ ]U follows. Given a Horn PCL theory ∆, an atom a is
urgent in ∆ iff Ua is provable in [∆]U .

Theorem 3.11. For all Horn PCL theories ∆, and for all a 6∈ X ⊆ E:

a ∈ UX
∆ ⇐⇒ [∆]U , !X `Ua

Proof. (⇒) Assume that a ∈ UX
∆

. By Def. 3.6, there exist σ ,σ ′ such that σ = X and σaσ ′ ∈ J∆,XK. By
Lemma 3.10, we have [∆,X ]U , !X `Ua. The thesis [∆]U , !X `Ua follows because [X ]U = !>→UX and
!X implies UX .

(⇐) Assume that [∆]U , !X `Ua. Since [∆,X ]U `Ue for all e ∈ X . Take any σ such that σ = X . By
Lemma 3.10 it follows that there exist σ ,η such that σ = X and σaη ∈ J∆,XK. By Def. 3.6, we conclude
that a ∈ UX

∆
.

4 A logical view of contracts

In this section we present our main results about the relation between contracts and PCL. For a conflict-
free CES E and a Horn PCL theory ∆, we write ∆ ∼ E whenever there exists an isomorphism which
maps an enabling X ` e in E to a clause (

∧
X)→ e in ∆, and a circular enabling X  e to (

∧
X)� e.

Theorem 4.5 shows that, for a relevant class of payoff functions, we can characterise agreement in terms
of provability in PCL. Theorem 4.9 states that proof traces correspond to sequences of prudent events.
Finally, Theorem 4.11 relates winning strategies with urgent atoms.

Before providing the technical details, we illustrate the relevance of these results with the help of a
couple of examples.

Example 4.1. Consider the following Horn PCL theory ∆?:

∆? = {(e0∧ e1)� e6, e6→ e3, e6→ e4, e3→ e0,

(e4∧ e5)� e7, e7→ e1, e7→ e2, e2→ e5}

It is possible to prove that ∆? ` ei for all i ∈ 0..7. However, this is not straightforward to see, and indeed
were any one of the� in ∆? replaced with a→, then no atoms would have been provable.

We can exploit the correspondence between provability in PCL and agreement in contracts to obtain
a simple proof of ∆? ` ei. To do that, observe that ∆? is isomorphic to the CES E? depicted as:

e0 e1 e2

e3 e4 e5

e6

e7

and let C= 〈E?,Φ〉, where we assume a single participant A, whose payoff is ΦA= {σ | ∀i ∈ 0..7. ei ∈ σ}.
It is easy to check that the contract C admits an agreement. Indeed, e6 and e7 are prudent in ε; e0

becomes prudent after e3 is fired; e5 after e2; events e3,e4 after e6; events e1,e2 after e7. Therefore, there
exists a winning strategy for A in C. Theorem 4.5 allows for transferring this result back to PCL, by
establishing that all the atoms e0, . . . ,e7 are provable in ∆?
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Furthermore, the correspondence between contracts and PCL allows for easily constructing the
proof traces of ∆? — which is not as straightforward by applying Def. 3.4. The plays σ where A wins are
those where only the prudent events are performed, i.e.:

σ ∈
(

e6 (e4 | e3e0)
)
|
(

e7 (e1 | e2e5)
)

By Theorem 4.9, these plays exactly correspond to the proof traces of the PCL theory ∆?.
Example 4.2 (Shy dancers). There are n2 guests at a wedding party, arranged in a grid of size n× n.
The music starts, the guests would like to dance, but they are are too timid to start. Each guest will dance
provided that at least other two guests in its 8-cells neighborhood will do the same.

We model this scenario as follows. For all i, j ∈ 1..n, Ai, j is the guest at cell (i, j), and ei, j is the event
which models Ai, j dancing. The neighborhood of (i, j) is Ii, j = {(p,q) 6= (i, j) | |p− i| ≤ 1 ∧ |q− j| ≤ 1},
and we define Ei, j = {ep,q | (p,q) ∈ Ii, j}. Let F be the set of functions from {1..n}×{1..n} to {`,}.
For all • ∈ F, let E• be the CES:

E• =
⋃

i, j∈1..nE
•
i, j where E•i, j = {X • (i, j) ei, j | X ⊆ Ei, j ∧ |X |= 2}

Intuitively, each function • ∈ F establishes which guests use ` and which use . For all • ∈ F and
for all i, j ∈ 1..n, guest Ai, j promises to dance if at least two neighbours have already started (in case
•(i, j) = `), or under the guarantee that they will eventually dance (when •(i, j) = ).

Now, let Φ(Ai, j) = {σ | σ ∩Ei, j ≥ 2}, for all i, j ∈ 1..n. For all • ∈ F, we ask whether the contract
C• = 〈E•,Φ〉 admits an agreement, i.e. if all guests will eventually dance. We have that C• admits an
agreement iff there exist two guests in the same neighborhood which use . Formally:

∃i, j ∈ 1..n. ∃(p,q),(p′,q′) ∈ Ii, j. (p,q) 6= (p′,q′) ∧ •(p,q) = = •(p′,q′)

Indeed, when the above holds, the strategy:

Σ
•
i, j(σ) =

{
{ei, j} if ei, j 6∈ σ , and •(i, j) = or σ ` ei, j

/0 otherwise

is winning, for all guests Ai, j. As noted in the previous example, the correspondence established by
Theorem 4.5 allows us to transfer the above observations to PCL. In particular, the above provides a
simple proof that, in the Horn PCL theory:

∆
• = {α • (i, j) ei, j | α ⊆ Ei, j ∧ |α| ≥ 2 ∧ i, j ∈ 1..n}

some atom is provable iff there exist at least two distinct clauses which use�. Again, this result would
not be easy to prove directly, without exploiting the correspondence between agreements and provability.
Definition 4.3. We write ∆∼ E when E is conflict-free, and

∆ = {(
∧

X)→ e | X ` e ∈ E}∪{(
∧

X)� e | X  e ∈ E}

To relate agreement with provability, we consider the class of reachability payoffs, which neglect
the order in which events are performed. This class is quite broad. For instance, it includes the offer-
request payoffs [9]. Intuitively, these are used by participants which want to be paid for each provided
service. Each participant A has a set {O0

A,O
1
A, . . .} of sets of events (the offers), and a corresponding set

{R0
A,R

1
A, . . .} (the requests). To be winning, whenever A performs in a play some offer Oi

A (in whatever
order), the play must also contain the corresponding request Ri

A, and at least one of the requests has to
be fulfilled.
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Definition 4.4. A reachability payoff is a function Φ : A→℘(E∞) such that if σ = η then σ ∈ΦA ⇐⇒
η ∈ΦA, for all A ∈A.

Alternatively, Φ is a reachability payoff when there exists some predicate ϕ ⊆℘(E) such that σ ∈
ΦA iff σ ∈ ϕ , for all A ∈A.

The following theorem gives a logical characterisation of agreements. If Φ is a reachability payoff
induced by ϕ , and ∆∼ E, then the contract 〈E,Φ〉 admits an agreement whenever the set provable atoms
in ∆ satisfies the predicate ϕ .

Theorem 4.5. Let ∆ ∼ E, and let Φ be a reachability payoff defined by the predicate ϕ . Then, the
contract C= 〈E,Φ〉 admits an agreement iff {a | ∆ ` a} ∈ ϕ .

Example 4.6. Consider the following offer-request payoff Φ of A and B:

O0
A = {a0} O1

A = {a0,a1} O0
B = {b0} O1

B = {b2}
R0
A = {b0,b2} R1

A = {b1} R0
B = {a0} R1

B = {a0,a2}

and let the obligations of A and B be modelled by the CES E with enablings:

{b0,b2}  a0 b1 ` a1 b2  a2 a0 ` b0 {a0,a1} ` b1 {a0,a2} ` b2

In the PCL theory ∆ ∼ E, the set of provable atoms is {a0,a2,b0,b2}. Therefore, by Theorem 4.5 it
follows that the contract C= 〈E,Φ〉 admits an agreement.

Recall from Def. 2.8 that, when a contract admits an agreement, all participants have a winning
strategy. Two relevant question are then how to construct a winning strategy for each participant, and
how such strategy is related to PCL. We answer these questions in Theorem 4.11 below, where we show
that a winning strategy can be obtained by following the order of urgent atoms.

In order to prove Theorem 4.11 we need to establish some further results about strategies and proof
traces. The first result is Lemma 4.7, which provides an alternative characterisation of prudent events in
case of conflict-free contracts. We denote with RX the set reachable events with past X . Intuitively, if a
set X of events has been performed in the past, we consider an event e 6∈ X reachable with past X when e
occurs in some play ση where the prefix σ is a linearization of X , and the overall credits are contained
in X (i.e., past debits need not be honoured). Lemma 4.7 states that an event e is prudent for A in σ

whenever e ∈ Pσ , namely the set of events which are `-enabled by σ , or -enabled by σ ∪Rσ .

Lemma 4.7. For a set X ⊆ E, let

RX = {e 6∈ X | ∃σ ,η : σ = X , e ∈ η , and Γ(ση)⊆ X}
PX = {e 6∈ X |X ` e or X ∪RX  e}

Then, e is prudent in σ iff e ∈ Pσ .

The criterion given by Lemma 4.7 is much simpler than the mutually coinductive definition of pru-
dence in Def. 2.5. Indeed, a polynomial-time algorithm for computing PX can be easily devised as
follows. At step 0, we compute the reflexive transitive closure X1 of the hypergraph of the CES E (ne-
glecting the -enablings), taking as start nodes all the events in X ∪Y0, where Y0 = {e | ∃Z : Z  e ∈ E}
contains the events at the right of some  in E. The transitive closure can be computed in polynomial
time in the number of events in E. If X1  Y0, then X1 = RX . Otherwise, we repeat the above procedure
with start nodes X ∪Y1, where Y1 = {e ∈ Y0 | X1  e}, until reaching a fixed point. In the worst case,
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we do n steps, hence we have a polynomial algorithm for computing RX . After this, PX can be easily
computed, as in Lemma 4.7.

The following lemma provides a link between contracts and PCL, by establishing that prudent events
in a CES E correspond exactly to urgent atoms in a PCL theory ∆∼ E. The idea of the proof is to exploit
the mapping [ ]U in Def. 3.7 as a bridge between CES and PCL. To do that, we first map E to a PCL theory
[E]U , and we relate the prudent events in E to the provable atoms in [E]U . Since ∆ ∼ E, we have that
[E]U = [∆]U , and so by Theorem 3.11 we can relate provability in [∆]U with urgent atoms in ∆. Summing
up, the prudent events in E are the urgent atoms in ∆.

Lemma 4.8. Let ∆∼ E. Then, for all X ⊆ E, PX
E = UX

∆
.

We can now relate prudence in contracts with proofs in PCL. Theorem 4.9 states that the plays of
prudent events correspond to prefixes of proof traces.

Theorem 4.9. Say σ = 〈e0 e1 · · ·〉 is a prudent play of E when ei is prudent for σi in E, for all i. If ∆∼ E,
then σ is a prudent play of E iff ∃η . ση ∈ J∆K.

Example 4.10. The prudent plays of the CES E3 in Fig. 1 are ε , a, and ab (see Ex. 2.6). By Theorem 4.9,
these can be extended to proof traces in the corresponding Horn PCL theory ∆3 ∼ E3. Indeed, ab is a
proof trace of ∆3 (see Ex. 3.5).

Our last main result relates the winning strategies of a contract C= 〈E,Φ〉 with the proof traces of a
PCL theory ∆ ∼ E. In particular, for all participants A we construct a strategy that, in a play σ , enables
exactly the events of A which are urgent in σ . This strategy is prudent for A, and leads A to a winning
play whenever A agrees on C.

Theorem 4.11. Let ∆∼ E, and let the strategy ΣA be defined as:

ΣA(σ) = Uσ
∆ ∩ π

−1(A)

Then, ΣA is a prudent strategy for A in C= 〈E,Φ〉. Moreover, if Φ is a reachability payoff and C admits
an agreement, then ΣA is winning for A.

5 Conclusions

We have studied the relations between two foundational models for contracts. The main result is that
the notions of agreement and winning strategy in the game-theoretic model of [9] have been related,
respectively, to that of provability and proof traces in the logical model of [11] (Theorems 4.5 and 4.11).

Some preliminary work on relating event structures with the logic PCL has been reported in [8]. The
model of [8] does not exploit game-theoretic notions: payoffs are just sets of events, and agreement is
defined as the existence of a configuration in the CES which contains such set. In this simplified model,
it is shown that an event is reachable in a CES whenever it is provable in the corresponding PCL theory.
Hence, an agreement exists whenever all the events in the participant payoffs are provable. Theorem 4.5
extends this result to a more general (game-theoretic) notion of agreement and of payoff.

In [6] the idea of performing events “on credit” has been explored in the domain of Petri nets. In
the variant of Petri nets presented in [6] (called Lending Petri nets, LPNs), certain places may be tagged
as “lending”, with the meaning that their marking can become negative, but must be eventually brought
back to a nonnegative value. A technique is presented to transform Horn PCL theories into LPNs, and it
is shown that provability in a PCL theory corresponds to weak termination in the LPN obtained by the
transformation.
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An encoding of Horn PCL formulae into a variant of CCS has been presented in [10]. Very roughly,
the encoding maps a clause α→ a in a process which inputs all the channels in α and then outputs on a,
while a clause α � a the input of α and the output of a is done in parallel. The actual encoding is more
sophisticated than the above intuition, mostly because it has to take into account multiple participants
which share the same channels, and it has to preserve the notion of culpability defined in the logical
model. In particular, in the CCS model a participant has to be culpable only when omitting to produce a
promised output, or omitting to input an available message.
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