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Introduction

The object of the thesis

What is an analytical proof?

Such a question has been for a long time a crucial one in logic. We think
that modern proof theory has refreshed the question, setting it in a new and
fruitful framework.

Traditionally, a proof of a theorem A is considered analytical when it proves
A only developing concepts already present in A. In [Gen35], Gentzen provides
a formal proof system which allows a mathematical definition of such an intu-
itive notion of analyticity – the subformula property. A proof of A meets the
subformula property if all the formulas occurring in it are subformulas of A.

Of course, many proofs are not analytical. Actually when we prove a theorem
by using a lemma, we lose the analyticity, since the lemma can exploit concepts
unrelated with the theorem. In Gentzen’s system, applying a lemma corresponds
to use a cut, the unique logical rule which violates the subformula property. The
remarkable result of [Gen35] is the Hauptsatz theorem, stating that cuts can be
removed, i.e. any proof of classical logic can be reduced to a cut-free proof – a
proof satisfying the subformula property.

A first naive answer to our original question is the following:

An analytical proof is a cut-free proof.

Well, such an answer is not so bad, since it provides a formal definition of the
intuitive notion of analytical proof, but yet the framing is not well hit. Actually
the most remarkable point of the Hauptsatz theorem is not its statement, but
its proof. This last one has in fact disclosed a startling dynamics within classical
logic, consisting in the rules which transform any proof with cuts in a cut-free
proof. Such a dynamics has been a turning point in proof theory, revealing an
unexpected correspondence between proofs and programs: the Curry-Howard
isomorphism. This isomorphism associates proofs with programs, in such a way
that the reduction of the cuts in a proof corresponds to the execution of the
associated program.

The Curry-Howard isomorphism has leaded to a prolific exchange between
logic and computer science, which is still alive. In particular, it provides a fresh
answer to our original question:

An analytical proof is what is invariant under cut reduction.
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The research of invariants under a transformation is a crucial one in mathe-
matics. In logic such a research is called semantics. In particular denotational
semantics describes the invariants under cut reduction by elements of special
mathematical structures (like sets, topological spaces, coherent spaces etc. . . ).
The general object of our thesis is to understand how precise this description
can be.

Actually, the cut reduction in classical logic is a very clumsy process. So
clumsy that the notion itself of invariant has a meaning only for the intuitionistic
logic - a restriction of classical logic. In whole Gentzen’s classical logic the only
invariant under cut reduction is the provability, i.e. the correctness of the proofs.
Everything collapses, any denotational semantics associates the same element
to all correct proofs.

At first, it has been thought that the cause of this collapse was in the nature
of classical negation. Indeed classical negation is involutive, that is ¬¬A is A,
while it is not the case for the intuitionistic one, for which A is stronger than
¬¬A. The discovery of linear logic ([Gir87]) has demolished such a supposition.
Linear logic in fact has a good denotational semantics, although its negation is
involutive.

Linear logic points out that the collapse of the semantics of classical logic is
due to the structural rules (weakening and contraction): classical logic makes
an unrestricted use of such rules, intuitionistic and linear logic do not.

More precisely, linear logic is a refinement of classical and intuitionistic logic,
characterized by the splitting of standard connectives (“and” and “or”) in two
classes (additive and multiplicative) and the introduction of new connectives
(exponentials) which give a logical status to the structural rules of classical and
intuitionistic logic.

This change of viewpoint has many striking consequences in proof theory,
among which one of the most important is the introduction of proof nets, a
graph-theoretic presentation that gives a more geometric account of proofs.

In the framework of proof nets, cut reductions become graph rewriting rules,
transforming a proof net π in a proof net π′. Let us denote such a transformation
by π →β π

′, and by =β the equivalence relation →β induces.
A denotational semantics S for linear logic associates with a proof net π an

element JπKS of S, such that π =β π
′ implies JπKS = Jπ′KS. The elements of

S provide a description of the =β-equivalence classes, our question being how
precise this description can be.

The relation →β meets two crucial properties for a rewriting system: con-
fluence and strong normalization. Confluence means that →β is deterministic,
i.e. all the cut reductions of π converge to a common result. Strong nor-
malization instead means that such a result always exists, i.e. any sequence
π →β π

′ →β π
′′ →β . . . will eventually lead to a cut-free proof net.

Both properties are crucial for comparing the =β-equivalence classes with
their interpretations in S. In fact confluence and normalization guarantee that
each =β-equivalence class contains exactly one cut-free proof net, which is thus
its canonical representative. Hence we can compare =β with S by checking the
following two properties:

injectivity (or faithfulness): for each element s of S there is at most one
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cut-free π such that JπKS = s;

surjectivity (or full completeness): for each element s of S there is at least
one cut-free π such that JπKS = s.

If S is both injective (or faithful) and surjective (or fully complete), then its
elements describe exactly the =β-equivalence classes of the proof nets.

The injectivity and surjectivity of a semantics are traditional questions of
theoretical computer science, but they are quite a novelty in the domain of
proof theory. Actually they are in the spirit of Girard’s program (see [Gir99])
of removing the strict distinction between syntax (proof nets) and semantics.
In fact, a proof of the injectivity and surjectivity of S provides a way for recon-
structing a unique cut-free proof net π from each element s of S, i.e. it provides
the inverse of the S interpretation.

Of course our research should be developed without prejudice for a syntax
or a semantics, i.e. it should renew both of them. On the one hand, we may
change a semantics for getting closer to the proof nets. For example, in chapter
2 we move from the coherent semantics to the hypercoherent one in order to
approach to additive proof nets. On the other hand we may change our notion
of proof nets by following the suggestions of a semantics. Such is the spirit, for
example, of the results on the exponential proof nets of chapter 3.

A last remark before going into the details. The set of proof nets is a subset
of a wider set of graphs: the set of proof structures. More precisely, proof nets
are those proof structures which correspond to correct proofs. The importance
of proof structures is that cut reduction is defined directly on them, so it makes
sense even without logical correctness.

Here is a crucial novelty of linear logic: it introduces a cut reduction, hence
a denotational semantics, on incorrect objects. Thus the two questions of injec-
tivity and surjectivity can be at first addressed in the less restricted framework
of proof structures, and then adapted to proof nets.

Let us be more precise on this point. A proof of the injectivity and surjec-
tivity of a semantics S consists in a method for reconstructing a unique proof
net from each element of S. The reconstruction of π can be divided in two
steps: firstly, we recover from the S interpretation the graphical structure of
π, i.e. we reconstruct π as a proof structure; secondly, we recover from the S

interpretation the correctness of π, i.e. we recognize π as a proof net.
For an example of such a method look at the proof in chapter 1 of the

correspondence between proof nets and complete cliques. In theorem 14 we
deal with a method for reconstructing a multiplicative cut-free proof structure
π from its interpretation JπK. In theorems 24 and 25 we prove that JπK is a
clique if and only if the proof structure π is a proof net.

Injectivity and surjectivity in linear logic

We give a brief overview on the previous works we know about the injectivity
and the surjectivity in linear logic.

Injectivity. A semantics S is injective if for any two proof nets π and π′,
JπKS = Jπ′KS implies π =β π

′.
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The question of injectivity has been addressed in the framework of linear
logic by Tortora in [TdF03b] (see also [TdF00] for a more detailed treatment).
However it is a traditional problem in the denotational semantics of λ-calculus.
In particular recall Statman theorem, stating that the relational model is injec-
tive for the simply typed λ-calculus ([Sta83]).2

The semantic injectivity is deeply related with the so-called syntactical sep-
arability. The most well-known example of syntactic separability is Böhm the-
orem for pure λ-calculus ([B6̈8]): if t, t′ are two closed λ-terms, then t 6=βη

t′ implies that there are λ-terms u1, . . . , un such that tu1 . . . un →β 1 and
t′u1 . . . un →β 0. That is, t and t′ compute two distinct functions on the λ-
terms, u1, . . . , un being an example of arguments on which t and t′ give different
values.

The syntactical separability is a form of injectivity with respect to a model
internal to the syntax. More: it can be proven from a well-chosen result of
semantic injectivity. For example, in [Jol00] Joly proves the syntactical sepa-
rability of the simply typed λ-calculus by means of Statman theorem, i.e. by
means of the injectivity of the relational model.3

In a more proof-theoretical framework, the syntactical separation is a key
property of Girard’s ludics ([Gir01]). Some works on the syntactical separation
have been made also in linear logic. The first one is [MP94], in the frame-
work of pure proof nets, while in the typed case it exists a work by Matsuoka
([Mat05]), dealing with the separation of the implicational multiplicative linear
logic fragment.

Surjectivity. A semantics S is surjective if for any element s in S, there is a
proof net π such that JπKS = s.

As far as we know, the question of surjectivity has been addressed at first
by Girard in [Gir91]. Abramsky and Jagadeesan have defined in [AJ94] the first
surjective (in their terms fully complete) model for the multiplicative fragment
of linear logic (MLL).

The pioneering [AJ94] was followed by a series of papers which established
the surjectivity of a variety of models with respect to various versions of MLL
(see for example [HO92], [BS96], [Tan97], [Ham01]).

More recently the surjectivity for the additive proof nets has been attacked
in [AM99] and [BHS05]. Indeed both papers deal with the additive proof nets
defined in [Gir96], which are not canonical, especially they do not allow in-
jectivity results. The problem of additive canonicity has been overcome by the
additive proof nets defined in [HvG03]. However there is not yet any surjectivity
result with respect to this last syntax.

2Statman theorem is often called completeness theorem, since it states the completeness of
the relational model with respect to the equational theory induced by the β- and η-reductions.

Actually we have to be more precise in the definition of the equivalence between proof
nets induced by the cut reduction. In the λ-calculus we have mainly two rewriting rules:
the β-reduction, which induces the β-equivalence on the λ-terms, and the η-expansion, which
instead induces the η-equivalence. It is well known that the Curry-Howard isomorphism

relates the β-reduction of the λ-calculus to the cut reduction in the proof nets. What about
the η-expansion? It corresponds to a rewriting rule of proof nets too, i.e. to the reduction of
complex axioms in simpler ones. Indeed it is common to avoid such a further reduction by
allowing only atomic axioms in the definition itself of proof nets, i.e. by restraining to the
η-long proof nets. Following [TdF03b], we will adopt such a convention, thus the equivalence
π =β π′ implicitly means π =βη π′.

3A similar result is in [DP01b].
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Finally, we know only one paper dealing with the surjectivity of exponential
proof nets: [Lau04] by Laurent. In that paper Laurent proves the surjectivity
(and injectivity) of a game semantics for the polarized fragment of MELL.
However there is no surjectivity result for the coherent semantics, thus we believe
that our section 3.4 is a novelty.

Contents of the thesis

The thesis is divided in three chapters, dealing with respectively the multiplica-
tives (⊗, O), the additives (⊕, &) and the exponentials (!, ?).

In chapter 1, we study surjectivity and syntactical separability of multi-
plicative proof nets. The general method we use consists first in addressing the
two questions in the less restrictive framework of proof structures, and then in
adapting the results to proof nets.

In section 1.1 we recall the definition of proof structures and in subsection
1.1.1 the definition of relational semantics. The main result in subsection 1.1.1
is the semantical characterization of those sets which are interpretations of proof
structures (theorem 14). In subsection 1.2.1 from this result and from a theorem
by Retoré ([Ret97], here theorem 25) we deduce an alternative proof (with
respect to [Tan97]) of the surjectivity of coherent semantics with respect to the
proof nets of MLL with mix (corollary 26).

In subsection 1.1.2 we introduce an observational equivalence between proof
structures (definition 15). The main result of this subsection is the separation
theorem for MLL proof structures (theorem 16). As corollaries we prove that
the defined observational equivalence coincides with the equivalence induced by
cut-elimination (corollary 17) and that such an equivalence is a maximal con-
gruence between proof structures (corollary 18). In subsection 1.2.2 we weaken
the observational equivalence of definition 15 reducing the admissible contexts
(definition 27) and we prove (proposition 29) that concerning this weaker equiv-
alence the separation of MLL does not hold.

The contents of this chapter are in [Pag06b].

In chapter 2, we study the proof nets for the multiplicative additive fragment
of linear logic (briefly MALL).

Firstly we give in section 2.1 an overview of the proof nets based on the
additive boxes. In particular we remark that such proof nets have not a confluent
cut reduction.

Later in sections 2.2 and 2.3, we analyze the proof nets based on additive
slices.

In section 2.2 we introduce MALL proof structures as couples of a set of
slices and of an equivalence relation defining the superposition of slices. Our
approach is in between the sliced proof structures defined by Tortora and Lau-
rent in [LTdF04] and the ones introduced by Hughes and van Glabbeeck in
[HvG03], although we will follow [HvG03] in the two most crucial passages: the
cut reduction and the correctness criterion.

In subsection 2.2.1 we recall the relational semantics for the additives. Our
main results are theorem 45, extending the injectivity of relational semantics
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to MALL, and theorem 48, yielding a semantic characterization of those sets
which are interpretations of MALL proof structures.

In subsection 2.2.2 we define an observational equivalence between MALL
proof structures (definition 50), which is the natural extension of the MLL
equivalence ∼B defined in subsection 1.1.2. Contrary to the multiplicative case,
we prove in proposition 52 that the separation theorem does not hold in the
additive framework (at least with the present syntax).

In section 2.3 we deal with the additive proof nets and Hughes and van
Glabbeeck’s correctness criterion. In subsection 2.3.3 we present our ongoing
research for a surjective denotational semantics for MALL proof nets. The
crucial point is to characterize semantically the additive proof nets. In particular
we refer to the hypercoherent semantics defined by Ehrhard in [Ehr93]. We prove
that any interpretation of a proof net is a hyperclique (theorem 68). Conversely,
it remains an open question if any cut-free proof structure, whose interpretation
is a hyperclique, is a proof net (see proposition 69 and conjecture 70).

In chapter 3, we study the proof nets for the multiplicative exponential frag-
ment of linear logic (briefly MELL).

In section 3.1 we introduce MELL proof nets.
In section 3.2 we recall the multiset based uniform coherent semantics (Coh)

and the non-uniform one (nuCoh). Coh has been introduced by Girard in [Gir91],
while nuCoh is a more recent semantics defined by Bucciarelli and Ehrhard in
[BE01].

In section 3.3 we attack the question of the injectivity of Coh for MELL proof
nets. In subsection 3.3.1, we define a counter-example to the Coh injectivity for
the polarized fragment of MELL, which had been conjectured in [TdF03b].
In subsections 3.3.2, 3.3.3 instead we prove the injectivity of Coh for the so-
called (?O)-MELL proof nets (theorem 100). Theorem 100 has been proved in
[TdF03b], the main novelty of our approach is to provide a different proof by
means of lemma 98, based on Girard’s notion of longtrip.

In section 3.4 we solve the open question of characterizing those proof struc-
tures whose interpretation is a clique in nuCoh (theorems 103, 104). Such a char-
acterization provides a new geometric criterion on MELL proof structures: the
weak correctness (definition 102). The contents of this section are in [Pag06a].

Notations and conventions

We recall some basic notations and definitions.

• We denote the elements of sets by lower-case letters a, b, u, v, x, y, z . . .,
and sets by typewrite capital letters A, B, X . . ..

The cartesian product of A, B is denoted by A × B and defined by A ×
B = {< a, b > | a ∈ A, b ∈ B}. If C ⊆ A × B, the projection of C are
p1(C) = {a | ∃b ∈ B, < a, b >∈ C} and p2(C) = {b | ∃a ∈ A, < a, b >∈ C}.

The disjoint union of A, B is denoted by A+ B and defined by A + B = A×
{1}∪B×{2}. If C ⊆ A+B, the projection of C are s1(C) = {a | < a, 1 >∈ C}
and s2(C) = {b | < b, 2 >∈ C}.

• Let X be a set, a multiset of elements in X is a function v : X→ N. In other
words, v is a set of elements of X in which repetitions can occur: for any
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x ∈ X, the value v(x) tell us how many times x occurs in v. We denote
multisets by square brackets, for example [a, a, b, c, c, c] is the multiset
containing twice a, once b and three times c.

The support of a multiset v, denoted by Supp(v), is the X subset v−1(N/{0}).
For example Supp([a, a, b, c, c, c]) = {a, b, c}.

By the plus symbol + we denote the disjoint union of multisets, for ex-
ample [a, a, b] + [a, c, c] = [a, a, a, b, c, c]. The neutral element of + is the
empty multiset, denoted by ∅. If n is a number and v a multiset, we denote
by nv the multiset v + . . .+ v

︸ ︷︷ ︸

n times

.

By M(X) (resp. Mfin(X)) we mean the set of all multisets (resp. finite
multisets) of X.

• We denote the formulas by capital letters A,B,C . . ., and the multisets of
formulas by Greek capital letters Γ,∆,Σ . . ..
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Chapter 1

Multiplicatives

In this chapter we study surjectivity and syntactical separability of multiplica-
tive proof nets. The general method we use consists first in addressing the
two questions in the less restrictive framework of proof structures, and then in
adapting the results to proof nets.

In section 1.1 we recall the definition of proof structures and in subsection
1.1.1 the definition of relational semantics. The main result in subsection 1.1.1
is the semantical characterization of those sets which are interpretations of proof
structures (theorem 14). In subsection 1.2.1 from this result and from a theorem
by Retoré ([Ret97], here theorem 25) we deduce an alternative proof (with
respect to [Tan97]) of the surjectivity of coherent semantics with respect to the
proof nets of MLL with mix (corollary 26).

In subsection 1.1.2 we introduce an observational equivalence between proof
structures (definition 15). The main result of this subsection is the separation
theorem for MLL proof structures (theorem 16). As corollaries we prove that
the defined observational equivalence coincides with the equivalence induced by
cut-elimination (corollary 17) and that such an equivalence is a maximal con-
gruence between proof structures (corollary 18). In subsection 1.2.2 we weaken
the observational equivalence of definition 15 reducing the admissible contexts
(definition 27) and we prove (proposition 29) that concerning this weaker equiv-
alence the separation of MLL does not hold.

The formulas of MLL are:

F ::= X | X⊥ | FOF | F ⊗ F

As always we set (AOB)⊥ = B⊥⊗A⊥ and (A⊗B)⊥ = B⊥OA⊥. We denote
by capital Greek letters Σ,Π, . . . the sets of formulas. We write A1 � . . . �
An−1 �An for A1 � (. . .� (An−1 �An)�), where � is O or ⊗.

The rules of the MLL sequent calculus are as follows ([Gir87]):

ax

` X,X⊥
` Γ, A ` ∆, A⊥

cut
` Γ,∆

` Γ, A,B
O

` Γ, AOB

` Γ, A ` ∆, B
⊗

` Γ,∆, A⊗B

5



6 CHAPTER 1. MULTIPLICATIVES

⊗

A B

A⊗ B

ax

X⊥ X cut

A A⊥ A

O

B

AOB

Figure 1.1: MLL links.

We restrict ourself to axioms introducing just atomic formulas: this is a common
way to avoid the η-expansion rule (see for example [TdF03b]). MLL can be
extended with the mix rule:

` Γ ` ∆
mix

` Γ,∆

Remark that every rule of MLL is free from conditions on the context: it
deals exclusively with its active formulas. Nevertheless the structure of a sequent
proof yields further inessential dependencies among the rules, by which a proof
appears as a tree. If we instead consider just the logical order between such
rules, what we get is a graph less restrictive than a tree: a proof net.

The set of proof nets is a subset of a wider set of graphs: the set of proof
structures. More precisely, proof nets are those proof structures which corre-
spond to correct proofs. The importance of proof structures is that cut reduction
is defined directly on them, so it makes sense even without logical correctness.
This is indeed one remarkable novelty of linear logic.

1.1 Proof structures

In this section we recall the MLL proof structures and the cut reduction rules
defined on them. We introduce for proof structures a denotational semantics
(the relational model) in subsection 1.1.1, and an observational equivalence in
subsection 1.1.2.

Proof structures. Proof structures are oriented graphs (even empty) whose
nodes are called links and whose edges are labeled by formulas of linear logic.
When drawing a proof structure we represent edges oriented up-down so that
we may speak of moving downwardly or upwardly in the graph. Links are
defined together with both an arity (the number of incident edges, called the
premises of the link) and a coarity (the number of emergent edges, called the
conclusions of the link). MLL links are the following (see figure 1.1):

1. the axiom (ax-link), which has two conclusions labeled by dual atomic
formulas, but no premise;

2. the cut (cut-link), which has two premises labeled by dual formulas but
no conclusion;

3. the par (O-link), which has two ordered premises and one conclusion.
If the left premise is labeled by the formula A and the right premise is
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labeled by the formula B, then the conclusion is labeled by the formula
AOB;

4. the tensor (⊗-link), which has two ordered premises and one conclusion.
If the left premise is labeled by the formula A and the right premise is
labeled by the formula B, then the conclusion is labeled by the formula
A⊗B.

Each edge is the conclusion of a unique link and the premise of at most one
link. Edges which are not the premise of any link are the conclusions of the
proof structure. A link l of a proof structure π is terminal if all the conclusions
of l are conclusions of π. π is closed if it has only one conclusion. If π is a
proof structure with conclusions C1, . . . , Cn, we define the closure of π with
conclusion C1O . . .OCn as the proof structure obtained from π by adding the
necessary O-links below C1, . . . , Cn.

Proof structures are denoted by Greek letters: π, σ, τ, . . ., the edges by
initial Latin letters: a, b, c . . . and the links by middle-position Latin letters:
l,m, n, o . . .. We write a : A if a is an edge labeled by the formula A.

We define by PSm the set of MLL proof structures.

An oriented edge is an edge together with a direction upward, denoted by
↑ a, or downward, denoted by ↓ a. We write l a in case we do not want to specify
if we mean either ↑ a or ↓ a. An oriented path (or simply path) from l a0 to
l an in a proof structure π is a sequence of π oriented edges <l a0, . . . , l an >
such that for any i < n:

• if l ai =↑ ai, l ai+1 =↑ ai+1, then ai is conclusion of the link of which
ai+1 is premise;

• if l ai =↑ ai, l ai+1 =↓ ai+1, then ai and ai+1 are conclusions of the same
link;

• if l ai =↓ ai, l ai+1 =↓ ai+1, then ai is the premise of the link of which
ai+1 is conclusion;

• if l ai =↓ ai, l ai+1 =↑ ai+1, then ai and ai+1 are premises of the same
link;

morally l ai =↑ ai (resp. l ai =↓ ai) when the path crosses the edge ai from the
link it is conclusion (resp. premise) to the link it is premise (resp. conclusion).
We say that a path crosses a link l if it contains a sequence of two edges
having l as a vertex.

A path is up-oriented (resp. down-oriented) if all its edges are upward
(resp. downward) oriented. An edge a is above an edge b (a ≥ b) if there is
a path down-oriented from ↓ a to ↓ b.

We denote paths by Greek letters φ, τ, ψ, . . .. We write l a ∈ φ to mean
that l a occurs in φ, sometimes we write simply a ∈ φ for meaning that ↑ a
or ↓ a occurs in φ. We denote by ψ v φ when ψ is a subpath of φ. We may
denote a path <l a0, . . . , l an > by a simple succession of oriented edges, i.e.
l a0 . . . l an.

We recall in the proof structures framework the notion of congruent equiv-
alence, defined by Girard in [Gir91]:
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ax ax ax

cut

X XX⊥ X⊥  β X X⊥

Figure 1.2: axiom cut reduction 1.

Definition 1 (from [Gir91]) An equivalence ≡ between proof structures is a
congruence (or is congruent) when for all proof structures π1, π2, if π1 ≡ π2

then π1 and π2 have the same conclusions, and whenever π′
1 and π′

2 have been
obtained from π1 and π2 by adding the same links, then π′

1 ≡ π
′
2.

Cut reduction. The cut defines the composition between proof structures: if
π and σ are two proof structures with conclusions respectively Π, A and Σ, A⊥,
the composition of π and σ on A,A⊥, denoted by [π, σ]A,A⊥ , is the proof
structure with conclusions Π,Σ obtained by joining π and σ with a new cut
with premises A and A⊥. We omit the indexes A,A⊥ in case it is clear which are
the premises of the cut.

A proof structure without cuts is called cut-free. The MLL cut reduction
rules are graph rewriting rules which modify a proof structure π, obtaining a
proof structure π′ with same conclusions as π. We denote the cut reduction
relation between π and π′ as π  β π

′, recalling the β-reduction of λ-calculus.
Let l be a cut in a proof structure. l can be of two types:

• an axiom cut, whose premises are labeled by dual atomic formulas X and
X⊥;

• a O/⊗ cut, whose premises are labeled by dual multiplicative formulas
AOB and A⊥ ⊗B⊥.

The reduction rule for l is defined as follows:

• if l is an axiom cut, let m be the axiom of which a conclusion is the
premise of l labeled by X and let n be the axiom of which a conclusion is
the premise of l labeled by X⊥. If m 6= n, then l is reduced erasing l,m, n
and the l premises, and later on linking the remained m,n conclusions
through a new axiom link (see figure 1.2). If m = n, then l is reduced
simply erasing l,m and the l premises (see figure 1.3);

• if l is a O/⊗ cut, let m be the par whose conclusion is the premise of l
labeled by AOB and let n be the tensor whose conclusion is the premise
of l labeled by A⊥⊗B⊥ (remember that compound formulas do not label
conclusions of axioms). Let a, b (resp. a′, b′) be the left and right premises
of m (resp. n). Then l is reduced simply erasing l,m, n and l premises,
and later on linking respectively a, a′ and b, b′ by two new cuts (see figure
1.4).

The reduction in figure 1.3 is maybe unusual, indeed it has a dubious logical
meaning. Yet we are not at logic level: we study the reduction rules just as
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cut

ax

X X⊥
 β

Figure 1.3: axiom cut reduction 2.

cut

O ⊗

B⊥

AOB

A⊥A B

A⊥ ⊗ B⊥ cut cut

A⊥BA B⊥

 β

Figure 1.4: O/⊗ cut reduction.

rewriting rules for proof structures. In section 1.2 we will upgrade to proof
nets, the links will acquire a logical meaning as well as the reduction rules. In
particular proof nets do not allow “vicious cuts” as the cut between the two
conclusions of an axiom.

The reflexive and transitive closure of β is denoted by→β . The symmetric
closure of →β is denoted by =β and called β-equivalence.

As well-known, →β enjoys confluence and strong normalization:

Theorem 2 (Confluence) For every proof structure π1, π2 and π3, s.t. π1 →β

π2 and π1 →β π3, there is a proof structure π4, s.t. π2 →β π4 and π3 →β π4.

Theorem 3 (Strong normalization) For every proof structure π, there is no
infinite sequence of proof structures π0, π1, π2, . . . s.t. π0 = π and πi  β πi+1.

Confluence and strong normalization assure that in each equivalence class
of =β there is one and only one cut-free proof structure. We remark that the
only cut-free proof structure without conclusions is the empty graph, hence all
the proof structures without conclusions are reduced to the empty graph.

It is well-known that the conclusions of a cut-free proof structure determine
it up to the axioms: a cut-free proof structure with conclusions C1, . . . , Cn is
the forest of the n syntax trees of the formulas C1, . . . , Cn and a set of axioms
linking in pairs such forest leaves.

1.1.1 Relational semantics

A denotational semantics defines an invariant under cut reduction. In this sub-
section we recall the relational semantics for MLL, which associates with for-
mulas sets and with proof structures relations. The main result is the semantic
characterization of those relations which are interpretations of proof structures
(theorem 14).

Let X be a set, a relational model on X (RelX) associates with formulas
sets, in the following way:
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• X is associated with the atomic formulas X,X⊥;

• if A and B are associated respectively with A and B, then A×B is associated
with AOB and A⊗B.

We recall that we denote the elements of sets by lower-case letters a, b, u, v, x, y, z . . .,
and sets by typewrite capital letters A, B, X . . .. If C ⊂ A × B we define the pro-
jections p1(C) = {a | ∃b ∈ B, < a, b >∈ C} and p2(C) = {b | ∃a ∈ A, < a, b >∈ C}.

For each proof structure π, we define the interpretation of π in RelX,
denoted by JπKRelX , where the index RelX is omitted if it is clear which model we
refer to.

In case π has no conclusion, let JπK set as undefined. Otherwise, let c1 :
C1, . . . , cn : Cn be the conclusions of π, JπK is a subset of C1× . . .×Cn, which we
define using the notion of experiment. The experiments have been introduced
by Girard in [Gir87], and extensively studied in [TdF00] by Tortora de Falco.

Definition 4 (Experiment [Gir87]) A RelX experiment e on a proof struc-

ture π, denoted by e : π, is a function associating with every edge a : A of π an
element of A, so that the following conditions are respected:

axiom: if a, b are the conclusions of an axiom, then e(a) = e(b);

cut: if a, b are the premises of a cut, then e(a) = e(b);

multiplicative: if c is the conclusion of a O or ⊗ with premises a and b, then
e(c) =< e(a), e(b) >.

The experiments can be viewed as π edges decorations either from axioms to
conclusions or vice-versa from conclusions to axioms: multiplicative condition
determines an experiment either assigning values to the axioms, if cut-condition
is satisfied, or assigning values to the conclusions and to the cuts of π, if axiom-
condition is satisfied.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn and e : π
be an experiment, then the result of e is the element < e(c1), . . . , e(cn) > of
C1 × . . .× Cn. The interpretation of π in RelX is the set of the results of all the
RelX experiments on π:

JπKRelX = {< e(c1), . . . , e(cn) > | e is a RelX experiment on π}

For each formula C we have on the one hand the proof structures with
conclusion C, on the other hand the subsets of C, being J KRelX a function from
the proof structures to the subsets of C. It is well known that1:

Theorem 5 (Soundness of J KRelX , [Gir87]) For every proof structures π, π′,
π =β π

′ implies JπKRelX = Jπ′KRelX .

Theorem 6 (Injectivity of J KRelX , from [TdF03b]) If X is infinite, then for
every proof structures π, π′, JπKRelX = Jπ′KRelX implies π =β π

′.

1Actually in [Gir87] (resp. [TdF03b]) the author proves the semantical soundness (resp.
injectivity) in the more restricted case of proof nets. We remark that those proofs can be
extended straightforwardly to the general case of proof structures.
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The rest of the subsection is devoted to characterizing those subsets of C,
called complete subsets, which are the interpretations of proof structures with
conclusion C (theorem 14). In this way, J KRelX becomes a bijection between the
cut-free proof structures with conclusion C and the complete subsets of C.

To achieve theorem 14 let us start from the proof of the injectivity of J KRelX .
Let π be a cut-free proof structure with conclusion C, we have already noticed
that π can be presented as a set of axioms linking the leaves of the syntax tree
of C. The proof of the injectivity of J KRelX mainly uses the fact that there exists
u ∈ JπKRelX which codes all the pairs of dual leaves linked by an axiom of π.
Indeed such an element u is the result of an injective experiment:

Definition 7 ([TdF00]) Let π be a cut-free proof structure and e : π be an
experiment. e is injective when for any two different edges a, a′ labeled by X,
e(a) 6= e(a′).

We remark that, if X is infinite, any cut-free proof structure has injective
experiments: simply take an injective assignment of values to the axioms of the
proof structure. By an easy induction we can prove that injective experiments
are actually injective on edges of any type, not only atomic:

Fact 8 Let π be a cut-free proof structure and e : π be an injective experiment,
for any two different edges a, a′ labeled by the same formula A, e(a) 6= e(a′).

The results of injective experiments are the most informative points of C: we
define a pre-order � on the elements of C (definition 9), measuring how much
information on proof structures is coded by an element; as expected, the results
of injective experiments are maximal among the (balanced, see definition 10)
elements of C. Conversely, in lemma 11 we prove that all the maximals among
the (balanced) elements of A are results of injective experiments.

In lemma 12, we prove that for every proof structure π, the set JπK has the
shape {v|u � v}, where u is the result of an injective experiment on π. There-
fore we define the complete subsets of C as those subsets of the form {v|u � v},
for a maximal u among the (balanced) elements of C. In this way we get a char-
acterization for those subsets of C which are interpretations of proof structures
(theorem 14).

An element u of a set C is a sequence of elements of the basic set X and the
symbols <,>. We call the elements of X which are in u the atoms of u. We
remark that any element u in C defines a labeling of the syntax tree of C: the
atoms of u will label the leaves of such a tree. An occurrence of an atom x in
u is a positive occurrence if it labels a subformula X of C, it is a negative
occurrence if it labels a subformula X⊥ of C.

Having given two elements x, y ∈ X, we define u[y/x] as the element of C
obtained from u by substituting y for each occurrence of x. As always, we
extend the definition to simultaneous substitutions u[y1/x1, . . . , yn/xn].

Definition 9 Let C be an MLL formula, C its associated set and u, u′ ∈ C. We
write u � u′ if there is a substitution [y1/x1, . . . , yn/xn] so that u[y1/x1, . . . , yn/xn] =
u′. We set u ≈ u′ if u � u′ and u′ � u.
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In general ≈ identifies the results of the experiments, different just for a
renaming of the values appointed to the conclusions of the axioms.

The following definition allows to take out from C those elements which
cannot be in the interpretation of a proof structure:

Definition 10 An element u ∈ C is balanced, if for every atom the number of
its positive occurrences in u is equal to the number of its negative occurrences.

The property of being balanced is stable by substitution: if u is a balanced el-
ement, then u[y1/x1, . . . , yn/xn] is balanced for every substitution [y1/x1, . . . , yn/xn].

The pre-order � evaluates how much informative the elements of C are.
The results of the injective experiments are balanced and maximal among the
balanced elements of C. We prove the vice-versa in the next lemma:

Lemma 11 Let X be an infinite set, C be a set associated with a formula C in
RelX. Let u ∈ C be a balanced element which is maximal among the balanced
elements of C. There is a cut-free closed proof structure πu with conclusion C
and an injective experiment eu : πu so that the result of eu is u.

Proof. From the C tree we get πu up to the axioms. Since u is balanced
and maximal among the balanced elements and X is infinite, each atom x of u
has exactly one positive and one negative occurrence in u, hence each atom x
defines a pair of leaves X,X⊥ of the C tree. We get πu by linking with axioms
such pairs.

Clearly u is the result of the injective experiment on πu which takes the
value x on the pair of edges of type X , X⊥ associated with x in u. �

Lemma 11 defines a function from the balanced elements maximal among the
balanced elements of C to the closed cut-free proof structures with conclusion
C:

u =⇒ πu

such a function is a bijection between the ≈-equivalence classes of the balanced
maximal elements of A and the closed cut-free proof structures with conclusion
A.

Lemma 12 Let X be an infinite set and π be a closed cut-free proof structure
with conclusion C. There is a balanced element u in JπKRelX maximal among
the balanced elements of C. Moreover for any such balanced and maximal u,
JπKRelX = {v|u � v}.

Proof. Since X is infinite, there are injective experiments on π. Let e : π be
an injective experiment, and u its result. Clearly u is balanced and maximal
among the balanced elements of C. Now, take any such u.

Let a1, . . . , an be the conclusions of type X of the axioms of π. Let e′ : π be
an experiment and v its result. Clearly v = u[e′(a1)/e(a1), . . . , e

′(an)/e(an)],
therefore u � v.

Conversely, let v ∈ C be so that u � v, then there is a substitution [y1/e(a1), . . . , yn/e(an)],
so that v = u[y1/e(a1), . . . , yn/e(an)]. Let e′ be the experiment so that e′(a1) =
y1, . . . , e

′(an) = yn, clearly e′ has v as result. �



1.1. PROOF STRUCTURES 13

ax ax

O

⊗ O

X XX⊥X⊥
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Figure 1.5: observational values f and Ω

Definition 13 A subset P ⊂ C is complete if there is a balanced element u ∈ P

which is maximal among the balanced elements of C and

P = {v|u � v}

Theorem 14 Let X be an infinite set. Let C be an MLL formula and C its
interpretation in RelX. A subset P of C is the interpretation of a closed proof
structure with conclusion C if and only if P is complete.

Proof. Let P be a complete set of C. By its definition there is a balanced ele-
ment u ∈ P which is maximal among the balanced elements of C and P = {v|u �
v}. By lemma 11 there is a proof structure πu and an injective experiment
eu : πu so that the result of eu is u. By lemma 12, JπuK = P.

Conversely, let π be a closed proof structure with conclusion C. By lemma
12, JπK is complete. �

1.1.2 Observational equivalence

In definition 15 we introduce an observational equivalence ∼B between MLL
proof structures. The main result of this subsection is theorem 16 by which
follows that =β and ∼B are the same equivalence (corollary 17) and that such
an equivalence is a maximal congruence (corollary 18).

We choose as observational values the only two cut-free proof structures
with conclusion (X⊥ ⊗ X⊥)O(XOX) (see figure 1.5). We denote the formula
(X⊥⊗X⊥)O(XOX) by B, and the two cut-free proof structures with conclusion
B resp. by f and Ω.

A proper axiom with conclusions C1, . . . ,Cn is a link without premises
but with n conclusions labeled respectively by C1, . . . , Cn. A context of type
C1, . . . ,Cn is a proof structure with conclusion B where proper axioms with
conclusions C1, . . . , Cn can occur. We denote a context by C [ ].

Let π be a proof structure with conclusions C1, . . . , Cn and let C [ ] be a
context of the same type. By C [π] we denote the proof structure with conclusion
B obtained from C [ ] substituting π for each occurrence of the proper axiom.

Definition 15 Let π1, π2 be proof structures with conclusions C1, . . . , Cn. We
say that π1 and π2 are observationally equal (denoted by π1 ∼B π2) if for all
contexts C [ ] of type C1, . . . , Cn, C [π1] =β C [π2].
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Clearly ∼B is a congruence. By theorem 16 we prove that ∼B and =β are
indeed the same equivalence (corollary 17):

Theorem 16 (Separation of MLL) Let π1 and π2 be two closed proof struc-
tures with conclusion C. If π1 6=β π2, then there is a proof structure σ with
conclusion C⊥,B, such that [σ, π1] →β f and [σ, π2] →β Ω.

Proof. Let π1, π2 be two different cut-free proof structures with conclusion
C. Let 1, . . . , 2n be an enumeration of the leaves of the syntax tree of C, so
that the odd numbers enumerate the leaves labeled by X and the even numbers
those labeled by X⊥.

We have already noticed that π1, π2 can be presented as bijections from the
odd to the even numbers of {1, . . . , 2n}. Since π1 6= π2, there is an odd number
o ≤ 2n such that π1(o) = e and π2(o) = e′ for e 6= e′.

We define the proof structure σ with conclusions C⊥,B, such that [π1, σ] →β

f and [π1, σ] →β Ω. The forest of the syntax trees of C⊥,B has 2n+ 4 leaves.
The enumeration given above of the leaves of the syntax tree of C induces an
enumeration 1, . . . , 2n, 2n+ 1, . . . , 2n+ 4 of the leaves of the forest, so that:

• the odd (resp. even) numbers in {1, . . . , 2n} enumerate the leaves labeled
by X⊥ (resp. X) above C⊥;

• the odd (resp. even) numbers in {2n+ 1, . . . , 2n+ 4} enumerate the leaves
labeled by X (resp. X⊥) above B.

In particular we remark that e, e′ are now associated with leaves labeled by
X above C⊥ and o with a leaf labeled by X⊥ above C⊥, finally 2n + 1 and
2n + 3 (resp. 2n + 2 and 2n + 4) are the two leaves labeled by X (resp. X⊥)
above B.

σ is any bijection between the leaves labeled by X and those labeled by X⊥,
so that σ(o) = 2n+ 1, σ(e) = 2n+ 2 and σ(e′) = 2n+ 4. Clearly we have that
[σ, π1] →β f and [σ, π2] →β Ω. �

Corollary 17 (Equality of ∼B and =β) Let π1 and π2 be two proof struc-
tures with same conclusions, π1 ∼B π2 iff π1 =β π2.

Proof. Let π1 and π2 be two proof structures with same conclusions, we may
suppose π1, π2 closed, since both ∼B and =β are congruences. By the confluence
of =β , if π1 =β π2 then π1 ∼B π2, the converse holds by theorem 16. �

Corollary 18 (Maximality of =β) Let ≡ be a congruence which contains =β,
then either ≡ is equal to =β or ≡ collapses.

Proof. Let ≡ be a congruence containing =β and let us suppose that there are
two distinct proof structures π1, π2 such that π1 ≡ π2 but π1 6=β π2. We prove
τ1 ≡ τ2, for every proof structure τ1, τ2 with same conclusions.

Since ≡ is a congruence we can suppose π1 and π2 being closed with same
conclusion C. Since π1 6=β π2, by theorem 16 there is a proof structure σ with
conclusions C⊥,B, such that [π1, σ] →β f and [π2, σ] →β Ω. By the congruence
of ≡, we deduce [π1, σ] ≡ [π2, σ], hence f ≡ Ω.

Let τ1, τ2 be two distinct proof structures with same conclusions, we prove
that τ1 ≡ τ2. Since ≡ is a congruent extension of =β, we can suppose τ1, τ2 to
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be cut-free and with only one conclusion D. Let 1, . . . , 2n be an enumeration
of the leaves of the syntax tree of D, so that the odd numbers enumerate the
leaves labeled by X and the even numbers the ones labeled by X⊥. Since D has
at least two distinct cut-free proof structures (i.e. τ1, τ2), D has at least two
occurrences of X and two of X⊥, i.e. n ≥ 2.

We have already seen that τ1, τ2 can be presented as bijections from the odd
to the even numbers of {1, . . . , 2n}. Since τ1 6= τ2, there is an odd number
o ≤ 2n such that τ1(o) 6= τ2(o), let us choose o minimal and let τ1(o) = e,
τ2(o) = e′ and τ−1

2 (e) = o′. By minimality of o, o < o′.
Now, we define a proof structure σ with conclusions D⊥, D,B⊥. The forest

of the syntax trees of such conclusions has 2n + 2n + 4 leaves. The above
enumeration of the leaves of the syntax tree of D induces an enumeration
1, . . . , 2n, 2n+ 1, . . . , 4n, 4n+ 1, . . . , 4n+ 4 of the forest leaves, so that:

• the odd (resp. even) numbers in {1, . . . , 2n} enumerate the leaves labeled
by X⊥ (resp. X) above D⊥;

• the odd (resp. even) numbers in {2n + 1, . . . , 4n} enumerate the leaves
labeled by X (resp. X⊥) above D;

• the odd (resp. even) numbers in {4n+1, . . . , 4n+4} enumerate the leaves
labeled by X⊥ (resp. X) of the tree of B⊥.

In particular we remark that e and e′ are associated with leaves labeled by
X above D⊥, while 2n+ e and 2n+ e′ are associated with leaves labeled by X⊥

above D, and finally 4n+ 1 and 4n + 3 (resp. 4n+ 2 and 4n+ 4) are the two
leaves labeled by X (resp. X⊥) above B.

We set σ(e) = 4n+2, σ(e′) = 4n+4, σ(2n+e) = 4n+1, σ(2n+e′) = 4n+3,
and for all the others i ≤ 2n, σ(i) = 2n+ i.

The peculiarity of σ is that the action of [σ,f] is the identity, while the
action of [σ,Ω] is the flip of e and e′. More precisely, for any proof structure π
with conclusion D, [[σ,f], π] →β π, while [[σ,Ω], π] →β π

′, where π′ is obtained
from π by flipping e and e′. Moreover, by the congruence of ≡ and the fact that
f ≡ Ω, we have [σ,f] ≡ [σ,Ω].

Now, by induction on 2n− o we prove that τ1 ≡ τ2:

• if 2n − o = 1, then o = 2n − 1 and o′ = 2n and τ1(o
′) = e′. As we have

remarked, [[σ,f], τ1] →β τ1 and [[σ,Ω], τ1] →β τ2. Since [σ,f] ≡ [σ,Ω],
we get τ1 ≡ τ2;

• if 2n− o > 1. As we have remarked, [[σ,f], τ1] →β τ1 and [[σ,Ω], τ1] →β

τ3, where τ3 is obtained from τ1 by flipping e and e′. In particular τ3(e
′) =

o, so that τ2 and τ3 at most differ on an o′′ > o, thus, by induction
hypothesis τ3 ≡ τ2. Therefore, τ1 ≡ [[σ,f], τ1] ≡ [[σ,Ω], τ1] ≡ τ3 ≡ τ2.

�

Relational semantics defines a congruence ≡Rel between proof structures,
what means π1 ≡Rel π2 if for all X, Jπ1KX = Jπ2KX. By the soundness of the
relational semantics we know that =β ⊆ ≡Rel. Now, by corollary 18 we get the
converse ≡Rel ⊆ =β, i.e. a proof of the injectivity of the relational semantics,
alternative to that in [TdF03b].
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1.2 Proof nets

In this section we recall MLL proof nets, which are those proof structures
which correspond to correct proofs. We introduce coherent semantics in subsec-
tion 1.2.1 and an observational equivalence for proof nets in subsection 1.2.2.

The proofs of the MLL sequent calculus can be translated into proof struc-
tures by a function called desequentialization. This translation associates
with a sequent proof σ a proof structure (σ)•, defined by induction on σ (see
[Gir87]):

• if σ is an axiom with conclusions X,X⊥, then (σ)• is an axiom link with
conclusions X,X⊥;

• if σ ends in a O-rule, having as premise the subproof σ′, then (σ)• is
obtained by adding to (σ′)• the link O corresponding to the O-rule;

• if σ ends in a ⊗-rule (resp. cut-rule), with premises the subproofs σ′ and
σ′′, then (σ)• is obtained by connecting (σ′)• and (σ′′)• by means of the
link ⊗ (resp. cut) corresponding to the ⊗-rule (resp. cut-rule);

• if σ ends in a mix-rule, with premises the subproofs σ′ and σ′′, then (σ)•

is obtained by taking the disjoint union of (σ′)• and (σ′′)•.

A proof net π is a proof structure associated with a sequent proof, moreover
π is said without mix if it is associated with a sequent proof without the mix
rule. A unique proof net can be associated with several calculus proofs: it yields
a canonical representation of sequent proofs modulo inessential commutation of
rules (see [BdW95]). We highlight that both semantic injectivity and syntactical
separability can be studied in linear logic thanks to this canonical representation
of proofs.

Many criteria have been proposed for characterizing MLL proof nets in-
dependently from ( )•. We recall here the criterion by Danos and Regnier in
[DR89].

A correctness graph of a proof structure π is a π subgraph which is ob-
tained by erasing one premise for each O.

Definition 19 A proof structure is correct (resp. strongly correct) if all its
correctness graphs are acyclic (resp. acyclic and connected).

Theorem 20 ([DR89]) Let π ∈ PSm. π is a proof net (resp. a proof net
without mix) iff π is correct (resp. strongly correct).

In the sequel we will largely use paths which are feasible in the correctness
graphs of a proof structure. Let π be a proof structure, a path φ in π comes
back if there is an edge a s.t. ↑ a, ↓ a ∈ φ; a switching edge of π is a O
premise; a path φ is switching if it never comes back and it does not contain
two switching edges of a same link. Of course a switching path in π is a path
in at least one correctness graph of π. A switching cycle is a switching path
from l a to l a. Thus π is correct iff π does not contain any switching cycle.

We denote by PNmx the set of MLL proof nets and by PNm that of MLL
proof nets without mix. Clearly:
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PNm ⊂ PNmx ⊂ PSm

In this chapter we study both PNm and PNmx. We are interested in proof
nets with mix mainly for two reasons. Firstly, the mix rule holds in coherent
spaces, so when investigating the correspondence between proof nets and coher-
ent spaces (subsection 1.2.1), it is convenient to refer to PNmx. Secondly, in
chapter 3 we introduce the weakening link: in presence of weakening it is not
very clear what is the connectivity of a correctness graph, so sometimes it is
simpler asking just for the acyclicity.

1.2.1 Coherent semantics

In this subsection we upgrade to coherent semantics by enriching relational se-
mantics with a coherence relation on the sets associated with formulas. We
recall the semantical characterization of proof structure correctness, proved in
[Ret97] by Retoré. The novelty of our approach is corollary 26, stating the cor-
respondence between proof nets and complete cliques.

Definition 21 ([Gir87]) A coherent space X is a couple (|X |, a

`
), where

|X | is a set, called the web of X , and a

`
is a binary relation in |X | which is

reflexive and symmetric, called the coherence of X .
A clique of X is a subset C of |X | such that for every x, y ∈ C, x a

`
y.

We will write x a

`
y [X ] if we want to explicit the coherent space a

`
refers to.

We introduce the following notation, well-known in the framework of coherent
spaces:

• x ay, if x a

`
y and x 6= y;

• x `

a
y, if not x ay;

• x `y,if not x a

`
y.

Remark that we may define a coherent space specifying its web and one
among its relations a

`
, `

a
, a, `.

A coherent space is identified with a graph whose vertex set is |X | and whose

edges set is the extension of a

`
.

Let X be a coherent space, a coherent model on X (CohX ) associates
with MLL formulas coherent spaces, defined by induction on the formulas, as
follows:

• with X it is associated X ;

• with A⊥ it is associated A⊥ defined as follows: |A⊥| = |A|, the coherence

of A⊥ is the incoherence of A, i.e. x a

`
y

[
A⊥

]
iff x `

a
y [A];

• with A⊗B it is associated A⊗ B defined as follows: |A ⊗ B| = |A| × |B|
and < a, b > a

`
< a′, b′ > [A⊗B] iff a a

`
a′ [A] and b a

`
b′ [B].
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Of course, the space AOB is defined by (A⊥ ⊗ B⊥)⊥.
Remark that the web associated with a formula A by CohX is precisely the

interpretation of A in Rel|X |.
Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn the inter-

pretation of π in CohX is a subset of |C1O . . .OCn|, denoted by JπKCohX , where
the index CohX is omitted in the case it is clear which model we refer to.

JπK is defined exactly in the same way as in relational semantics (see section
1.1.1). We have the same definitions concerning the experiment e on a proof
structure π, its result, and the interpretation JπK. The relational interpretation
of π differs from the coherent one only in presence of exponentials (see section
3.2): if π is an MLL proof structure, then JπKRel|X| = JπKCohX .

What we achieve introducing coherence is that the set JπKCohX can be or
not a clique. Girard proves in [Gir87] that if π is a proof net then JπKCohX

is a clique. Retoré proves the converse for the cut-free proof nets, hence the
correctness of a cut-free proof structure corresponds to the pairwise coherence
of the results of its experiments.

In this thesis we will study several extensions of Girard’s and Retoré’s theo-
rems. Here we give the proofs of both theorems in a slightly different way from
the original proofs, our aim is to underline their symmetry. In particular the
implication π proof net ⇒ JπK clique is an immediate consequence of lemma
22, while the one JπK clique ⇒ π proof net is a consequence of lemma 23. The
lemmas 22 and 23 show the correspondence between the switching paths of a
proof structure π and the way the coherence spreads over the edges of π.

Lemma 22 (from [Gir87]) Let π be a proof net with conclusions c1 : C1, . . . , cn :
Cn. If e1, e2 are two experiments on π such that e1(c1)

`e2(c1)
[
C⊥1

]
, then there

is a switching path φ from c1 to a conclusion ci such that e1(ci)
ae2(ci) [Ci].

Proof. Let e1(c1)
`e2(c1). We define a sequence of paths φ1 ⊂ φ2 ⊂ . . . ⊂ φk,

such that φ1 is exactly ↑ c1, φk starts from ↑ c1 and ends in ↓ ci, and for each
φj among φ1, . . . , φk:

1. for each edge a : A, if ↑ a ∈ φj , then e1(a)
`e2(a) [A], if ↓ a ∈ φj , then

e1(a)
ae2(a) [A];

2. φj is a switching path.

Let us define φj+1 from φj , which we suppose satisfies conditions 1 and 2.
Let a : A be the last edge of φj . Then:

• if ↓ a ∈ φj , by hypothesis e1(a)
ae2(a) [A]:

– if a is premise of a O with conclusion c : C, then e1(c)
ae2(c) [C]. We

define φj+1 = φj∗ ↓ c;

– if a is premise of a ⊗ with conclusion c : C and premises a : A, b :
B. In case e1(c)

ae2(c) [C], we define φj+1 = φj∗ ↓ c; otherwise
e1(b)

`e2(b) [B], in this case we define φj+1 = φj∗ ↑ b;

– if a is premise of a cut with premises a : A, b : A⊥, than e1(b)
`e2(b)

[
A⊥

]
,

so let φj+1 = φj∗ ↑ b;

– if a is conclusion of π, then we define φj as φn.
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• if ↑ a ∈ φj , by hypothesis e1(a)
`e2(a) [A]:

– if a is conclusion of a O or a ⊗, then exists a premise b : B s.t.
e1(b)

`e2(b) [B]. We define φj+1 = φj∗ ↑ b;

– if a is conclusion of an axiom l with conclusions a : A, b : A⊥, then
e1(b)

ae2(b)
[
A⊥

]
, thus we define φj+1 = φj∗ ↓ b.

Clearly φj+1 satisfies condition 1. Let us prove that it is a switching path.
Since φj is a switching path, we have to prove that the new edge added to φj+1

is not a premise of a O of which the other premise is already in φj .
Let b be the edge added to φj+1. We split in two cases, depending if ↑ b or

↓ b is added to φj+1.
In case φj+1 = φj∗ ↓ b, where b is a premise of a O with premises a, b

and conclusion c, we suppose φj contains a and we prove a contradiction. Of
course if a ∈ φj , then c ∈ φj . By condition 1 and the hypothesis ↓ b ∈ φj+1,
e1(b)

ae2(b), hence e1(c)
ae2(c), from which we deduce ↓ c ∈ φj . So φj has the

following shape:

φj = φ′j∗ ↓ a ↓ c ∗ φ
′′
j

but then ↓ c ∗ φ′′j ∗ ↓ b ↓ c is a switching cycle, violating the correctness of π.
In case φj+1 = φj∗ ↑ b, where b is premise of a O with premises a, b and

conclusion c, then φj = φ′j∗ ↑ c. In this case it is immediate that a /∈ φj ,
otherwise φj should contains a switching cycle from ↑ c to ↑ c.

So we have proved that all the paths φ1, φ2, φ3, . . . are switching. Since π
is correct, none of them can be a cycle, thus the sequence φ1, φ2, φ3, . . . will
eventually meet a conclusion ci of π, so terminating in a path φk satisfying the
lemma. �

Lemma 23 (from [Ret97]) Let CohX be defined from a coherent space X with
at least x, y, z ∈ |X |, such that x ay [X ] and x `z [X ].

Let π be a cut-free proof net, φ be a switching path from a conclusion of π
c : C to a conclusion of π c′ : C ′.

There are two experiments e1, e2 on π such that e1(c)
`e2(c) [C], e1(c′) ae2(c

′) [C′]

and for any further conclusion d : D, e1(d)
`

a
e2(d) [D].

Proof. We recall that an experiment on a proof structure π is completely
determined by its values on the axioms’ conclusions. Moreover, since we suppose
π cut-free, every choice of values on the axioms’ conclusions respecting the
axiom-condition (see definition 4) determines an experiment on π.

Thus we define e1, e2 by declaring their values on the axioms of π. Let us
fix x, y, z ∈ |X |, such that x ay and x `z. For every edge a of type X let us set:

• if ↑ a ∈ φ, then e1(a) = x, e2(a) = y;

• if ↓ a ∈ φ, then e1(a) = x, e2(a) = z;

• otherwise, e1(a) = x = e2(a).

Remark that e1 is a x-costant function on the axioms. In chapter 3 we will
define such a kind of experiment simple, by following [TdF00].

For every edge d : D, we prove that:
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1. if ∃d′ ≥ d, d′ ∈ φ (where recall d′ ≥ d means that d′ is above d in π) then
e1(d) 6= e2(d);

2. if ↑ d /∈ φ, then e1(d)
`

a
e2(d) [D];

3. if ∀d′ ≥ d, ↓ d′ /∈ φ, then e1(d)
a

`
e2(d) [D].

Condition 1 is immediate. Simply remark that for every edge d only the
atom x occurs in e1(d), being e1 x-constant on the atomic edges. On the other
hand, if ∃d′ ≥ d, then there is an axiom edge a ≥ d, a ∈ φ. So that the either
atom y or z occurs in e2(d).

Instead we prove 2− 3 by induction on the type of d:

Atom: in case d is atomic, then the assertion is immediate by definition of e1,
e2.

Tensor: in case d : A ⊗ B, then let a : A, b : B be the premises of the ⊗ with
conclusion d:

2. if ↑ d /∈ φ, we split in three cases.

In case ↑ a ∈ φ then ↓ b ∈ φ, which implies e1(b)
`e2(b), by induction

hypothesis and condition 1. Thus we deduce e1(d)
`e2(d). The same

if ↑ b ∈ φ.

In case both ↑ a, ↑ b /∈ φ, then by induction hypothesis e1(a)
`

a
e2(a)

and e1(b)
`

a
e2(b), which implies e1(d)

`

a
e2(d);

3. if ∀d′ ≥ d, ↓ d′ /∈ φ, then of course ∀d′ ≥ a and ∀d′ ≥ b, ↓ d′ /∈ φ,
which by induction implies e1(a)

a

`
e2(a) and e1(b)

a

`
e2(b), so e1(d)

a

`
e2(d).

Par: in case d : AOB, then let a : A, b : B be the premises of the O with
conclusion d:

2. if ↑ d /∈ φ, then both ↑ a, ↑ b /∈ φ, being φ a switching path. By
induction hypothesis, e1(a)

`

a
e2(a) and e1(b)

`

a
e2(b), which implies

e1(d)
`

a
e2(d);

3. if ∀d′ ≥ d, ↓ d′ /∈ φ, then of course ∀d′ ≥ a and ∀d′ ≥ b, ↓ d′ /∈ φ,
which implies e1(a)

a

`
e2(a) and e1(b)

a

`
e2(b), that is e1(d)

a

`
e2(d).

Recall that φ starts with ↑ c and ends with ↓ c′. By the properties 1-3 we
know that e1(c)

`e2(c), e1(c
′) ae2(c

′) and for any further π conclusion d : D,

e1(d)
`

a
e2(d). �

Theorem 24 ([Gir87]) Let π be a proof structure. If π is correct then JπKCohX

is a clique, for every coherent space X .

Proof. It is a direct consequence of lemma 22 and the definition of the coher-
ence on the O coherent spaces. �
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Theorem 25 ([Ret97]) Let π be a cut-free proof structure and X be a coherent
space with x, y, z ∈ |X |, such that x ay [X ] and x `z [X ].

If JπKCohX is a clique then π is correct.

Proof. Let π be a cut-free not correct proof structure and X be a coherent
space with x, y, z ∈ |X |, such that x ay [X ] and x `z [X ]. By induction on the
number of links in π we prove that JπKCohX is not a clique.

If π has a terminal O l, then let π′ be obtained from π erasing l and its
conclusion. Clearly π′ is not correct, so Jπ′K = JπK is not a clique.

If π has a terminal ⊗ l, then let π′ be obtained from π by erasing l and its
conclusion. If π′ is still not correct, we get the assertion by induction hypothesis.
If instead π′ is correct, then all the switching cycles in π cross l, in particular
there is a switching path in the cut-free proof net π′ from the left premise a : A
of l to the right premise b : B (which are conclusions in π′). By means of lemma
23 we define two experiments e1, e2 such that e1(a)

`e2(a) [A], e1(b)
ae2(b) [B]

and on any further conclusion c : C, e1(c)
`

a
e2(c) [C]. By extending e1, e2 to π,

we get two experiments whose results are strictly incoherent, hence JπK is not a
clique.

Finally, if π has no terminal O or ⊗, then π is correct. �

A nice corollary of theorem 14 in subsection 1.1.1 and the above theorems
24, 25 is the semantical characterization of those sets which are interpretations
of proof nets (corollary 26).

Since the web of a coherent space is a set, we can introduce the pre-order
� (definition 9) and the notion of complete subset (definition 13) on webs
exactly in the same way as we did with relational semantics.

If A is a coherent space, a complete clique of A is a complete subset of
|A| which is a clique.

Corollary 26 Let X be a coherent space whose web is infinite and with x, y, z,
such that x ay [X ] and x `z [X ]. Let C be an MLL formula and C its interpre-
tation in CohX .

A subset P of C is the interpretation of a closed proof net with conclusion C
if and only if P is a complete clique.

Proof. Let P be a complete clique of C. Since P is complete, by theorem 14,
there is a closed cut-free proof structure π with conclusion C such that JπK = P.
Since P is a clique, by theorem 25, π is a proof net.

Conversely, if π is a proof net, by theorem 24 JπK is a clique, and by theorem
14 JπK is complete. �

1.2.2 Observational equivalence

The observational equivalence ∼B (definition 15) depends on the proof struc-
tures behaviors within all possible contexts. In this subsection we would like
to restrict the observations just to the correct contexts, defining a weak obser-
vational equivalence ∼w

B
(definition 27). The main result of this subsection is

proposition 29, stating that the ∼w
B

is strictly larger than =β.
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At first, we remark that the only two proof structures f and Ω with con-
clusion B (figure 1.5) are correct, therefore we can keep them as observational
values. At second, we extend the correctness criterion to contexts. A correct-
ness graph of a context is a subgraph obtained by erasing one premise for each
O-link. A context is correct if all its correctness graphs are acyclic.

Definition 27 Let π1, π2 be two proof nets with conclusions C1, . . . , Cn. We
say that π1 and π2 are observationally weak equal (π1 ∼w

B
π2) if for all the

correct contexts C [ ] of type C1, . . . , Cn, C [π1] =β C [π2].

Clearly =β ⊆ ∼w
B
. The main result of this section is proposition 29, which

states that =β ∼w
B
: there are proof nets which are observationally weak equal

but not β-equivalent (hence, neither observationally equal).
Such a result does not clash with corollary 18, stating that =β is a maximal

congruence. It means that ∼w
B

is not a congruence when extended to proof
structures. Indeed ∼w

B
is defined only between proof nets but not between proof

structures in general, therefore if π1 and π2 are two observationally weak equal
proof nets, and if π′

1 and π′
2 have been obtained from π1 and π2 by adding the

same links, π′
1 �

w
B
π′

2 could happen simply because π′
1 and π′

2 are not correct.
Remark that in general a context can be quite complex, namely the proper

axioms might be whenever and wherever we want them. Before attacking propo-
sition 29, it is thus convenient to restrain our observations to the simplest con-
texts, which are the proof nets themselves:

Lemma 28 (Context lemma) Let π1 and π2 be two proof nets with conclu-
sions C1, . . . , Cn. Let π∗

1 and π∗
2 be the two closures of π1, π2 with conclu-

sion C1O . . .OCn. Then π1 �w
B
π2 iff there is a proof net σ with conclusions

C⊥
1 ⊗ . . .⊗ C

⊥
n ,B, such that [π∗

1 , σ] 6=β [π∗
2 , σ].

Proof. The ”if” part is immediate. Conversely, let π1 and π2 be two proof
nets with same conclusions C1, . . . , Cn such that π1 �B π2. We prove that there
is a proof net σ with conclusions C⊥

1 ⊗ . . .⊗C
⊥
n ,B, such that [π∗

1 , σ] 6=β [π∗
2 , σ].

By definition 27, there is a correct context C [ ] such that C [π1] 6=β C [π2].
We enumerate by 1, . . . , k the occurrences of the proper axiom in C [ ]. For
each i ≤ k, let σi be the proof net obtained from C [ ] substituting π1 to the
occurrences 1, . . . , i of the proper axiom and π2 to the occurrences i+ 1, . . . , k.
Clearly, σ0 = C [π2] 6=β C [π1] = σk , hence there is an i such that σi 6=β σi+1. σ
is obtained from C [ ] in two steps. At first, we substitute π1 to the occurrences
1, . . . , i of the proper axiom in C [ ] and π2 to the occurrences i + 2, . . . , k. At
second, we substitute the i + 1-th occurrence of the proper axiom with the
set of the n axioms with conclusions respectively C⊥

1 , C1, . . . , C⊥
n , Cn and we

link the conclusions C⊥
1 , . . . , C

⊥
n with tensors, so as to get a unique conclusion

C⊥
1 ⊗ . . .⊗ C

⊥
n .

Clearly σ is correct, moreover [π∗
1 , σ] =β σi 6=β σi+1 =β [π∗

2 , σ]. �

Now, let us prove that ∼w
B

is a strict extension of =β:

Proposition 29 There are proof nets π1, π2 such that π1 6=β π2 and π1 ∼w
B
π2.

Proof. Let C be the formula ((X ⊗X)OX)O(X⊥⊗X⊥)OX⊥, and π1, π2 be
any two different cut-free proof nets with conclusion C (take for example those
in figure 1.6).
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O

⊗

O

O

⊗

ax

ax ax

O

⊗

O

O

⊗

axax

X

X⊥X X

ax

X

X⊥X X⊥ X⊥XX⊥ X⊥

Figure 1.6: example of proof nets π1, π2 with conclusion ((X ⊗X)OX)O(X⊥⊗
X⊥)OX⊥.

Let us suppose π1 �w
B
π2 and let us prove the absurdity. By lemma 28 there

is a proof net σ with conclusions C⊥,B, such that [π1, σ] 6=β [π2, σ]. Since f
and Ω are the only two cut-free proof nets with conclusion B, we may suppose
[π1, σ] →β f and [π2, σ] →β Ω.

Let X be a coherent space with x, y, z ∈ |X|, such that x ay, x `z and y `z:
we will prove that JσKX is not a clique, hence contraddicting theorem 24.

We remark that 〈〈x, z〉 , 〈x, z〉〉 ∈ JfK and 〈〈x, z〉 , 〈z, x〉〉 ∈ JΩK, therefore
there are u ∈ Jπ1K and v ∈ Jπ2K such that 〈u, 〈〈x, z〉 , 〈x, z〉〉〉, 〈v, 〈〈z, x〉 , 〈z, x〉〉〉 ∈
JσK.

By theorem 26, Jπ1K and Jπ2K are complete cliques, thus for all u′, v′ ∈ |C|, s.t.
u′ � u (resp. v′ � v), u′ ∈ Jπ1K (resp. v′ ∈ Jπ2K). In particular, let w1, . . . , wn be
the atoms different from z and x in u and v. We define u′ = u[x/w1, . . . , x/wn]
(resp. v′ = v[x/w1, . . . , x/wn]). Since u′ � u (resp. v′ � v) , u′ ∈ Jπ1K (resp.
v′ ∈ Jπ2K); moreover, since JσK is a complete clique too and 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉 �
〈u, 〈〈x, z〉 , 〈x, z〉〉〉 (resp. 〈v′, 〈〈x, z〉 , 〈z, x〉〉〉 � 〈v, 〈〈x, z〉 , 〈z, x〉〉〉), we have that
〈u′, 〈〈x, z〉 , 〈x, z〉〉〉, 〈v′, 〈〈x, z〉 , 〈z, x〉〉〉 ∈ JσK.

Now, let us look at the atom a (resp. b) of u′ (resp. v′) corresponding to
the bold occurrence of X in C⊥ = ((X⊥OX⊥)⊗X⊥)⊗ (XOX)⊗X.

If a = x and b = z (or vice-versa, a = z, b = x), then a `b [X ], which
implies u′ `v′

[
C⊥

]
by the definition of the coherent spaces associated with C⊥.

Moreover, 〈〈x, z〉 , 〈x, z〉〉 ` 〈〈x, z〉 , 〈z, x〉〉 [B], by the definition of the coherent
spaces associated with B = (X⊥ ⊗X⊥)O(XOX). Thus, 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉 `

〈v′, 〈〈x, z〉 , 〈z, x〉〉〉
[
C⊥OB

]
, i.e. JσK is not a clique.

If a = b, let us suppose a, b = x (the case a, b = z being similar). In this case
we consider u′′ = u′ [y/z] and v′′ = v′ [z/x, x/z]. Since 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉 ≈
〈u′′, 〈〈x, y〉 , 〈x, y〉〉〉 (resp. 〈v′, 〈〈x, z〉 , 〈z, x〉〉〉 ≈ 〈v′′, 〈〈z, x〉 , 〈x, z〉〉〉), we deduce
that 〈u′′, 〈〈x, y〉 , 〈x, y〉〉〉, 〈v′′, 〈〈z, x〉 , 〈x, z〉〉〉 ∈ JσK. Since x `z [X ], we infer
u′′ `v′′

[
C⊥

]
by the definition of the coherent spaces associated with C⊥. More-

over, 〈〈x, y〉 , 〈x, y〉〉 ` 〈〈z, x〉 , 〈x, z〉〉 [B], by the definition of the coherent spaces
associated with B. Thus, 〈u′′, 〈〈x, y〉 , 〈x, y〉〉〉 ` 〈v′′, 〈〈z, x〉 , 〈x, z〉〉〉

[
C⊥OB

]
,

i.e. JσK is not a clique. �

We end this section with some remarks on the above proposition.

The failure of the equality between =β and ∼w
B

does not depend on the



24 CHAPTER 1. MULTIPLICATIVES
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Figure 1.7: non-correct proof structure σ with conclusion C⊥,B.

formula B chosen as the type for the observational values. Indeed for any formula
A we may denote by ∼w

A the observational weak equivalence defined by looking
at the correct contexts with conclusion A instead of B, getting all the same
=β  ∼w

A.
In simple typed λ-calculus we can prove a separation theorem (analogous to

theorem 16) only if we substitute the atom X with more complex formulas (see
[Sta83] and [Jol00]). One might thus think that proposition 29 is due to the
fact that we have not allowed the substitution of the atom X in definition 27. It
is not so. Actually the atom substitution is usefull in presence of exponentials
(like in λ-calculus), but it is useless in a linear framework (like MLL). Indeed
the proof of proposition 29 can be easily extended to the case we allow the
substitution of X with more complex MLL formulas.

The failure of the equality between =β and ∼w
B

is actually due to the lack of
garbage collectors among the correct contexts. Proof structures have garbage
collectors (the cyclic cuts, erased by β-reduction), hence we can prove theorem
16, but the proof nets (which have to be correct) have not. For example recall
the proof nets π1, π2 in figure 1.6: π1 and π2 are separable by the non-correct
proof structure in figure 1.7, in fact [π1, σ] →β f and [π2, σ] →β Ω. Remark
that during the reductions of [π1, σ] and [π2, σ] we meet cyclic cuts.

In this framework there is an interesting result by Matsuoka in [Mat05],
dealing with the intuitionistic multiplicative linear logic fragment (which cor-
responds to the linear λ-calculus with pairing). The author notices that such
a fragment has correct garbage collectors; from that, he proves a separation
theorem.



Chapter 2

Additives

In this chapter we study the proof nets for the multiplicative additive fragment
of linear logic (briefly MALL).

Firstly we give in section 2.1 an overview of the proof nets based on the
additive boxes. In particular we remark that such proof nets have not a confluent
cut reduction.

Later in sections 2.2 and 2.3, we analyze the proof nets based on additive
slices.

In section 2.2 we introduce MALL proof structures as couples of a set of
slices and of an equivalence relation defining the superposition of slices. Our
approach is in between the sliced proof structures defined by Tortora and Lau-
rent in [LTdF04] and the ones introduced by Hughes and van Glabbeeck in
[HvG03], although we will follow [HvG03] in the two most crucial passages: the
cut reduction and the correctness criterion.

In subsection 2.2.1 we recall the relational semantics for the additives. Our
main results are theorem 45, extending the injectivity of relational semantics
to MALL, and theorem 48, yielding a semantic characterization of those sets
which are interpretations of MALL proof structures.

In subsection 2.2.2 we define an observational equivalence between MALL
proof structures (definition 50), which is the natural extension of the MLL
equivalence ∼B defined in subsection 1.1.2. Contrary to the multiplicative case,
we prove in proposition 52 that the separation theorem does not hold in the
additive framework (at least with the present syntax).

In section 2.3 we deal with the additive proof nets and Hughes and van
Glabbeeck’s correctness criterion. In subsection 2.3.3 we present our ongoing
research for a surjective denotational semantics for MALL proof nets. The
crucial point is to characterize semantically the additive proof nets. In par-
ticular we refer to the hypercoherent semantics defined by Ehrhard in [Ehr93].
We prove that any interpretation of a proof net is a hyperclique (theorem 68).
Conversely, it remains an open question if any cut-free proof structure, whose
interpretation is a hyperclique, is a proof net (see proposition 69 and conjecture
70).

The formulas of MALL are defined by the following grammar:

F ::= X | X⊥ | FOF | F&F | F ⊗ F | F ⊕ F

25
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As always we set (A&B)⊥ = A⊥ ⊕B⊥ and (A⊕B)⊥ = A⊥&B⊥.
The rules of the sequent calculus of MALL are those of MLL extended

by the rules for the additives:

` Σ, A ` Σ, B
&

` Σ, A&B

` Σ, A
⊕1

` Σ, A⊕B

` Σ, B
⊕2

` Σ, A⊕B

Remark that the &-rule requires the same context in both its premises, and
that such a context is superimposed in the conclusion.

The context rôle in the &-rule is hard to be represented in a proof net.
First of all because the notion of context itself is quite unnatural for proof nets,
requiring to link non-active formulas. But worse is the context superposition,
which brings in linear logic old problems dating back to the disjunction elimi-
nation rule in natural deduction. In particular the context superposition has a
kind of ubiquity, in the sense that it can be placed before or after Σ without
really changing the rule.

A naive way to represent the &-rule in the proof nets is by using the additive
box, which is a literal translation of the sequent &-rule. In particular the additive
box has auxiliary conclusions, having the same state of ubiquity as the &-
rule context. Such auxiliary conclusions can be placed before or after most
other links, thus yielding a wide range of commutation equivalences, which are
opposite to the spirit itself of proof nets.

On the contrary, the slices are a subtler approach to the &-rule. They avoid
to associate explicitly with a & link its context, deferring such a problem as
a step of sequentialization. In this way the proof nets became the canonical
representatives for the commutation equivalences induced by the additives. As
far as we know the sliced proof nets are the unique MALL syntax overcoming
such commutation equivalences. A proof of this canonicity is the relational
semantics injectivity, which holds in the sliced proof nets (theorem 45) but not
in the proof nets based on the additive boxes (see the counter-example in figures
2.5 and 2.6).

But using the slices has a price. Since they do not explicit the &-rule context,
the problem of sequentializing a proof net as well as that of defining a correctness
criterion become very hard. Indeed they have been open problems for fifteen
years, since the inception of linear logic in 1987. Recently in [LTdF04], Laurent
and Tortora de Falco have solved such problems for the cut-free proof structures
of the polarized fragment of linear logic (with exponentials); while in [HvG03],
Hughes and van Glabbeek have given a definitive solution for MALL.

2.1 Additive boxes

In this subsection we give an overview of the proof nets based on additive
boxes, introduced in [Gir87] (see also [TdF00] for an extensively study of the
subject). Our aim is to present their main weakness - a cut reduction which is
not confluent.
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⊕1

A

A⊕B

⊕2

B

A⊕B

&

A&B C1 Cn. . .

Figure 2.1: MALL links for the proof nets based on additive boxes.

The section is divided in three paragraphs. The first one, called proof struc-
tures, introduces the notions of additive box and of proof structure. The follow-
ing paragraph, called proof nets, defines the correspondence between sequent
proofs and correct proof structures. In this paragraph appears clearly that
an additive box is nothing more than a step of sequentialization placed in the
framework of proof nets. Finally in the third paragraph, called cut reduction,
we clash with the non-confluent cut reduction.

Proof structures. MALL proof structures are defined as a straightforward
extension of the MLL ones. We add to the MLL links (figure 1.1) the following
additive links (figure 2.1):

1. the with link (&), which has no premise and n + 1 ordered conclusions
(n ≥ 0). Its first conclusion is the principal conclusion of the link and
it is labeled by a formula A&B. The others (if exist) are the auxiliary
conclusions of the link, labeled by formulas C1, . . . , Cn;

2. the plus1 and plus2 links (⊕1, ⊕2), which have one premise and one
conclusion. If the conclusion of ⊕1 (resp. ⊕2) is labeled by the formula
A⊕B, then its premise is labeled by the formula A (resp. B).

To sum up, the MALL links are divided in three groups: the structural
links (axiom and cut), the multiplicative links (O and ⊗) and the additive ones
(&, ⊕1, ⊕2).

A set of links σ is a surface if each edge of σ is premise of at most one
link and conclusion of exactly one link of σ. The edges which are not any link
premise are called conclusions of the surface.

A proof structure of additive depth 0 (or simply depth 0) is a surface
without &. A proof structure of additive depth at most n+1 is a surface
such that each & w with conclusions A&B,C1, . . . , Cn is associated with two
proof structures πA, πB of additive depth at most n and conclusions respec-
tively A,C1, . . . , Cn and B,C1, . . . , Cn. {πA, πB} is called the additive box
(or simply box) of w, πA (resp. πB) being its left (resp. right) component.

Proof nets. The proofs of the sequent calculus of MALL can be easily trans-
lated into proof structures: the desequentialization for MALL proofs is the
(straightforward) extension of the desequentialization ( )• for MLL (see section
1.2) to the additive rules.
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If σ is a proof in the sequent calculus, then (σ)• is defined by induction on
σ. In case σ ends with a MLL rule then (σ)• is defined as in section 1.2. In
case σ ends in an additive rule then (σ)• is defined as follows:

• if σ ends in a &-rule with premises the subproofs σ′ and σ′′ with conclu-
sions respectively ` Σ, A and ` Σ, B, (σ)• is the link & with conclusions
A&B,Σ and additive box the set {(σ1)

•, (σ2)
•};

• If σ ends in a ⊕i-rule (for i = 1, 2), having as premise the subproof σ′,
then (σ•) is obtained by adding to (σ′)• the link ⊕i corresponding the
⊕i-rule.

Remark that the translation of the sequent &-rule is a false desequentializa-
tion, in the sense that the auxiliary doors of the link & impose a strict distinction
between the links before and those after the &.

The proof nets are those proof structures which are in the range of ( )•.
The correctness criteria, i.e criteria characterizing the proof nets independently
from ( )•, are straightforward extensions of the ones in MLL. For example we
recall here the extension of the Danos and Regnier’s criterion.

A correctness graph of a surface σ is a subgraph of σ obtained by erasing
one premise for each O. A correctness graph of a proof structure π is a
correctness graph of one of the surfaces of π.

Definition 30 A proof structure is correct (resp. strongly correct) if all its
correctness graphs are acyclic (resp. acyclic and connected).

Theorem 31 An additive proof structure π is correct (resp. strongly correct)
iff π is a proof net (resp. a proof net without mix).

Proof [sketch]. The difficult part is the only if part. The proof defines a
(non-deterministic) procedure of sequentialization of a correct proof structure π
into a sequent calculus proof. Such a sequentialization is defined by induction
on the additive depth of π and on the number of links in π at depth 0.

In case π has links at additive depth 0 different from & or it is not connected,
we use the MLL sequentialization procedure, straightforward extended to the
plus.

Otherwise π has only one link at depth 0 which is a &. By induction on the
additive depth we have the sequentialization of the right and left components
of the box associated with the &. By composing these two sequent proofs with
a &-rule we get the sequentialization of π. �

In the proof of theorem 31 appears clearly the sequential nature of the link
&, which translates literally the &-rule of sequent calculus.

Cut reduction. The right judge for a syntax is the cut reduction: such a
judge shows the weakness of the additive boxes.

The reduction of a cut between the principal conclusion A1&A2 of a & and
the conclusion A⊥

1 ⊕ A
⊥
2 of a ⊕i (i = 1, 2) is easily definable as in figure 2.2:

morally the ⊕i chooses one component of the & box. How to reduce instead a
cut of which one premise is the auxiliary conclusion of a &?
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Cn. . . C1 A2 A⊥i

cut

πAi

AiC1Cn
. . .

Cn. . . C1 A1

πA1

A1&A2

&

. . .
Cn C1

⊕i

A⊥1 ⊕ A⊥2

A⊥i

πA2

cut

 β

Figure 2.2: & / ⊕i cut reduction for the proof nets based on additive boxes
(i = 1, 2).

Cn

cut

C⊥

C1Cn. . .C C1Cn. . .C

A1&A2

πA2

C1

. . .C

w&

c′ c

l

πA1

A2A1

Figure 2.3: commutative additive cut.
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ax

X⊥ X

ax

X⊥ X

ax

X⊥ X

ax

X⊥ X

X⊥ X&X

&&

cut

X c

w′ w

l

X⊥&X⊥ c′

Figure 2.4: example of a commutative additive cut.

Let π be a proof net, l be a cut in π of premises c : C and c′ : C⊥, such that
c is an auxiliary conclusion of a & link w (see figure 2.3): such a cut l is called
commutative additive.

For reducing l we have to put c′ inside both the components of the box
associated with w. Putting c′ inside the box associated with w means putting
inside a sub-net with c′ as conclusion. Which sub-net? In [Gir87] it is suggested
to put the maximal sub-net containing c′, defined by the notion of empire of
c′. In [TdF03a] it is shown that almost1 any choice of a sub-net with c′ as
conclusion defines a reduction respecting the same denotational semantics as
the one defined in [Gir87].

Worse, even if we have decided which sub-net putting inside the box associ-
ated with w, what happens if also the premise c′ of l is an auxiliary conclusion
of another & w′? Let us take for example the proof net π in figure 2.4.

If we want to reduce the cut l, do we have to put c′ inside the box associated
with w, or c inside the box associated with w′? By putting c′ inside the w box
we get the proof net in figure 2.5, while by putting c in the w′ box we get the
proof net in figure 2.6.

Such a choice generates from π two cut-free proof nets, so showing that the
cut reduction is not confluent.

2.2 Proof structures

In this section we introduce the additive proof structures starting from the
notion of slice. We proceed in this way: in the first paragraph, called slices, we
define the slices - morally multiplicative proof structures with possibly unary
additive links. In the second paragraph, called proof structures, we introduce
additive proof structures as couples of a set of slices and an equivalence defining
the slices superposition. Finally in the third paragraph, called cut reduction,
we describe the reduction of a cut in a proof structure as a parallel reduction of
superposed slices cuts.

1Some restrictions are needed in case of proof nets with mix.
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ax

X⊥ X

ax

X⊥ X

ax

X⊥ X

ax

X⊥ X

&

XX⊥&X⊥

&

XX⊥&X⊥

X&X

&

X⊥&X⊥

Figure 2.5: example 1 of the cut reduction of the proof net in figure 2.4.

ax

X⊥ X

ax

X⊥ X

X⊥ X&X

&

ax

X⊥ X

ax

X⊥ X

X⊥ X&X

&

&

X&XX⊥&X⊥

Figure 2.6: example 2 of the cut reduction of the proof net in figure 2.4.



32 CHAPTER 2. ADDITIVES

The syntax we present here is on the one hand in the spirit of [HvG03],
particularly in the definition of a cut reduction as parallel reduction of different
slices cuts. On the other hand we define more freely the proof structures, with-
out taking in account Hughes and van Glabbeek’s resolution condition, in this
following the spirit of [LTdF04].

Slices. The starting point we propose for understanding the additives is the
ingenious idea of slice defined by Girard already in [Gir87]: an additive proof is
a superposition of slices of multiplicative proofs.

Let us look for example at the following sequent proof π of (X ⊗X)⊕ (X ⊗
X), (X⊥&X⊥)OX⊥:

ax

` X,X⊥
ax

` X,X⊥

⊗

` X ⊗X,X⊥, X⊥

⊕1

` (X ⊗X)⊕ (X ⊗X), X⊥, X⊥

ax

` X,X⊥
ax

` X,X⊥

⊗

` X ⊗X,X⊥, X⊥

⊕2

` (X ⊗X)⊕ (X ⊗X), X⊥, X⊥

&
` (X ⊗X)⊕ (X ⊗X), X⊥&X⊥, X⊥

O

` (X ⊗X)⊕ (X ⊗X), (X⊥&X⊥)OX⊥

for recovering a slice of π we erase a branch of each &-rule, in this case just one.
For example, by erasing the right branch we get the following slice α1:

ax

` X,X⊥
ax

` X,X⊥

⊗

` X ⊗X,X⊥, X⊥

⊕1

` (X ⊗X)⊕ (X ⊗X), X⊥, X⊥

&
` (X ⊗X)⊕ (X ⊗X), X⊥&X⊥, X⊥

O

` (X ⊗X)⊕ (X ⊗X), (X⊥&X⊥)OX⊥

and by erasing the left branch, we get the following slice α2:

ax

` X,X⊥
ax

` X,X⊥

⊗

` X ⊗X,X⊥, X⊥

⊕2

` (X ⊗X)⊕ (X ⊗X), X⊥, X⊥

&
` (X ⊗X)⊕ (X ⊗X), X⊥&X⊥, X⊥

O

` (X ⊗X)⊕ (X ⊗X), (X⊥&X⊥)OX⊥

Both α1 and α2 are multiplicative proofs with some unary additive rules.
They can be represented as multiplicative proof structures with some unary
links ⊕ and & as in figure 2.7.

It is simple to represent the slices by proof structures. What we only need
is to extend the set of MLL links with the following additive links (see figure
2.8):
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O

ax

&1⊗

⊕1

ax

(X ⊗X)⊕ (X ⊗X) (X⊥&X⊥)OX⊥

X⊥X X

X ⊗X

X⊥

slice α1

ax

O

ax

&2⊗

⊕2

(X ⊗X)⊕ (X ⊗X) (X⊥&X⊥)OX⊥

X⊥X X X⊥

X ⊗X

slice α2

Figure 2.7: example of additive slices α1 and α2.

⊕1

A

A⊕ B

⊕2

B

A⊕ B

&1

A

A&B

&2

B

A&B

Figure 2.8: MALL links for slices.

1. the with1 and with2 links (&1, &2), which have one premise and one
conclusion. If the premise of &1 (resp. &2) is labeled by a formula A
(resp. B) then the conclusion of &1 (resp. &2) is labeled by a formula
A&B;

2. the plus1 and plus2 links (⊕1, ⊕2), which have one premise and one
conclusion. If the premise of ⊕1 (resp. ⊕2) is labeled by a formula A
(resp. B), then the conclusion of ⊕1 (resp. ⊕2) is labeled by a formula
A⊕B.

To sum up, the MALL links are of three types: the structural links (axiom
and cut), the multiplicative links (O and ⊗) and the additive links (&1,2 and
⊕1,2). A slice is a graph (even empty) whose nodes are the MALL links and
such that each edge is premise of at most one link and conclusion of exactly one
link. The edges which are not any link premise are the conclusions of the
slice.
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We denote the slices by the initial Greek letter α, β, . . . and the sets of slices
by capital Latin letters S,Q, . . ..

Let l,m be two links of a slice α. We say that l is a predecessor of m,
denoted by l→m, if a conclusion of l is premise of m. Let m,m′ be two links
and l (resp. l′) be a predecessor of m (resp. of m′), we say that l and l′ are
similar predecessors if one of the following conditions holds:

• m,m′ are multiplicative links and the conclusions of l, l′ are both right or
both left premises;

• m,m′ are the same kind of additive link, i.e. both &i or both ⊕i for
i = 1, 2;

• m,m′ are cuts and the conclusions of l, l′ have the same type.

As always, a slice is cut-free if it has no cut. Remark that, contrary to
MLL, the conclusions of a cut-free slice does not define the slice up to the
axioms, since we do not know the premise of an additive link from its conclusion.

Proof structures. An additive proof is a superposition of slices, so once we
have defined what is a slice, we have to understand what is a superposition of
slices.

Let us come back to our example: the sequent proof π of (X⊗X)⊕(X⊗X),
(X⊥&X⊥)OX⊥. The question is defining the links of α1 and α2 which are
superposed in π, or, otherwise stated, the links of π which are shared by α1 and
α2.

Clearly the terminal links of π are shared by both α1 and α2, so are the O
link with conclusion (X⊥&X⊥)OX⊥ and the ⊕ link with conclusion (X⊗X)⊕
(X ⊗X):2 the slices un-thread once we go up the ⊕ premise.

By looking at the example we remark that: if l is a multiplicative link shared
by α1 and α2, for example the O link, then the l predecessors are still shared by
both the slices; if l is an additive link shared by α1 and α2, then its predecessors
can be no more shared by both the slices; conversely if a link is shared by α1

and α2, then so are all the links below it.
These simple remarks help us to fix the idea of shared link and to introduce

an equivalence relation between the links of the slices:

Definition 32 Let S be a set (even empty) of slices with same conclusions
C1, . . . , Cn. A sharing equivalence on S is an equivalence relation ≡ on the
links of the slices in S such that for any links l, l′,m:

identity: if l, l′ belong to the same slice then l ≡ l′ iff l = l′;

bottom: if l, l′ are terminal, then l ≡ l′ iff l, l′ have the same conclusion among
C1, . . . , Cn;

cut: if l ≡ l′ and l is a cut with premises of type A,A⊥, then l′ is a cut with
premises of same types;

2We allow to share an additive link by two slices α1, α2 even if it occurs in α1 as ⊕1 (resp.
&1) and in α2 as ⊕2 (resp. &2), like in [HvG03].
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bottom-up: if m→ l, and l ≡ l′ then for any m′, m′ → l′, m ≡ m′ iff m and
m′ are similar predecessors;

up-bottom: if l→ m and l ≡ l′, then there is m′, l′ → m′ and m ≡ m′.

If l ≡ l′, we say that l, l′ are superimposed in S by ≡. Conversely, let [l]
be the equivalence class of a link l and α1, . . . , αn be the slices of S which have
links in [l], we say that [l] is a link of S shared by α1, . . . , αn.

Here are two propositions which will be used later and which we hope will
help the reader to take confidence with the sharing equivalences:

Proposition 33 Let S be a set of slices with same conclusions, ≡ be a sharing
equivalence on S, and l, l′ be two links of slices in S. If l ≡ l′ then both l, l′ are
cuts with same type premises, or l, l′ have the conclusions of same type.

Proof. We prove the proposition by induction on the number of links below
l. If l is terminal or a cut then the proposition is a consequence of condition
bottom or cut. If l is predecessor of m then by condition up-bottom there
is an m′ of which l′ is predecessor and such that m ≡ m′; by induction m
and m′ have conclusions of same type. Hence, by condition bottom-up and
by definition of similar predecessor the conclusions of l, l′, which are premises
respectively of m,m′, have same type. Moreover, if l, l′ are axioms it is clear
that the other conclusions than those premises of m,m′ are of same type too.
�

Proposition 34 A sharing equivalence ≡ is completely determined once we
define ≡ on the cuts. In particular, the sharing equivalence on a set of cut-free
slices is unique.

Proof. Let us suppose ≡1 and ≡2 are two sharing equivalences on a set of
slices with same conclusions, such that:

(*) for any two cuts n, n′, n ≡1 n
′ iff n ≡2 n

′.

For any two links l, l′ we prove by induction on the number of links below l
that l ≡1 l

′ iff l ≡2 l
′.

If l is terminal or a cut then the statement is a consequence of condition
bottom or of (*).

If l is predecessor of m. If l ≡1 l
′ then by condition up-bottom there is

an m′ of which l′ is predecessor such that m ≡1 m
′, moreover, by condition

bottom-up we have that l, l′ are similar predecessors. By induction m ≡2 m
′,

so by condition bottom-up and the fact that l, l′ are similar predecessors, we
have l ≡2 l

′. Similarly, we get that l ≡2 l
′ implies l ≡1 l

′. �

We remark that in case of a set S of cut-free slices, the unique sharing
equivalence on S is exactly the one defined by Tortora de Falco and Laurent
in [LTdF04]. We have extended that equivalence to the case with cuts for
comparing Hughes and van Glabbeek’s syntax with the syntax used in [LTdF04].

A sharing equivalence ≡ on S can be easily extended to an equivalence on
the edges of the slices of S. Let a, a′ be two edges of the slices of S, we set
a ≡ a′ if one of the following cases holds:
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⊕

ax

ax

O

ax

&⊗ ⊗

(X ⊗X)⊕ (X ⊗X) (X⊥&X⊥)OX⊥

X⊥XX X X X⊥ X⊥

X ⊗XX ⊗X

Figure 2.9: sharing quotient of the slices in figure 2.7

• a and a′ are the same conclusion of S;

• a (resp. a′) is an edge conclusion of l (resp. l′) and premise of m (resp.
m′), and l ≡ l′, m ≡ m′.

Remark that by proposition 33 if a ≡ a′ then a and a′ are labeled by the
same formula. Actually the following fact holds:

Fact 35 Let S be a set of slices with same conclusions, let ≡ denote a sharing
equivalence on S extended to the edges of the slices in S. If a is an edge of a
slice of S, s.t. a is conclusion (resp. premise) of a link m, then all the edges in
[a] are conclusion (resp. premise) of links in [m].

Fact 35 allows to define from ≡ and S the graph S/≡, whose nodes are
the equivalence classes of the links of the slices in S, and whose edges are the
equivalence classes of the edges of the slices in S (see definition 36).

For example, let us come back to the proof π of (X ⊗ X) ⊕ (X ⊗ X),
(X⊥&X⊥)OX⊥. Its slices α1 and α2 (figure 2.7) are cut-free, hence the set
{α1, α2} has a unique sharing equivalence ≡. The graph {α1,α2}/≡ induced by
such an equivalence is in figure 2.9.

Remark that in the graph of figure 2.9 there are binary additive links and
axioms with more than two conclusions. To be pedantic we have to extend the
set of links with the following shared links (figure 2.10):

1. the shared axiom link, which has no premise, n > 0 conclusions of type
X and m > 0 conclusions of type X⊥;

2. the shared with link (&), which has two ordered premises and one con-
clusion. If a shared with has the left premise labeled by the formula A and
the right premise labeled by the formula B, then the conclusion is labeled
by the formula A&B;

3. the shared plus link (⊕), which has one or two ordered premises and
one conclusion. If a binary shared plus has the left premise labeled by
the formula A and the right premise labeled by the formula B, then the
conclusion is labeled by the formula A⊕B.



2.2. PROOF STRUCTURES 37

The shared links do not occur in the slices but only in their superposition.
Anyway the most of times we will write just link, omitting if we refer to a shared
or slice link, being it clear from the context.

We define in general our graph representation of a superposition of slices:

Definition 36 Let S be a set of slices with same conclusions, and let ≡ denote
a sharing equivalence on S extended to the edges of slices in S. The ≡-sharing

quotient of S, denoted by S/≡, is the graph whose links (resp. edges) are the
equivalence classes w.r.t. ≡ of the links (resp. edges) of the slices in S.

In particular if m is a link of a slice in S, then:

1. in case m is an axiom with conclusions a, b, then [m] is a shared axiom of
S/≡ with among its conclusions [a], [b];

2. in case m is a cut with premises a, b, then [m] is a cut of S/≡ with premises
[a] and [b];

3. in case m is a O (resp. ⊗) with premises a, b and conclusion c, then [m]
is a O (resp. ⊗) of S/≡ with premises [a], [b] and conclusion [c];

4. in case m is a &1 (resp. ⊕1) with premise a and conclusion c, then [m] is
a sharing & (resp. sharing ⊕) in S/≡ with left premise [a] and conclusion
[c];

5. if m is a &2 (resp. plus2) in S with premise a and conclusion c, then
[m] is a sharing & (resp. sharing ⊕) in S/≡ with right premise [a] and
conclusion [c].

For another example of sharing quotient recall the multiplicative proof nets
f and Ω of figure 1.5. Clearly f and Ω can be considered cut-free slices with
conclusion B, hence by proposition 34 the sharing equivalence ≡ on {f,Ω} is
unique. In figure 2.11 there is the sharing quotient {f,Ω}/≡.

Definition 37 A MALL proof structure π with conclusions C1, . . . , Cn is
a couple (|π|,≡π), where |π| is a set (even empty) of slices with conclusions
C1, . . . , Cn and ≡π is a sharing equivalence on |π|.

We call links (resp. edges) of π the links (resp. edges) of |π|/≡π
.

We stress the fact that the above definition authorize to speak of an empty
set of slices as a proof structure with conclusions C1, . . . , Cn. We need such
improper proof structures to define a cut elimination on MALL proof struc-
tures preserving the type of the conclusions (see the following paragraph cut
reduction).

A

&

B

A&B A⊕ B

⊕

A B
ax

. . .
X⊥ X⊥

. . .
X X

Figure 2.10: shared MALL links.
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ax

⊗ O

X X

X⊥ ⊗X⊥ XOX

O

X⊥X⊥

B

Figure 2.11: sharing quotient of {f,Ω}.

The proof structures are denoted by final Greek letters π, σ, ρ, . . .. We define
PSma as the set of the MALL proof structures.

A proof structure is closed if it has only one conclusion. If π is a proof
structure with conclusions C1, . . . , Cn, we define the closure of π with conclu-
sion C1O . . .OCn as the proof structure π∗ obtained by adding to each slice of
π the necessary O links below C1, . . . , Cn.

Remark that if |π| is a set of cut-free slices or it has at most one element
then the sharing equivalence on |π| is unique: in such cases we may speak of
a proof structure π without making explicit ≡π. In particular a MLL proof
structure can be considered as a single slice MALL proof structure.

A proof structure is cut-free if so are all its slices. Like in MLL, the cut
defines a composition between proof structures. Let π = ({α1, . . . , αn},≡π) and
σ = ({β1, . . . , βm},≡σ) be two proof structures with conclusions respectively
A,Π and A⊥,Σ, the composition of π and σ on A,A⊥, denoted by [π, σ]A,A⊥ ,
is the proof structure defined as follows:

• |[π, σ]A,A⊥ | is obtained by connecting every slice of π and every slice of σ
by means of a cut with premises the conclusions A and A⊥ of respectively
π and σ;

• ≡[π,σ]
A,A⊥

is the smallest sharing equivalence on |[π, σ]A,A⊥ | containing

≡π ∪ ≡σ and equaling all the cuts with premises the conclusions A,A⊥ of
respectively π and σ.

We omit the index A,A⊥ in [π, σ]A,A⊥ when it is clear which are the conclu-
sions on which compose. Remark that if π is the empty proof structure, then
[π, σ] is empty for any proof structure σ.

Cut reduction. A cut l of a MALL proof structure π is now an equivalence
class of cuts in the slices of π. We define the reduction of l as the simultaneous
reduction of all the cuts superposed in l.

We proceed in this way: firstly we define the reduction of a cut in a single slice
as an easy extension of MLL cut reduction; secondly, we define the reduction
of a cut in a proof structure as a simultaneous reduction of the corresponding
cuts in the slices of the proof structure.

Let l be a cut in a slice α. l can be of three types:
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⊕i&i

cut

Ai A⊥i

cut

Ai A⊥i

A1&A2

 β

A⊥1 ⊕ A⊥2

l

l′

a aa′ a′

Figure 2.12: &i/⊕i slice cut reduction, for i = 1, 2.

⊕j&i

cut

Ai A⊥j

A1&A2

l

a a′
 β

A⊥1 &A⊥2

Figure 2.13: &i/⊕j slice cut reduction, for i 6= j.

• an axiom cut, whose premises are labeled by dual atomic formulas X and
X⊥;

• a O/⊗ cut, whose premises are labeled by dual multiplicative formulas
AOB and A⊥ ⊗B⊥;

• a &/⊕ cut, whose premises are labeled by dual additive formulas A&B
and A⊥ ⊕B⊥.

In the first two cases, we reduce l as in MLL (see section 1.1). In case l is
an additive cut, let A1&A2 and A⊥

1 ⊕A
⊥
2 be the types of the l premises, &i and

⊕j be the l predecessors. Let us call a (resp. a′) the premise of &i (resp. of
⊕j). If i = j we reduce l erasing l itself, its premises and predecessors and by
adding a cut l′ with premises a and a′ (figure 2.12). If i 6= j we reduce l erasing
completely the slice (figure 2.13).

We write α β α
′ if α′ is the result of the reduction of a cut in the slice α.

Now, let π = (|π|,≡π) be a proof structure with conclusions C1, . . . , Cn. As
written above, a cut l of π is an equivalence class of cuts in the slices of π. We
define the reduction of l as the simultaneous reduction of all the cuts superposed
in l. That is, if |π| = {α1, . . . , αn}, for each αi we define α′

i as the reduction
of the αi cut superposed in l, if it exists, or, in case αi does not share l, we
set α′

i = αi. So, the result of the reduction of l is the proof structure π′ with
conclusions C1, . . . , Cn defines as follows:

• |π′| = {α′
1, . . . , α

′
n};
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• ≡π′ is the smallest sharing equivalence which contains the restriction of
≡π to the links persisting in π′ (morally we extend the restriction of ≡π

in order to meet the cut condition of definition 32 for the new cuts in π′).

Remark that a non-empty proof structure can reduce to an empty one, since
the cut reduction may erase slices, as in figure 2.13. Thus, for preserving the
conclusions of a proof structure under cut reduction we allow the empty proof
structure with conclusions C1, . . . , Cn, for any formulas C1, . . . , Cn.

We write π  β π
′ if π′ is the result of a cut reduction of π. As always, →β

is the reflexive and transitive closure of  β and =β is the symmetrical closure
of →β .

Contrary to the proof structures based on additive boxes, sliced proof struc-
tures enjoy confluence:

Theorem 38 (Confluence) For every π, π′, π′′ ∈ PSma s.t. π →β π′ and
π →β π

′′, there is π′′′ ∈ PSma, s.t. π′ →β π
′′′ and π′′ →β π

′′′.

Proof [sketch]. Simply notice that the cut reduction on a single slice is
confluent, being a straightforward extension of the MLL cut reduction.

The cut reduction on a proof structure is confluent, since it is a parallel
reduction of slices cuts, and the reduction of a cut in a slice does not interfer
with the one of a cut in another slice. �

Of course →β enjoys strong normalization:

Theorem 39 (Strong normalization) For every π ∈ PSma, there is no in-
finite sequence of proof structures π0, π1, π2, . . . s.t. π0 = π and πi  β πi+1.

Proof [sketch]. As in MLL remark that any cut reduction either reduces
the number of cuts or the complexity of the formulas labelling the premises of
the cuts. Hence by an easy induction we get the assertion. �

2.2.1 Relational semantics

In this subsection we extend MLL relational semantics to the additives. The
main results of this subsection is theorem 45, stating the injectivity of the re-
lational semantics for MALL proof structures, and theorem 48, extending to
the additives the characterization of those subsets which are interpretations of
proof structures.

Let X be a set, the relational model on X, denoted by RelX, associates
with MALL formulas sets, in the following way:

• X is associated with the atomic formulas X,X⊥;

• if A and B are associated resp. with A and B, then A×B is associated with
AOB and A⊗B;

• if A and B are associated resp. with A and B, then the disjoint union A+B

of A and B is associated with A&B and A⊕B.
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We recall that the disjoint union of two sets A and B is defined as: A + B =
({1}×A)∪ ({2}×B). If C ⊆ A+B we denote by s1(C) (resp. by s2(C)) the subset
of A (resp. of B) defined as {a | < 1, a >∈ C} (resp. {b | < 2, b >∈ C}).

We extend the definition of experiment of subsection 1.1.1 to the additives
in the following way:

Definition 40 A RelX experiment e on a slice α, denoted by e : α, is a
function associating with every edge a : A of α an element of A, such that the
following conditions are respected:

axiom: if a, b are the conclusions of an axiom, then e(a) = e(b);

cut: if a, b are the premises of a cut, then e(a) = e(b);

multiplicative: if c is the conclusion of a O or ⊗ with premises a and b, then
e(c) =< e(a), e(b) >;

additive: if c is the conclusion of a &i or ⊕i (i = 1, 2) with premise a, then
e(c) = 〈i, e(a)〉.

If α has conclusions c1 : C1, . . . , cn : Cn, the result of an experiment

e : α is < e(c1), . . . , e(cn) >. An experiment on a proof structure is an
experiment of one among its slices.

The interpretation of a slice α in RelX, denoted by JαKRelX , is undefined
in case α is empty, otherwise it is the set of its experiments results, i.e. if
c1 : C1, . . . , cn : Cn are the conclusions of α:

JαKRelX = {< e(c1), . . . , e(cn) > | e is a RelX experiment on α}

Finally, the interpretation of a proof structure π is the union of the
interpretations of its slices:

JπKRelX =
⋃

α∈|π|

JαKRelX

where in case π is empty,
⋃

α∈|π|JαKRelX = ∅. We omit the index RelX if it is
clear which model we refer to.

It is well known that relational semantics is sound for additive proof struc-
tures:

Theorem 41 (Soundness.) Let π, π′ ∈ PSma, if π →β π′ then JπKRelX =
Jπ′KRelX .

Conversely, we extend theorem 6 to the additives, proving (easily) the injec-
tivity of the relational semantics for MALL proof structures (theorem 45).

Injectivity. We recall the definition of injective experiment in the slice frame-
work:

Definition 42 Let α be a cut-free slice and e : α be an experiment. e is injec-

tive when for any two edges a, a′ labeled by X, e(a) 6= e(a′).
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Like in MLL we remark that:

Fact 43 An injective experiment is actually injective on any two edges of same
type, i.e. for any two edges a, a′ : A, e(a) 6= e(a′).

Fact 44 If X is infinite then any cut-free slice α has injective experiments.

Theorem 45 (Injectivity.) Let X be an infinite set and π, π′ ∈ PSma, if
JπKRelX = Jπ′KRelX then π =β π

′.

Proof. Let X be an infinite set and π, π′ be two proof structures with same
conclusions c1 : C1, . . . , cn : Cn, such that JπKRelX = Jπ′KRelX . We prove that
π =β π

′.
Since→β is confluent and normalizing, we can suppose π and π′ are cut-free.

Hence we have to prove that π = π′.
Since both π and π′ are cut-free, their sharing equivalences are unique, so it

will be enough to show |π| = |π′|.
Let α ∈ |π|, we will prove that α ∈ |π|′. Let e be an injective experiment on

α, which it exists by fact 44. Since the result of e is in JπK = Jπ′K, then there is an
experiment e′ on a slice α′ ∈ |π′|, such that e and e′ have the same result. Now,
let c be a conclusion of α, and c′ be the correspondent of α′. Since c and c′ have
same type and e(c) = e(c′), it is simple to note that c and c′ are conclusions of
links of same type and that the values of e and e′ on the correspondent premises
of such links are equals. Hence by going from the conclusions c1, . . . , cn to the
atomic edges, we can prove that α and α′ are the same graph up to the axioms.
Now since e′ has the same values as e, e′ is injective too, therefore the two slices
have the same axioms, that is α = α′. By symmetry we have that if α′ ∈ |π′|
then α ∈ |π|, so |π| = |π′|. �

Surjectivity. For each formula C we have on the one hand the proof structures
with conclusion C, on the other hand the subsets of C. Theorems 41 and 45
prove that J KRelX is an injective function from the β-equivalence classes of proof
structures with conclusion C to the subsets of C. The rest of the subsection is
devoted to extend theorem 14 to the additives, i.e. to characterize those subsets
of C which are interpretations of proof structures with conclusion C (theorem
48).

Let C be a MALL formula, an element u ∈ C is a sequence of elements
of the basic set X and of the symbols <,>, 1, 2. Hence we may define all the
notions introduced in subsection 1.1.1. In particular we obtain the following
lemmas:

Lemma 46 Let X be an infinite set, C be a set associated with a formula C in
RelX. Let u ∈ C be a balanced element which is maximal among the balanced
elements of C. There is a closed cut-free slice αu with conclusion C and an
injective experiment eu : αu such that the result of e is u.

Proof. Actually we prove that if u is a balanced maximal element of C1O . . .OCn,
then there are a slice αu with conclusions c1 : C1, . . . , cn : Cn and an injective
experiment eu : αu with result u. This is achieved by an easy induction on the
formulas C1, . . . , Cn. If C1, . . . , Cn are all atomic formulas, being u balanced
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we have an equal number of occurrences of X and of X⊥. Moreover, being
u maximal among the balanced elements, u links in pairs of types X,X⊥ the
conclusions c1, . . . , cn. In this way we get both the axioms defining αu and the
values of eu on the conclusions of such axioms.

The induction step splits in four cases, depending on the type of a non
atomic formulas among C1, . . . , Cn. We prove just one case: say there is Ci of
type A1&A2. In this case we remark that the point of u corresponding with
Ci has the shape ui =< j, p > for a j ∈ {1, 2} and a p ∈ Aj . From j we
are able to define the link &j of which ci is conclusion and to get an element
u′ ∈ C1O . . .OAjO . . .OCn which is balanced and maximal among the balanced

elements. By induction we get αu′

and eu′

, hence αu by adjoining ci below Aj

and eu by extending eu′

to the adjoined edge. �

Lemma 47 Let X be an infinite set and α be a cut-free closed slice with conclu-
sion C, then JαKRelX is a complete subset of C.

Proof. Similar to the proof of lemma 12. �

We thus have the following theorem:

Theorem 48 Let X be an infinite set. Let C be an MALL formula and C

its interpretation in RelX. A subset of C is the interpretation of a closed proof
structure with conclusion C if and only if it is a (finite) union of complete sets.

Proof. Let U be a (finite) union of complete subsets of C, for example U =
U1 ∪ . . . ∪ Un (actually, U1, . . . , Un are uniquely determined by U). For each
Ui, let ui ∈ Ui be a maximal among the balanced elements of C. By lemma
46 there is a cut-free slice αui such that, by lemma 47, Jαui K = Ui. Let |π| =
{αu1 , . . . , αun}, since all slices of |π| are cut-free, it is unequivocally determined
a sharing equivalence on |π|. Clearly, JπK = U .

Conversely, let π be a cut-free proof structure with conclusion C. By lemma
47, JπK is a union of complete sets. �

2.2.2 Observational equivalence

In definition 50 we extend the MLL observational equivalence ∼B to the addi-
tives. The main result of this subsection is proposition 52, stating that ∼B is
strict larger than =B.

Recall the formula B = (X⊥ ⊗ X⊥)O(XOX), defined in subsection 1.1.2.
Actually the MALL inhabitants of B are quite different from the MLL ones:
there are four MALL cut-free proof structures with conclusion B.

Recall f and Ω of figure 1.5. f and Ω are the only two cut-free slices with
conclusion B, but the cut-free proof structures of B are four, i.e. ∅, {f}, {Ω}
and {f,Ω}.

This remark shows that on MALL proof structures we can speak not only
of β-equivalence, view as the identity between cut-free proof structures, but
more finely of a pre-order ≤β, which is the set inclusion between cut-free proof
structures:

Definition 49 Let π1, π2 ∈ PSma, π∗
1 (resp. π∗

2) be the cut-free proof structure
β-equivalent with π1 (resp. with π2), then we set π1 ≤β π2 iff |π∗

1 | ⊆ |π
∗
2 |.
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Notice that the definition 49 is meaningful since →β enjoys confluence and
(strong) normalization. Moreover, the pre-order ≤β is actually an order on the
cut-free proof structures; for any formula C the empty proof structure is the
minimum and the total proof structure, which is the set of all cut-free slices
with conclusion C, is the maximum among the cut-free proof structures with
conclusion C.

In particular the cut-free proof structures with conclusion B are ordered as
follows:

{f,Ω}

≤ β ≤
β

{f} {Ω}

≤
β

≤ β

∅

A proper axiom with conclusions C1, . . . ,Cn is a link with no premises
and n conclusions labeled respectively by C1, . . . , Cn. A context of type
C1, . . . ,Cn is a proof structure with conclusion B, the slices of which can have
proper axioms with conclusions C1, . . . , Cn. We denote a context by C [ ].

Let π be a proof structure with conclusions C1, . . . , Cn and C [ ] be a context
of same type. Let us suppose that α1, . . . , αk are the slices of π and β1, . . . , βl

those of C [ ], we denote by C [π] the following proof structure:

- let i ≤ k and j ≤ l, we denote by γi,j the slice obtained from βj by
substituting the slice αi to each occurrence of the proper axiom in βj . We
define |C [π] | = {γi,j | i ≤ k and j ≤ l};

- ≡C[π] is the smaller sharing equivalence containing both ≡C[ ] and ≡π.

As for the β-equivalence, the observational equivalence on MALL proof
structures is naturally refined in a pre-order, induced by our new set of values:

Definition 50 Let π1, π2 ∈ PSma be with conclusions C1, . . . , Cn. We say that
π1 is observationally less defined than π2 (π1 �B π2) if for all contexts C [ ],
C [π1] ≤β C [π2]. We say that π1 is observationally equal to π2 (π1 ∼B π2)
if π1 �B π2 and π2 �B π1.

The context lemma still holds for such pre-order:

Lemma 51 (Context lemma) Let π1, π2 ∈ PSma be with conclusions C1, . . . , Cn.
Let π∗

1 and π∗
2 be the two closures of π1, π2 with conclusion C1O . . .OCn. π1 �B

π2 iff there is a proof structure σ with conclusions C⊥
1 ⊗ . . .⊗ C

⊥
n ,B, such that

[π∗
1 , σ] �β [π∗

2 , σ].

Proof. The proof is similar to that of lemma 28, if we read ≤β (resp. �B)
instead of =β (resp. ∼B). �

Unfortunately our definition of additive proof structures does not meet the
separation, i.e.:

Proposition 52 There are π1, π2 ∈ PSma such that π1 ∼B π2 but π1 �β π2

and π2 �β π1.
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Proof. Let A be the formula XOXOXOX , C = AOA⊥. Let α1 and α2 be
two different cut-free slices with conclusion C, π be the total proof structure
with conclusion C, which is the set of all cut-free slices with conclusion C. We
define |π1| = |π| − α2 and |π2| = |π| − α1. Clearly π1 �β π2 and π2 �β π1,
we prove that π1 ∼B π2. By lemma 51, it is enough to prove that for all proof
structure σ with conclusions C⊥,B, [σ, π1] =β [σ, π2].

We prove that for any slice β with conclusions C⊥,B, [{β}, π1] =β [{β}, π2],
which clearly implies the statement above.

Since both C⊥ and B are actually formulas of MLL, a cut-free slice with
conclusions C⊥,B corresponds up to the axioms with the syntax trees of C⊥

and B. Let {1, . . . , 12} be an enumeration of the leaves of such a forest, such
that:

• the odd (resp. even) numbers in {1, . . . , 8} enumerate the leaves labeled
by X (resp. X⊥) above C⊥;

• the odd (resp. even) numbers in {9, . . . , 12} enumerate the leaves labeled
by X (resp. X⊥) above B;

Let β be a cut-free slice with conclusions C⊥,B. If β(9) = 10 or β(11) =
12 then for all slices α with conclusion C, [β, α] →β f. If β(9) = 12, or
β(11) = 10 then for all slices α with conclusion C, [β, α] →β Ω. In both cases,
[{β}, π1] =β [{β}, π2]. Otherwise let β(9) = e for an even number e ≤ 8 and
β(10) = o′, β(12) = o′′ for odds numbers o′, o′′ ≤ 8. We remark that there is an
α′ 6= α1, α2 such that α′(e) = o′ and α′′ 6= α1, α2 such that α′′(e) = o′′. Since
[β, α′] →β f and [β, α′′] →β Ω, we get [{β}, π1] =β {f,Ω} =β [{β}, π2]. �

The failure of MALL separability is due to the large freedom we let in
the proof structure definition. Actually any set of cut-free slices with same
conclusions is a proof structure. We do not associate with a slice a special
&-rule branch: we allow as many slices we want for any &-rule branch. For
example, the proof structure {f,Ω} has two slices but no link & justifying the
co-presence of both of them.

We let such a freedom since we think that the proof structures have to be
the simplest structures on which cut reduction is definable. We avoid in their
definition any condition not dealing with the cut reduction, such as for example
Hughes and van Glabbeek’s resolution condition. The problem of sequentializing
a proof structure comes later, at the level of proof nets. Moreover, the problem
of sequentializing a proof net in a particular logical system (for example with or
without mix, with or without a zero-ary &-rule) is maybe another one coming
even later.

2.3 Proof nets

We arrive to one of the most crucial points of MALL: the correspondence
between MALL sequent calculus and sliced proof structures.

In subsection 2.3.1 we define the desequentialization of MALL sequent
proofs, by following [HvG03]. Contrary to the multiplicative case, the MALL
desequentialization is not a function, i.e. a unique sequent proof may be asso-
ciated with several proof structures.
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Actually such an ambiguity deals only with the desequentialization of proofs
with cuts. More precisely, we will notice that the indeterminateness of a MALL
desequentialization deals with the sharing equivalence, and not with the way we
associate a set of slices with a sequent proof.

In subsection 2.3.2 we recall the MALL correctness criterion by Hughes
and van Glabbeek. We do not give the proof of the sequentialization theorem
(here theorem 58), for which we refer to [HvG03] (see also [HvG05], for a more
detailed survey).

2.3.1 Desequentialization of MALL sequent proofs

MALL sequent proofs can be translated into the proof structures by means of a
desequentialization procedure. Remark that such a desequentialization is not an
immediate extension of the MLL one: a MALL desequentialization associates
with a sequent proof a proof structure, which is now a couple of a set of slices
and a sharing equivalence; it turns out that the MALL desequentialization is
not deterministic in the definition of the sharing equivalence, i.e. with a unique
sequent proof (with cuts) we can associate proof structures having the same set
of slices but different sharing equivalences.

Let σ be a sequent proof, the desequentialization of σ is a procedure (not
a function) associating with σ a proof structure (σ)• by induction on σ as follows
(recall that, by means of proposition 34, ≡(σ)• is unequivocally determined once
it is defined on the slices’ cuts):

• if σ is an axiom with conclusions X,X⊥, then the unique slice of |(σ)•| is
an axiom link with conclusions X,X⊥. Of course in this case the sharing
equivalence is straightforward;

• if σ ends in a O-rule (resp. ⊕i-rule), having as premise the subproof σ1,
then |(σ)•| is obtained by adding to every slice in |(σ1)

•| the corresponding
link O (resp. link ⊕i). Let l, l′ be two cuts in the slices of (σ)• with
premises of same type. Remark that l and l′ are already in the slices of
(σ1)

•, we define l ≡(σ)• l
′ iff l ≡(σ1)• l

′;

• if σ ends in a mix-rule, with premises the subproofs σ1 and σ2, then |(σ)•|
is obtained by taking for every slice in |(σ1)

•| and every slice in |(σ2)
•|

their disjoint union. Notice that if |(σ1)
•| (resp. |(σ2)

•|) contains k1 (resp.
k2) slices, then |(σ)•| contains k1 × k2 slices. Let l, l′ be two cuts in the
slices of (σ)• with premises of same type. Remark that l and l′ are already
in the slices of (σi)

• (resp. (σj)
•) for i, j ∈ {1, 2}. We define l ≡(σ)• l

′ iff
i = j and l ≡(σi)• l

′;

• if σ ends in a ⊗-rule, with premises the subproofs σ1 and σ2, then |(σ)•|
is obtained by connecting every slice of |(σ1)

•| and every slice of |(σ2)
•|

by means of the ⊗-link corresponding to the ⊗-rule. Notice that if |(σ1)
•|

(resp. |(σ2)
•|) contains k1 (resp. k2) slices, then |(σ)•| contains k1 × k2

slices. Let l, l′ be two cuts in the slices of (σ)• with premises of same type.
Remark that l and l′ are already in the slices of (σi)

• (resp. (σj)
•) for

i, j ∈ {1, 2}. We define l ≡(σ)• l
′ iff i = j and l ≡(σi)• l

′;

• if σ ends in a cut-rule, with premises the subproofs σ1 and σ2, then |(σ)•|
is obtained by connecting every slice of |(σ1)

•| and every slice of |(σ2)
•| by
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means of the cut-link corresponding to the cut-rule. Notice that if |(σ1)
•|

(resp. |(σ2)
•|) contains k1 (resp. k2) slices, then |(σ)•| contains k1 × k2

slices. Let l, l′ be two cuts in the slices of (σ)• with premises of same type.
Remark that l (resp. l′) is either a new cut-link or it is already in the
slices of (σi)

• (resp. (σj)
•) for i, j ∈ {1, 2}. We define l ≡(σ)• l

′ iff l and
l′ are both new cut-links or i = j and l ≡(σi)• l

′;

• if σ ends in a &-rule with premises the subproofs σ1 and σ2, then |(σ)•|
is obtained by adding a &1-link (resp. &2-link) to every slice of |(σ1)

•|
(resp. |(σ2)

•|) and by taking the union of these sets of slices. Notice that
if |(σ1)

•| (resp. |(σ2)
•|) contains k1 (resp. k2) slices, then |(σ)•| contains

k1 +k2 slices. Let l, l′ be two cuts in the slices of (σ)• with premises of the
same type. Remark that l (resp. l′) is already in the slices of (σi)

• (resp.
(σj)

•) for i, j ∈ {1, 2}. If i = j then l ≡(σ)• l
′ iff l ≡(σi)• l

′, otherwise, if
i 6= j, we are free to define ≡(σ)• whatever we want, provided we respect
symmetry and transitivity.

An additive proof net is a proof structure which is a desequentialization
of an MALL sequent proof. Moreover a proof net is said without mix if it is
the desequentialization of a sequent proof without mix. We denote by PNmax

(resp. PNma) the set of additive proof nets (resp. additive proof nets without
mix). Clearly:

PNma ⊂ PNmax ⊂ PSma

We remark that ( )• is not a function because of the &-rule desequentializa-
tion. In such a case we may choose to superpose or not two cuts l, l′ coming
from different branchings of the &-rule. Such a freedom allows to keep a cor-
respondence between the cut reduction in a sequent proof and the one in the
associated proof net, as we show in the following example.

Let us consider the sequent proofs σ, σ′ and σ′′, defined as follows:
σ:

ax

` X,X⊥

ax

` X,X⊥
ax

` X,X⊥

&
` X,X⊥&X⊥

cut

` X,X⊥&X⊥

σ′:

ax

` X,X⊥
ax

` X,X⊥

&
` X,X⊥&X⊥

ax

` X,X⊥

⊕1
` X ⊕X,X⊥

cut

` X,X⊥

ax

` X,X⊥
ax

` X,X⊥

cut

` X,X⊥

&
` X,X⊥&X⊥

σ′′:

ax

` X,X⊥
ax

` X,X⊥

cut

` X,X⊥

ax

` X,X⊥
ax

` X,X⊥

cut

` X,X⊥

&
` X,X⊥&X⊥
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Let us compute the three desequentializations (σ)•, (σ′)• and (σ′′)•.
Both σ and σ′′ are associated with the same set of slices {α1, α2}, while σ′

is associated with {α11, α12, α2} (see figure 2.14).
Let l1, l2, l11 and l12 be the cuts resp. in α1, α2, α11 and α12. The sharing

equivalences of resp. (σ)•, (σ′)• and (σ′′)• are as follows:

• in (σ)• we have to define l1 ≡(σ′)• l2. There is no choice, (σ) has a unique
desequentialization;

• in (σ′)• we have to define l11 ≡(σ′)• l12, and l11 6≡(σ′)• l2, l12 6≡(σ′)• l2. σ
′

has a unique desequentialization too;

• in (σ′′)• we are free to define l1 ≡(σ′′)• l2 or l1 6≡(σ′′)• l2. σ′′ has two
different desequentializations.

σ′′ has two desequentializations since it can be the result of a reduction of a
cut in σ as well as of a cut in σ′.

σ →β σ′′, by reducing the commutative additive cut in σ. In this case we
justify l1 ≡(σ′′)• l2, so that σ and σ′′ are desequentialized by the same proof
structure: (σ)• = (σ′′)•. In general we expect that a desequentialization is
invariant under commutative cut reductions.

σ′ →β σ
′′, by reducing the cut with premises X⊥&X⊥, X ⊕X in σ′. In this

case we set l1 6≡(σ′′)• l2, being l1 the residual of the l11 and l12 reductions, so
that we have (σ′)• →β (σ′′)•.

Associating with a unique sequent proof an host of proof nets may be view
as a weakness. This is not the case for sliced proof nets, having shown that the
( )• indeterminateness only deals with the sharing equivalence of the cut links.
It just concerns the way we reduce the slices’ cuts, independently one from
the other or simultaneously, but not the way we represent the slices, hence the
cut-free proofs (for which the sharing equivalence is unique, recall proposition
34)3.

Actually if we look at the invariants under cut reduction, sliced proof struc-
tures give canonical representatives - the cut-free proof structures. For a last
example recall the two proof nets in figures 2.5 and 2.6, which are a counter-
example to the canonicity of the proof nets based on additive boxes, being
β-equivalent. Remark that such proof nets are associated with a unique sliced
proof net, of which set of slices {α1, α2, α3, α4} is in figure 2.15.

In general we consider the injectivity of the relational semantics for sliced
proof nets (theorem 45) a proof of their canonicity.

2.3.2 Correctness criterion for additive proof nets

In this subsection we recall the MALL correctness criterion by Hughes and van
Glabbeek. Such a criterion consists of three conditions, which we call respec-
tively (see definition 56):

1. slice correctness (in [HvG03] called MLL correctness),

3Indeed the proof nets syntax introduced by Girard in [Gir96] associates with a unique
sequent proof several proof nets too, but Girard’s syntax is ambiguous already at the level of
cut-free proofs, not the Hughes and van Glabbeek’s one.
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cut

ax

&1

ax

XX

X⊥&X⊥

X⊥ X⊥

l1

slice α1

cut

ax

&2

ax

XX X⊥ X⊥

X⊥&X⊥
l2

slice α2

cut

⊕1&1

X X⊥

ax

X⊥&X⊥

&1

ax

X

X ⊕X

l11

X⊥&X⊥

X⊥

slice α11

cut

ax

⊕1&2

X⊥&X⊥

&1

ax

X⊥
X

X X⊥

X ⊕XX⊥&X⊥

l12

slice α12

Figure 2.14: slices α1, α2, α11 and α12 with conclusions X,X⊥&X⊥.
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ax

X⊥ X

&1

X&X

&1

X⊥&X⊥

ax

X⊥ X

&1

X&XX⊥&X⊥

&2

slice α1 slice α2

ax

X⊥ X

&2

X&XX⊥&X⊥

&1

ax

X⊥ X

&2

X&XX⊥&X⊥

&2

slice α3 slice α4

Figure 2.15: slices associated with the additive box based proof nets of figures
2.5 and 2.6.

2. additive acyclicity (in [HvG03] called toggling condition),

3. fullness and compatibility (in [HvG03] called resolution condition).

We have already noticed that Hughes and van Glabbeek use fullness and
compatibility already for defining the proof structures. We do not give the
proof of the sequentialization theorem (here theorem 58), for which we refer to
[HvG03] (see also [HvG05], for a more detailed survey).

A correctness graph of a slice α is a subgraph of α which is obtained
erasing one premise for each link O. The first correctness condition we can
formulate is the MLL correctness:

Definition 53 A proof structure π is slice correct (resp. slice strong cor-

rect) if for each slice α ∈ π, all correctness graphs of α are acyclic (resp. acyclic
and connected).

It is well-known since [Gir87] that the slice correctness is far from char-
acterizing MALL proof nets: what we still need is a graph and related paths
jumping from one slice to another. For this purpose we associate with any proof
structure π a graph Gπ, allowing to deal with paths crossing the slices of π.

We recall that the links (resp. edges) of π are the sharing equivalence classes
of the links (resp. edges) in the slices of π (see definition 37). Two slices α′

and α′′ of π toggle a & w of π if α′ (resp. α′′) shares w by means of a link
&i (resp. &j) and i 6= j.

Let a (resp. w) be an axiom conclusion (resp. link &) of π, a depends on
w in π if there are two slices α′, α′′ ∈ π, such that a is shared by α′ but not by
α′′ and w is the only & of π toggled by α′, α′′. An axiom l of π depends on
w if at least one conclusion of l depends on w.
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Construct the graph Gπ from the sharing graph |π|/≡π
by adding for each &

link w and each axiom link l depending on w in π, an edge, called jump, from
w to l.

We adapt the path definition of section 1.1 to Gπ. An oriented edge is an
edge together with a direction upward, denoted by ↑ a, or downward, denoted
by ↓ a. We write l a in case we do not want to specify if we mean either ↑ a
or ↓ a. We consider a jump from a & w to an axiom l as a premise of w and
a conclusion of l. An oriented path (or simply path) from l a0 to l an in a
graph Gπ is a sequence of Gπ oriented edges <l a0, . . . , l an > such that for
any i < n:

• if l ai =↑ ai, l ai+1 =↑ ai+1, then ai is conclusion of the link of which
ai+1 is premise;

• if l ai =↑ ai, l ai+1 =↓ ai+1, then ai and ai+1 are conclusions of the same
link;

• if l ai =↓ ai, l ai+1 =↓ ai+1, then ai is the premise of the link of which
ai+1 is conclusion;

• if l ai =↓ ai, l ai+1 =↑ ai+1, then ai and ai+1 are premises of the same
link;

We say that a path crosses a link l if it contains a sequence of two edges
having l as a vertex.

A path is up-oriented (resp. down-oriented) if all its edges are upward
(resp. downward) oriented. An edge a is above an edge b (a ≥ b) if there is
a path down-oriented from ↓ a to ↓ b.

As always, we denote paths by the Greek letters φ, ψ, . . .. A path φ in π
comes back if there is an edge a s.t. ↑ a, ↓ a ∈ φ; a switching edge of π is a
O or & premise (jumps included); a path φ is switching if it never comes back
and it does not contain two switching edges of a same link. A switching cycle
is a switching path from l a to l a.

Definition 54 A proof structure π enjoys additive acyclicity if there is a &
w toggled by slices in π, such that w is not crossed by any switching cycle in
Gπ.

A proof structure π is downward additive acyclic if for each π′ ⊆ π, if
π′ has at least two slices, then π′ enjoys additive acyclicity.

Let w be a non axiom link of Gπ. A branch of w in Gπ is the subgraph of all
the edges and non axiom links above one premise of w in Gπ. A &-resolution
G&

π of Gπ is a sub-graph of Gπ obtained erasing one branch for each binary &
in Gπ. A slice α ∈ π is in a &-resolution G&

π , written α ∈ G&
π , if all the α

links are in the G&
π links.

Definition 55 A proof structure π is compatible if for each &-resolution G&
π

there is at most one slice α s.t. α ∈ G&
π ; it is full if Gπ contains only binary &

link and for each &-resolution G&
π there is at least one slice α s.t. α ∈ G&

π .

The final additive correctness criterion is as follows:
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Definition 56 A proof structure π is correct (resp. strongly correct) if the
following condition holds:

1. π is slice correct (resp. slice strongly correct);

2. π is downward additive acyclic;

3. π is compatible and full.

First of all, remark that the additive correctness criterion is stable by cut
reduction:

Theorem 57 ([HvG03]) Let π →β π
′, if π is correct (resp. strongly correct)

then so is π′.

Proof. See [HvG03], [HvG05]. �

Secondly, the correctness corresponds to MALL sequentialization:

Theorem 58 ([HvG03]) Let π ∈ PSma. π is a proof net (resp. a proof net
without mix) iff π is correct (resp. strongly correct).

For the proof details see [HvG03], [HvG05]. We give here just a proof sketch
and further definitions which we will use in the following subsection 2.3.3.

The proof of the implication π proof net ⇒ π correct is a simple induction
on the length of a sequent proof associated with π. Conversely, the proof of
π correct ⇒ π proof net is quite hard. The key step is the splitting lemma,
stating that in case π is a correct proof structure with O/& links then it has a
splitting O/&, where a link is splitting if removing it increases the number of
the connected components of Gπ.

With the splitting lemma in hands the proof of π correct ⇒ π proof net
reduces to an induction on the number of O/& in π.

The splitting lemma is proven by the notion of domination, which is a binary
relation between a O/& link (the dominator) and a general link (the dominated).

In the following section we will use the notion of domination, as well as
corollary 64. Corollary 64 is a little variant of corollary 1 in [HvG03] (see also
corollary 4.35 in [HvG05]). In particular we do not require that π is a proof net
and we refer to binary & links instead of &/O links in general.

In what follows we give the precise definitions and lemmas which allow to
prove the corollary 64. Such lemmas are straightforward variants of the ones in
[HvG03], thus we omit the proofs.

Let π be a proof structure, we say that a subset π′ of slices of π is
saturated if for each slice α ∈ |π|/|π′|, π′ ∪ {α} toggles more & than π′.

Remark that the downward additive acyclicity (i.e. condition 2 of definition
56) coincides with:

2’ for each saturated π′ ⊆ π, if π′ has at least two slices, then π′ enjoys
additive acyclicity;
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A switching path is a strong path if its first edge is not a switching edge of
a O/&. Let A be a set of edges in Gπ. A path is in A if each of its edges is in

A. We write a
φ
→A b to denote a switching path φ from a to b in A and a

φ
⇒A b

if φ is strong. We shall sometimes use slices or set of slices to denote the sets of
their edges.

A set A of edges in Gπ is an a-zone, if for all b ∈ A there is a strong path

b
φ
⇒A a such that ↓ a ∈ φ. Given a link O/& w and a link l, we define w

dominates l, denoted by w A l, if there is a switch edge a of w such that the
conclusion of l is in an a-zone. If l is not dominated (resp. not dominated by
any &), it is free (resp. &-free).

Lemma 59 (Properties of domination, [HvG03]) Let π be a proof struc-
ture, then:

- SWITCH. If w ← l is a switch edge then w A l;

- TRANSITIVITY. Domination is transitive;

- SELF. A O/& link dominates itself iff it is in a switching cycle;

- JUMP-CYCLE. If w ← l is a jump and l is crossed by a switching cycle
φ, then w dominates every link crossed by φ;

- EXTEND. If w A l and there is a path φ from l to l′ which never enters
a O/& from above (i.e. ↓ a ∈ φ only if a is not a O/& switching edge),
then w A l′;

- FORK. Let a0, an two switching edges of a O/& such that a0
φ
→ an, then

for each link l crossed by φ, w A l;

- MEET. If w A l @ w′ for distinct free O/& w,w′, then exists a switching

path ↑ w
φ
→↓ w′.

Let w be a binary & of π, we denote by πw the proof structure containing
all the slices of π which do not share the w right premise. Write α

w
= α′ if the

slices α, α′ ∈ π are either equal or w is the only & toggled by α, α.
It is straightforward to check that:

(S1) if π is saturated and toggles w then πw is saturated;

(S2) if π is saturated and toggles w and α ∈ π than α
w
= αw for some αw ∈ πw;

(S3) if π is saturated and toggles w and α
w′

= α′ then exist αw, α
′
w ∈ π

w s.t.:

α
w′

== α′

w ‖ w ‖

αw
w′

== α′
w

Lemma 60 (from [HvG03]) Let w be a & toggled by a saturated proof struc-
ture π, and let e be an edge from an axiom l of Gπ such that e /∈ Gπw . Then
exists a jump l→ w in Gπ.
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Lemma 61 (from [HvG03]) Let π be a saturated and downward additive acyclic
proof structure, then every non-empty union S of switching cycles of Gπ has a
jump out of it: for some axiom l crossed by S and toggled & w, if w is not
crossed by S, then there is a jump l → w in Gπ.

Lemma 62 (from [HvG03]) Let π be a saturated and downward additive acyclic
proof structure, w be a & toggled in π s.t. w A w, then exists a & w′ toggled in
π s.t. w′

A w and w′ 6A w′.

Lemma 63 (from [HvG03]) Let π be a saturated and downward additive acyclic
proof structure, every binary & of Gπ is either &-free or is dominated by a binary
&-free &.

Corollary 64 (from [HvG03]) Let π be a saturated, sliced correct and down-
ward additive acyclic proof structure. If Gπ has a binary &, then it has a binary
&-free &.

2.3.3 From coherent to hypercoherent semantics

In this subsection we present the state of our research of a surjective semantics
for sliced proof nets. The subsection is divided in three paragraphs. In the first
one, called coherent semantics, we extend coherent spaces to the additives and
we study the Gustave proof structure - a well-known counter example to the
full-completeness of MALL coherent spaces.

In the second paragraph, called hypercoherent semantics, we recall the hy-
percoherent spaces introduced by Ehrhard in [Ehr93]. Hypercoherent spaces
overcome the Gustave proof structure counter example.

In the third paragraph, called hypercliques and MALL correctness we present
our state of knowledge about the correspondence between hypercliques and
MALL correctness. The main result in this subsection is theorem 68, stat-
ing that the interpretation of a correct proof structure is a hyperclique.

Coherent semantics. We extend the coherent semantics defined in subsec-
tion 1.2.1 to the additives. Let X be a coherent space, the coherent model
CohX associates with MALL formulas coherent spaces defined by induction on
the formulas, as follows:

• with X it is associated X ;

• with A⊥ it is associated A⊥ defined as follows: |A⊥| = |A|, the coherence

of A⊥ is the incoherence of A, i.e. x a

`
y

[
A⊥

]
iff x `

a
y [A];

• with A⊗B it is associated A⊗B defined as follows: |A ⊗ B| = |A| × |B|

and < a, b > a

`
< a′, b′ > [A⊗B] iff a a

`
a′ [A] and b a

`
b′ [B];

• with A1 ⊕ A2 it is associated A1 ⊕ A2 defined as follows: |A1 ⊕ A2| =

|A1|+ |A2| and < i, x > a

`
< j, y > [A1 ⊕A2] iff i = j and x a

`
y [Ai].

Of course, the space AOB is defined by (A⊥⊗B⊥)⊥ and A&B is defined by
(A⊥ ⊕ B⊥)⊥.
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As in MLL remark that the web associated with a formula A by CohX is
precisely the interpretation of A in Rel|X |.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn the inter-
pretation of π in CohX is the subset JπKCohX of |C1O . . .OCn| defined exactly
in the same way as in the relational semantics (see subsections 1.1.1 and 2.2.1).
We have the same definitions concerning the experiment e on a proof structure
π and its result. If π is a MALL proof structure, then JπKRel|X| = JπKCohX .

In chapter 1 we have seen how coherence provides a semantical notion for
multiplicative correctness: for an MLL cut-free proof structure π, if π is correct
then JπK is a clique (from Girard’s theorem, here theorem 24), as well as if JπK
is a clique then π is correct (from Retoré’s theorem, here theorem 25). On the
contrary, coherent semantics is far from catching additive correctness: there are
MALL proof structures which are not correct although their interpretations
are cliques.

A well-known example of such proof structures is the so-called Gustave proof
structure, defined by Hughes and van Glabbeek in [HvG05]. It corresponds with
a linear variant of the Gustave function studied in [Gir99] and [AM99].

Let M = X⊥ ⊗X⊥ and let us consider the following formulas:

C1 = (X&X)⊕X

C2 = (X&X)⊕X

C3 = (M&M)⊕M

The Gustave proof structure γ is a cut-free proof structure with conclu-
sions C1, C2, C3. γ consists of the five slices α1, . . . , α5 defined in figures 2.16 -
2.20.

γ is compatible, full and slice strong correct, but it is not correct, since the
graph G{α1,α2,α3} is not additive acyclic.

Of course γ is not sequentializable. In fact, if it were, any of its sequential-
izations should choose one ⊕ link to sequentialize first. Now if we consider only
α1 and α2 we should start from the ⊕ above C1, while if we consider only α2

and α3 (resp. α3 and α1) the ⊕ above C3 (resp. above C2) should be chosen
first. But the three slices α1, α2, α3 together exclude the choice of any ⊕.

Nevertheless JγKCohX is a clique for any coherent space X . Let us show it.

The interpretations of the γ five slices are as follows:

Jα1K = {<< 1, x >,< 2, y >,< 3, < x, y >>>, for any x, y ∈ |X |}

Jα2K = {<< 2, x >,< 3, y >,< 1, < x, y >>>, for any x, y ∈ |X |}

Jα3K = {<< 3, x >,< 1, y >,< 2, < x, y >>>, for any x, y ∈ |X |}

Jα4K = {<< 1, x >,< 1, y >,< 1, < x, y >>>, for any x, y ∈ |X |}

Jα5K = {<< 2, x >,< 2, y >,< 2, < x, y >>>, for any x, y ∈ |X |}

where we consider a generic element of |(X&X )⊕X| (resp. of |(M&M)⊕M|)
as < j, z > with z ∈ |X | (resp. z ∈ |M|) and j = 1, 2, 3 depending on which
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⊗

ax

ax

⊕1 ⊕1 ⊕2

X

&1 &2

X&X X&X

(X&X)⊕X (X&X)⊕X (M&M)⊕M

M

X⊥

X

X⊥

Figure 2.16: slice α1 of the Gustave proof structure.

⊗

ax

ax

⊕1 ⊕2 ⊕1

&2 &1

X⊥X⊥

M
X

X

X&X

(X&X)⊕X (X&X)⊕X (M&M)⊕M

M&M

Figure 2.17: slice α2 of the Gustave proof structure.

ax

ax

X

(X&X)⊕X (M&M)⊕M

X⊥

X⊥

⊗
X

M&MX&X

(X&X)⊕X

⊕2 ⊕1 ⊕1

&1 &2

M

Figure 2.18: slice α3 of the Gustave proof structure.
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ax

ax

(X&X)⊕X (X&X)⊕X (M&M)⊕M

M&MX&X

&1

⊕1

&1

⊕1

&1

⊕1

X&X

X X

X⊥

X⊥

⊗

M

Figure 2.19: slice α4 of the Gustave proof structure.
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X

X⊥

X⊥

⊗
X

&2

⊕1

&2

⊕1

&2

⊕1

X&X

M

Figure 2.20: slice α5 of the Gustave proof structure.
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additive component z belongs to. Moreover we consider a generic element of
|C1OC2OC3| as a triplet.

Now let u, v be two elements of JγK, we prove u a

`
v [C1OC2OC3].

If u, v are elements of a single slice interpretation, then of course u a

`
v, being

γ slice correct. Otherwise, suppose u, v belong to different slices interpretations.
By definition of the O coherence, u a

`
v [C1OC2OC3] if there is a projection i =

1, 2, 3 s.t. pi(u)
a

`
pi(v) [Ci]. Choose the projection pi s.t. both pi(u) and pi(v)

belong to the left component of the ⊕ of Ci. Remark that such a projection
always exists, since we deal with at most two elements of JγK. Finally notice
that for such a pi, pi(u) and pi(v) are element of the two distinct components of

the & of Ci, hence pi(u)
a

`
pi(v) [Ci], by definition of the ⊕ and the & coherence.

Notice that JγKCohX is a clique because the coherence deals only with pairs of
elements: we consider no more than two elements at a time, that is we may look
at no more than two slices of γ at a time, hence we do not see the incorrectness
among the three slices α1, α2, α3 together.

For avoiding such a coherent spaces shortsight, Ehrhard introduces in [Ehr93]
the hypercoherence, which is a relation among any finite set of elements, not
only pairs.

Hypercoherent semantics. Let X be a set, we denote by ℘<ω(X) the set of
all the finite subsets of X.

Definition 65 ([Ehr93]) A hypercoherent space X is a pair (|X |,Γω(X )),
where |X | is a set, called the web of X , and Γω(X ) is a subset of ℘<ω(|X |)
containing all the singletons and called the hypercoherence of X .

A hyperclique of X is a subset C ⊆ |X |, such that for each finite subset
C
′ ⊆ C, C′ ∈ Γω(X ).

A hypercoherent space X is identified with a hypergraph, each of whose
hyperedges is a finite set of vertices: namely |X | is the set of vertices and Γω(X )
that of hyperedges.

We define Γ∗
ω(X ) = Γω(X )/{{x} | x ∈ |X |}. Remark we may define a

hypercoherent space X specifying its web and one between Γω(X ) and Γ∗
ω(X ).

Hypercoherent spaces provide a semantics for MALL. Let X be a hyperco-
herent space, a hypercoherent model on X (HCohX ) associates with MALL
formulas hypercoherent spaces, defined by induction on the formulas, as follows:

• with X it is associated X ;

• with A⊥ it is associated A⊥, defined as follows: |A⊥| = |A|, Γ∗
ω(A⊥) =

℘<ω(|A|)/Γω(A);

• with A⊗B it is associated A⊗B, defined as follows: |A⊗B| = |A| × |B|,
C ∈ Γω(A⊗B) iff p1(C) ∈ Γω(A) and p2(C) ∈ Γω(B);

• with A⊕B it is associated A⊕B, defined as follows: |A⊕B| = |A|+ |B|,
C ∈ Γω(A⊕B) iff:

s1(C) = ∅ and s2(C) ∈ Γω(B)

or

s2(C) = ∅ and s1(C) ∈ Γω(A).
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Of course, the spaceAOB is defined by (A⊥⊗B⊥)⊥ andA&B by (A⊥⊕B⊥)⊥.
As for coherent spaces, the web associated with a formula A by HCohX is

precisely the interpretation of A in Rel|X |.
Remark that a subset of |C| can be in Γω(C) without being a hyperclique.

For example, let C = A&A and C be the subset {< 1, x >,< 1, y >,< 2, z >} of
C. C is in Γω(C), since both s1(C) and s2(C) are not empty, but C is a hyperclique
only in case {< 1, x >,< 1, y >} ∈ Γω(C), that is only if {x, y} ∈ Γω(A). In
general the set of the hypercliques is downward closed, while Γω(C) is not.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn. Like in
coherent semantics, the interpretation of π in HCohX is the subset JπKHCohX

of |C1O . . .OCn| defined exactly in the same way as in relational semantics (see
subsection 2.2.1), i.e. if π is a MALL proof structure JπKHCohX = JπKRel|X| .

Recall the Gustave proof structure γ. Notice that JγK is a clique, but it is
not a hyperclique. Let us show that JγK is not a hyperclique.

For being a hyperclique, all finite subsets of JγK has to be hypercoherent. Let
C be as a set having one element for each Jα1K, Jα2K and Jα3K. Clearly C ⊆ JγK,
let us prove that C /∈ Γω(C1OC2OC3).

By definition of O hypercoherence, C ∈ Γω(C1OC2OC3) iff there is a projec-
tion i = 1, 2, 3 s.t. pi(C) ∈ Γω(Ci). But any projection pi(C) has elements from
both the components of the ⊕ of Ci, hence pi(C) /∈ Γω(Ci) by definition of ⊕
hypercoherence.

The Gustave proof structure example shows that HCohX has more chance
than CohX for providing a semantical notion of MALL correctness. The rest
of this subsection presents our ongoing research for outlining a correspondence
between hypercliques and additive correctness.

Hypercliques and MALL correctness. The main result of this subsection
is theorem 68, stating that:

if π is correct than JπKHCohX is a hyperclique for any hypercoherent space X .

Theorem 68 generalizes theorem 24 of chapter 1. As far as we know there
is a proof of theorem 68 by De Falco in [Fal05]. However the proof in [Fal05]
relies on an ad hoc construction (the B-trees). Our proof instead is closer to
the notion of switching path, generalizing the proof technique of theorem 24. In
particular compare lemma 22 with the present lemma 67.

Lemma 66 Let π be a compatible and full proof structure, π′ ⊆ π be a saturated
subset of slices in π and e be an edge in π′ from an axiom l, s.t. there is a slice
α ∈ π′ not sharing e. There is a & w and a jump j in Gπ′ from l to w.

Proof. Let e be an atomic edge which is not shared by all the slices in π′ and
l be the axiom with conclusion e. We prove the lemma by induction on the
number of & shared by π′.

Let α, α′ be two slices such that α shares e but α′ does not. By π′ compat-
ibility, α, α′ toggle at least one & w.

If w is the only & shared by α, α′, then l depends on w in π′ (α, α′ being
the toggling pair), i.e. there is a jump j in Gπ′ from l to w.
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If α, α′ toggle more than one &, then let α′′ be the slice in π′ such that w
is the only & toggled by α, α′′. Remark that such an α′′ exists, since π′ is a
saturated subset of a full proof structure π. Of course α′′ shares the same w
premise shared by α′.

If α′′ does not share e, then l depends on w in π′ (α, α′′ being the toggling
pair), i.e. there is a jump j in Gπ′ from l to w.

If α′′ shares e, then consider the proof structure π′′ ⊂ π′ containing all the
slices in π′ sharing the same w premise shared by α′ and α′′. π′′ is a saturated
subset of π toggling less & than π′. Moreover, e is not shared by all the slices
in π′′ (α′ does not shares e, for example), thus by induction hypothesis there is
a & w′ and a jump j in Gπ′′ from l to w′. Of course such a jump is also an edge
of Gπ′ . �

Lemma 67 Let π be a proof structure which is slice correct, compatible and
full. Let e1 : α1, . . . , en : αn be experiments on slices of π, and π′ ⊂ π be a
minimal saturated subset of π containing α1, . . . , αn. In case there is a binary
& w not dominated by any binary & in Gπ′ , then there is a conclusion d : D of
π and a strong path φ from w to ↓ d such that φ is in α for any slice α ∈ π′ (in
particular φ does not contain any jump) and {e1(d), . . . , en(d)} ∈ Γ∗

ω(D).

Proof. By π′ minimality, π′ toggles the same &’s then {α1, . . . , αn}. Let now
w be a binary & not dominated by any & in Gπ′ (in case it exists).

Firstly we prove that w is shared by all the slices of π′. Suppose there are
two slices α, α′ in π′, such that α shares w but α′ does not, let us prove a
contradiction. By going down the conclusion of w we eventually meet a link m
such that:

1. either m is a cut shared by α but not by α′,

2. or m is an additive link, such that the m conclusion is shared by both α
and α′, while the m premise below w is shared by α and not by α′.

In fact, if nether 1 nor 2 is true, then both α and α′ should share w, by the
sharing equivalence definition.

In case 1 is true, let us choose an axiom l in α above the m premise which
is not below w. Of course l is not shared by α′, thus by lemma 66 there is a
binary & w′ and a jump j from w′ to l in Gπ′ . In this case, w′ A w, so violating
the hypothesis about w.

In case 2 is true, remark m cannot be a &, otherwise m A w, so violating
the hypothesis about w. Hence m is a ⊕, such that α shares the m premise
below w, while α′ shares the other one. Let us choose an axiom l in α′ above
m. Of course l is not shared by α, thus by lemma 66 there is a binary & w′ and
a jump j from w′ to l in Gπ′ . Hence w′ A w, so violating the hypothesis about
w.

We conclude that w is shared by all the slices in π′.
Let f be the w conclusion, we define a switching paths chain φ1 ⊂ φ2 ⊂

. . . ⊂ φk , s.t. φ1 is ↓ f , φk starts from ↓ f and ends in a conclusion ↓ d of π,
and for each φj among φ1, . . . , φk:

1. φj is a strong path in α, for any α ∈ π′;
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2. for each edge a ∈ φj , let A be the type of a, if ↓ a ∈ φj then {e1(a), . . . , en(a)} ∈
Γ∗

ω(A), if ↑ a ∈ φj then {e1(a), . . . , en(a)} ∈ Γ∗
ω(A⊥).

Clearly φ1 =↓ f meets both the conditions above, in fact f is shared by α,
for any α ∈ π′; moreover if A&B is the type of f , then {e1(f), . . . , en(f)} ∈
Γ∗

ω(A&B), since w is binary in Gπ′ , hence there are αi, αj ∈ {α1, . . . , αn} s.t.
αi, αj toggles w, so that any finite set containing {ei(f), ej(f)} is in Γ∗

ω(A&B).
Let us define φj+1 from φj , which we suppose satisfies conditions 1 and 2.

Let a be the last edge of φj , by hypothesis a is shared by α, for any α ∈ π′.
Then:

• if ↓ a ∈ φj , then by hypothesis {e1(a), . . . , en(a)} ∈ Γ∗
ω(A):

– if a is premise of a O with conclusion c : C, then c is shared by any
α ∈ π′ and {e1(c), . . . , en(c)} ∈ Γ∗

ω(C). We define φj+1 = φj∗ ↓ c;

– if a is premise of a ⊗ with conclusion c and premises a, b. Clearly,
b, c are shared by any α ∈ π′. In case {e1(c), . . . , en(c)} ∈ Γ∗

ω(C), we
define φj+1 = φj∗ ↓ c; otherwise {e1(b), . . . , en(b)} ∈ Γ∗

ω(B⊥), in this
case we define φj+1 = φj∗ ↑ b;

– if a is premise of an additive link with conclusion c : C, we remark
that such additive link is unary in Gπ′ , since by hypothesis all slices
α ∈ π′ share the premise a. Hence {e1(c), . . . , en(c)} ∈ Γ∗

ω(C) and
obviously c is shared by any α ∈ π′. We define φj+1 = φj∗ ↓ c;

– if a is premise of a cut with premises a, b, then b is shared by any α ∈
π′ and b is labelled by A⊥. By hypothesis {e1(b), . . . , en(b)} ∈ Γ∗

ωA,
so we define φj+1 = φj∗ ↑ b;

– if a is conclusion of π then we define φj = φk .

• if ↑ a ∈ φj , then by hypothesis {e1(a), . . . , en(a)} ∈ Γ∗
ω(A⊥):

– if a is conclusion of a O or a ⊗, then it exists a premise b : B such that
b is shared by any α ∈ π′ and {e1(b), . . . , en(b)} ∈ Γ∗

ω(B⊥). Define
φj+1 = φj∗ ↑ b;

– if a is conclusion of a &, remark such a & is unary in Gπ′ . In fact, be-
ing by hypothesis {e1(a), . . . , en(a)} ∈ Γ∗

ω(A⊥), all slices α1, . . . , αn

choose the same premise of the &. Hence by the minimality of π′, all
the slices in π′ choose the same premise of the &. Let b : B be such a
premise, b is shared by any α ∈ π′ and {e1(b), . . . , en(b)} ∈ Γ∗

ω(B⊥).
Define φj+1 = φj∗ ↑ b;

– if a is conclusion of a ⊕ p, we prove that p is unary in Gπ′ . In fact,
suppose there are α, α′ ∈ π′, such that α (resp. α′) chooses the right
(resp. left) premise of p. Let us prove a contradiction.

Choose one axiom l above one right premise of p. Of course l is not
shared by α′, thus by lemma 66 there is a & w′ and a jump j from
w′ to l in Gπ′ . Let us prove that w′ A w. Consider the path ψ from
l to p. Of course it is switching (indeed it goes downward until p),
moreover ψ and φj are disjoint, since all the edges in ψ (resp. φj)
are not (resp. are) in α′. Denote by φj the inverse path of φj , which
starts from ↓ a to ↑ f . Consider the path ψ ∗ φj . It is a strong
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path from l to w, thus showing w′
A w. Of course this violates the

hypothesis of w &-free.

We conclude that p is unary in Gπ′ . Let b : B be its premise, which
is shared by any α ∈ π′. Clearly {e1(b), . . . , en(b)} ∈ Γ∗

ω(B⊥). Define
φj+1 = φj∗ ↑ b;

– if a is conclusion of an axiom l, remark that both the conclusions of
l are shared by all slices in π′, otherwise w would be dominated by
an & w′ by a similar argument as in the case above. Let b : B be the
conclusion of l other than a. Of course {e1(b), . . . , en(b)} ∈ Γ∗

ω(B),
thus define φj+1 = φj∗ ↓ b.

Both conditions are respected by each φj . In particular, since each φj is a
switching path in any α ∈ π′ and since π is slice correct, φj cannot be a cycle.
Hence the sequence φ1, φ2, φ3, . . . will meet eventually a conclusion d of π, so
terminating in a path φk, satisfying the lemma. �

Theorem 68 Let π be a proof structure. If π is correct, then JπKHCohX is a
hyperclique for any hypercoherent space X .

Proof. Let π be a proof net with conclusions c1 : C1, . . . , ck : Ck and e1 :
α1, . . . , en : αn be experiments on slices in π. We have to prove that:

{< e1(c1), . . . , e1(ck) >, . . . , < en(c1), . . . , en(ck) >} ∈ Γω(C1O . . .OCk)

In case α1, . . . , αn are all the same slice, then the statement is a straightfor-
ward extension of theorem 24 to the hypercoherent semantics.

Otherwise let π′ ⊆ π be a minimal saturated subset of slices of π such that
{α1, . . . , αn} ⊆ π′. Since π is correct, π′ is a saturated, slice correct and additive
acyclic proof structure. Hence by corollary 64 there is in Gπ′ a binary & w which
is not dominated by any & in Gπ′ . By lemma 67 there is a conclusion ci of π′

such that {e1(ci), . . . , en′(ci)} ∈ Γ∗
ω(Ci), which implies the statement. �

We want to study the converse of theorem 68. Unlucky we clash immediately
on a counter-example (see figures 2.21 - 2.24):

Proposition 69 There is a cut-free, full, compatible and slice correct proof
structure π such that JπKHCohX is a hyperclique for any hypercoherent space X ,
but π is not correct.

Proof. Let π be the cut-free proof structure with conclusions X⊥, X⊥,
(X&X) ⊗ (X&X), X ⊕ X , X⊥ and slices β1, . . . , β4 defined in figures 2.21
- 2.24

π is compatible, full and slice correct (although it is not strongly slice cor-
rect). π is not correct, since there is a switching cycle in Gπ crossing both the
& (see figure 2.25).

Nevertheless JπK is a hyperclique. Indeed let us show that any finite set
of π experiences results is hypercoherent in the space associated with the π
conclusions.
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Figure 2.21: slice β1 with conclusions X⊥, X⊥, (X&X)⊗ (X&X), X⊕X , X⊥.
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Figure 2.22: slice β2 with conclusions X⊥, X⊥, (X&X)⊗ (X&X), X⊕X , X⊥.
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Figure 2.23: slice β3 with conclusions X⊥, X⊥, (X&X)⊗ (X&X), X⊕X , X⊥.
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Figure 2.24: slice β4 with conclusions X⊥, X⊥, (X&X)⊗ (X&X), X⊕X , X⊥.
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⊕
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Figure 2.25: G{β1,...,β4}, the bold lines define a switching cycle crossing both
the &.

Let us consider a finite set of π experiences e1, . . . , en.
In case e1, . . . , en are defined on a unique slice of π, then the e1, . . . , en results

are hypercoherent, being π slice correct.
In case e1, . . . , en are defined on more than one slice of π, let a : X&X be

the conclusion of a & toggled by the slices on which e1, . . . , en are defined, c be
the π conclusion of type (X&X)⊗ (X&X) and b1, b2 be the two conclusions of
type X⊥ of the axioms predecessor of the two &.

By the & hypercoherent definition, {e1(a), . . . , en(a)} ∈ Γ∗
ω(X&X ). Thus

{e1(c), . . . , en(c)} ∈ Γ∗
ω((X&X ) ⊗ (X&X )) or there is an i ∈ {1, 2}, such that

{e1(bi), . . . , en(bi)} ∈ Γ∗
ω(X⊥). In both cases we conclude that the results of

e1, . . . , en are strictly hypercoherent. �

Notice that the counter-example in figures 2.21 - 2.24 depends on the jumps
of Gπ, which connect the two components of the sharing graph of π. Since the
jumps are semantically invisible, hypercoherent spaces do not see the switching
cycle crossing both the & in Gπ . But what happens if π is strongly slice correct,
and not only slice correct?

In [BHS05], Blute, Hamano and Scott study the correspondence between
hypercliques and MALL correctness in the framework of the proof nets intro-
duced by Girard in [Gir96]. As written in subsection 2.3.1, we have not used
such proof nets since they are not canonical. Anyway, Blute, Hamano and Scott
prove for Girard’s proof nets that the implication JπK hyperclique ⇒ π correct
holds in case π is without mix, i.e. in case π is strongly slice correct. Thus we
guess:

Conjecture 70 Let π be a cut-free, full, compatible and strongly slice correct
proof structure. If JπKHCohX is a hyperclique for any hypercoherent space X ,
then π is correct.



Chapter 3

Exponentials

In this chapter we study the proof nets for the multiplicative exponential frag-
ment of linear logic (briefly MELL).

In section 3.1 we introduce MELL proof nets.
In section 3.2 we recall the multiset based uniform coherent semantics (Coh)

and the non-uniform one (nuCoh). Coh has been introduced by Girard in [Gir91],
while nuCoh is a more recent semantics defined by Bucciarelli and Ehrhard in
[BE01].

In section 3.3 we attack the question of the injectivity of Coh for MELL proof
nets. In subsection 3.3.1, we define a counter-example to the Coh injectivity for
the polarized fragment of MELL, which had been conjectured in [TdF03b].
In subsections 3.3.2, 3.3.3 instead we prove the injectivity of Coh for the so-
called (?O)-MELL proof nets (theorem 100). Theorem 100 has been proved in
[TdF03b], the main novelty of our approach is to provide a different proof by
means of lemma 98, based on Girard’s notion of longtrip.

In section 3.4 we solve the open question of characterizing those proof struc-
tures whose interpretation is a clique in nuCoh (theorems 103, 104). Such a
characterization provides a new geometric criterion on MELL proof structures:
the weak correctness (definition 102).

The formulas of MELL are defined by the following grammar:

F ::= X | X⊥ | FOF | F ⊗ F | ?F | !F

As always we set (?F )⊥ =!F⊥ and (!F )⊥ =?F⊥.
The rules of the MELL sequent calculus are those for MLL extended by

the following rules for the exponentials:

`?Γ, A
!

`?Γ, !A

` Γ
w

` Γ, ?A
` Γ, A

d
` Γ, ?A

` Γ, ?A, ?A
c

` Γ

where ?Γ means a multiset of ?-formulas. The top rule is called of course
rule, the bottom ones are called respectively (from left to right) weakening,
dereliction and contraction.

65
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!

!A

A

[

[A

A [A

?A

?

[A· · ·

Figure 3.1: MELL links.

The exponentials have the crucial rôle of introducing the structural rules in
linear logic: weakening and contraction. By such rules linear logic preserve the
expressive power of classical logic, still keeping its constructive feature.

The MELL proof nets provide a common and powerfull framework for an-
alyzing both intuitionistic (i.e. typed λ-calculus) and classical logic.

3.1 Proof structures and proof nets

In this section we introduce the MELL proof nets. The section is divided in
three paragraphs. In the first one, called proof structures, we define the MELL
proof structures - morally inductive frames of multiplicative proof structures.
In the second paragraph, called cut reduction, we introduce the reduction rule
for the exponential cut. Such a reduction is not local, allowing to erase or du-
plicate broad pieces of a proof structure. In the third paragraph, called proof
nets, we define the MELL proof nets and the extension to MELL of the Danos-
Regnier’s correctness criterion.

Proof structures. By following [LTdF04], we introduce the [-formulas, which
allow a sharper definition of the exponential links. A [-formula is a MELL
formula prefixed by the symbol [, as for example [A. The [-formulas do not
compose with the logical connectives, they just label the premises of a link ?.

We will often use induction on the complexity of a formula. We precise that
we consider a [-formula [A more complex than A, but simpler than ?A.

The MELL links are defined extending the MLL ones with the following
exponential links (figure 3.1):

1. the of course (! link), which has one premise and one conclusion. If the
premise is labelled by a formula A, then the conclusion is labelled by the
formula !A;

2. the [ link, which has one premise and one conclusion. If the premise is
labelled by a formula A, then the conclusion is labelled by the [-formula
[A;

3. the why not (? link), which has n unordered premises (n ≥ 0) labelled
by a same [-formula [A, and one conclusion labelled by ?A.

To sum up, the MELL links are divided in three groups: the structural links
(axiom and cut), the multiplicative links (O and ⊗) and the exponential ones
(!, [ and ?).
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Remark that the link ? gathers in a unique link the rules of weakening,
dereliction and contraction. We keep however the names of such rules, call-
ing weakening a ? link with arity 0, dereliction a ? link with arity 1, and
contraction a ? link with arity greater than 1.

Notice that every formula F is conclusion of a unique link introducing F , in
particular recall that compound formulas do not label conclusions of axioms.

A set of MELL links π is a proof structure if the following conditions
hold:

linearity: every edge is conclusion of exactly one link and premise of at most
one link. The edges which are not any link premise are the conclusions
of the proof structure;

exponential box: with every ! link o is associated a unique subgraph πo of π
satisfying the linearity condition and s.t. one πo conclusion is the o premise
and all further πo conclusions are labeled by [-formulas. πo is called the
exponential box of o (or simply the box of o) and it is represented by
a rectangular frame. The o conclusion is called πo principal door, while
the πo conclusions labelled by [-formulas are called πo auxiliary doors;

nesting: two exponential boxes are either disjoint or included one in the other.

Remark that a ? conclusion cannot be an auxiliary door of an exponential
box. Indeed the notion of [-formulas allows to push the ? links below the frames
of the exponential boxes.

The tricks of pushing down the ? and of gathering in a unique link weak-
ening, dereliction and contraction are a well-known way for providing a more
canonical representation of the exponential rules. Such tricks are due to Danos
and Regnier (see for example [Reg92]) and they are mentioning as the nouvelle
syntax.

Let us briefly recall the MLL notation. Proof structures are denoted by
Greek letters: π, σ, . . ., the edges by initial Latin letters: a, b, c . . . and the links
by middle-position Latin letters: l,m, n, o . . .. We write a : A if a is an edge
labeled by the formula A.

We define by PSme the set of MELL proof structures.
Formally an edge a is above another edge b (denoted a ≥ b) if a is equal

or above a premise of the link of which b is conclusion.
A link l of π is terminal if:

• in case l is not a link !, then all the conclusions of l are conclusions of π;

• in case l is a link !, then all the doors of the box associated with l are
conclusions of π.

The depth of a link in a proof structure is the number of boxes in which it
is contained. The exponential depth of an edge a is 0 in case a is a conclusion
of the proof structure, otherwise it is the depth of the link whose premise is a.
Remark that an edge conclusion of a link [ at depth n and premise of a link ?
at depth m ≤ n has depth m.

The depth of a proof structure is the maximal depth of its links.
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Cut reduction. A proof structure without cuts is called cut free.
The MELL cut reduction rules are an extension of the MLL ones. Re-

mark that an MELL cut l can be:

• an axiom cut, whose premises are labeled by dual atomic formulas X and
X⊥;

• a O/⊗ cut, whose premises are labeled by dual multiplicative formulas
AOB and A⊥ ⊗B⊥;

• a !/? cut, whose premises are labeled by dual exponential formulas !A and
?A⊥.

In case l is an axiom or a O/⊗ cut, we reduce l as in the MLL proof
structures (see subsection 1.1, figures 1.2-1.4).

In case l is a !/? cut, let o be the ! link of which the conclusion is the premise
of l labeled by !A and let w be the ? link of which the conclusion is the premise
of l labeled by ?A⊥. We reduce l only in case no auxiliary conclusion of the box
of o is a premise of w.

Let a : A be the o premise, πo be the o box and b1 : [B1, . . . , bk : [Bk be the
πo auxiliary doors (k ≥ 0). Remark that each w premise, in case it exists any,
is conclusion of a [ link. Thus, let a′1 : A, . . . , a′n : A (n ≥ 0) be the premises of
the [ links of which conclusion is a premise of w. Suppose that no a′i, for i ≤ n,
is a πo auxiliary door. Under this hypothesis the cut l is reduced in three steps
(see figure 3.2):

1. erase l, w, their premises, the [ links immediately above w, o and its box
πo;

2. for each i, 1 ≤ i ≤ n, define πo
i as a copy of πo with conclusions ai :

A, bi,1 : [B1, . . . , bi,k : [Bk. For each j ≤ k set bj,k be the premise of the
same ? link with premise bk in π;

3. for each i, 1 ≤ i ≤ n, put πo
i in the boxes containing a′i, increasing their

auxiliary doors by the πo
i conclusions bi,1, . . . , bi,k. Finally, joint πo

i with
a′i by adding a cut link li with premises ai : A and a′i : A⊥.

We write π  β π
′ if π′ is the result of a reduction of a cut in π. As always,

→β is the reflexive and transitive closure of  β and =β is the symmetrical
closure of →β .

The reduction  β is not defined on the cuts whose premises come from the
same exponential box, as for example in figure 3.3. We call such cuts deadlocks.

Remark that →β is not confluent at the level of MELL proof structures.
For example consider the proof structure of figure 3.4. By reducing the cut
with premises !A, ?A⊥ we get a deadlock with premises !B, ?B⊥; vice-versa,
by reducing the cut with premises !B, ?B⊥ we get a deadlock with premises
!A, ?A⊥.

Proof nets. The proofs of MELL sequent calculus can be translated into
proof structures by means of a desequentialization function, denoted by ( )•.
The MELL desequentialization is an immediate extension of the MLL one.
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Figure 3.2: !/? cut reduction.
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?
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Figure 3.3: example of deadlock.
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Figure 3.4: counter-example to the confluence of cut reduction for MELL proof
structures.

If σ is a sequent proof then (σ)• is defined by induction on σ. In case σ ends
with a MLL rule then (σ)• is defined as in section 1.2. In case σ ends in an
exponential rule then (σ)• is defined as follows:

• if σ ends in a !-rule having as premise the subproof σ′, let `?B1, . . . , ?Bk, A
(k ≥ 0) be the σ′ conclusion and b1 :?B1, . . . , bk :?Bk , a : A be the conclu-
sions of (σ′)•. For each i ≤ k, let bi,1 : [Bi, . . . , bi,ni

: [Bi (ni ≥ 0) be the
premises of the ? link with conclusion bi. (σ)• is obtained from (σ′)• in
three steps:

– erase the (σ′)• edges b1, . . . , bk and the ? links of which they are
conclusions. Call π′ the graph so obtained;

– add a ! link with premise a and conclusion a new edge a′ :!A, set π′

as the exponential box associated with the added ! link;

– for each i ≤ k, add a new ? link with premises bi,1, . . . , bi,ni
and

conclusion a new edge bi :?Bi;

• if σ ends in a weakening rule having as premise the subproof σ′, then (σ)•

is obtained by adding to (σ′)• the weakening link correspondent to the
sequent rule;

• if σ ends in a dereliction rule having as premise the subproof σ′, let ` Γ, A
be the σ′ conclusion and Γ, a : A be the conclusions of (σ′)•. (σ)• is
obtained by adding to (σ′)• a [ link with premise a and conclusion a new
edge a′ : [A and a ? link with premise a′ and conclusion a new edge a′′ :?A;
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• if σ ends in a contraction rule having as premise the subproof σ′, let
` Γ, ?A, ?A be the conclusion of σ′ and Γ, a1 :?A, a2 :?A be the conclusions
of (σ′)•. For i = 1, 2, let ai,1 : [A, . . . , ai,ni

: [A (ni ≥ 0) be the premises
of the ? link with conclusion ai. (σ)• is obtained from (σ′)• in two steps:

– erase the (σ′)• edges a1, a2 and the ? links of which they are conclu-
sions;

– add a ? link with premises a1,1, . . . , a1,n1
, a2,1, . . . , a2,n2

and conclu-
sion a new edge a :?A.

Remark that the desequentialization pushes the weakening and contraction
rules down the !-rules: this is the peculiarity of the proof structures nouvelle
syntax.

A MELL proof net π is a proof structure associated with a sequent proof,
moreover π is said without mix if an associated sequent proof does not contain
the mix rule.

We denote by PNmex (resp. PNme) the set of proof nets (resp. of proof
nets without mix). Of course:

PNme ⊂ PNmex ⊂ PSme

The sets PNme and PNmex are not easily characterizable by a correctness
criterion, because of the weakening link. We do not enter in the details of the
problem, for which we refer to [TdF03a] and [TdF00]. Instead we recall a simple
extension of the MLL correctness criterion, characterizing the proof structures
sequentializable in MELL sequent calculus enlarged with the following daimon
rule:

dai
`?F

We denote by PNmexd the set of proof nets sequentializable in MELL
sequent calculus enlarged with the daimon.

For extending the criterion introduced in definition 19, we adapt the defini-
tion of the oriented paths to the framework of exponential boxes.

We do not consider paths crossing edges of different exponential depths: if a
path enters in a box πo through a door ↑ a, it have to exit immediately through
a door ↓ b. Stated otherwise, for a path a box is a node, whose incident edges
are the doors of the box.

An oriented edge is an edge together with a direction upward, denoted by
↑ a, or downward, denoted by ↓ a. We write l a in case we do not want to specify
if we mean either ↑ a or ↓ a. An oriented path (or simply path) from l a0 to
l an in a proof structure π is a sequence of oriented edges <l a0, . . . , l an >
such that for any i < n, l ai, l ai+1 have the same depth and:

• if l ai =↑ ai, l ai+1 =↑ ai+1, then ai is conclusion of the link of which
ai+1 is premise;

• if l ai =↑ ai, l ai+1 =↓ ai+1, then ai and ai+1 are conclusions of the same
link, or they are doors of the same exponential box;

• if l ai =↓ ai, l ai+1 =↓ ai+1, then ai is the premise of the link of which
ai+1 is conclusion;
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• if l ai =↓ ai, l ai+1 =↑ ai+1, then ai and ai+1 are premises of the same
link;

morally l ai =↑ ai (resp. l ai =↓ ai) when the path crosses the edge ai from the
link it is conclusion (resp. premise) to the link it is premise (resp. conclusion).
We say that a path crosses a link l if it contains a sequence of two edges
having l as a vertex.

We denote paths by Greek letters φ, τ, ψ, . . .. We write l a ∈ φ to mean
that l a occurs in φ, sometimes we write simply a ∈ φ for meaning that ↑ a
or ↓ a occurs in φ. We denote by ψ v φ when ψ is a subpath of φ. We may
denote a path <l a0, . . . , l an > by a simple succession of oriented edges, i.e.
l a0 . . . l an.

A path φ comes back if there is an edge a s.t. ↑ a, ↓ a ∈ φ. A cycle is a
path from l a to l a.

A switching edge is a premise of a link O or ?. A path φ is switching if
φ never comes back and it does not contain two switching edges of a same link.

Definition 71 A MELL proof structure is correct if it does not contain any
switching cycle.

It is well-known that such a correctness criterion characterizes PNmexd (see
for example [TdF00]):

Theorem 72 Let π ∈ PSme. π ∈ PNmexd iff π is correct.

The correctness guarantees also nice properties with respect to cut reduc-
tion1:

Theorem 73 (Stability) Let π →β π
′, if π is correct then π′ is correct.

Theorem 74 (Confluence) If π1 is a correct proof structure s.t. π1 →β π2

and π1 →β π3, then there is a correct proof structure π4, s.t. π2 →β π4 and
π3 →β π4.

Theorem 75 (Strong normalization) For every correct proof structure π,
there is no infinite sequence of proof structures π0, π1, π2, . . . s.t. π0 = π and
πi  β πi+1.

Before concluding the section, let us stress the fact that in absence of weaken-
ing, both PNmex and PNme are easily characterizable by extending the notion
of correctness graph to MELL.

A correctness graph of a MELL proof structure π is a graph obtained
from π in two steps:

• for each ! link o at depth 0, make the auxiliary doors of πo new conclusions
of o and erase all other edges and links of πo;

• for each ? and O link at depth 0, erase all its premises except one.

Of course a proof structure π is correct in the sense of definition 71 if and
only if the correctness graph of π as well as the correctness graphs of its boxes
are acyclic.

1For the proofs of the following theorems we refer to [Dan90].



3.2. MELL COHERENT SPACES 73

Definition 76 A MELL proof structure π is strongly correct if the correct-
ness graph of π as well as the correctness graphs of its boxes are acyclic and
connected.

Then we have the following theorem:2

Theorem 77 Let π be a MELL proof structure without weakening. π ∈ PNmex

(resp. π ∈ PNme) iff π is correct (resp. strongly correct).

3.2 MELL coherent spaces

The exponentials change the web of a space from a set of points to a set of sets
(or multisets) of points. That is the web of a space associated with a formula !A
is composed by sets (or multisets) of elements of the web associated with A. In
this way the semantics interprets the fact that !A stands potentially for n ≥ 0
copies of A, in the sense that the reduction of a cut may duplicate or erase the
occurrences of !A.

Moreover, a semantics can memorize the fact that such !A copies morally
come from a single occurrence of !A, or it may forget it. In the former case, a set
(or a multiset) in the web of !A must be composed by elements of the web of A
which are in some sense uniform, so we speak of a uniform semantics. Instead
if any set (or multiset) of elements of the web of A is in the web of !A, then we
speak of a non-uniform semantics.

In this section we define both the uniform and non-uniform coherent seman-
tics for MELL. We will deal only with semantics based on multisets, omitting
the definition of the set-based coherent spaces.3

The main difference between uniform and non-uniform coherent semantics is
precisely in the definition of the web of !A. The non-uniform web of !A contains
all finite multisets of elements in A, while the uniform web of !A contains only
those finite multisets whose elements are pairwise coherent in A.

The uniform coherent semantics based on multisets has been introduced by
Girard in [Gir91], while the non-uniform one has been defined by Bucciarelli
and Ehrhard in [BE01]. Actually we will deal with a variant of Bucciarelli and
Ehrhard’s semantics, which is due to Boudes (see [Bou02]).

3.2.1 Uniform coherent spaces

The coherent spaces defined in subsection 1.2.1 provide a semantics for MELL.
Let X be a coherent space, a coherent model on X , denoted by CohX, as-
sociates with MELL formulas coherent spaces, defined by induction on the
formulas:

• with X it is associated X ;

• with A⊥ it is associated A⊥ defined as follows: |A⊥| = |A|, the coherence

of A⊥ is the incoherence of A, i.e. x a

`
y

[
A⊥

]
iff x `

a
y [A];

2For a proof see [TdF00].
3Actually, it is well-known that the set-based non-uniform coherent spaces do not provide

a semantics for MELL.
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• with A⊗B it is associated A⊗B defined as follows: |A ⊗ B| = |A| × |B|
and < a, b > a

`
< a′, b′ > [A⊗B] iff a a

`
a′ [A] and b a

`
b′ [B]

• with !A it is associated the following !A. The web of !A is so defined:

|!A| = {v ∈Mfin(|A|) | Supp(v) is a clique of A}

the strict incoherence of !A is the following: v `u [!A] iff ∃a ∈ v and
∃a′ ∈ u, s.t. a `a′ [A].

Of course, the space AOB is defined by (A⊥⊗B⊥)⊥ as well as ?A is defined
by (!A⊥)⊥. We associate with a [-formula [A the space ?A.

The web of !A expels those multisets whose support is not a clique of A.
Actually, such a condition is necessary for guaranteeing the anti-reflexivity of `

in !A. Indeed, let a,b be two elements of A s.t. a `b [A]. Consider the multiset
v = [a, b]: if v were in the web of !A, then ` would not be anti-reflexive, being
v `v [!A].

The coherent model CohX is called uniform, in the sense that any multiset
in the web of !A is composed by pairwise coherent, i.e. uniform, elements of A.
Such a uniformity gives a mark to the way coherence spaces interpret MELL
proof nets. We will deal with this question in section 3.3.

For each proof structure π, we define the interpretation of π in CohX,
denoted by JπKCohX , where the index CohX is omitted when it is clear which is
the model we refer to.

In case π has no conclusion, let JπK set as undefined. Otherwise, let c1 :
C1, . . . , cn : Cn be the conclusions of π, JπK is a subset of C1O . . .OCn, defined
by using an extension of the MLL experiments introduced in definition 4.

We define an experiment e on π by induction on the depth of π. Remark
that the following definition of MELL experiment is slightly different from the
usual one (see for example [TdF03b]), namely e is defined only on the edges at
depth 0 of π.

Definition 78 A CohX experiment e on a MELL proof structure π, de-
noted by e : π, is a function associating with every ! link o at depth 0 a multiset
[eo

1, . . . , e
o
k] of experiments on πo, and with every edge a : A at depth 0 an element

of A, such that the following conditions are respected:

axiom: if a, b are the conclusions of an axiom at depth 0, then e(a) = e(b);

cut: if a, b are the premises of a cut at depth 0, then e(a) = e(b);

multiplicative: if c is the conclusion of a O or ⊗ at depth 0 with premises a
and b, then e(c) =< e(a), e(b) >;

flat: if c is the conclusion of a [ at depth 0 with premise a, then e(c) = [e(a)];

why not: if c is the conclusion of a ? at depth 0 with premises a1, . . . , an, then
e(c) = e(a1) + . . .+ e(an). In case n = 0, then e(c) = ∅;

exponential doors: if c is a door of a box associated with a ! link o at depth
0, let a be the o premise and e(o) = [eo

1, . . . , e
o
k]. If c is the principal

door then e(c) = [eo
1(a), . . . , e

o
k(a)], if c is an auxiliary door then e(c) =

eo
1(c) + . . .+ eo

k(c);
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uniformity condition: if c is an edge at depth 0 labelled by a formula !C,
either [C⊥ or ?C⊥, then Supp(e(c)) is a clique of C.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn and e :
π be an experiment, then the result of e, denoted by |e|, is the element <
e(c1), . . . , e(cn) > of C1O . . .OCn. The interpretation of π in CohX is the set
of the results of all the experiments on π:

JπKCohX =
{
< e(c1), . . . , e(cn) > | e is a CohX experiment on π

}

The CohX interpretation of a proof structure is invariant under cut-reduction:

Theorem 79 (Soundness of J KCohX ) For every π, π′ proof structures, π =β

π′ implies JπKCohX = Jπ′KCohX .

Proof. The proof is an immediate extension of the original proof given by
Girard in [Gir87] of the soundness of J KCohX for the cut reduction on proof
nets. �

3.2.2 Non-uniform coherent spaces

In this subsection we recall the non-uniform coherent spaces, which provide a
non-uniform semantics for MELL.

Definition 80 ([BE01]) A non-uniform coherent space X is a triple (|X |, a

`
, `

a
),

where |X | is a set, while a

`
and `

a
are two binary symmetric relations on |X |,

such that for every x, y ∈ X , x a

`
y or x `

a
y.

A clique of X is a subset C of |X | such that for every x, y ∈ C, x a

`
y.

Remark the difference with the uniform coherent spaces: we do not require
a

`
to be also reflexive.

|X | is the web of X , while a

`
(resp. `

a
) is its coherence (resp. incoher-

ence). We will write x a

`
y [X ] and x `

a
y [X ] if we want to explicit the coherent

space a

`
and `

a
refer to. We introduce the following notation, well-known in

the framework of coherent spaces:

neutrality: x ≡ y [X ], if x a

`
y [X ] and x `

a
y [X ];

strict coherence: x ay [X ], if x a

`
y [X ] and x 6≡ y [X ];

strict incoherence: x `y [X ], if x `

a
y [X ] and x 6≡ y [X ].

Remark that ≡ is the intersection of a

`
and `

a
, a is the opposite of `

a
, and

` the opposite of a

`
. Therefore we may define a non-uniform coherent space

specifying its web and two well chosen relations among ≡, a

`
, a, `

a
, `.

Let X be a non-uniform coherent space, a non-uniform coherent model
on X (nuCohX) associates with formulas non-uniform coherent spaces, by in-
duction on the formulas, as follows:

• with X it is associated X ;
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• with A⊥ it is associated A⊥, defined as follows: |A⊥| = |A|, the neutrality
and coherence of A⊥ are the following:

– a ≡ a′
[
A⊥

]
iff a ≡ a′ [A],

– x a

`
y

[
A⊥

]
iff x `

a
y [A];

• with A⊗B it is associated A⊗B, defined as follows: |A⊗B| = |A| × |B|,
the neutrality and coherence of A⊗B are the following:

– < a, b >≡< a′, b′ > [A⊗B] iff a ≡ a′ [A] and b ≡ b′ [B],

– < a, b > a

`
< a′, b′ > [A⊗B] iff a a

`
a′ [A] and b a

`
b′ [B];

• with !A it is associated !A, defined as follows: |!A| = Mfin(|A|), the strict
incoherence and neutrality of !A are the following:

– v `u [!A] iff ∃a ∈ v and ∃a′ ∈ u, s.t. a `a′ [A],

– v ≡ u [!A] iff not v `u [!A] and there is a v (resp. u) enumeration v =
[a1, . . . , an] (resp. u = [a′1, . . . , a

′
n]), s.t. for each i ≤ n, a ≡ a′ [A].

Of course, the space AOB is defined by (A⊥⊗B⊥)⊥ as well as ?A is defined
by (!A⊥)⊥. We associate with a [-formula [A the space ?A.

Remark that a non-uniform coherent space may have elements strictly inco-
herent with themselves, i.e. ` is not anti-reflexive. Indeed recall the example in
the preceding subsection 3.2.1: let a, b be two elements on A s.t. a `b [A]. The
multiset [a, b] is an element of the non-uniform space !A s.t. [a, b] ` [a, b] [!A].

For each proof structure π, we define the interpretation of π in nuCohX,
denoted by JπKnuCohX , where the index nuCohX is omitted if it is clear which model
we refer to.

In case π has no conclusion, let JπK set as undefined. Otherwise, let c1 :
C1, . . . , cn : Cn be the conclusions of π, JπK is a subset of C1O . . .OCn, defined
by using the notion of the nuCohX experiment.

The nuCohX experiments are defined exactly in the same way as in defini-
tion 78, but for the uniformity condition, which is now omitted.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn and e :
π be an experiment, then the result of e, denoted by |e|, is the element <
e(c1), . . . , e(cn) > of C1O . . .OCn. The nuCohX interpretation of π is the set of
the results of all the nuCohX experiments on π:

JπKnuCohX =
{
< e(c1), . . . , e(cn) > | e is a nuCohX experiment on π

}

Like for CohX , the interpretation of nuCohX is invariant under cut reduction:

Theorem 81 (Soundness of J KnuCohX ) For every π, π′ proof structures, π =β

π′ implies JπKnuCohX = Jπ′KnuCohX .

In the end, remark that the uniform interpretation of a proof structure is
related with its non-uniform interpretation as follows:

Fact 82 Let π be a proof structure with conclusions Γ, |Γ|CohX be the web of
the uniform coherent space associated by CohX with the conclusions of π. Then:

JπKCohX = JπKnuCohX ∩ |Γ|CohX
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3.3 Injectivity and uniformity

In this section we address the question of injectivity of coherent semantics for
MELL proof nets.

Such a question is much harder than the one for MLL as well as for MALL.
Namely the exponential links introduce subtle differences between proof nets,
which are hard to read in their interpretations.

More precisely, contrary to the MLL case, the type of the conclusions of an
MELL cut-free proof net is far from characterizing the proof structure up to
the linkings of the axioms. Firstly, because from the type of the conclusion of
a ? link we do not infer the number of its premises. Secondly, because from the
type of a [-edge we do not know the exponential boxes of which it is an auxiliary
door. These two information must be recovered from the semantics.

Actually the question of MELL injectivity can be addressed in Coh as well
as in nuCoh. In the sequel we will deal mainly with Coh.

As noticed in fact 82, the interpretation in Coh of a proof net contains only
the uniform elements of its interpretation in nuCoh. Hence two proof nets can
be distinguished by nuCoh but not by Coh, while the vice-versa does not hold.

Let us look at an example, taken from [TdF03b]. Consider the cut-free
proof nets π1 and π2 defined respectively in figures 3.5 and 3.6. The difference
between π1 and π2 is in the location of the sub-proof net σ. We show that
Jπ1KnuCohX 6= Jπ2KnuCohX but Jπ1KCohX = Jπ2KCohX .

nuCoh reads easily the difference between π1 and π2. In fact take an exper-
iment e1 on π1 such that e1(a1) = [∅] and e1(a2) = ∅. The result of such an
experiment is:

• e1(a) = [∅, [∅]];

• e1(b) =< [x] , ∅ >, for a x ∈ Jσ′K;

• e1(c) = [y], for a y ∈ JσK.

On the other hand any experiment e2 on π2 such that e2(b) = e1(b), gives
e2(c) = ∅. That is, there is no experiment on π2 with same result as e1, hence
Jπ1KnuCohX 6= Jπ2KnuCohX .

Instead Coh is not able two read the difference between π1 and π2. In fact
the uniformity condition on a requires that e1(a1) = e1(a2), so forbidding the
unique way for Coh to express the fact that σ is in a given box and not in the
other one.

The couple of proof nets π1 and π2 is a counter-example to the injectivity of
CohX for MELL. The aim of this section is to understand better up to where
the uniform coherent semantics is able to read the differences between proof
nets. The feeling is that the amount of information that CohX reads from a
proof net is strictly related with the degree of connectedness of the correctness
graphs of the proof net.

The section proceed in this way. In subsection 3.3.1 we deal with another
example of two proof nets distinguished by nuCoh but not by Coh. The novelty
of such an example is that the two proof nets are polarized in the sense defined
in [Lau99]. In subsection 3.3.2 we recall a result of [TdF03b], reducing the
problem of distinguishing two proof nets in CohX with the one of the existence
of Coh injective experiments. Finally in subsection 3.3.3 we prove the existence
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Figure 3.5: counter-example to the injectivity of Coh: proof net π1.
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Figure 3.6: counter-example to the injectivity of Coh: proof net π2.
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of Coh injective experiments for the so-called (?O)-MELL proof nets (theorem
99). Theorem 99 has been already proved by Tortora in [TdF03b]. The main
novelty of our approach is to provide a simpler proof of theorem 99 by using
Girard’s notion of longtrip.

3.3.1 A polarized example

In this subsection we present another example of two proof nets π1 and π2 such
that Jπ1KnuCohX 6= Jπ2KnuCohX but Jπ1KCohX = Jπ2KCohX .

The novelty of such an example is that π1 and π2 are polarized proof nets, in
the sense defined in [Lau99]. The example gives a negative answer to the open
question of the injectivity of CohX for polarized linear logic, which instead was
conjectured in [TdF03b].

The content of this subsection is due to a joint work with Damiano Mazza.
The proof nets π1 and π2 are defined respectively in figures 3.7 and 3.8, where

δ1 and δ2 are proof nets with conclusion P and such that Jδ1KCohX 6= Jδ2KCohX .
The difference between π1 and π2 is in the boxes associated with the ! links

o4 and o5: π1 has δ2 in the o4 box and δ1 in the o5 box, conversely π2 has δ1 in
the o4 box and δ2 in the o5 box.

The two proof nets morally correspond with the two PCF terms:

λx.ifxthen(ifxthenδ1elseδ2)else(ifxthenδ1elseδ2)

λx.ifxthen(ifxthenδ1elseδ1)else(ifxthenδ2elseδ2)

which are a well-known example of terms distinguished by nuCoh but not by
Coh (see [BE01]).

Moreover, π1 and π2 morally correspond also with the two λµ-terms:

λxµα [α]µβ [α] x(µν [α] x(µν [β] δ1)(µν [β] δ2))(µν [α] x(µν [β] δ1)(µν [β] δ2))

λxµα [α]µβ [α] x(µν [α] x(µν [β] δ1)(µν [β] δ1))(µν [α] x(µν [β] δ2)(µν [β] δ2))

which are a variant4 of the counter-example to the syntactic separability of the
λµ-calculus (see [DP01a]).

Non-uniform interpretation. We prove that Jπ1KnuCohX 6= Jπ2KnuCohX , by
defining an experiment e1 on π1, such that |e1| ∈ Jπ1KnuCohX /Jπ2KnuCohX .

We start from a box at depth 2: consider πo4 associated with the ! link
o4. Let eo4

1 be an experiment on πo4 and suppose eo4

1 (b4) = [y], for an y ∈
Jδ2KnuCohX /Jδ1KnuCohX . Then define the experiment eo1

1 on πo1 as follows:

• eo1

1 (o3) = ∅;

• eo1

1 (o4) = [eo4

1 , e
o4

1 ].

4The two inseparable λµ-terms defined in [DP01a] are actually distinguished by Coh, since
coherent spaces are sound w.r.t. the mix rule.
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Figure 3.7: polarized counter-example to the injectivity of Coh: proof net π1.
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Figure 3.8: polarized counter-example to the injectivity of Coh: proof net π2.
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Finally define the experiment e1 as follows:

• e1(o1) = [eo1

1 ];

• e1(o2) = ∅.

Just for joking, let us compute the values of e1 on the doors of πo1 and πo2 :

e1(a1) = [∅] e1(b1) = [< ∅, [∅, ∅] >] e1(b3) = ∅ e1(b4) = [y, y]

e1(a2) = ∅ e1(b2) = ∅ e1(b5) = ∅ e1(b6) = ∅

Here are the values of e1 on the conclusions of π1:

• e1(c) = [y, y];

• e1(d) = [< ∅, [∅, ∅] >,< [∅] , ∅ >].

The result of e1 is an element of Jπ1KnuCohX but not of Jπ2KnuCohX . In fact,
suppose e2 is an experiment on π2 s.t. e2(c) = e1(c) and e2(d) = e1(d). In this
case we have two possibility:

1. e2(b0) = [< ∅, [∅, ∅] >] and e2(b2) = [< [∅] , ∅ >], or

2. e2(b0) = [< [∅] , ∅ >] and e2(b1) = [< ∅, [∅, ∅] >].

The case 1 is not possible, since e2(b0) = [< ∅, [∅, ∅] >] implies that e2(b2)
has two elements and not only one.

In case 2 instead we have e2(c) = e2(b4), hence e2(b4) = [y, y], which is
impossible, having we supposed y /∈ Jδ1K.

We conclude that |e1| /∈ Jπ1KnuCohX , hence:

Jπ1KnuCohX 6= Jπ2KnuCohX

Uniform interpretation. We prove that Jπ1KCohX = Jπ2KCohX .
First of all, remark that the nuCohX experiment e1 above defined is not

a CohX experiment. Indeed, e1(d) is not in the uniform interpretation of
?(!?X⊗!?X ), since < ∅, [∅, ∅] > a < [∅] , ∅ > [!?X⊗!?X ].

More generally, let us prove that Jπ1KCohX = Jπ2KCohX .
Let e1 be a generic CohX experiment on π1. Let us try to precise the result

of e1.
Firstly, let us compute e1(d). We focus on the edges above d. Clearly

e1(a1) = n [∅] and e2(a2) = m [∅] for n,m ≥ 0, i.e. e1(b0) = [< n [∅] ,m [∅] >].
Suppose u ∈ e1(b1). Of course u =< n′ [∅] ,m′ [∅] > for n′,m′ ≥ 0. Since

e1(b1)+e1(b0) belongs to the web of ?(!?X⊗!?X ), we deduce u `

a
< n [∅] ,m [∅] >

[!?X⊗!?X ]. This last condition is true only in case u =< n [∅] ,m [∅] >. We
conclude that e1(b1) = ne1(b0). By similar arguments we deduce e1(b2) =
me1(b0). Thus:
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e1(d) = (n+m+ 1) [< n [∅] ,m [∅] >]

Now, let us compute e1(c). Firstly remark that Supp(e1(b3)) = {x} for an
x ∈ Jδ1K. In fact, suppose x, x′ ∈ Supp(e1(b3)). Since x, x′ ∈ Jδ1K, we deduce5

x a

`
x′ [B]. On the other hand by the uniformity of ?B, we known that x `

a
x′ [B],

thus x = x′.

In the same way we may argue that Supp(e1(b4)), Supp(e1(b5)) and Supp(e1(b6))
are all singleton. We conclude that:

• e1(b3) = n2 [x], for an x ∈ Jδ1K;

• e1(b4) = nm [y], for an y ∈ Jδ2K;

• e1(b5) = mn [x′], for an x′ ∈ Jδ1K;

• e1(b6) = m2 [y′], for an y′ ∈ Jδ2K.

That is:

e1(c) = n2 [x] + nm [y] +mn [x′] +m2 [y′]

Let us consider now a generic CohX experiment e2 on π2. By similar con-
sideration as for e1, we deduce that:

e2(d) = (n+m+ 1) [< n [∅] ,m [∅] >]

for numbers n,m ≥ o, and:

• e2(b3) = n2 [x], for an x ∈ Jδ1K;

• e2(b4) = nm [x′], for an x′ ∈ Jδ1K;

• e2(b5) = mn [y], for an y ∈ Jδ2K;

• e2(b6) = m2 [y′], for an y′ ∈ Jδ2K.

That is:

e2(c) = n2 [x] + nm [x′] +mn [y] +m2 [y′]

Of course by commutation on the sum between multisets and the product
between numbers, we conclude that e1 and e2 have the same result, hence:

Jπ1KCohX = Jπ2KCohX

5We are using the well-known theorem stating that the interpretation of a proof net is a
clique. Indeed such a theorem can be deduced as a corollary from the stronger theorem 103
of section 3.4.
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A third way. We have considered both the nuCoh and the Coh interpretation
of π1 and π2. The first one distinguishes the two proof nets, the second one
does not.

It is worth of mentioning that such proof nets correspond with two designs
in the system of ludics with repetition, introduced by Maurel in [Mau04]. For
separating the two designs in a some sense uniform way, Maurel introduces a
calculus in which the sum, hence the product, between multiset is no more
commutative. In our terms it means that e2(c) 6= e1(c), since nm [y]+mn [x′] 6=
nm [x′] +mn [y].

From a sintactical point of view, the commutation of the sum between mul-
tisets corresponds with the fact that the ? premises are unordered. Forbidding
such a commutation means introducing a kind of order among the ? premises.
Such an approach may be interesting, but at the moment we do not known any
satisfactory definition of such a non-commutative link ?.

3.3.2 From injectivity to the injective experiment

In this subsection we recall a result in [TdF03b], reducing for several MELL
fragments the question of the injectivity of Coh to the one of the existence of a
Coh injective experiment.

The idea is to understand what Coh is able to read from a proof net π by try-
ing to reconstruct π itself from JπKCoh. Proposition 84 reduces in several cases
the reconstruction of π to the one of the linear proof structure of π (definition
83). Theorem 89 shows that the linear proof structure of π can be reconstructed
from the result of particular experiments, called injective n-obsessional exper-
iments (definition 88). So the reconstruction of π turns in the problem of the
existence of such experiments. Proposition 91 reduces the existence of injec-
tive n-obsessional experiments to the one of injective experiments on proof nets
without boxes. This latter problem will be the object of the following subsection
3.3.3.

From now on by coherent semantics we will mean uniform coherent seman-
tics, moreover we will denote JπKCohX simply by JπK.

Open the boxes

Definition 83 ([TdF03b]) Let π be a proof structure. The linear proof

structure of π, denoted by LPS(π), is a weighted graph obtained from π by
erasing the boxes frames and by labelling each [-edge with the exponential depth
of the [ link it descends from.

Remark that several proof structures can be associated with a unique LPS.
For example the proof nets in figures 3.5 and 3.6 are both associated with the
linear proof structure in figure 3.9. Actually the LPS(π1,2) is exactly what
coherent spaces read from π1,2. The same remark holds for the couple of proof
nets in figures 3.7 and 3.8.

But in case LPS(π) is a connected graph, then π is unique:

Proposition 84 ([TdF03b]) Let π be a proof structure s.t. LPS(π) is a con-
nected graph. If π′ is a proof structure s.t. LPS(π) = LPS(π′), then π = π′.
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Figure 3.9: linear proof structure of the proof nets in figures 3.5 and 3.6.

Proof. Let LPS(π) be a connected graph. We reconstruct the frames of
the exponential boxes from LPS(π) by declaring for each ! link which are its
auxiliary doors.

Let o be a ! link and a be an edge conclusion of a [ link. a is an o auxiliary
door if and only if there is a path φ in LPS(π) from a to o, s.t. each edge
a′ ∈ φ conclusion of a [ link has exponential depth strictly greater than the one
labelling a. �

Reading the linear proof structures

The linear proof structures can be reconstructed from the result of a special
kind of experiments, called injective n-obsessional experiments. They satisfy
two properties: n-obsessionality and injectivity.

An n-obsessional experiment is an experiment which takes for each ! link
exactly n copies of a unique (n-obsessional) experiment on the box associated
with the ! (definition 85).

An injective n-obsessional experiment is an n-obsessional experiment which
takes different values on different axioms (definition 88).

Theorem 89 states that if it exists for π an injective n-obsessional experi-
ment, for n arbitrary large, then for any proof net π′ s.t. JπK = Jπ′K we have
LPS(π) = LPS(π′). We do not give here the proof of the theorem, for which
we refer to [TdF03b]. Such a proof consists in a procedure for reconstructing
LPS(π) from the result of an injective n-obsessional experiment on π. The idea
is that the n-obsessionality allows us to read both the depth and the number of
the premises of a link ?, while the injectivity allows us to read the linkings of
the axioms.

Definition 85 ([TdF03b]) Let n ∈ N, an experiment e : π is n-obsessional

if for every ! link o at depth 0, e(o) = n [eo], for some n-obsessional experiment
eo on the box associated with o.
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We have defined the experiments just on the edges and ! links at depth 0 of a
proof structure, by taking advantage of the inductive frame introduced by boxes.
Nevertheless for extending to MELL the notion of injective experiment it will
be usefull computing experiments also on deeper edges, so that we introduce
the following definition:

Definition 86 Let e be an experiment on π and a be an edge. The experi-

ments in e associated with a are the elements of the multiset Exe(a) defined
by induction on the depth of a:

• if a is at depth 0 then Exe(a) = [e],

• if a is in a box associated with a ! link o at depth 0 and e(o) = [eo
1, . . . , e

o
n],

then Exe(a) =
∑

i≤nEx
eo

i (a).

An n-obsessional experiment e is both regular and powerfull. It is regular
in the sense that it associates with an edge a at any depth of π many copies of
a unique experiment e′ ∈ Exe(a), so that we may speak about the experiment
associated in e with a. It is powerfull because the number of e′ copies associated
with a codifies the exponential depth of a:

Proposition 87 ([TdF03b]) Let e : π be an n-obsessional experiment, a be
an edge at depth d. Then, Exe(a) = nd [e′], for some n-obsessional experiment
e′ on the smaller box containing a.

Moreover, if a : [A is conclusion of a [ link at depth d, then e(a) = nd [e′(a)].

Proof. By induction on d. If a is at depth 0 then by definition Exe(a) = [e].
If a is in a box associated with a ! link o at depth 0 and e(o) = n [eo], then
by definition of Exe, Exe(a) = nExeo

(a). By induction we have Exeo

(a) =
nd−1 [e′], so Exe(a) = nd [e′].

Of course if a is an auxiliary door with depth d, then e(a) = nd [e′(a)]. �

Definition 88 ([TdF03b]) An n-obsessional experiment e : π is injective if
for every pair of atomic edges a : X, a′ : X, with ea, ea′ as associated experiments
in e, ea(a) 6= ea′(a′).

Theorem 89 ([TdF03b]) Let π be a cut-free proof net. If there is an injective
n-obsessional CohX experiment on π, for n arbitrary large, then for any cut-free
proof net π′ with same conclusions as π, JπKCohX = Jπ′KCohX implies LPS(π) =
LPS(π′).

Theorem 89 does not hold if we substitute CohX with nuCohX . In fact the
proof makes use of the uniformity of the injective n-obsessional CohX experiment
in a crucial passage. More precisely, only in CohX the n-obsessionality of an
experiment e can be read from its result |e|. Stated otherwise: if two CohX

experiments e : π, e′ : π′ have the same result, then e is n-obsessional iff e′

is n-obsessional. On the other hand, if e, e′ are nuCohX experiments such a
statement is false.

Moreover, remark that theorem 89 deals with proof nets and not with proof
structures in general. Indeed the above statement is false also in case π or π′

are not correct proof structures.
Theorem 89 and proposition 84 turn the problem of injectivity for several

fragments of MELL into a problem of existence of injective n-obsessional ex-
periments.
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Figure 3.10: example of a proof net without Coh injective experiments.
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Figure 3.11: example of a proof net without Coh injective experiments.

Do CohX injective n-obsessional experiments exist?

In uniform coherent semantics, not every choice of values on the axioms and !
links determines an experiment on a cut-free proof net because of the uniformity
condition (see definition 78): the elements associated with edges of types [C⊥,
?C⊥ and !C must be in the web of |!C|, i.e. their support must be a clique of C.

For example, let π be the proof net in figure 3.10. We may not define a
Coh injective experiment on π. In fact by the uniformity of ?X we need satisfy
e(a) `

a
e(b) [X ], while by the uniformity of ?X⊥ we need satisfy e(c) `

a
e(d)

[
X⊥

]
,

but e(a) = e(c) and e(b) = e(d), hence e(a) = e(b).
Let us consider a more complex example. Let π be the proof net in figure

3.11. Suppose e is an injective experiment on π, let us check if e can meet all the
uniformity conditions required by its links ?. Remark that since e is injective
and π is without weakening, for any formula A, e associates with different edges
labelled by A different elements of A.

The uniformity conditions are:

• e(a) `e(a′)

• e(b) `e(b′)

• e(c) `e(c′)

• e(d) `e(d′)
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Figure 3.12: correctness graph of the proof net in figure 3.11.

Now if we suppose e(a) `e(a′), by crossing the axioms above resp. a and
a′, we deduce e(f) ae(h). On the other hand we must satisfy e(b) `e(b′), hence
we need e(g) `e(i). By crossing the axioms above g, i the last incoherence
sets e(n) ae(l). As before, since we need e(c) `e(c′), we deduce e(m) `e(o),
which imposes e(d) ae(d′), so violating a uniform condition. Thus on π are not
definable injective experiments.

Remark that for checking the uniformity conditions, we have drawn the
following two switching paths in π:

↑ a → ↓ h → ↑ i → ↓ l → ↑ m → ↓ d

↑ a′ → ↓ f → ↑ g → ↓ n → ↑ o → ↓ d′

which are in two disjoint components of a correctness graph of π (figure 3.12).
Now, what about if we deal with a proof net whose correctness graphs are

all connected? The two switching paths drawn for checking the uniformity
conditions should eventually meet, so showing a solution for satisfying such
conditions.

Actually, what we guess is that injective (n-obsessional) experiments always
exist on those proof nets whose correctness graphs are connected (see conjecture
101).

A possibly proof of conjecture 101 should link in a very interesting way the
injectivity of a uniform semantics with the connectedness of the correctness
graphs. Unluckily all our efforts for proving conjecture 101 did not succeed.
Until now, what we known is theorem 99, stating that for the so-called (?O)-
MELL proof nets without mix (see subsection 3.3.3) there exist CohX injective
(n-obsessional) experiments. The proof of theorem 99 is a stimulating example
of how from a connected correctness graph we may define a CohX injective ex-
periment.

Before turning to the proof of theorem 99, let us simplify further the problem
of the existence of injective n-obsessional experiments.

Remark that we never deal with the uniformity conditions on the doors of
the boxes. Indeed a valuable property of n-obsessional experiments is that they
satisfy straightforwardly that kind of conditions. In other and more precise



88 CHAPTER 3. EXPONENTIALS

words:

Definition 90 ([TdF03b]) Let π be a cut-free proof structure. The linearized

of π, denoted by L(π), is the proof structure obtained from π erasing every box
frame and every ! link, and changing the type of the edges by substituting every
! subformula !A with A.

Notice that in case π is a proof net, so is L(π). The definition of L(π) is
justified by the following proposition:

Proposition 91 ([TdF03b]) Let π be a cut-free proof net and n be a number
greater than the maximum arity of the ? links in π. If there is an injective
experiment on L(π), then there is an injective n-obsessional experiment on π.

In a cut-free linearized proof net can occur only links axiom, O, ⊗, [ and
?. Since we have not boxes, the [ links are useless too, so that we can reduce
further our syntax to proof nets composed only by links axiom, O, ⊗ and ?. Of
course in this no-[ syntax the premises of a link ? are edges labelled by simple
formulas A, instead of [A.

3.3.3 Injective experiments in (?O)-MELL

A (?O)-MELL formula is defined in [TdF03b] by the following grammar:

F ::= X | X⊥ | FOF | ?FOF | FO?F | F ⊗ F | !F

A (?O)-MELL proof net is a MELL proof net without mix in which any
edge is labeled by a (?O)-MELL formula.

We do not consider (?O)-MELL a fragment of MELL in a strict sense, since
it is not closed by orthogonality: !X is a (?O)-MELL formula while ?X⊥ is not.
Nevertheless, (?O)-MELL includes several interesting MELL fragments, such
as the weakly polarized fragment of MELL (see [TdF00]), in which we may
translate the simply typed λ-calculus (see [Gir87]).

The set of the (?O)-MELL proof nets is the largest set of proof nets for
which we have the proof of the Coh injectivity (theorem 100).

In the preceding subsection we have reduced the question of the Coh in-
jectivity with the one of the existence of Coh injective experiments. In this
subsection, we give a positive answer to such a question for (?O)-MELL proof
nets (theorem 99).

Theorem 99 has been proven in [TdF03b] by a proof based on the notion
of correctness graph. The novelty of our approach is to provide an alternative
proof based on the Girard’s notion of longtrip.

Let us be more precise. Suppose π is a (?O)-MELL proof net without
exponential boxes. The proof of theorem 99 in [TdF03b] associates with a
connected correctness graph of π an injective experiment e : π, which satisfies
all the uniformity conditions required by the links ?. More particularly, e is
defined by approximations, i.e. the proof provides a sequence of injective exper-
iments e1, e2, e3, . . ., satisfying more and more uniformity conditions, eventually
obtaining the desired experiment e.

Our proof of theorem 99 instead defines in a single step the injective exper-
iment e on π, so increasing our control on e. The improvement of our approach
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is due to the fact that we refer to a longtrip of π instead of a correctness graph
of π. A longtrip has more information than a correctness graph, since it is an
oriented path inside a correctness graph, so it takes with itself a visiting order
on the edges of the correctness graph (such an order is explicated in definition
95).

The subsection is divided in three paragraph. The first one is called a trip
on a proof structure, and it is devoted to introduce briefly the notion of trip
in the framework of (?O)-MELL proof nets. The second paragraph is called
existence of injective experiments, and it contains our proof of theorem 99. The
last paragraph is called the injectivity of MELL without weakening and mix,
and it proposes the conjecture 101 about the existence of injective experiments
on MELL proof nets without weakening and mix.

From now on, by a proof structure (resp. proof net) π we will mean a
(?O)-MELL proof structure (resp. proof net without mix) without cut, ! and
[ links.

A trip on a proof structure. We introduce the notion of switchings for the
links ⊗, O and ? (see figure 3.13). A switching for a link l determines the way
a path τ crosses l. More precisely, let l be a link with premises a1, . . . , an and
conclusion c. τ may arrive in l by ↑ c, or by ↓ ai for an i ≤ n, and it may leave
l by ↓ c, or by ↑ ai for an i ≤ n. A switching is a bijection between the arriving
possibilities ({↑ c, ↓ a1, . . . , ↓ an}) and the leaving ones ({↓ c, ↑ a1, . . . , ↑ an}):

⊗ switchings: let l be a ⊗ link with premises a, b and conclusion c. We say
that τ respects the switching T1 for l, if a, b, c may occur in τ only in
the sequences ↑ c ↑ a, ↓ a ↑ b and ↓ b ↑ c.

We say that τ respects the switching T2 for l, if a, b, c may occur in τ
only in the sequences ↑ c ↑ b, ↓ b ↑ a and ↓ a ↓ c.

O switchings: let l be a O link with premises a, b and conclusion c. We say
that τ respects the switching P1 for l, if a, b, c may occur in τ only in
the sequences ↑ c ↑ a, ↓ a ↓ c and ↓ b ↑ b.

We say that τ respects the switching P2 for l, if a, b, c may occur in τ
only in the sequences ↑ c ↑ b, ↓ b ↓ c and ↓ a ↑ a.

? switchings: let l be a ? link with has premises a1, . . . , an, for n > 0, and
conclusion c. We say that τ respects the Wi switching for l (for
i ≤ n), if a1, . . . , an, c may occur in τ only in the sequences ↑ c ↑ ai,
↓ ai ↓ c and for any j 6= i, ↓ aj ↑ aj .

A switching for a proof structure π is a function S associating with each
link ⊗, O and ? one among its switchings.

Definition 92 (from [Gir87]) A trip on a proof structure π is an oriented
path τ s.t.:

1. τ is a cycle;

2. if c is a conclusion of π, then c may occur in τ only in a sequence ↓ c ↑ c;

3. if a, b are the conclusions of an axiom, then a, b may occur in τ only in
the sequences ↑ a ↓ b and ↑ b ↓ a;
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Figure 3.13: switchings for ⊗, O and ?.
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4. if a, b are the premises of a cut, then a, b may occur in τ only in the
sequences ↓ a ↑ b and ↓ b ↑ a;

5. if c is a conclusion of a weakening, then c may occur in τ only in the
sequence ↑ c ↓ c;

6. there is a switching S for π, s.t. for any ⊗, O or ? link l of π, τ respects
the S(l) switching for l.

A trip τ is a longtrip if each edge a occurs in τ exactly twice, once as ↑ a
and once as ↓ a.

In the sequel we will denote a trip by the Greek letter τ .
The notion of longtrip provides Girard’s correctness criterion:

Theorem 93 ([Gir87]) A MLL proof structure is a proof net without mix iff
all its trips are longtrips.

Let l a, l b ∈ τ , we denote by l a− l b the section of τ from l a to l b. In
particular we denote by τ(a) the set of edges occurring in the section ↑ a− ↓ a.

Existence of injective experiments. Finally we may attack the question
of the existence of injective experiments.

(?O)-MELL proof nets are not characterizable by the longtrip criterion,
because they have weakenings. But in (?O)-MELL proof nets a weakening
conclusion is premise of a O link of which the other premise is surely not a
weakening conclusion. This restriction allows to define in a (?O)-MELL proof
net a trip which is nearly a longtrip, in the sense that it meets almost all the
properties of a usual longtrip:

Proposition 94 6 Let π be a (?O)-MELL proof net without mix and exponen-
tial boxes. If τ is a trip on π containing at least one axiom and s.t.:

(*) if l is a link with conclusion AOB: in case A is not a ?-formula, τ respects
the switching P1 for l; in case A is a ?-formula τ respects the switching
P2 for l,

then τ meets the following properties:

1. for each π edge a, if a is not a weakening conclusion then a occurs in τ
exactly twice, once as ↑ a, once as ↓ a;

2. if a, b are two edges, ↑ b ∈↑ a− ↓ a iff ↓ b ∈↑ a− ↓ a;

3. if a, b are two conclusions of an axiom, then τ(a) ∩ τ(b) = {a, b} and
τ(a) ∪ τ(b) = {c | l c ∈ τ};

4. if a, b are the two premises of a O or ? link, then b ∈ τ(a) and a ∈ τ(b);

5. if a, b are the two premises of a ⊗ link, then τ(a) ∩ τ(b) = ∅;

6The condition (*) of proposition 94 corresponds with the operation of par-mutilation

defined by Tortora in [TdF03b].
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6. if c is conclusion of a ? link which is not a weakening, then ↓ c ↑ c v τ .

Proof. By induction on a sequentialization of π. We do only the O and ⊗
cases, the others being similar or straightforward.

par: if the last rule of the π sequentialization is a O-rule, let l be the π link
associated with such a rule. Let c : AOB be the conclusion of l and a : A
and b : B be its premises. Let τ be a trip of π respecting condition (*).

Define πc as the proof net obtained from π erasing l and c.

In case τ respects the P1 switching for l (the case τ respects P2 is similar).
Remark that since τ meets condition (*), then a is not conclusion of a
weakening, thus:

τ =↓ a ↓ c ↑ c ↑ a . . . . . .

where ↑ a− ↓ a contains at least one axiom of π, hence of πc. Define τc as
↑ a− ↓ a, and remark that τc is a trip of πc satisfying (*) and containing
at least one πc axiom. By induction hypothesis τc meets the properties
1-6, which straightforwardly implies that τ meets 1-6 too.

tensor: if the last rule of the π sequentialization is a ⊗-rule, let l be the π link
associated with such a rule. Let c : A⊗B be the conclusion of l and a : A,
b : B be its premises. Let τ be a trip of π respecting condition (*).

Since l is associated with the last sequent rule, l is splitting π in two sub-
proof nets πa and πb with conclusions respectively a : A,Π′ and b : B,Π′′,
supposing c : A⊗B,Π′,Π′′ to be the π conclusions.

Suppose τ respects the T1 switching for l (the case τ respects T2 is similar).
Then, being c a π conclusion and l splitting:

τ =↑ c ↑ a . . . . . . ↓ a ↑ b . . . . . . ↓ b ↓ c

Define τa =↑ a− ↓ a (resp. τb =↑ b− ↓ b). Of course τa (resp. τb) is a
trip on πa (resp. of πb) satisfying condition (*). By induction hypothesis
both τa and τb meet properties 1-6. We leave to the reader checking that
under such hypothesis τ meets 1-6 too.

�

From now on, let us fix a trip τ on a proof net π, satisfying condition (*) of
proposition 94 and containing at least one axiom of π.

Let s be any conclusion of π. Since s is a conclusion, ↓ s ↑ s v τ . If we cut
the cycle τ between ↓ s and ↑ s, we obtain an oriented line starting from ↑ s
and ending in ↓ s. By this line we define a linear order on the edges of π:

Definition 95 Let τ be a trip of π, s be a conclusion of π, a, b be two edges.
We write a <τ,s b if a is the first edge between a and b which we meet in τ
starting from ↑ s, without taking care if we meet ↑ a or ↓ a.

Remark that by property 1 of proposition 94, for any edges a, b which are
not conclusion of weakenings, a <τ,s b or b <τ,s a.
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Definition 96 An unordered pair of π edges (a, b) is a candidate if a <τ,s b
implies b ∈ τ(a).

Proposition 97 Let a : X, a′ : X⊥ (resp. b : X, b′ : X⊥) be the two conclusions
of an axiom link. (a, b) is a candidate if and only if (a′, b′) is not a candidate.

Proof. Suppose (a, b) is candidate, we prove (a′, b′) is not candidate. We may
suppose a <τ,s b and b ∈ τ(a) (recall that a <τ,s b or b <τ,s a). Since a, a′

(resp. b, b′) are linked by an axiom, the first occurrence of a (resp. of b) in τ
is contiguous with the first occurrence of a′ (resp. of b′). So that we deduce
a′ <τ,s b

′. Moreover, since τ(a) ∩ τ(a′) = {a, a′}, we conclude b′ /∈ τ(a′), hence
(a′, b′) is not candidate.

Suppose (a, b) is not candidate, we prove (a′, b′) is candidate. The case is
symmetrical to the preceding one: suppose a <τ,s b and b /∈ τ(a). By a <τ,s b we
conclude that a′ <τ,s b

′, by b /∈ τ(a) that b ∈ τ(a′), hence (a′, b′) is candidate.
�

Proposition 97 shows that we may use the candidates for defining the pair-
wise strict incoherence between the values of an experiment e on the atomic
edges. The following lemma 98 proves a crucial property of such an experiment
e:

Lemma 98 Let e : π be an experiment s.t. for any pair a, b of atomic edges
with same type: e(a) `e(b) if and only if (a, b) is a candidate.

Let c, c′ be two π edges of same type C, if (c, c′) is a candidate then e(c) `e(c′).

Proof. Suppose (c, c′) is a candidate, the proof is by induction on C:

atom: if C = X,X⊥ the statement is immediate;

par: if C = AOB, let a : A, b : B (resp. a′ : A, b′ : B) be the premises of the
O l (resp. l′) with conclusion c : C (resp. c′ : C). Since τ meets condition
(*) of proposition 94, τ respects the same switching for l and l′ (they have
the same type).

Suppose such a switching is P1 (the case it is P2 is similar), so that ↑ c ↑ a,
↓ a ↓ c, ↑ c′ ↑ a′, ↓ a′ ↓ c′ v τ . In particular, by c <τ,s c

′ we deduce that
a <τ,s a

′: in fact the first occurrence of c (resp. c′) is contiguous in τ
with the first occurrence of a (resp. a′). Moreover, by c′ ∈ τ(c), we infer
a′ ∈ τ(a). We conclude that (a, a′) is a candidate.

By definition of the O P1 switching, ↓ b ↑ b, ↓ b′ ↑ b′ v τ , i.e. b ∈ τ(b′) and
b′ ∈ τ(b), which straightforwardly implies that (b, b′) is a candidate.

By induction hypothesis on (a, a′) and (b, b′), we deduce e(a) `e(a′) and
e(b) `e(b′), thus e(c) `e(c′).

tensor: if C = A ⊗ B, let a : A, b : B (resp. a′ : A, b′ : B) be the premises
of the ⊗ l (resp. l′) with conclusion c : C (resp. c′ : C). Suppose the
switching respected by τ for l is T1 (the case it is T2 is similar), that is:

τ =↑ c ↑ a . . . . . . ↓ a ↑ b . . . . . . ↓ b ↓ c . . . . . .

Since τ(c) = τ(a) ∪ τ(b) ∪ {c}, by c′ ∈ τ(c) we deduce c′ ∈ τ(a) or
c′ ∈ τ(b). Suppose c′ ∈ τ(a) (the case c′ ∈ τ(b) is similar). By proposition
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94 condition 2, both ↑ c′ and ↓ c′ are in ↑ a− ↓ a. Since one occurrence
of a′ is contiguous with ↑ c′ and ↓ c′ (depending on the l′ switching), we
deduce a′ ∈↑ a− ↓ a, i.e. a′ ∈ τ(a). Moreover, by c <τ,s c

′, it follows
a <τ,s a

′. We conclude that (a, a′) is a candidate. By induction hypothesis
we deduce e(a) `e(a′), i.e. e(c) `e(c′).

why not: if C =?A. Since (c, c′) is a candidate, then neither c nor c′ are
weakening conclusions. Let a1, . . . , an (resp. a′1, . . . , a

′
m) be the premises

of the ? link l (resp. l′) with conclusion c : C (resp. c′ : C). Suppose that
both the l, l′ switchings are S1 (i.e. order the l, l′ premises s.t. the first
ones are the switched ones).

Since c <τ,s c′, we deduce a1 <τ,s a′1, and since c′ ∈ τ(c), we deduce
a′ ∈ τ(a), thus (a1, a

′
1) is a candidate. Moreover for any i, 1 < i ≤ n and

j, 1 < j ≤ m have that a′j ∈ τ(ai) as well as ai ∈ τ(a′j), so that (ai, aj) is a
candidate. But for concluding our proof we have to prove that also (a1, a

′
j)

and (ai, a
′
1) are candidates. We may prove that (a1, a

′
j) and (ai, a

′
1) by

means of condition 6 of proposition 94. In fact by condition 6 and the
l, l′ switchings, ↓ a1 ↓ c ↑ c ↑ a1, ↓ a′1 ↓ c

′ ↑ c′ ↑ a′a v τ . We so deduce
a′j ∈ τ(a1) and ai ∈ τ(a′1), i.e. (a1, a

′
j) and (a′1, ai) are candidates.

To sum up, we have proven that for each i ≤ n, j ≤ m, (ai, a
′
j) is a

candidate. By induction hypothesis e(ai)
`e(a′j), thus e(c) `e(c′).

�

By means of lemma 98 we prove straightforwardly the existence of injective
experiments in uniform coherent spaces:

Theorem 99 ([TdF03b]) Let π be a cut-free (?O)-MELL proof net without
weakening, mix and exponential boxes. There is a coherent space X and a CohX

injective experiment on π.

Proof. Let e be an injective experiment on π s.t. for any pair a, b of atomic
edges with same type: e(a) `e(b) if and only if (a, b) is a candidate.

We have to prove that e respects the uniformity condition, i.e. for any
premises a, b of a ? link, e(a) `e(b). By proposition 94 condition 4 a ∈ τ(b) as
well as b ∈ τ(a), so that (a, b) is a candidate. By lemma 98 we conclude that
e(a) `e(b). �

Theorem 100 ([TdF03b]) Let π1, π2 be two (?O)-MELL cut-free proof nets
without mix. If for all coherent spaces X , Jπ1KCohX = Jπ2KCohX , then π1 = π2.

Proof. Let π1, π2 be two (?O)-MELL cut-free proof nets. By theorem 99 there
is an injective experiment on L(π1). By proposition 91 there is an injective n-
obsessional experiment on π1, for any number n greater than the maximum
arity of the ? links in π1. By theorem 89, LPS(π1) = LPS(π2). Finally by
proposition 84, π1 = π2. �



3.4. EXPONENTIAL ACYCLICITY AND CLIQUES 95

[

ax

O

X X⊥

ax

O

X X⊥

? ?

?

!

[ ?X

b o

!?X
a

b′

d

c′

⊗

?I⊗?I

I I

c

Figure 3.14: example of switching cycle invisible by coherent spaces.

The injectivity of MELL without weakening and mix. By following
[TdF03b], we guess that the existence of injective experiments is deeply linked
with the connectedness of the correctness graphs of π, i.e. with the existence of
a longtrip in π.

We have already noticed that if π is a proof structure without weakening,
then π is a proof net without mix iff π is strongly correct, otherwise stated
all the trips of π are longtrips. Thus the link between the existence of CohX

injective experiments and the one of a longtrip should be clarified by a proof of
the following conjecture:

Conjecture 101 Let π be a MELL cut-free proof net without weakening, mix
and exponential boxes. There is a coherent space X and a CohX injective exper-
iment on π.

3.4 Exponential acyclicity and cliques

In MLL we have a perfect correspondence between switching acyclicity and
clique, in the sense of theorems 24 and 25, stating the following:

(*) let π be a MLL cut-free proof structure. π is correct if and only if JπKCohX

is a clique for every coherent space X .

Does the statement (*) hold in presence of exponentials, i.e. for MELL
proof structures too?

Such a question has been stated by Di Giamberardino in [Gia04], and nega-
tively answered by the following example.

Consider the proof structure π in figure 3.14. Of course π contains the
switching cycle ↑ c ↓ b ↓ b′ ↑ c′ ↑ c, so it is not correct. Nevertheless JπK is a
clique in both uniform and non-uniform coherent spaces.

Let us show it. Let e1, e2 be two experiments on π, let us show that
|e1|

a

`
|e2| [(?I⊗?I)O!?X ], where I = XOX⊥.
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Figure 3.15: example of switching cycle visible by coherent spaces.

Suppose e1(o) =
[
e11, . . . , e

n
1

]
and e2(o) =

[
e12, . . . , e

m
2

]
. Remark that for any

experiments el
i, e

h
j , el

i(c)
a

`
eh

j (c) [?I ] as well as el
i(b)

a

`
eh

j (b) [?I ]. There are two
cases, depending if either n = m or n 6= m.

In case n = m, then we deduce e1(c)
a

`
e2(c) and e1(b)

a

`
e2(b), hence e1(d)

a

`
e2(d).

Of course e1(a)
a

`
e2(a), thus |e1|

a

`
|e2| [(?I⊗?I)O!?X ].

In case n 6= m, then e1(a)
ae2(a), thus |e1|

a

`
|e2| [(?I⊗?I)O!?X ].

The failure of the correspondence between switching acyclicity and coherent
spaces shows that these last ones read the exponential boxes in a different way
as switching paths do. Indeed the cycle ↑ c ↓ b ↓ b′ ↑ c′ ↑ c is due to the box
associated with o: if we erase o and the frame of its box, we would get a correct
proof structure. Coherent spaces do not read the boxes as switching paths do,
but it is not true that they do not read the boxes at all. For example, consider
the proof structure π′ in figure 3.15.

π′ has the switching cycle ↓ a ↑ b′ ↑ b ↓ a, which is due to the box of o, as in
the example before. However in this case the cycle is visible by coherent spaces,
i.e. Jπ′K is not a clique. Let us show it.

Let e1, e2 be two experiments on π′, s.t. e1(o) = ∅ and e2(o) = [e′], for an
experiment e′ on the o box. Clearly e1(c

′) `e2(c
′) [?I] and e1(b

′) `e2(b
′) [?I].

By the last one we deduce e1(d)
`e2(d) [?I⊗!?X ], i.e. |e1| `|e2| [?IO(?I⊗!?X )].

In this section we define the visible paths (definition 102). Such a definition
will induce a new geometric criterion, which we call weak correctness, charac-
terizing those proof structures whose interpretation is a clique.

We have defined in section 3.2 two different kinds of coherent spaces: Coh and
nuCoh. The general question of characterizing the cycles visible by a semantics
can be set both in Coh and in nuCoh. In the uniform case however, such a
question gets mixed with the uniformity problem, for which our tools are yet
too weak. For such a reason we will deal only with nuCoh.

From now on, by coherent spaces we mean precisely non-uniform multiset
based coherent spaces.
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Let φ be a path in a proof structure and πo be an exponential box associated
with a ! link at the same depth of φ. A passage of φ through πo is a sequence
↑ a ↓ b v φ for a, b doors of πo.

Notice that a switching path can pass through an exponential box by means
of any pair of its doors; with the following definition we forbid instead some of
such passages:

Definition 102 Let π be a proof structure. By induction on the depth of π, we
define its visible paths:

• if π has depth 0, then a visible path in π is a switching path;

• if π has depth n+1, let πo be a box associated with a link ! o, a, b be doors
of πo we say that:

– a is in the orbit of o if either a is the principal door or there is a
visible path in πo from the premise of o to a;

– a leads to b if either b is in the orbit of o or there is a visible path
in πo from a to b;

then a visible path in π is a switching path s.t. for any passage ↑ a ↓ b
through an exponential box, a leads to b.

A proof structure is weakly correct whenever it does not contain any visible
cycle.

Visible paths introduce two noteworthy novelties with respect to the switch-
ing paths:

1. they partly break the black box principle: the admissible passages through
an exponential box depend on what is inside the box, i.e. changing the
contents of a box may alter the visible paths outside it;

2. they are sensitive to the direction: if φ is visible from a to b, the same
path done in the opposite direction from b to a may be no longer visible.
For example recall the proof structure of figure 3.14: the path ↑ b ↓ a is
visible, but ↑ a ↓ b isn’t, since a does not lead to b.

Of course if π is correct then it is also weakly correct, but the converse does
not hold. For example recall the proof structure of figure 3.14, which is weakly
correct although it contains a switching cycle.

The weakly correctness characterizes those proof structures whose interpre-
tation is a clique, in the following sense:

Theorem 103 Let π be a MELL proof structure, X be any non-uniform co-
herent space.

If π is weakly correct, then JπKnuCohX is a clique.

Theorem 104 Let π be a cut-free MELL proof structure, X be a non-uniform
coherent space with x, y, z ∈ |X | such that x ay [X ], x `z

[
X⊥

]
and x ≡ x [X ].

If JπKnuCohX is a clique, then π is weakly correct.

The following subsection 3.4.1 (resp. 3.4.2) is dedicated to the proof of
theorem 103 (resp. 104).
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3.4.1 Proof of theorem 103

Theorem 103 is a straightforward consequence of the following lemma:

Lemma 105 Let π be a weakly correct proof structure. If d : D is a conclusion
of π and e1, e2 are two experiments such that e1(d)

`e2(d) [D], then there is a
visible path φ from d to a conclusion d′ : D′ such that e1(d

′) ae2(d
′) [D′].

Proof. Let e1(d)
`e2(d) [D]. We prove the lemma by induction on the expo-

nential depth of π. Remark that the base of induction corresponds with lemma
22 in chapter 1.

We define a sequence of visible paths φ1 ⊂ φ2 ⊂ . . . ⊂ φk, such that φ1 is
exactly ↑ d, φk starts from ↑ d and ends in ↓ d′, for a conclusion d′ of π, and for
each φj among φ1, . . . , φk:

1. φj is a visible path at depth 0;

2. for every edge c : C, if ↑ c ∈ φj then e1(c)
`e2(c) [C], if ↓ c ∈ φj then

e1(c)
ae2(c) [C].

Let us define φj+1 from φj , this last one supposed satisfying conditions 1
and 2. Let c : C be the last edge of φj . Then:

• in case ↓ c ∈ φj , by hypothesis c is an edge of π at depth 0 and e1(c)
ae2(c) [C]:

– if c is a premise of a O with conclusion b : B, then e1(b)
ae2(b) [B].

We define φj+1 = φj∗ ↓ b;

– if c is a premise of a ⊗ with conclusion b : C ⊗ A and premises
c : C, a : A, in case e1(b)

ae2(b) [C ⊗A], we define φj+1 = φj∗ ↓ b;
otherwise e1(a)

`e2(a) [A], in this case we define φj+1 = φj∗ ↑ a;

– if c is a premise of a [ with conclusion b : [C, then e1(b)
ae2(b) [?C].

We define φj+1 = φj∗ ↓ b;

– if c is a premise of a ? with conclusion b, then c (resp. b) is of
type [B (resp. ?B) for a formula B, and e1(c) ⊆ e1(b), e2(c) ⊆
e2(b). Since e1(c)

ae2(c) [?B], we deduce e1(b)
ae2(b) [?B]. We define

φj+1 = φj∗ ↓ b;

– if c is a premise of a cut with premises c : C, b : C⊥, then e1(b)
`e2(b)

[
C⊥

]
,

so let φj+1 = φj∗ ↑ b;

– if c is a conclusion of π, then we define φj as φk.

Notice that c cannot be a door of an exponential box, being at depth 0.
Clearly φj+1 satisfies condition 2. Let us prove that it is visible.

Since in any case the edge b added to φj+1 is not a door of an exponential
box, all the φj+1 passages through exponential boxes are already in φj .
Thus we only have to prove that φj+1 still is a switching path for deducing
that it is visible. Now let us suppose that b is premise of a O/? link already
crossed by φj and let us prove a contradiction. Call c the conclusion of
the O/? link, of course c ∈ φj . Since e1(b)

ae2(b) we deduce e1(c)
ae2(c).

Since φj meets condition 2, ↓ c ∈ φj . Thus φj has the following shape:
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φj = φ′j∗ ↓ c ∗ φ
′′
j ∗ ↓ b

but then ↓ c ∗ φ′′j ∗ ↓ b ↓ c should be a visible cycle in π, so violating the
weak correctness of π. Thus we conclude that b cannot be the premise of
a O/? link already crossed by φj , so proving that φj+1 still is switching.

• in case ↑ c ∈ φj , by hypothesis c is an edge of π at depth 0 and e1(c)
`e2(c) [C]:

– if c is the conclusion of an axiom with conclusions c : C, b : C⊥, then
e1(b)

ae2(b)
[
C⊥

]
, thus we define φj+1 = φj∗ ↓ b;

– if c is the conclusion of a O or a ⊗, then exists a premise b : B s.t.
e1(b)

ae2(b) [B]. We define φj+1 = φj∗ ↑ b;

– if c is the conclusion of a ! link o, let C =!A, πo be the o box and
a : A be the o premise. Since e1(c)

`e2(c) [!A], there are eo
1 ∈ e1(o),

eo
2 ∈ e2(o) such that eo

1(a)
`eo

2(a) [A]. By induction hypothesis on
πo, eo

1, e
o
2, there is a πo conclusion b : [B and a visible path on πo

from ↑ a to ↓ b, such that eo
1(b)

aeo
2(b) [?B].

Since eo
1(b) ⊆ e1(b) and eo

2(b) ⊆ e2(b), we deduce e1(b)
ae2(b) [?B].

We thus define φj+1 = φj∗ ↓ b. Remark that c leads to b, hence the
passage ↑ c ↓ b is allowed to the visible paths;

– if c is an auxiliary conclusion of an exponential box πo associated
with a ! link o, let b :!B be the o conclusion and a : B its premise.
We split in two cases:

∗ in case e1(b) 6≡ e2(b) [!B], then e1(b)
ae2(b) or e1(b)

`e2(b).
If e1(b)

ae2(b) [!B], we set φj+1 = φj∗ ↓ b. Remark that c leads
to b, being this last one in the o orbit.
If e1(b)

`e2(b) [!B], then there is eo
1 ∈ e1(o), e

o
2 ∈ e2(o) s.t.

eo
1(a)

`eo
2(a) [B]. By induction hypothesis on πo, eo

1, e
o
2, there is

a πo conclusion b′ : [B′ and a πo visible path from ↑ a to ↓ b′,
s.t. eo

1(b
′) aeo

2(b
′) [?B′]. Since eo

1(b
′) ⊆ e1(b′) and eo

2(b
′) ⊆ e2(b′),

we deduce eo
1(b

′) aeo
2(b

′) [?B′]. Remark that since by hypothesis
e1(c)

`e2(c) [C], we are sure that b′ and c are different πo aux-
iliary conclusions, moreover c leads to b′, being this last one in
the o orbit. Define φj+1 = φj∗ ↓ b′.

∗ in case e1(b) ≡ e2(b) [!B], then by definition of ! neutrality there is
an enumeration e11, . . . , e

l
1 (resp. e12, . . . , e

l
2) of the πo experiments

associated with o by e1 (resp. e2), s.t. for each i ≤ l, ei
1(a) ≡

ei
2(a) [B]. Remark that l > 0, otherwise e1(c) ≡ e2(c).

On the other hand, since e1(c)
`e2(c) [C] and e1(c) = e11(c) +

. . . el
1(c), e2(c) = e12(c)+. . . e

l
2(c), there is an h ≤ l s.t. eh

1(c) `eh
2 (c) [C].

Now we apply the induction hypothesis on πo, eh
1 , e

h
2 , so obtain-

ing a πo conclusion b′ : B′ and a visible path from ↑ c to ↓ b′ s.t.
eh
1 (b′) aeh

2 (b′) [B′]. Remark that b′ 6= a, since we are in the hy-
pothesis that eh

1 (a) ≡ eh
2 (a) [B]. Thus in particular B′ =?D for a

formula D. By eh
1 (b′) aeh

2 (b′) [?D], we deduce e1(b
′) ae2(b

′) [?D].
Hence we set φj+1 = φj∗ ↓ b′, remarking that c leads to b′,
existing a visible path from c to b′.
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– if c is the conclusion of a [ link with premise b : B, then e1(b)
`e2(b) [B].

We define φj+1 = φj∗ ↑ b;

– if c is the conclusion of a ? l, remark that l is not a weakening, since
e1(c)

`e2(c) [C].

Let C =?B and b1 : [B, . . . , bk : [B be the premises of l. Recall that
e1(c) = e1(b1) + . . .+ e1(bk) and e2(c) = e2(b1) + . . .+ e2(bk). Since
e1(c)

`e2(c) [?B], it exists i ≤ k s.t. e1(bi)
`e2(bi) [?B]. Hence we

define φj+1 = φj∗ ↑ bi.

Of course φj+1 meets condition 2, let us prove that it is a visible path. In
each case we have added a box passage to φj+1 (i.e. in the ! and auxiliary
conclusion cases) we have also proved that such a new passage is admitted
by visible paths. Thus we only have to prove that φj+1 is a switching
path.

We give the proof only in one case, the most crucial one, being the proof
in the other cases similar or easier. Let us recall the case c is a conclusion
of ! link o. We have extended φj+1 by adding ↓ b for a πo auxiliary door.
Since b has a [ type, it is premise of a ? link l. We have to prove that φj

does not contain any l premise. Let d :?B be the l conclusion, let us prove
d /∈ φj , which implies that no l premise is in φj .

Since e1(b) ⊆ e1(d) and e2(b) ⊆ e2(d) and e1(b)
ae2(b) [?B], we deduce

e1(d)
ae2(d) [?B]. Thus, by condition 2 on φj , ↑ d /∈ φj . On the other

hand, suppose ↓ d ∈ φj , that is φj = φ′j∗ ↓ d ∗ φ
′′
j ∗ ↑ c. In this case

↓ d ∗ φ′′j ∗ ↑ c ↓ b ↓ d should be a visible cycle, violating the πo weak
correctness. We conclude d /∈ φj , i.e. φj+1 is switching.

Since π is weakly correct, each φj is not a visible cycle. Thus the sequence
φ1, φ2, φ3, . . . will meet eventually a conclusion c′ of π, so terminating in a path
φk satisfying the lemma. �

Proof of theorem 103. Recall the statement of theorem 103:

Let π be a MELL proof structure, X be any non-uniform coherent space.

If π is weakly correct, then JπKnuCohX is a clique.

Proof. Let π be a MELL proof structure, X be any non-uniform coherent
space and e1, e2 be two experiment on π. By lemma 105, |e1|

a

`
|e2|, hence

JπKnuCohX is a clique. �

3.4.2 Proof of theorem 104

The proof of theorem 104 is based on the key lemma 110. In some sense lemma
110 is the converse of lemma 105: lemma 105 associates with two experiments
e1, e2 a visible path proving |e1|

a

`
|e2|, lemma 110 instead associates with a

visible cycle (morally) two experiments s.t. |e1| `|e2|.
However lemma 110 has to take care of a typical difficulty of ? links. For

proving the lemma we need to manage the coherence/incoherence relationship
between the values of e1 and e2. Unfortunately ? links soon make such a rela-
tionship unmanageable. In fact, if l is a ? link with conclusion c and premises
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a1, . . . , an, the incoherence e1(c)
`

a
e2(c) holds if and only if for each i, j ≤ n,

e1(ai)
`

a
e2(aj). The incoherence on one edge (the conclusion of l) is linked with

the incoherence on n2 pairs of edges (the premises of l): such an explosion of
the number of edges soon becomes unmanageable.

Remark that a similar problem is at the origin of the difficulty of the con-
jecture 101.

Luckily, we have found a way for avoiding the problem in the proof of lemma
110. Namely we have noticed that one of the two experiments e1, e2 which we
want to associate with a visible path can be chosen to be very simple, i.e. e1 can
be a (x, n)-simple experiment (see definition 108). If x is an element of a coher-
ent space X and n ∈ N, the unique (x, n)-simple experiment on a proof structure
π is the n-obsessional experiment (definition 85) taking the constant value x on
the axioms of π (definition 108). The key property of a (x, n)-simple experiment
is that all of its possible values on an arbitrary edge of type A are semantically
characterized by the definition 106. To be precise, they are (x, n)-simple ele-
ments of A with degree less or equal to wnd, where d is the exponential depth of
π and w is the maximal arity of the ? links in π (proposition 109). Once we have
such a semantical characterization, we may define the second experiment e2 not
by looking at the particular value that the (x, n)-simple experiment e1 takes on
an edge of type A, but by looking at all the possible values e1 can take on edges
of type A, i.e. by referring to the (x, n)-simple elements of A with degree less or
equal to wnd. In this way, if we are considering the premises a1 : [A, . . . , an : [A
of a ? link, instead of proving that for each i, j ≤ n, e1(ai)

`

a
e2(aj), we reduce

to check that for each i ≤ n and (x, n)-simple element v ∈?A with degree less

or equal to wnd, v `

a
e2(aj).

Definition 106 Let n ∈ N, x be an element of a non-uniform coherent space
X and C the nuCohX interpretation of a formula C. An element v ∈ C is a
(x,n)-simple element with degree d(v) if:

• in case C = X,X⊥, v = x and d(v) = 0;

• in case C = A ⊗ B,AOB, v =< v′, v′′ >, for v′ (resp. v′′) (x, n)-simple
element in A (resp. in B), and d(v) = max(d(v′), d(v′′));

• in case C =!A, v = n [v′], for v′ (x, n)-simple element of A, and d(v) =
d(v′);

• in case C =?A, v = [v1, . . . , vm], for m ≥ 0, each vi (x, n)-simple element
of A, and d(v) = max(m, d(v1), . . . , d(vm)).

Remark that in general an element can be (x, n)-simple in C but not in C⊥,
for example the empty multiset is a (x, n)-simple element in ?C but not in !C⊥,
if n 6= 0.

Proposition 107 Let X be a non-uniform coherent space, x ∈ X s.t. x ≡
x [X ], C be the nuCohX interpretation of a formula C. For any n ∈ N and v, v′

(x, n)-simple elements of C, v `

a
v′ [C].

Proof. By an easy induction on C:
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atom: if C = X,X⊥, the case is immediate;

tensor: if C = A⊗B,AOB, then v =< w, u >, v′ =< w′, u′ >, for w,w′ (resp.
u, u′) (x, n)-simple elements of A (resp. of B). By induction hypothesis

w `

a
w′ [A] and u `

a
u′ [B], hence v `

a
v′ [C];

of course: if C =!B, then v = n [w], v′ = n [w′] for w,w′ (x, n)-simple elements

of B. By induction hypothesis w `

a
w′ [B], hence v `

a
v′ [C];

why not: if C =?B, then v = [v1, . . . , vm], v′ = [v′1, . . . , v
′
h], for m,h ≥ 0 and

each vi, v
′
j (x, n)-simple elements of B. By induction hypothesis for each

i ≤ m, j ≤ h, we have vi
`

a
v′j [B], hence v `

a
v′ [C].

�

Definition 108 Let π be a proof structure, n ∈ N, x be an element of a non-
uniform coherent space X . The (x,n)-simple experiment on π, denoted by
eπ
(x,n), is defined as follows:

• for each edge a : X at depth 0, eπ
(x,n)(a) = x;

• for each ! link o at depth 0, let πo be the o box, eπ
(x,n)(o) = n

[

eπo

(x,n)

]

.

Proposition 109 Let π be a proof structure, d be the depth of π and w be the
maximal arity of the links ? in π. Let eπ

(x,n) be the (x, n)-simple experiment on

π. For any edge c : C at depth 0, eπ
(x,n)(c) is a (x, n)-simple element of C with

degree at most wnd.

Proof. By an easy induction on C. For the degree of eπ
(x,n)(c) remark that a

(x, n)-simple experiment is a particular case of n-obsessional experiment, thus
use proposition 87. �

The key lemma for the proof of theorem 104 is the following lemma 110:

Lemma 110 Let nuCohX be defined from a coherent space X s.t. ∃x, y, z ∈ X ,
x ≡ x [X ], x ay [X ] and x `z [X ].

Let π be a cut-free proof structure, k be the maximal number of doors of a
box of π. Let φ be a visible path of π at depth 0 from a conclusion ↑ a to a
conclusion ↓ b, s.t. φ is not a cycle.

For any n,m ∈ N, m ≥ n ≥ k, there is an experiment eφ on π, s.t. for any
π edge c : C at depth 0 and any (x, n)-simple element v in C with degree less or
equal m:

1. if ∃c′ ≥ c, c′ ∈ φ, then eφ(c) 6≡ v [C];

2. if ↓ c /∈ φ, then eφ(c) `

a
v [C].

Proof.
Once for all we fix x, y, z ∈ |X | s.t. x ≡ x [X ], x ay [X ] and x `z [X ].
The proof of the lemma is by induction on the π exponential depth.
Firstly we define eφ on the conclusions of the π axioms at depth 0. Let a : X

be an edge at depth 0:
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• if ↑ a ∈ φ, eφ(a) = z;

• if ↓ a ∈ φ, eφ(a) = y;

• otherwise eφ(a) = x.

Secondly we define eφ on the π ! links at depth 0. Let o be a ! link at depth 0,
πo the o box and ↑ a1 ↓ b1, . . . , ↑ ah ↓ bh be the φ passages through πo (h ≥ 0).
Remark that by definition h ≤ k ≤ n, where k is the maximal number of doors
of a box of π.

Notice that, being φ visible, for each i ≤ h, ai leads to bi. We associate with
each passage ↑ ai ↓ bi an experiment eo

φi
on πo as follows:

- if ↓ bi is the principal door, then eo
φi

= eπo

(x,n);

- if ↓ bi is an auxiliary door in the orbit of o, then let φi be a visible path in
πo from the o premise to ↓ bi. By induction we may define an experiment
eφi

on πo satisfying condition 1,2 with respect to πo and φi;

- if ↓ bi is an auxiliary door not in the orbit of o, then let φi be a visible
path in πo from ↑ ai to ↓ bi. By induction we may define an experiment
eφi

on πo satisfying condition 1,2 with respect to πo and φi.

Finally we define eφ on o:

• if φ does not pass through the orbit of o:

eφ(o) = [eφ1
, . . . , eφh

] + (n− h)
[

eπo

(x,n)

]

• if φ passes through the orbit of o:

eφ(o) = [eφ1
, . . . , eφh

] + (m+ 1− h)
[

eπo

(x,n)

]

Now, let us prove that eπ satisfies conditions 1, 2. Let c : C be an edge of π
at depth 0, we prove 1, 2 by induction on C.

Atom: in case C = X,X⊥, both 1, 2 are immediate.

Par: in case C = AOB, let a : A, b : B be the premises of the O with conclusion
c, v =< v′, v′′ > be a (x, n)-simple element of C with degree less or equal
m:

1. if ∃c′ ≥ c, c′ ∈ φ, then ∃a′ ≥ a, a′ ∈ φ or ∃b′ ≥ b, b′ ∈ φ, thus by
induction eφ(a) 6≡ v′ or eφ(b) 6≡ v′′. In both cases eφ(c) 6≡ v;

2. if ↓ c /∈ φ, then ↓ a /∈ φ and ↓ b /∈ φ, thus by induction eφ(a) `

a
v′ and

eφ(b) `

a
v′′. Hence we deduce eφ(c) `

a
v.

Tensor: in case C = A ⊗ B, let a : A, b : B be the premises of the ⊗ with
conclusion c, v =< v′, v′′ > be a (x, n)-simple element of C with degree
less or equal m:
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1. if ∃c′ ≥ c, c′ ∈ φ, then eφ(c) 6≡ v by the same argument as in the O
case;

2. if ↓ c /∈ φ, we split in three cases.

In case ↓ a ∈ φ, then ↑ b ∈ φ. Of course ↓ b /∈ φ, hence by induc-
tion hypothesis 2, eφ(b) `

a
v′′. Moreover, by induction hypothesis 1

eφ(b) 6≡ v′′, thus eφ(b) `v′′. By symmetrical arguments, if ↓ b ∈ φ,
we deduce eφ(a) `v′. In both cases we have eφ(c) `v.

In case both ↓ a, ↓ b /∈ φ, then by induction eφ(a) `

a
v′ and eφ(b) `

a
v′′,

which implies eφ(c) `

a
v.

Of course: in case C =!B, let o be the ! link with conclusion c :!B, πo the o
box and b : B the o premise. Let v = n [v′] be a (x, n)-simple element of
!B with degree less or equal m:

1. if ∃c′ ≥ c, c′ ∈ φ, then clearly c = c′ (φ is a path crossing only
edges at depth 0). In this case φ passes through the o orbit, so eφ(c)
has m + 1 elements. Since v has n elements and n ≤ m, we deduce
eφ(c) 6≡ v;

2. if ↓ c /∈ φ. We split in two cases, depending if φ passes or not through
the o orbit:

• in case φ passes through the o orbit, then it exists a visible path
φi associated with a φ passage through the o orbit. Remark that
↑ b ∈ φi (being ↓ c /∈ φ), hence by definition of the experiment
eφi

associated with φi, we have both eφi
(b) 6≡ v′ (by 1) and

eφi
(b) `

a
v′ (by 2), i.e. eφi

(b) `v′. Since eφi
(b) ∈ eφ(c), we deduce

eφ(c) `v;

• in case φ does not pass through the o orbit, then let φ1, . . . , φh

(h ≥ 0) be the visible paths associated with the φ passages
through o. Since φ does not pass through the o orbit, for each i ≤
h, b /∈ φi. Hence by definition of the experiment eφi

associated

with φi, we have eφi
(b) `

a
v′. Moreover recall that eπo

(x,n) is the

(x, n)-simple experiment on πo. By proposition 109, eπo

(x,n)(b) is a

(x, n)-simple element of B, hence by proposition 107, eπo

(x,n)(b)
`

a
v′.

Finally, since eφ(c) = [eφ1
(b), . . . , eφh

(b)]+(n−h)
[

eπo

(x,n)(b)
]

, we

deduce eφ(c) `

a
v.

Why not: in case C =?B, let v be a (x, n)-simple element of C with degree
less or equal to m:

1. if ∃c′ ≥ c, c′ ∈ φ, then c is not conclusion of a weakening. Let
b1 : [B, . . . , bh : [B be the premises of the ? link with conclusion c.
Notice there is an i ≤ h, ∃b′i ≥ bi, b

′
i ∈ φ, so by induction hypothesis

eφ(bi) 6≡ v′, for any (x, n)-simple element v′ of C with degree less or
equal m.

Now, suppose eφ(c) ≡ v and let us prove a contradiction. Since
eφ(bi) ⊆ eφ(c), there should be a subset v′ ⊆ v s.t. eφ(bi) ≡ v′, but
we have just proven eφ(bi) 6≡ v′, for any (x, n)-simple element v′ of C
with degree less or equal m. Hence we conclude eφ(c) 6≡ v;
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2. if ↓ c /∈ φ, in case c is conclusion of a weakening then it is immediate
that eφ(c) `

a
v.

Otherwise, let b1 : [B, . . . , bh : [B be the premises of the ? link with
conclusion c. Of course for each i ≤ h, ↓ bi /∈ φ, hence by induction
hypothesis eφ(bi)

`

a
v. Since eφ(c) = eφ(b1) + . . .+ eφ(bh), we deduce

eφ(c) `

a
v.

[-formula: in case C = [B, then c is conclusion of a [ link at depth 0 or it is
an auxiliary door of a ! box. In the first case it is very simple proving 1,
2. Let us deal with the second case.

Let c be an auxiliary door of a box πo associated with a ! link o at depth
0. Let v be a (x, n)-simple element of C with degree less or equal m:

1. if ∃c′ ≥ c, c′ ∈ φ, then clearly c′ = c (φ is a path crossing only edges
at depth 0). In this case there is a πo door d s.t. ↑ c ↓ d or ↑ d ↓ c is
a φ passage through o. We split in two cases, depending if φ passes
or not through the o orbit:

• in case φ passes through the o orbit, then eφ(c) has at least m+1
elements, while v has at most m elements, being of degree less
or equal m. Thus eφ(c) 6≡ v;

• in case φ does not pass through the o orbit, let φi be the visible
path in πo between c and d. Of course c ∈ φi, thus eφi

(c) 6≡ v′,
for any (x, n)-simple element v′ of C with degree less or equal
m. Since eφi

(c) ⊆ eφ(c), we conclude eφ(c) 6≡ v, by the same
argument as in point 1 case why not.

2. if ↓ c /∈ φ, let φ1, . . . , φh (for h ≥ 0) be the visible paths in πo

associated with the φ passages through o. Since ↓ c /∈ φ, then for
each i ≤ h, ↓ c /∈ φi, thus by φi definition eφi

(c) `

a
v. Moreover recall

that eπo

(x,n) is the (x, n)-simple experiment on πo. By proposition

109, eπo

(x,n)(c) is a (x, n)-simple element of C, hence by proposition

107, eπo

(x,n)(c)
`

a
v. Finally, since eφ(c) = eφ1

(c) + . . .+ eφh
(c) + (n−

h)
[

eπo

(x,n)(c)
]

, we deduce eφ(c) `

a
v.

�

Lemma 111 Let nuCohX be defined from a coherent space X s.t. ∃x, y, z ∈ X ,
x ≡ x [X ], x ay [X ] and x `z [X ].

Let π be a cut-free proof structure with conclusions Π, k be the maximal
number of doors of an exponential box in π. If π is not weakly correct then for
any n,m ∈ N, m ≥ n ≥ k, there is an experiment e : π, such that for any
(x, n)-simple element v in OΠ with degree less or equal to m, |e| `v [OΠ].

Proof. Let us fix two numbers m,n, m ≥ n ≥ k, and let us suppose π is not
weakly correct. We prove by induction on the number of links of π, that there
is an experiment e : π, s.t. for any (x, n)-simple element v in OΠ with degree
less or equal to m, |e| `v [OΠ].
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Base of induction: if π has only terminal axioms, then π is weakly correct,
which is contrary to the hypotheses.

Par: if π has a terminal O link l with conclusion c : AOB and premises a : A,
b : B, define π′ from π by erasing l and its conclusion. Suppose Π =
AOB,Π′′, hence Π′ = A,B,Π′′ are the conclusions of π′. Of course π′ is
not weakly correct, thus by induction hypothesis there is an experience
e′ : π′, s.t. for any (x, n)-simple element v′ in OΠ′ with degree less or
equal m, |e′| `v′.

We define e : π as the straightforward extension of e′ : π′ to the missing
edge c, i.e. for any π edge d at depth 0:

e(d) =

{
e′(d) if d ∈ π′

< e′(a), e′(b) > if d = c

Let now v be a (x, n)-simple element in OΠ with degree less or equal to
m. Since Π = AOB,Π′′, we may write v =< v1, v2, v3 >, where v1, v2
and v3 are (x, n)-simple elements resp. in A, B and Π′′ with degree less
or equal to m. By hypothesis |e′| `v, hence of course |e| `v.

Tensor: if π has a terminal ⊗ link l with conclusion c : A ⊗ B and premises
a : A, b : B, define π′ from π by erasing l and its conclusion. Suppose
Π = A⊗B,Π′′, hence Π′ = A,B,Π′′ are the conclusions of π′.

In case π′ is not weakly correct, then the assertion follows by induction
hypothesis like in the O case.

In case π′ is weakly correct, then all the visible cycles of π crosses the
link l erased in π′. In this case there is a visible path in π′ from ↑ a to
↓ b or from ↑ b to ↓ a. Let us suppose the first case (the second being
similar). By lemma 110 there is an experiment e′ : π′ such that for any
(x, n)-simple elements v1 and v3 resp. in A and OΠ′ with degree less or

equal m: e′(a) `v1, and < e′(c1), . . . , e
′(ck) > `

a
v3 (where c1, . . . , ck are

the conclusions of π′ different from a, b).

We define e : π as the straightforward extension of e′ : π′ to the missing
edge c, i.e. for any π edge d at depth 0:

e(d) =

{
e′(d) if d ∈ π′

< e′(a), e′(b) > if d = c

Let now v be a (x, n)-simple element in OΠ with degree less or equal to
m. Since Π = A ⊗ B,Π′′, we may write v =<< v1, v2 >, v3 >, where v1,
v2 and v3 are a (x, n)-simple element resp. in A, B and Π′′ with degree
less or equal to m. By the hypothesis on e′ and the incoherence definition
in the ⊗ space, we deduce |e| `v

Why not: if π has a terminal ? link l with conclusion c. Let b1 : [B, . . . , bh : [B
(h ≥ 0) be the l premises. Define π′ from π by erasing l and c. Suppose
Π =?B,Π′′, then π′ has conclusions Π′ = [B, . . . , [B,Π′′.

Of course π′ is not weakly correct, hence by induction there is an experi-
ment e′ : π′, s.t. for any (x, n)-simple element v′ in OΠ′ with degree less
or equal to m, |e′| `v′.
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We define e : π as the immediate extension of e′ : π′ to the missing edge
c, i.e. for any π edge d at depth 0:

e(d) =

{
e′(d) if d ∈ π′

e′(b1) + . . .+ e′(bh) if d = c

Let now v be a (x, n)-simple element in OΠ with degree less or equal to
m. Since Π =?B,Π′′, we may write v =< v1, v2 >, where v1 (resp. v2) is
a (x, n)-simple element in ?B (resp. in OΠ′) with degree less or equal to
m.

Firstly, let us prove |e| `
a
v [OΠ]. Define v′ =< v1, . . . , v1, v2 >, which is a

(x, n)-simple element in OΠ′ with degree less or equal tom. By hypothesis

|e′| `v′. Hence we deduce |e| `
a
v.

Secondly, let us prove |e| 6≡ v. Suppose |e| ≡ v and let us prove a contra-
diction. Under such a supposition, for each i ≤ h, ∃v′i ⊆ v1, e

o(bi) ≡ v′i.
Define v′ =< v′1, . . . , v

′
h, v2 > and remark that v′ is a (x, n)-simple ele-

ment in OΠo with degree less or equal m. By the O neutrality definition,
|eo| ≡ v′, which is contrary to the hypothesis on |eo|. Thus we conclude
|e| 6≡ v.

[-link: if π has a terminal [-link at depth 0, the case follows straightforwardly
by induction hypotheses.

Of course: if π has a terminal ! link o. Let πo be the o box, a :!A (resp.
a′ : A) be the o conclusion (resp. premise), b1 : [B1, . . . bh : [Bh be the
πo auxiliary doors, c1 : C1, . . . , ct : Ct be the π conclusions which are not
doors of πo, i.e. Π =!A, [B1, . . . [Bh, C1, . . . , Ct.

Define π′ from π by substituting the link o with its box πo. Of course π′

has conclusions Π′ = A, [B1, . . . , [Bh, C1, . . . , Ct.

π′ is not weakly correct, since no visible cycle of π passes through the o
box, being o terminal. By induction there is an experiment e′ : π′, s.t. for
any (x, n)-simple element v′ in OΠ′ with degree less or equal m, |e′| `v′.

We define e : π′ be the extension of e′ taking value n [e′] on the ! link o,
i.e. for any π edge d at depth 0:

e(d) =







e′(d) if d is not a πo door
n [e′(a′)] if d = a
ne′(bi) if d = bi

Remark that:

|e′| =< e′(a′), e′(b1), . . . , e
′(bh), e′(c1), . . . , e

′(ct) >

|e| =< n [e′(a′)] , ne′(b1), . . . , ne
′(bh), e′(c1), . . . , e

′(ct) >

Let now v be a (x, n)-simple element in OΠ with degree less or equal m.
We may write:
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v =< n [v0] , v1, . . . , vh, w1, . . . , wt >

where v0, vi for each i ≤ h and wj for each j ≤ t are (x, n)-simple elements
resp. in A, ?Bi and Cj with degree less or equal to m.

Firstly, let us prove |e| `
a
v [OΠ]. Define v′ =< v0, v1, . . . , vh, w1, . . . , wt >

and remark that v′ is a (x, n)-simple element in OΠ′ with degree less or

equal to m. Thus by hypothesis |e′| `
a
v′ [OΠ′], which implies |e| `

a
v [OΠ].

Secondly, let us prove |e| 6≡ v. Suppose |e| ≡ v and let us prove a
contradiction. Under such a supposition, e′(a) ≡ v0, for each j ≤ t,
e′(cj) ≡ wj , and for each i ≤ h, ∃v′i ⊆ vi, e

o(bi) ≡ v′i. Define v′ =<
v0, v

′
1, . . . , v

′
h, w1, . . . , wt > and remark that v′ is a (x, n)-simple element in

OΠ′ with degree less or equal m. By the O neutrality definition, |e′| ≡ v′,
which is contrary to the hypothesis on |e′|. Thus we conclude |e| 6≡ v.

�

Proof of theorem 104. Recall the statement of theorem 104:

Let π be a cut-free MELL proof structure, X be a non-uniform coherent
space with x, y, z ∈ |X | such that x ≡ x [X ], x ay [X ] and x `z [X ].

If JπKX is a clique, then π is weakly correct.

Proof. Let π be a cut-free proof structure with conclusion Π. Let us suppose
that π is not weakly correct. We prove that JπKX is not a clique in OΠ.

Let d be the π exponential depth, w be the maximal arity of the π ? links,
k be the maximal number of doors of a box of π. Let us set n = k, m = wnd.

Since π is not weakly correct then by lemma 111 there is an experiment e : π
such that for any (x, n)-simple element v in OΠ with degree less or equal to m,
|e| `v [OΠ].

Let eπ
(x,n) be the (x, n)-simple experiment on π. By proposition 109, |eπ

(x,n)| is

a (x, n)-simple element in OΠ with degree less or equal tom. So |e| `|eπ
(x,n)| [OΠ],

i.e. JπKX is not a clique in OΠ. �



Bibliography

[AJ94] Samson Abramsky and Radha Jagadeesan. Games and full com-
pleteness for multiplicative linear logic. Journal of Symbolic
Logic, 59(2):543–574, June 1994. Conference version appeared in
FSTTCS’92.

[AM99] Samson Abramsky and Paul-André Melliès. Concurrent games and
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