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Abstract. In algebraic topology, compact 2-dimensional manifolds are
usually dealt through a well-defined class of words denoting polygonal
presentations. In this paper, we show how to eliminate the useless bureau-
cracy intrinsic to word-based presentations by considering very simple
combinatorial structures called pq-permutations. Thanks to their effec-
tiveness, pq-permutations allow to define a rewriting system P able to
compute, in a very easy and intuitive way, the quotient surface associ-
ated with any given polygonal presentation. From an algorithmic point of
view, this procedure constitutes a remarkable improvement with respect
to the classical one afforded by Massey.

1 Introduction

A standard result in algebraic topology establishes that any compact 2-dimensional
manifold (usually simply called surface) S can be univocally determined by a
finite set of polygons WS = {w1, w2, . . . , wn}, each one having the edges labeled
and oriented (triangulation theorem). The idea is that a surface S is charac-
terized by a finite set of polygons WS if, modulo identification of paired edges,
the quotient surface induced by WS is exactly S . Such a set of polygons WS

is said to be a polygonal presentation of S and it is usually presented as a set of
words [7, 10]. An effective procedure for computing surfaces from their polygonal
presentations can be found in [10]. In this classical reference, Massey affords an
algorithm for transforming any given presentation into an equivalent one having
perimeter in canonical form: a standard shape in which the basic geometrical
information concerning the presented surface is explicitly displayed.

The notion of q-permutation has been gradually introduced in a few contri-
butions concerning theoretical computer science and, in particular, the ambit
of linear proof theory [6, 8, 1]. The idea leading to q-permutations consists in
remarking that the basic information concerning any compact and orientable 2-
manifold (possibly with boundary) can be encoded by a very easy mathematical
structure formed by a permutation σ paired with a natural number q. Roughly
speaking, whereas σ denotes, cycle by cycle, each boundary-component, q works
as a counter for the number of tori involved in the connected sum to which the
surface at issue is homeomorphic. The notion of q-permutation is clearly rooted
in the well-known classification theorem which states that any orientable surface
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turns out to be homeomorphic to either a connected sum of tori or a sphere (no
tori in the connected sum) [10].

A more general structure able to characterize surfaces in general, not only ori-
entable but also non-orientable, is here once again suggested by the classification
theorem which ensures that any non-orientable surface is always homeomorphic
to a connected sum of projective planes [10]. Thus, whereas the part of our per-
mutative structure encoding the boundary is kept unmodified, we replace our
single counter with a couple of natural numbers: the first one for counting, as
usual, tori and the second one for indicating projective planes. This kind of en-
riched structures are here called pq-permutations and they should be seen as
a way to polish up words from useless bureaucracy, a more perspicuous and
efficient way to express word-based presentations.

The specific perspicuousness displayed by pq-permutations is shown to have
interesting computational spin-offs. pq-Permutations induce in fact a rewriting
system P which is able clearly "mimic", step by step, the process of forming a
surface through identification of paired edges. As a consequence, we have that P
constitutes an algorithmic improvement of Massey’s procedure and, more gener-
ally, of all the classical word-based treatment of topological surfaces. Moreover,
P is shown to enjoy both the fundamental computational properties of strong
normalization and strict strong confluence [2].

2 From Polygonal Presentations to Quotient Surfaces

2.1 Polygonal Presentations

It is a well-known achievement in algebraic topology that any surface S can
be completely characterized by a finite set of polygons forming an its polygonal
presentation [10, 7]. In particular, a presentation WS of a surface S consists in a
finite set of polygons {w1, . . . , wn} whose perimeters are constituted by labelled
and oriented edges, such that:

– no more than two edges can have the same label;
– the quotient of WS , modulo identification of paired edges, is the surface S .

Since fixed a clockwise or an anticlockwise orientation, any polygon w turns out
to be completely determined by its perimeter, namely by a cycle of oriented
edges. Edges having orientation opposite to the fixed one, are indicated by rais-
ing them at the minus one power. Thus, polygonal presentations are usually
written as sets of words on an alphabet A ∪ A−1, where A = {a, b, c, . . .} and
A−1 = {a−1, b−1, c−1, . . .}, considered up to circular permutations. In the sequel
of this paper we will adopt the simplified notation x and x̄ (x ∈ A ∪ A−1),
for meaning that the pair of edges labeled with x have opposite orientations.
The bar-operation (¯) is clearly an involution without fix point, namely, for any
x ∈ A ∪A−1, ¯̄x = x and x 6= x̄.
We recall some basic polygonal presentations: sphere: aāaāaā; torus: abāb̄abāb̄abāb̄ (see Figure
1); projective plane: aaaaaa; Klein bottle: abābabābabāb.



Computing Surfaces via pq-Permutations 3

Fig. 1. The polygon abāb̄ becomes a torus.
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Theorem 1 (classification theorem). Any compact connected surface (pos-
sibly with boundary) is homeomorphic to exactly one of the following surfaces:
a sphere, a finite connected sum1 of tori, or a finite connected sum of projective
planes (possibly with boundary). The sphere and connected sums of tori are ori-
entable surfaces, whereas connected sums of projective planes are non-orientable.

Notation. W, U, V, . . . denote sets of words, whereas we adopt small letters
w, u, v, q, . . . for indicating single words. If w = a1a2 . . . an, then w̄ = ānān−1 . . . ā1;
and, if W = {w1, w2, . . . , wn}, then W̄ = {w̄1, w̄2, . . . , w̄n}. Polygonal presenta-
tions consisting in a sigleton WS = {w} are simply indicated with wS .

A detailed proof for Theorem 1 can be found in [10], where Massey provides an
algorithm for rewriting any given 1-polygon presentation into an equivalent one
(i.e. denoting the same surface) having perimeter in so-called canonical form.
The advantage of dealing with presentations in canonical form consists in the
fact that they make easily understood the fundamental information concerning
the presented surface.

Definition 1 (canonical forms). Words of the shape a1b1ā1b̄1 . . . anbnānb̄n

and a1a1 . . . anan are respectively abbreviated with torn and pjpn. The following
three canonical shapes

aāx1u1x̄1 . . . xquqx̄q tornx1u1x̄1 . . . xquqx̄q pjpnx1u1x̄1 . . . xquqx̄q

respectively denote a sphere, a connected sum of n tori and a connected sum of n

projective planes, in all cases with the boundary decomposed into q components:
u1, u2, . . . , uq.

2.2 Massey’s Algorithm

We consider the problem of computing the connected surface S associated with
a given polygon wS ; the connectness of S allows to consider the simplest case

1 Roughly speaking, the connected sum operation consists in connecting two surfaces
with a tube after cutting out holes in the surfaces where the tubes are attached.



4 Pulcini, G.

of a 1-polygon presentation: disconnected surfaces can be easily recovered by
singularly considering connected components. The problem of computing S cor-
responds to the problem of rewriting wS into an equivalent polygon w′

S
having

canonical form. We summarise below the procedure provided by Massey for
proving the classification theorem [10]; it essentially concerns surfaces without
boundary: bordered 2-manifolds will be recovered through a particular escamo-
tage. Recall that, in algebraic topology, surfaces are usually considered modulo
"reversible cuts", in other words: we can always cut a surface provided that
we leave on the two new edges in this way obtained the information (label +
orientation) needed for recomposing them without ambiguities.

– Step 1: eliminating redundant edges. Adjacent paired opposite edges
have to be identified before applying each one of the following four steps.

z z

w w

z

– Step 2: forming an unique equivalence class. We say that two vertices
P and Q are equivalent if, and only if, they are to be identified (for instance,
in the polygon on the right, P and P ′ turn out to be equivalent). Suppose
that P and Q belong to two different equivalence classes, namely [P ] 6= [Q];
we can make one point of [P ] migrate into [Q] by cutting along c and gluing
along b. By successive migrations, we can easily obtain an unique equivalence
class.

a b

a
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c

c
b

a
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– Step 3: storing a torus. A torus (namely a segment cdc̄d̄) can be explicitly
achieved by cutting and gluing as indicated below.
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– Step 4: storing a projective plane. We can explicitly achieve a projective
plane (namely a segment cc) by cutting along c and gluing along b.
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– Step 5: applying a basic homeomorphism. An algorithm based on the
previous four steps may provide polygons in pre-canonical form, namely
having explicit tori mixed with explicit projective planes: tornpjpm. So, for
obtaining final canonical forms, Massey recurs to the basic homeomorphism
between the connected sum of a projective plane with a torus and the con-
nected sum of three projective planes. This homeomorphism is proved by
showing that the connected sum of a projective plane with a torus (figure
on the left) and the connected sum of a projective plane with a Klein bottle
(figure on the right) can be reported to the same surface by cutting them
along a. We recall that a Klein bottle is homeomorphic to the connected sum
of two projective planes. Therefore, a polygon having perimeter tornpjpm

is equivalent to a polygon having canonical form pjp2n+m.



6 Pulcini, G.

� � � �

�� ��
��

projective

plane

projective

plane

torus

Klein bottle

Remark 1. At first sight, Step 2 may seem to have not a precise task in the
mechanism of Massey’s procedure, so we precise that its specific role consists in
preventing to have deadlock configurations as, for instance, aacbbc̄. This polygon
indicates the connected sum of two projective planes – i.e. it is equivalent to aabb

–, but we do not know how to eliminate the redundant information afforded c-
edges. If we explicit the vertices aPaQcRbSbT c̄U , it easy to check that {U, P, Q}
and {T, S} form two distinct equivalence classes.

Recovering boundaries. As already seen, Massey’s algorithm essentially deals
with non-bordered surfaces. In case of surfaces with boundary, we can assume as
a starting point a polygon W including all boundary components in its interior
(it is a corollary of the triangularisation theorem [10]). So, at first, we transform
W into a polygon W ′ in canonical form; then, we "extract" on the perimeter all
the boundary-components as indicated below. In this way, each connected piece
of boundary ui will be explicitly achieved as a segment xiuix̄i.

u1

u2

u3

u4

x1

x2

x3 x4

u2

u3

u4

x1 x2

x3 x4

x1

u1

w w

2.3 A Rewriting System on Words

Definition 2 (rewriting system). A rewriting system R consists of a set of
terms {t1, t2, . . .} closed with respect to a set of transformations {r1, r2, . . . , rn}.
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Fig. 2. Intuitive explanation of the Möbius rule.
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Notation. In the specific jargon of term rewriting, an application of a single rule
is called step of reduction. Consider a generic rewriting system R: we write t →ri

t′ and t →R t′ for meaning that t′ is obtained from t respectively by applying
the (single) specific transformation ri and a (single) generic transformation of R.
t R t′ indicates that t′ is obtained from t throughout a sequence of reduction
steps [2]. We write t  ∗

R t′ for meaning that t′ is not further rewritable; t′ is
said to be a normal form for t.

Definition 3. The rewriting system W is defined by taking polygonal presenta-
tions as terms together with the following six rules:

– glue: W, wa, āv → W, wv

– split: W, wv → W, wa, āv

– cutting-out: W, waā → W, w

– pump: W, w → W, waā

– invert: W, w → W, w̄

– shift: W, wxux̄v → W, wvxσ(u)x̄, where σ is a cyclic permutation.

The set of rules just listed is a slight variant of that one already proposed in
[5]: in particular, the primary list has been here closed under inversion of rules
(e.g., pump is nothing else but the leftward reading of cutting-out). This kind
of closure allows to state that, if W  W W ′, then W ′

 W W , which is a very
natural property for the specific topological context we consider in these pages.

Lemma 1. The following rule is admissible in W: W, wava →Mobius W, wv̄aa.

Proof. The mechanism of this rule is intuitively explained in Figure 2. Never-
theless, for being more precise, we show that W, wava W W, wv̄aa:

W, wava →split W, waz, z̄va →inv. W, waz, āv̄z →glue W, wv̄zz =rename W, wv̄aa.

Lemma 2. Segments indicating tori or projective planes behave as central ele-
ments, namely they can be freely moved inside words.
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Table 1. Geometrical visualization of the rules in W.
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Proof. The proof consists in detailing the following two chains:

W, waav  W W, wvaa and W, wabāb̄v  W W, wvabāb̄.

By the leftward reading of the chain used to prove the previous lemma, we have
the admissibility of wv̄aa →Mob.−1 wava; thus, we can write:

W, waav →Mob.−1 W, aw̄av →inv. W, v̄āwā →Mob. W, v̄āāw̄ →inv. W, waav.

For what concerns the other chain, we have:

W, wabāb̄v →shift W, wavbāb̄ →shift W, wb̄avbā →shift

→shift W, wāb̄avb →shift W, wvbāb̄a =rename W, wvabāb̄.

Definition 4. Two polygonal presentations W and V are said to be equivalent,
W ∼ V , if they present the same surface.

Theorem 2. If W and W ′ are two presentations such that W →W W ′, then
W ∼ W ′.

Proof. We sketch an intuitive version of the proof (the reader can find more
details in [10]). All the rules listed in Definition 3 are geometrically explained
in Table 1. As already recalled, in algebraic topology surfaces can be considered
modulo "reversible" cuts. The two rules of split and pump (together with their
relative inverses glue and cutting-out) exactly express this idea. Invert rule just
says that the perimeter of a polygon can be read following both the possible
orientations (clockwise or anticlockwise) without changing the presented surface.
The rule of shift is the most meaningful one. The idea is that a segment of
perimeter u included between paired opposite letters, xux̄, can always be "carried
inside" the polygon by identifying the x-edges (see the last figure in Table 1).
Since u is an "hole" inside the polygon, it can be once again "extracted" on the
perimeter by performing a new cut on the surface. Shift rule expresses the fact
that this new cut can be performed from an arbitrary vertex on the perimeter
to an arbitrary vertex on u.

Lemma 3. The connected sum of a torus and a projective plane is homeomor-
phic to the connected sum of three projective planes.

Proof. In terms of words, connected sum is nothing else but concatenation, so
the connected sum of a torus with a projective plane with boundary can be
presented by a polygon having perimeter tor1pjp1 = abāb̄cc. Then, we rewrite
our word as follows:

abāb̄cc →shift acbāb̄c →Lemma1 abab̄cc →Lemma1 b̄aab̄cc →Lemma2 b̄b̄aacc,

namely pjp3.
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3 Pq-Permutations

If we consider a surface S as the final result of identifying paired edges in
a set of polygons forming an its topological presentation, we have that each
boundary-component will be formed by at least one edge. Let ∂S be the set of
labels occurring on the boundary of S ; since fixed an orientation, we can notice
that S induces a cyclic order on each one of the subsets of ∂S corresponding to
boundary-components; in other words, we obtain a permutation on ∂S . The idea
leading to the notion of pq-permutation is that the basic information concerning
any surface S can always be encoded by a very easy mathematical structure
consisting in a permutation σ (denoting, cycle by cycle, the boundary ∂S )
together with a couple of natural numbers 〈p, q〉 respectively counting tori and
projective planes in the connected sum to which S is homeomorphic.

Notation. pq-permutations are denoted with small Greek letters α, β, . . .; big
Greek letters Σ, Ξ, Ψ, . . . denote sets of pq-permutations. When letters W, V, U, . . .

and w, v, u, . . . appear in pq-permutations they respectively stand for sets of cyles
and series of elements (i.e. w = a1, a2, . . . , an). The permutation having empty
support indicated with ǫ. If A = {a, b, c, d, . . .}, then Ā = {ā, b̄, c̄, d̄, . . .}.

Definition 5 (q-permutation). A pq-permutation α is an ordered quadruple
(X, σ, p, q) such that:

– X is a finite multiset from A ∪ Ā in which any letter – considered up to its
orientation – occur at most twice;

– σ is a permutation on X;

– p and q are positive integers.

pq-Permutations are here simply written as indexed permutations:

α = {(w1), (w2), . . . , (wn)}〈p,q〉.

Example 1. The oriented surface illustrated below induces the pq-permutation
{(a, b, c), (d, e)}〈2,0〉.

a b

c

d �
Example 2. For taking an example of a non-orientable surface, a Klein bottle
without boundary will induce the pq-permutation ǫ〈0,2〉 (it is in fact homeomor-
phic to the connected sum of two projective planes [10]).
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Remark 2. pq-Permutations should be seen a way of making the structure of
canonical words more perspicuous by avoiding useless bureaucracy. In particular
segments of the shapes torp and pjpq – respectively used for storing tori and pro-
jective planes – are discarded through the two indices 〈p, q〉, whereas the part con-
cerning the boundary is considered modulo shift rule: x1u1x̄1x2u2x̄2 . . . xrurx̄r

becomes the set of cycles {(u1), (u2), . . . , (ur)}.

It is now clear that the structure of pq-permutations provides an invariant for
considering surfaces modulo isomorphisms, namely modulo homeomorphisms
preserving orientation, alternative to that one provided by words.

Definition 6. We define the rewriting system P by taking sets of pq-permutations
as terms together with the following six rules:

– gluing: Σ, {W, (w, a)}〈p,q〉, {V, (v, ā)}〈p′,q′〉 → Σ, {W, V, (w, v)}〈p+p′,q+q′〉

– invert: Σ, {(w1), . . . , (wn)}〈p,q〉 → Σ, {(w̄1), . . . , (w̄n)}〈p,q〉

– cylinder: Σ, {W, (w, a, v, ā)}〈p,q〉 → Σ, {W, (w), (v)}〈p,q〉

– torus: Σ, {W, (w, a), (ā, v)}〈p,q〉 → Σ, {W, (w, v)}〈p+1,q〉

– Möbius: Σ, {W, (w, a, v, a)}〈p,q〉 → Σ, {W, (w, v̄)}〈p,q+1〉

– Klein: Σ, {W, (w, a), (a, v)}〈p,q〉 → Σ, {W, (w, v̄)}〈p,q+2〉

– sieve: Σ, {W}〈p,q〉 → Σ, {W}〈0,2p+q〉.

Fig. 3. Cylinder rule.

a

a

a

w v
w

w

vv

Gluing and invert rules are nothing else but the conterpart of their homonymous
rules in W . Cylinder expresses the fact that the effect of identifying two opposite
edges occurring on the same piece of boundary, is that one of decomposing
this boundary-component into two components (Figure 3). As far as the torus
rule is concerned, if opposite paired edges occur on two different boundary-
components, their identification forms a new handle on the surface, namely we
achieve one more torus in the connected sum (Figure 4). The Möbius rule comes
straightforwardly from Lemma 1, whereas the Klein rule should be interpreted as
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Fig. 4. Torus rule.
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a kind of "non-orientable torus" whose effect, as its own name suggests, consists
in producing a Klein bottle (two more projective in the connected sum). Finally,
the rule of sieve just expresses the basic homeomorphism stated in Lemma 3.

Definition 7 (weak and strong normalization properties). A rewriting
system R enjoys the weak normalization property if, for every term t ∈ R,
there exists a rewriting sequence able to transform t into a normal form. If any
rewriting strategy is able to carry t into a normal form, our system is said to be
strongly normalizing.

Remark 3. According to the previous definition, we remark that a pq-permuta-
tion α is in normal form if |α| does not contain paired edges and at least one of
the two indices is null (three admitted situations: 〈p, 0〉, 〈0, q〉 and 〈0, 0〉).

Theorem 3. The rewriting system P strongly normalizes.

Proof. For proving this property, one usually attaches a convenient size to terms
and shows that it decreases at each single step of reduction. In case of pq-
permutations, we associate to each α a size [α] = i− j, where i is the number of
paired edges occurring in |α| and j the number of stored tori (namely, the first
index of α). Now it is sufficient to remark that, if α →P α′, then [α′] < [α].

Definition 8 (confluence, strict strong confluence). A rewriting system R
is said to be confluent if, for any three terms a, b, c ∈ R such that a  R b and
a  R c, there exists a fourth term d ∈ R such that b  R d and c  R d. R
enjoys the strict strong confluence property if, in the definition of confluence,
the arrow " " can be replaced everywhere by the single step arrow "→".

Lemma 4. If we consider pq-permutations modulo sieve rule, then P is strictly
strongly confluent.

Proof. With α →a α′ we mean that the pq-permutation α′ has been obtained
from α by identifying a-edges. By considering all the possible cases it is easy to
see that, if α →a β, α →b γ, β →b δ and γ →a δ′, then δ = δ′.
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Example 3. We exemplify below the idea of strict strong confluence. If we have

{(a, w), (a, v, c), (c̄, u)}〈0,0〉 →Klein {(w, c̄, v̄), (c̄, u)}〈0,2〉 and

{(a, w), (a, v, c), (c̄, u)}〈0,0〉 →torus {(a, w), (a, v, u)}〈1,0〉, then

{(w, c̄, v̄), (c̄, u)}〈0,2〉 →Klein {(w, ū, v̄)}〈0,4〉 and

{(a, w), (a, v, u)}〈1,0〉 →Klein {(w, ū, v̄)}〈1,2〉
∼=(sieve) {(w, ū, v̄)}〈0,4〉.

Remark 4. Strict strong confluence implies both confluence and the uniqueness
of normal forms (namely, any pq-permutation has exactly one normal form). It
means, that P is a deterministic system, not only in terms of outputs, but also
in terms of computations. Strict strong confluence extends in fact determinism
to computational processes by asserting their equivalence modulo permutation
of rules (in case of pq-permutations, modulo permutations of identified edges).

Definition 9. We associate with any pq-permutation α a word wα defined as
follows:

α = {(w1), . . . , (wn)}〈p,q〉 7→ wα = torppjpqx1w1x̄1 . . . xnwnx̄n.

If Σ = {α1, α2, . . . , αn}, then WΣ = {wα1
, wα2

, . . . , wαn
}; so, the equivalence

relation "∼" can be extended to sets of pq-permutations in a very natural way:
Σ ∼ Ξ if, and only if, WΣ ∼ WΞ .

Theorem 4. Given two pq-permutations α and β, if α →P β, then α ∼ β.

Proof. The proof consists in showing that any chain of pq-permutations Ξ  P

Ξ ′ has a precise counterpart in terms of words WΞ  W WΞ′ and, in particu-
lar, if Ξ ′ is in normal form, then WΞ′ is in canonical form. Just a preliminary
remark on notation: when a set of cycles W = {(u1), . . . , (un)} occurring in a
pq-permutation is "translated" into a word, its notation is kept unchanged but
it is meant to be W = x1u1x̄1 . . . xnunx̄n. Thus, it is clear that a segment like
W can be freely moved inside a word throughout a series of shift rules.

– Gluing: The set Σ, {W, (w, a)}〈p,q〉, {V, (v, ā)}〈p′,q′〉 becomes

WΣ , torppjpqWx1wax̄1, torp′pjpq′V x2vāx̄2. Then we have:

WΣ , torppjpqWx1wax̄1, torp′pjpq′V x2vāx̄2 →glue

→glue WΣ , torppjpqWx1wx̄2torp′pjpq′V x2vx̄1  Lemma2

 Lemma2 WΣ , torptorp′pjpqpjpq′Wx1wx̄2V x2vx̄1 ∼

∼ WΣ , torp+p′pjpq+q′Wx1wx̄2V x2vx̄1  shift

 shift WΣ , torp+p′pjpq+q′WV x1wx̄2x2vx̄1 →cut

→cut WΣ , torp+p′pjpq+q′WV x1wvx̄1;

in terms of pq-permutations: Σ, {W, V, (w, v)}〈p+p′,q+q′〉.

– Invert: easy.

– Cylinder: Σ, {W, (w, a, v, ā)}〈p,q〉 → Σ, {W, (w), (v)}〈p,q〉. Two cases.
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– v is not the empty word.
Σ, {W, (w, a, v, ā)}〈p,q〉 becomes WΣ , torppjpqWxwavāx̄ and so:

WΣ , torppjpqWxwavāx̄ →shift WΣ , torppjpqWxwx̄avā,

namely Σ, {W, (w), (v)}〈p,q〉.
– v is the empty word: instead of a shift rule, we apply a cutting-out.

– Torus: Σ, {W, (w, a), (ā, v)}〈p,q〉 corresponds to WΣ , torppjpqWx1wax̄1x2āvx̄2.

WΣ , torppjpqWx1wax̄1x2āvx̄2 →shift WΣ , torppjpqWx1wvx̄2ax̄1x2ā

→shift WΣ , torppjpqWx1wvāx̄2ax̄1x2 →shift

→shift WΣ , torppjpqWx1wvx̄1x2āx̄2a ∼ WΣ , x2āx̄2atorppjpqWx1wvx̄1 ∼

∼ WΣ , torp+1pjpqWx1wvx̄1, in terms of pq-permutations:

Σ, {W, (w, v)}〈p+1,q〉.

– Möbius: Σ, {W, (w, a, v, a)}〈p,q〉 becomes WΣ , torppjpqWxwavax̄.

WΣ , torppjpqWxwavax̄ →Lemma1 WΣ , torppjpqWxwv̄aax̄ →Lemma2

→Lemma2 WΣ , torppjpqaaWxwv̄x̄ ∼ WΣ , torppjpq+1Wxwv̄x̄,

namely Σ, {W, (w, v̄)}〈p,q+1〉.

– Klein: Σ, {W, (w, a), (a, v)}〈p,q〉 becomes WΣ , torppjpqWx1wax̄1x2vax̄2.

WΣ , torppjpqWx1wax̄1x2vax̄2 →Lemma1 WΣ , torppjpqWx1wv̄x̄2x1aax̄2

→Lemma1 WΣ , torppjpqWx1wv̄āāx̄1x̄2x̄2 →Lemma2

→Lemma2 WΣ , torppjpqāāWx1wv̄x̄1x̄2x̄2 →Lemma2

→Lemma2 WΣ , torppjpqāāx̄2x̄2Wx1wv̄x̄1 ∼ WΣ , torppjpq+2Wx1wv̄x̄1.

In terms of pq-permutations: Σ, {W, (w, v)}〈p,q+2〉

– Sieve: immediately by applying Lemma 3.

Example 4. As the reader can check below, Ξ ′ = {{(d), (c)}〈1,0〉} is the normal
form of Ξ = {{(d, y−1, b−1, z)}〈0,0〉, {(z

−1, a, x, c, b, x−1, a−1, y)}〈0,0〉}:

{(d, y−1, b−1, z)}〈0,0〉, {(z
−1, a, x, c, b, x−1, a−1, y)}〈0,0〉 →glue

→glue {(d, y−1, b−1, a, x, c, b, x−1, a−1, y)}〈0,0〉 →cyl.

→cyl. {(d, y−1, b−1, a, a−1, y), (c, b)}〈0,0〉 →torus

→torus {(d, y−1, c, a, a−1, y)}〈1,0〉 →cyl. {(d, y−1, c, y)}〈1,0〉 →cyl. {(d), (c)}〈1,0〉 .

By following the instructions provided by the previous proof, we obtain the
following chain of words ending with a canonical form.

dy−1b−1z, z−1axcbx−1a−1y →glue dy−1b−1axcbx−1a−1y →shift

dy−1b−1aa−1yxcbx−1 →shift dy−1x−1b−1aa−1yxcb →shift

→shift dy−1cbx−1b−1aa−1yx →shift dy−1caa−1yxbx−1b−1 ∼

∼ w1dy−1caa−1y →cut. w1dy−1cy ∼ w1z
−1dzy−1cy.

The just-mentioned theorem constitutes the arrival point of this paper: it says
that all the transformations included in P do not affect the geometry of the de-
noted surface. It means that P induces an algorithm for computing the quotient
surface associated with any given polygonal presentation.
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Procedure 5 (computing surfaces) We aim to compute the quotient surface
S associated with the polygonal presentation WS = {w1, w2, . . . , wn}. We con-
sider the set of pq-permutations ΣWS

= {αw1
, αw2

, . . . , αwn
} obtained by trans-

lating each polygon wi ∈ WS as follows:

wi = a1a2 . . . ak ⇒ αwi
= {(a1, a2, . . . , ak)}〈0,0〉.

Then we reduce ΣWS
to its normal form Σ′

WS
: Theorem 4 ensures that Σ′

WS

exactly denotes the final surface we are looking for.

As the reader will be able to notice by looking at the following examples, Proce-
dure 5 turns out to be much more easy and intuitive with respect to the classical
algorithm provided by Massey and illustrated in paragraph 2.2. This is essen-
tially due to the fact that pq-permutations admit a set of transformations able to
"mimic", step by step, the process of forming a surface S from an its polygonal
presentation WS . From a strict algorithmic point of view, we can remark that,
unlike Massey’s algorithm, Procedure 5:

– does not require any information about vertices, because it works by only
considering edges;

– is able to deal directly with boundary, so we cannot have to pose specific
constraints on the starting polygonal presentation;

– provides a very clear combinatorial model of what exactly happens while
composing a surface.

Example 5. We show that the connected sum of a torus with a projective plane
is homeomorphic to a connected sum of three projective planes. The polygon
denoting the surface at issue has perimeter: abāb̄cc. According to Procedure 5,
we normalise the pq-permutation {(a, b, ā, b̄, c, c)}〈0,0〉 as follows:

{(a, b, ā, b̄, c, c)}〈0,0〉 →cyl. {(b), (b̄, c, c)}〈0,0〉 →Mobius

→Mobius {(b), (b̄)}〈0,1〉 →torus ∅〈1,1〉 →sieve ∅〈0,3〉.

Or, alternatively:

{(a, b, ā, b̄, c, c)}〈0,0〉 →Mobius {(a, b, ā, b̄)}〈0,1〉 →cyl.

→cyl. {(b), (b̄)}〈0,1〉 →torus ∅〈1,1〉 →sieve ∅〈0,3〉.

Example 6. We show that the polygon abāb presents a Klein bottle, namely a
surface homeomorphic to the connected sum of two projective planes. According
to Procedure 5, we normalise the pq-permutation {(a, b, ā, b)}〈0,0〉 as follows:

{(a, b, ā, b)}〈0,0〉 →cyl. {(b), (b)}〈0,0〉 →Klein ∅〈0,2〉.

Or, alternatively:

{(a, b, ā, b)}〈0,0〉 →Mobius {(a, a)}〈0,1〉 →Mobius ∅〈0,2〉.
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Example 7. We stress Procedure 5 for showing that the two words

a1a2 . . . a2nā1ā2 . . . ā2n and a1a2 . . . anā1ā2 . . . ān−1an

constitute an alternative canonical form for the connected sum of respectively n

tori and n projective planes (exercises proposed in [10] by Massey).

{(a1, a2, a3, . . . , a2n, ā1, ā2, ā3, . . . , ā2n)}〈0,0〉 →cyl.

→cyl. {(a2, a3, . . . , a2n), (ā2, ā3, . . . , ā2n)}〈0,0〉 →torus

→torus {(a3, . . . , a2n, ā3, . . . , ā2n)}〈1,0〉  cyl.+torus ∅〈n,0〉.

{(a1, a2, . . . , an−1, an, ā1, ā2, . . . , ān−1, an)}〈0,0〉 →Mobius

→Mobius {(a1, a2, . . . , an−1, an−1, . . . , a2, a1)}〈0,1〉  Mobius ∅〈0,n〉.

4 Future Work and Applications

Many directions of research are opened, not necessarily in convergent directions.
Some standard achievements in geometry of 2-dimensional manifolds are ex-

pected to be recovered by stressing pq-permutations and their algorithmic prop-
erties. In primis, we guess a new proof for the classification theorem to be ob-
tained by showing that the rule of sieve is surperfluous. To be more precise, a
polygon presenting an orientable surface should be rewritable by only apply-
ing cylinder and torus, whereas, in case of non-orientable surfaces, the torus rule
should be shown redundant. Unlike that one afforded in this paper for computing
surfaces, a classification-algorithm of this kind might be sufficiently expressive
for posing the problem of its P or NP-completeness.

In this paper we have proposed an application of pq-permutations essentially
concerning the direction of classification: from polygons to quotient surfaces.
Nevertheless, we guess the converse direction (that one of triangulation) to be of
interest all the same. We uphold in fact the idea that pq-permutations provide an
optimal context for studying the decomposition of surfaces, especially in presence
of specific constraints. To take an example, it is clear that a very easy proof of the
Jordan curve theorem for closed surfaces can be inductively given by stressing
the system P (in this case our constraint would be that one of connectness).

Finally, we hint at some possible applications in the framework of process
calculi applied to biological systems. In Brane Calculi and their variants [3, 4], a
topological context is imposed by the fact that membranes are two-dimensional
fluids which interact embedded in a three-dimensional fluid. The structure of
pq-permutations recall that one of membranes (at least in case of cyclic permu-
tations) and some transformations considered by the system P would seem to
be very close to Cardelli’s bitonal interactions.
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