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Interactions between digits in Fibonacci Numeration . . . . . . . . . . . . . . . . . . . 65
Anne Bertrand Mathis

Bernoulli convolutions, Garsia entropy and local dimension . . . . . . . . . . . . . 69
Kevin G. Hare

Bases with two expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Vilmos Komornik and Derong Kong

A shrinking hole for β -transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Niels Langeveld

Expansions in non-integer bases in control problems . . . . . . . . . . . . . . . . . . . 81
Paola Loreti

Periodic representations in algebraic non-integer base . . . . . . . . . . . . . . . . . 83
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Eötvös Loránd University, Budapest, Hungary

Krenn Daniel
Alpen-Adria-Universitàat Klagenfurt, Austria

Krutki Tamás
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Langeveld Niels
University of Leiden, Netherlands



List of Participants xiii

Loreti Paola
Sapienza Università di Roma, Italy
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Expansions of quadratic numbers in a p-adic
continued fraction.

Umberto Zannier

Abstract It goes back to Lagrange that a real quadratic irrational always has a peri-
odic continued fraction. Starting from several decades ago, some authors have pro-
posed expansion in p-adic continued fractions. Here the expansion depends on the
chosen system of residues mod p, and results are different. We shall adopt the sim-
plest definition, due to Ruban. It turns out that not all expansions of quadratic num-
bers are periodic; but it was not known how to decide whether the expansion for a
given quadratic number is or is not periodic. In recent work with L. Capuano and F.
Veneziano, we have achieved a completely general algorithm in this sense. This al-
gorithm depends on deep theorems in transcendence and diophantine analysis, and,
somewhat surprisingly, depends on the “real” value of the “p-adic” continued frac-
tion.

Umberto Zannier
Scuola Normale Superiore e-mail: umberto.zannier@sns.it
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Around discretized rotation

Shigeki Akiyama

Abstract Discretized rotation is modeled by a simple integer sequence (an) defined
by

0≤ an+2 +λan+1 +an < 1

with a fixed constant λ ∈ (−2,2). By an analogy with rotation, we expect that all or-
bits are bounded, i.e., periodic. This is a notorious conjecture on which we still know
very little. From dynamical point of view, this problem is difficult by eigenvalues of
modulus one, which makes the problem not at all expanding nor hyperbolic. We met
this problem in the context of shift radix system, the parameter space for finiteness
property of number systems.

With many colleagues for many years, we investigated this problem and found
interesting directions to explore: beta expansion, self-inducing system, domain ex-
change, substitution, and nearly recursive sequences. In this talk, I wish to summa-
rize several ideas and developments on this topic and present interesting remaining
questions that you can join us from today.

Shigeki Akiyama
Tsukuba University, Japan e-mail: akiyama@math.tsukuba.ac.jp

3





A Numeration System and a Gray Code Given by
a Variant of the Tower of Hanoi

Benoı̂t Rittaud

The tower of Hanoi game was introduced by Édouard Lucas ([Lucas1892], p. 55-59).
In this game, n disks of increasing diameters from 1 to n are stacked onto the left post
A of a set of three (the other ones being the central one, B and the right one, C). Each
step consists in moving a disk (only one at a time) from one post to another, until the
initial tower at the left post has been rebuilt on the right post. Each movement has to
satisfy the golden rule: a disk cannot be stacked onto a disk of smaller diameter.

It is a classical exercise to show that the successive states are naturally coded in the
binary numeration system as well as in the standard binary Gray code. Several vari-
ants of this game exist, and one may wonder whether these variants are also linked to
other numeration systems. We show here in which way the answer is yes for a spe-
cific variant. What is interesting and makes the question more than a simple exercise
is that the involved numeration systems are of a particular kind, different from the
usual ones derived from a greedy algorithm and a fixed increasing sequence of inte-
gers. The usefulness of these numeration systems may outweight the single study of
the tower of Hanoi game.

1 Recursive and iterative solutions

The easiest way to present an optimal solution to the game is probably the recursive
approach, summed up by the following figure. Roughly speaking, to solve the game
with n disks, an optimal recursive algorithm solves first the game with (n−1) disks,
then moves once the biggest disk, then solves again the game with (n−1) disks.

An elementary induction shows that the number of states seen by this algorithm
is 2n. Let us label them by the set of increasing integers from 0 to 2n− 1. Again, an

Benoı̂t Rittaud
Université Paris-13, Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, F-93430 Villetaneuse, France.
e-mail: rittaud@math.univ-paris13.fr
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6 Benoı̂t Rittaud

induction shows that, at the k-th state, the disk to be moved is given by the index of
the leftmost changing digit when computing the successor of k in base 2. We will call
this the digit property.

Knowing the disk which is to be moved is not equivalent to know where to put it,
a question that needs some more investigation and would be of no real interest for us,
so we will not consider it here.

Now, consider the linear variant (the terminology is from [Hinz2014]), in which
direct moves between the left and the right posts are forbidden. Again, elementary
considerations provides a recursive optimal solution, by which we can prove that the
number of states is 3n, and that the base 3 numeration system also satisfies the digit
property. Hence, since in this case knowing the disk to be moved is enough to know
on which post it has to go, we get an iterative algorithm for the linear variant.

Since the number of all possible states allowed by the golden rule is also 3n (the
number of possible partition of {1, . . . ,n} in three subsets), we get that the linear
game visits the set of all allowed states. Therefore, the standard and linear games are
extremal: the first one provides the shortest path from the initial to the final state, the
second one the (or a) longest path (without redundancy). Therefore, to no other kind
of restriction in the moves can correspond a numeration system in some other integer
base.

2 The clockwise-cyclic case

The clockwise-cyclic variant, introduced in [Atkinson1981], consists in allowing only
moves from A to B, from B to C and from C to A. Atkinson wrote his paper in the
context of teaching. In the standard game, he wrote, it is quite easy to find an itera-
tive solution. The clockwise-cyclic variant was designed to provide a situation easily
solved by a recursive procedure, but not by iteration. He computed the explicit num-
ber of steps needed by the optimal recursive algorithm for this cyclic variant, and
found that its complexity is O((1+

√
3)n). Some years after, [Gedeon1996] made
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a step further by presenting an iterative algorithm and by mentioning a ternary tree
structure associated to it (see figure).

Our aim is to go further in the study, by providing an explicit numeration system
that corresponds to the clockwise-cyclic variant and satisfying the digit property.

Denote by ∆n the set {1, . . . ,n}, where each integer stands for the disk of equiva-
lent diameter. Any state of the game with n disks can be written as an ordered partition
of ∆n into three subsets. Hence, the recursive algorithm to solve the clockwise-cyclic
game with n disks can be presented in the following way, in which each arrow corre-
sponds either to a single move or to the recursive application of the algorithm:

(∆n,∅,∅)−→ (n,∅,∆n−1)−→ (∅,n,∆n−1)−→ (∅,{∆n−2,n},n−1)−→

(n−1,{∆n−2,n},∅)−→ (∆n−1,n,∅)−→ (∆n−1,∅,n)−→ (∅,∅,∆n).

The number rn of moves therefore satisfies rn = 2rn−1 +2rn−2 +3 with r1 = 2 and
r2 = 7, so the number of states sn = rn +1 is given by:

s1 = 3 s2 = 8 sn = 2sn−1 +2sn−2 (for n≥ 2).

The roots of the polynomial X2− 2X − 2 being 1±
√

3, we recover the result of
[Atkinson1981] about the run-time O((1+

√
3)n) of the algorithm.

The sequence (sn)n defines naturally a numeration system of integers, and we
could expect that it satisfies the digit property, as the sequence (2n)n does for the
standard game and the sequence (3n)n does for the linear variant.

The greedy algorithm for the sequence (sn)n defines a codage of integers given
by the set of finite words on the alphabet {0,1,2} recognized by the language that
excludes the factor 22. The set of states of the clockwise-cyclic game is in one-to-one
correspondence with the set of integers whose expansion in this numeration system
is made of n letters (allowing leading 0s). The point is that such a numeration system
does not satisfy the digit property (see the states 12 and 20 in the next figure).
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Hence we need something different. First, to avoid ambiguity in the notation, we
choose A := {a,b,c} for the alphabet instead of {0,1,2}, and we consider only the
words that do not contain bb as a factor. With the help of the alphabetic order on
words of length n, we define a unique codage of integers between 0 and sn− 1 by
words of length exactly n, whose tree structure is the one given by [Gedeon1996].
Therefore we get an alternative way of labelling the states of the cyclic game. Let us
call it the CCH numeration system (for clockwise-cyclic Hanoi).

Theorem 1. The CCH numeration system satisfies the digit property.

Proof. The partition of the set of states in the clockwise-cyclic game given by the
recursive presentation above corresponds inductively to the following partition of the
set An of words of length n without bb as a factor (NB: here, A ∗

n stands for An\{an}):

An = {an}∪{aW, W ∈A ∗
n−1}∪{ban−1}∪{baW, W ∈A ∗

n−2}∪
{bcan−2}∪{bcW, W ∈A ∗

n−2}∪{can−1}∪{cW, W ∈A ∗
n−1}.

The result follows by induction.

Since the forbidden factor is bb instead of cc (i.e. 11 instead of 22), there is a big
difference between the classical greedy algorithm and the CCH numeration system,
as it appears in the way we get the value of an integer knowing its CCH expansion.

Theorem 2. Let (bn)n and (cn)n be the sequences defined by:

b0 = 1 b1 = 3 bn = 2bn−1 +2bn−2 for n≥ 2;

c0 = 2 c1 = 5 cn = 2cn−1 +2cn−2 for n≥ 2.

Let mn−1 . . .m0 be a finite word on the alphabet A = {a,b,c} with no factor equal
to bb. For any i ∈ {0, . . . ,n−1}, put

ji :=


0 if mi = a;
bi if mi = b and mi+1 6= b;
ci if mi = c and mi+1 6= b;
bi if mi = c and mi+1 = b.

The integer that corresponds to the word mn−1 . . .m0 is ∑i ji.

Theorem 2 is easily proved by induction and the partition An in the proof of The-
orem 1. It is also easy to derive from Theorem 2 an algorithm that expands any non-
negative integer in the CCH numeration system.

In a sense, the cyclic tower of Hanoi game is the simplest nontrivial case among
a new kind of numeration systems that could be investigated. With only two letters,
we may consider a kind of “negative-Fibonacci-Zeckendorf” numeration system in
which the forbidden factor is 00 instead of 11, but the impossibility of leading zeroes
makes it not very natural, at least for the usual purpose of numeration systems.
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3 Gray codes

The standard Gray code is a binary codage such that the codage of any two consecu-
tive integers differ by exactly one digit. Let wn . . .w0 ∈ {0,1}n the binary expansion
of length n+1 of some integer k. The corresponding Gray code of k, g(wn . . .w0), can
be recursively defined by g(0) = 0, g(1) = 1 and, for n≥ 1:

g(wn . . .w0) = g(wn . . .w1)w, where w =

{
w0 if w2w1 ∈ {00,11};

1−w0 if w2w1 ∈ {01,10}.

When n = 1, a leading 0 is added to make this definition sensible.
Such a Gray code is linked to the tower of Hanoi by the same digit property as

the usual binary numeration system is. To prove it, it is easier to start from a more
classical definition of the binary Gray code: the code with n letters being given, write
the sequence twice: first in increasing order then in decreasing order. Add a leading
0 (resp. a leading 1) to each element of the first part (resp. of the second part): here
is the Gray code for words of length n+ 1. This latter definition (equivalent to the
first one, as can be easily proved) is closer to the recursive solution we met in section
1. It provides therefore a simpler way to prove that such a Gray code satisfies the
digit property. Nevertheless, it appears that the one we gave first is easier to extend
to the CCH case, so we will stick to it. From a tower of Hanoi standpoint, looking
at wn . . .w0 as wn(wn−1 . . .w0) consists in forgetting the largest disk n to work with
the others; looking at wn . . .w0 as (wn . . .w1)w0 instead corresponds to the idea that
we are interested in the “lower tower” {2, . . . ,n}, the smallest disk of radius 1 being
moved apart each time it is necessary to allow a move of one of the other disks.

For the linear variant, a Gray code (in base 3) g(wn . . .w0) can be defined by g(0) =
0, g(1) = 1, g(2) = 2 and, for n≥ 1, by:

g(wn . . .w1)w, where w =

 w0 if w1 = 0;
w0−1 if w1 = 1;
w0 +1 if w1 = 2,

where w0 ± 1 is to be understood mod 3. It is easy to see that such a Gray code
satisfies the digit property for the linear variant.

Now, it is natural to ask for a Gray code with the digit property in the case of the
clockwise-cyclic game. Here is the result.

Theorem 3. In the CCH numeration system, define g(0) = 0, g(1) = 1, g(2) = 2 and,
for n≥ 1, let g(wn . . .w0) be

g(wn . . .w1)w, where w =

{
w0 if w2w1 ∈ {00,02,12,21};

2−w0 if w2w1 ∈ {01,10,20,22},

where a leading 0 is added if n = 2. Then, g is a Gray code that satisfies the digit
property for the clockwise-cyclic variant.
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It is easy to see that the condition w2w1 ∈ {00,02,12,21} is satisfied iff the integer
that corresponds to wn . . .w2w1 is even.

Also, it is a trivial consequence of Theorem 3 that all the digits 1 of wn . . .w0 are
at the same place as those of g(wn . . .w0).

4 Other restrictions, and the Abu Dhabi variant

There are other possible variants of the game based on constraints on the moves from
post to post. In particular, we could have considered the counterclockwise-cyclic game
as well (which is not isomorphic to the clockwise-cyclic game, since we asked the
tower to go from A to C), and also some others. It is proved in [Hinz2014] Theorem
8.4 that the set of all constraints for which the game is solvable correspond to the set
of digraphs of vertices A, B and C which are strongly connected. What precedes could
be reproduced in these other cases, the point being that the order of the correspond-
ing linear recurring sequences (sn)n is bigger — up to 6. Hence, a general study of
numeration systems with the same kind of “Markov property” as in Theorem 2 would
be probably of better interest than the study of these specific variants of the game.

Incidentally, let us notice another kind of variant, found by some pupils during
a workshop in Abu Dhabi in March 2017 (“MATh.en.JEANS”). In this variant, the
successive moves of any disk has to follow the periodic pattern

A−→C −→ B−→C −→ A−→ ·· · .

It is an interesting exercise to show that the number of steps in this variant is (3n−
1)/2, and that the corresponding numeration system is made of all words of length
n in {0,1,2} upper-bounded (in the lexicographical order) by 1n. (The question of a
“nice” Gray code seems a little bit more difficult.) One may wonder if other patterns
of the same kind could give rise to more complex situations.
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Substitutions, coding prescriptions and
Numeration

Paul Surer

Denote by A a finite set (alphabet) and by A ∗ the set of finite words over A . For
a word X ∈ A ∗ we write |X | for the length of X . Consider a substitution σ , i.e. a
morphism σ : A →A ∗ and its extension to A ∗ via concatenation.

A coding prescription (with respect to σ ) is a function c with domain A 2 that
assigns to each pair of letters a finite set of integers with the following properties:

1. for all k ∈ c(xx) we have |k|< |σ(x)| (for all x ∈A );
2. c(xx) is a complete set of representatives modulo |σ(x)| (for all x ∈A );
3. c(ab) = {k ∈ c(aa) : k ≤ 0}∪{k ∈ c(bb) : k ≥ 0} (for all ab ∈A 2).

The notion of coding prescription was introduced in [4] in order to code substitu-
tion dynamical systems as shifts of finite type. In the actual presentation we want to
concentrate on combinatorial aspects of coding prescriptions.

In particular, we will show how to compose coding prescriptions with respect to
given substitutions σ and σ ′ over the same alphabet in order to obtain a coding pre-
scription for the composition σ ′ ◦σ or for powers σn. This will yield a way to rep-
resent integers quite analogously as the Dumont-Thomas numeration for natural in-
tegers (see [2, 3]). The set of representable numbers may consist of all (positive and
negative) integers, it may have gaps, and it can consist of 0 only. This depends on the
actual coding prescription. For a special one, that assigns to each ab ∈ A 2 a set of
non-negative integers, we retrieve exactly the results from [3].

For primitive substitutions we can also base a numeration system for real numbers
on our setting where the domain can have various characteristics. Again, this depends
on the coding prescription. For the special choice from above we obtain the Dumont-
Thomas numeration for real numbers. Other choices of σ and c yield, for example,
symmetric beta-expansions (cf [1]). We will outline several effects by examples.
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On the sum of digits of the factorial

Carlo Sanna

Abstract For integers b ≥ 2 and m, let sb(m) be the sum of the digits of m when
written in base b. We prove that sb(n!) > Cb logn log loglogn for all integers n >
ee, where Cb is a positive constant depending only on b. This improves by a factor
log loglogn a previous lower bound for sb(n!) given by Luca. We also prove that the
same inequality holds with n! replaced by the least common multiple of 1,2, . . . ,n.

1 Introduction

For integers b≥ 2 and m, let sb(m) be the sum of the digits of m when written in base
b. Given a sequence of integers (an)n≥1 with some combinatorial or number-theoretic
meaning, proving a lower bound for sb(an) is usually a challenging task, which has
attracted the attention of several researchers.

For example, if (Fn)n≥1 is the sequence of Fibonacci numbers, defined as usual by
F1 = F2 = 1 and Fn+2 = Fn+1 +Fn for all positive integers n, a result of Stewart [11]
implies that

sb(Fn)�
logn

log logn
, (1)

for all integers n ≥ 3, where the implied constant depends on b (see also [4] for a
more general result).

Moreover, if for each positive integer n we write

Cn =
1

n+1

(
2n
n

)
(2)

for the nth Catalan number, then Luca and Shparlinski [8] showed that

Carlo Sanna
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sb(Cn)> ε(n)
√

logn, (3)

for almost all positive integers n (in the sense of the natural density), where ε(n) is
any function tending to zero as n→ +∞. Furthermore, Luca and Young [9] proved
that

s2(Cn)� log logn, (4)

holds for all integers n≥ 3 such that Cn is odd.
If p(n) denotes the partition function of n, Luca [6] gave the lower bound

sb(p(n))>
logn

7loglogn
, (5)

for almost all positive integers n.
Cilleruelo, Luca, Rué, and Zumalacárregui [2] proved a general result, which in

particular implies that

sb(Bn)>
logn

60logb
, (6)

for almost all positive integers n, where Bn is the nth Bell number.
Also, lower bounds for the sum of digits of the Apéry numbers [7], the numerators

of Bernoulli numbers [1], and a wide class of binomial sums [3], have been proved.
It is worth mentioning that all the previous results are much weaker than what is

expected to be the order of sb over such sequences of integers. Indeed, unless the
terms of the sequence (an)n≥1 have small sb(an) for trivial reasons (e.g., because the
an’s are powers of b), then it seems plausible to conjecture that the digits of an in base
b behave like uniformly distributed random variables in {0,1, . . . ,b− 1}. Therefore,
it should be true that

sb(an)� logan, (7)

for almost all positive integers n, or at least for infinitely many n, where the implied
constant depends on b. However, it can the easily checked that all the previous lower
bounds are instead of the form

sb(an)� log logan, (8)

or worse.
Regarding the sum of digits of the factorial, Luca [5] showed that

sb(n!)� logn, (9)

for all positive integers n, with an implied constant depending on b.
In a recent paper [10], we improved Luca’s result by proving that

sb(n!)� logn log loglogn, (10)

for all integers n > ee, where the implied constant depends on b.
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The main ingredients of our proof are the following: First, a folklore result, which
says that if a positive integer N is divisible by bm−1, for some positive integer m, then
sb(N)≥m. Second, an asymptotic formula, as x→+∞, for the largest positive integer
m such that ϕ(m) ≤ x, where ϕ is Euler’s totient function. Third, some important
divisibility properties of the cyclotomic polynomials Φd(X) evaluated at b.

Employing those tools, we constructed an integer m� logn log loglogn, with a
particular factorization, such that bm−1 can be written as a product of many “almost”
pairwise coprime positive integers not exceeding n. This guarantees that bm− 1 di-
vides n! and yields the desired conclusion. Our proof also works with n! replaced by
the least common multiple of 1,2, . . . ,n.
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On the semi-random Lüroth map

Marta Maggioni

Abstract We present the semi-random Lüroth map T as an open random system
given by different ensembles of Lüroth maps. The state space is the unit interval with a
fixed hole, namely the subinterval [0,1/a) is removed from [0,1], for an integer a≥ 2.
We translate this open random system [1/a,1]→ [0,1] to a closed one [1/a,1]→
[1/a,1] by choosing either the standard Lüroth map or the alternating one, in such
a way that, for each point of the domain, each of its iterates still lies in [1/a,1]. We
then prove the existence of an absolutely continuous invariant measure on [1/a,1] for
the closed semi-random system. For a = 2m we show the semi-random Lüroth map
T has a Markov partition, which allows us to use the theory of the Perron-Frobenius
operator in matrix form to get an explicit formula for the density.
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k-regular Sequences & Mellin–Perron
Summation for Analyzing Fluctuations in
Pascal’s Rhombus

Daniel Krenn (based on a joint work with C. Heuberger and H. Prodinger)

Abstract We focus on the asymptotic behavior of k-regular sequences, in particular
on the example of the number of ones in Pascal’s rhombus. A combination of Dirchlet
series together with Mellin–Perron summation of orders one and two, and asymptotic
results on k-regular sequences is used to analyze the fluctuation of the main term in
the asymptotics of the sequence.

1 Introduction, Result and More

A k-regular sequence f (n), n ∈N0, can be represented as follows: Suppose, for some
d ∈N, we have d×d-matrices M0, . . . , Mk−1 and two d-dimensional vectors u and v.
Then the sequence satisfies the k-linear representation

f (n) = uT Mn0Mn1 . . .Mn`−1v,

where n = (n`−1 . . .n1n0)k, the standard k-ary expansion of n.
Pascal’s rhombus is the array with entries ri, j, where r0, j = 0 for all j, r1,0 = 1 and

r1, j = 0 for all j 6= 0, and

ri, j = ri−1, j−1 + ri−1, j + ri−1, j+1 + ri−2, j

for i > 1, see [3]. In the proposed talk, we will focus on the odd entries of this rhom-
bus. A visualization is given in Figure 1.

The number of odd entries in a row of Pascal’s rhombus equals one component
of a certain system of recurrence relations, and it can be modelled by a 2-regular
sequence.

Daniel Krenn
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Fig. 1: Pascal’s rhombus modulo 2.

We have the following asymptotic result.

Theorem 1 (Heuberger–K–Prodinger 2016). Let an be the number of odd entries in
the first n rows. Then we get

an = nκ
Φa(log2 n)+O(n log2 n)

with κ = 2− log2(
√

17−3) = 1.8325063835804 . . . and a continuous and 1-periodic
function Φa(u).

The Fourier coefficients of the fluctuation Φa(u) can be computed as well.
The proof of this result is based on the following ideas: As mentioned, the number

of ones in the a certain row, i.e., the first order differences of the an, form a 2-regular
sequence. This 2-linear representation is translated to a system of functional equations
of Dirichlet series. Experiments show that the Mellin–Perron summation formula of
first order gives the asymptotic behavior and the Fourier coefficients, however, due
to (frequently recognized) convergence issues of this first order formula, it is not
possible to use it. Instead we use an approach based on the second order Mellin–
Perron summation formula, cf. [4] and [5], and show that we still get the results on the
an despite using the same system of Dirichlet series as with the first order approach.
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In order to make this work, a pseudo-Tauberian argument [2] and, to avoid a circular
argumentation, an asymptotic statement based on [1] are needed.

Although the focus lies on this particular example of Pascal’s rhombus, the method
seems to cover many other questions that can be modelled by k-regular sequences; in
the talk we draw our attention to these generalizations.
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High precision computing for continued fractions
and mod 2 normal numbers

Geon Ho Choe

Abstract Optimal number of significant digits in numerical simulations for some
number theoretical examples including continued fractions and mod 2 normal num-
bers is investigated in terms of divergence speed and the Lyapunov exponent of the
associated discrete time dynamical system.

1 Discrete dynamical system associated with number theoretic
examples

How can we be sure that the compute continued fraction expansion of a given ir-
rational number obtained numerically is correct up to a given level with reasonable
amount of theoretical justification? This question belongs to a more broad and funda-
mental problem of executing rigorous simulation of discrete time dynamical systems
arising from number theoretic problems on a computer.

A discrete dynamical system is a repeated iteration T n, n ≥ 1, of a mapping (or a
transformation) T : X → X defined on a probability measure space (X ,µ) equipped
with a T -invariant probability measure µ , i.e., µ(T−1A) = µ(A). In this talk we con-
sider the case when X is the unit interval and T is piecewise differentiable. For exam-
ple, T x = 2x (mod 1) or T x = 1/x (mod 1) with corresponding invariant measures
dµ = ρ(x)dx. A loop in a computer code is an iteration of the identical instruction.
When a discrete time dynamical system is modeled as a loop in a numerical code,
there is loss of accuracy in each application of the numerically defined instruction
contained in a computer code.

Some theoretical concepts cannot be rigorously simulated numerically except
when there is no need for high precision arithmetic. One such example is approxi-
mation of invariant measures including strange attractors in chaos theory based on the
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Birkhoff Ergodic Theorem which states that the time average limn→∞(1/n)∑
n−1
k=0 f (T k(x)

equals the space average
∫

X f (x)dµ for an ergodic transformation T , i.e., if f (T x) =
f (x) almost everywhere then f is constant almost everywhere. For more information
consult [Bos],[P],[W]. Some software allows us to do practically unlimited precise
computation that is indispensable for high precision numerical simulations without
much technical coding requirements. Some previously unthinkable numerical exper-
iments can be done on a personal computer.

When we try to iterate a mapping T : [0,1]→ [0,1] with very many significant
digits, it takes a lot of time to execute a program. In this talk we present a method
to determine the number of digits sufficient for a rigorous simulation. If we take too
many significant digits, then the computation would take too long. With small number
of digits, the truncation error will ruin everything very soon. The optimal number of
significant digits will be given in terms of Lyapunov exponent of T .

Definition 1. If T : [0,1] → [0,1] is piecewise continuously differentiable and if
ρ(x)dx is an ergodic T -invariant probability measure, then we define the Lyapunov
exponent λ by

λ =
∫ 1

0
log |T ′(x)|ρ(x)dx

where the logarithmic base equals 10.

Suppose that we take D significant decimal digits in floating point computation in
specifying a point x0. For example, we may let x0 = 0.414 with D = 3 or x0 = 0.4142
with D = 4 in specifying x0 =

√
2−1 as an input. (In fact, D is large in the numerical

simulation.) The number D is the magnification level of a microscope that focuses on
the point x0.) After k iterations of T , we lose about k×λ decimal digits from original
D digits in x0.

Specify D significant decimal digits for x0: |x0− x̃0| ≈ 10−D. If λ is the Lyapunov
exponent, then the Birkhoff Ergodic Theorem implies that, for sufficiently large k,

λ ≈ 1
k

k−1

∑
j=0

log |T ′(T jx0)| ≈
1
k

log
k−1

∏
j=0
|T ′(T jx0)|

and

10kλ ≈
k−1

∏
j=0
|T ′(T jx0)|= |(T k)′(x0)| .

By the chain rule, |T kx0−T kx̃0| ≈ 10kλ |x0− x̃0| ≈ 10kλ−D.
Having some precision after k iterations in an orbit of x̃0 is equivalent to kλ −D≤

0, and hence we should not iterate T numerically more than about D/λ times.

Definition 2. Define the divergence speed

Vn(x) = min{ j ≥ 1 : |T jx−T j x̃| ≥ 10−1}

where |x̃− x|= 10−n. Since
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|TVnx−TVn x̃| ≈ 10Vnλ |x− x̃|= 10Vnλ−n ,

we have Vnλ −n≈ 0, so
lim
n→∞

n
Vn(x)

= λ .

Example 1. For T x = 10x (mod 1) with λ = log10 10 = 1, we have Vn(x) = n−1 for
0≤ x≤ 1−10−n.

Example 2. An irrational translation mod 1 has the Lyapunov exponent equal to 0,
and hence λ = 0, and Vn =+∞ for n≥ 2. See [CS],[KS] for related results.

2 Optimal number of significant digits

Each time when T is applied, we lose λ significant decimal digits on average. If we
start with D significant decimal digits for x, then we may iterate T up to approximately
VD ≈ D/λ times with at least one decimal significant digit remaining in TVDx. Take
a starting point of an orbit, say x0, and let x̃0 denote its approximation such that
|x0− x̃0| ≈ 10−D. For every j ∈ N, 1 ≤ j . D/λ , there corresponds an integer k ≈
D− j×h such that

T nx̃0 = 0.a1 . . . . . . . . .ak︸ ︷︷ ︸
significant

ak+1 . . . . . . . . .aD︸ ︷︷ ︸
meaningless

where the last j×λ digits have no information for the true theoretical orbit point T jx0.
So, if j ≈ D/λ , then T j x̃0 loses any amount of precision. We don’t have to worry
about the truncation errors of the size 10−D, which are negligible in comparison with
10−k. In simulations with irrational translations mod 1 we don’t need many significant
digits. For the details, consult [C3]. For a related result, see [C2],[CKb].

3 Accuracy in continued fraction expansions

Consider the continued fraction map T x = {1/x}. Since x0 = [k,k,k, . . .] is a fixed
point of T , it is obvious that the average of log |T ′| along the orbit of x0 is equal to
log |T ′(x0)|. Take

x0 = [k,k,k, . . . ] =
1

k+
1

k+
1

k+ · · ·

.

Then x0 = (−k+
√

k2 +4)/2. Since log |T ′(x0)|=−2logx0, if we are given D deci-
mal significant digits we lose all the significant digits after approximately D/(−2logx0)
iterations of T . The number of correct partial quotients in the continued fractions
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of x0 obtained from numerical computation is denoted by Nk. Let Ck be the max-
imal number of iterations of T that produces the correct partial quotients of x0.
If |x̃0 − x0| ≈ 10−D, then TCk−1x̃0 ∈ Ik = (1/(k + 1),1/k) and TCk x̃0 6∈ Ik. Since
T jx0 = x0,

|T nx̃0− x0|
|x̃0− x0|

≈ |T
nx̃0−T nx0|
|x̃0− x0|

≈
n−1

∏
j=0
|T ′(T jx0)| ≈ |T ′(x0)|n ,

hence
log |T nx̃0− x0|+D≈ n log |T ′(x0)|= n(−2logx0) .

Since TCk−1x̃0 ∈ Ik,

|TCk−1x̃0− x0| ≤max{|x0−
1
k
|, |x0−

1
k+1

|} .

An approximate upper bound Uk for Nk is given by

Uk =
D+ logmax{|x0− 1

k |, |x0− 1
k+1 |}

−2logx0
+1 .

Similarly, an approximate lower bound Lk for Nk is given by

Lk =
D+ logmin{|x0− 1

k |, |x0− 1
k+1 |}

−2logx0
.

For more details and related results, see [A],[C1],[C3],[CKc]. For a general intro-
duction to continued fractions, consult [DK],[KN],[RS].

4 Mod 2 normal numbers

Let X = [0,1) with Lebesgue measure µ . Define T x= 2x (mod 1). Let x=∑
∞
k=1 ak2−k,

ak ∈ {0,1}, be the binary representation of x. Then ak = 1E(T k−1x) where E = [ 1
2 ,1).

The normal number theorem states that almost every x is normal, i.e., (1/n)∑
n
k=1 ak

converges to 1
2 .

Definition 3. Define dn(x) ∈ {0,1} by dn(x) ≡ ∑
n
k=1 ak (mod 2). Then x is called a

mod 2 normal number if

lim
N→∞

1
N

N

∑
n=1

dn(x) =
1
2
. (1)

Later we will see that almost every x ∈ [0,1] is mod 2 normal. In general, if T :
X → X is a transformation and 1E is the characteristic function of E ⊂ X . Define
dn(x) ∈ {0,1} by
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dn(x)≡
n

∑
k=1

1E(T k−1x) (mod 2) .

Then x is called a mod 2 normal number with respect to E if

lim
N→∞

1
N

N

∑
n=1

dn(x) =
1
2
. (2)

(This type of problem was first studied by [W] for irrational translations modulo 1.)
Put en(x) = exp(πidn(x)) = 1−2dn(x) ∈ {±1}. Then Eq. (2) is equivalent to

lim
N→∞

1
N

N

∑
n=1

en(x) = 0 (3)

and Eq. (1) is a special case of Eq. (2) for T x = 2x (mod 1) and E = [ 1
2 ,1).

Theorem 1. (i) For any interval E 6=( 1
6 ,

5
6 ) a.e. x∈ [0,1) is mod 2 normal with respect

to E.
(ii) For E = ( 1

6 ,
5
6 ) a.e. x ∈ [0,1) is not mod 2 normal with respect to E. More

precisely, for E = ( 1
6 ,

5
6 )

lim
N→∞

1
N

N

∑
n=1

dn =
2
3

a.e. x ∈ ( 1
3 ,

2
3 ) ,

lim
N→∞

1
N

N

∑
n=1

dn =
1
3

a.e. x ∈ (0, 1
3 )∪ (

2
3 ,1) .

For the proof and numerical simulations see [C3],[CHN].

Example 3 (Mod 2 uniform distribution). For θ irrational, T x = x+θ (mod 1) with
respect to E = (0,θ).

Example 4 (Mod 2 uniform distribution). T x = 2x (mod 1) with respect to E = (0, 1
2 )

Example 5 (Failure of mod 2 uniformity). For 0 < θ < 1/2 irrational, T x = x + θ

(mod 1) with respect to E = (0,2θ). Then exp(πi1E(x)) = q(x)q(T x) is satisfied by
q = exp(πi1F), F = (θ ,2θ). Note that

∫
qdµ = 1−2θ .

Example 6 (Failure of mod 2 uniformity). T x= 2x (mod 1) with respect to E =( 1
6 ,

5
6 )

Then exp(πi1E(x)) = q(x)q(T x) is satisfied by q = exp(πi1F), F = ( 1
3 ,

2
3 ). Note that∫

qdµ = 1
3 .

Example 7 (Failure of mod 2 uniformity). Take β =
√

5+1
2 , T x = βx (mod 1), E =

(1− 1
β
,1). Then exp(πi1E(x)) = q(x)q(T x) with q = exp(πi1F), F = (0, 1

β
). Note

that
∫

qdµ =− 1√
5
.
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Limits of families of canonical number systems

Dávid Bóka and Péter Burcsi

Abstract We consider expansion structure and expansion length in numeration sys-
tems obtained from polynomial families with canonical digits sets. We examine how
the length of the expansion of constant polynomials changes as we increase the de-
gree. In some special cases we prove that the expansion length is quadratic in the
degree, and introduce a limiting numeration system which captures some aspects of
the complete family. We also pose some open questions about the period structure of
some families of polynomials.
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An upper bound on prolongation of periods of
continued fractions by Möbius transformation

Hana Dlouhá and Štěpán Starosta

A number x has an eventually periodic continued fraction if and only if x is quadratic

irrational. Let M =

(
a b
c d

)
∈Z2,2. Möbius transformation (also called fractional linear

transformation) determined by the matrix M is the function hM given by hM(x) =
ax+b
cx+d . We study the relation of the periods of the continued fraction of a quadratic
number x and of hM(x) for a given M.

Raney in [?] constructed transducers representing Möbius transformations. Using
these transducers, we construct an upper bound on the period of the continued frac-
tion of hM(x) that depends only on the period of the continued fraction of the number
x and on the determinant of the matrix M. More precisely, let n = |detM| and πn(x)
be the period of the continued fraction of hM(x) divided by the period of the con-
tinued fraction of x. Furthermore, set ξ (e, f ) to be the number of steps of Euclidean
algorithm of coprime positive integers e and f (until we reach the remainder 1). If n
is prime, we show for all quadratic irrational x the following estimate:

πn(x)≤



5 if n = 2,

2+2

n−1
2

∑
i=1

(ξ (i,n)+3) if n≡ 3 (mod 4),

1+2

n−1
2

∑
i=1

(ξ (i,n)+3) if n≡ 1 (mod 4).
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For n composite, we show a generalization of this formula. We exhibit computational
evidence that this upper bound is sharp for some small prime determinants and for
other small determinants it is not greater than 2max

x
(πn(x)).
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GAČR 13-03538S.



The Thompson groups, graph polynomials, and
knot theory.

Valeriano Aiello and Roberto Conti

Abstract We describe some results and problems arising from the graphical descrip-
tion of the elements of the Thompson groups in terms of planar rooted binary trees
and a recent connection with knot theory discovered by Jones.

1 Introduction

In the 1960s Richard Thompson introduced the groups F ⊂ T ⊂V , which ever since
their debut have received a great deal of attention. Among other things, we remark
that it is still unknown whether F is amenable or not. For our purposes, it is important
to stress that their elements admit a nice pictorial description in terms of pair of planar
rooted binary trees. By using this description and Vaughan Jones’s recent work, many
invariants of geometric nature, either coming from graph or knot theory, give rise to
positive-definite functions on some of these groups. One thus gets many unitary repre-
sentations that may shed further light on some analytical aspects. Two notable exam-
ples coming from graph theory are given by the Tutte polynomial and the chromatic
polynomial. In the process of giving an elementary proof of the positive definiteness
of the chromatic polynomial, we came across a family of matrices satisfying a some-
what curious set of conditions, namely symmetric real matrices A = (ai j) of arbitrary
size, with entries 0≤ ai j ≤ 1, and such that for every i, j, k it holds ai j +aik−1≤ a jk.
Many of these matrices can be shown to be positive-semidefinite and counterexamples
are not known. Along similar lines, it can also be shown that several specializations of
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the HOMFLY polynomial, a celebrated link invariant, yields a positive-definite func-
tion on the oriented Thompson group

→
F , a notable subgroup of the Thompson group

F .

2 Preliminaries

For brevity, we will focus only on the Thompson group F , however, many of the
issues make sense for the other groups too. The Thompson group F can be described
in many different ways. Here we will recall just one of them. Let T be the set of
rooted planar binary trees. Given a tree T ∈ T we will denote by ∂T the set of its
leaves. The Thompson group F can be defined as

F .
= {(T+,T−) ∈T ×T | |∂T+|= |∂T−|}/∼

where ∼ is the equivalence relation generated by the addition of opposite carets, the
interested reader is referred to [5, 4]. Given two elements (T 1

+,T
1
−),(T

2
+,T

2
−)∈F , in or-

der to compute their product we pick two representatives (T ′1+ ,T ′1− )∼ (T 1
+,T

1
−),(T

′2
+ ,T ′2− )∼

(T 2
+,T

2
−) such that T ′1− = T ′2+ and then

(T 1
+,T

1
−) · (T 2

+,T
2
−)

.
= (T ′1+ ,T ′2− ) .

It can be shown that (T,T ) is the unit for any T ∈ T and (T+,T−)−1 = (T−,T+). We
mention that F is finitely presented as

F = 〈x0,x1 | x2x1 = x1x3,x3x1 = x1x4〉,

where xn
.
= x1−n

0 x1xn−1
0 for n≥ 2.

Jones introduced in [7] a graph Γ (T+,T−) associated with a representative (T+,T−)
of an element of F , e.g.

The chromatic polynomial of G is the polynomial Chr(G, t) such that, for any
Q ∈ N, Chr(G,Q) is the number of proper colourings of the vertices of G with Q
colours. Moreover, if e ∈ E(G), it satisfies the following condition

Chr(G,Q) =

{
0 if e is a loop
Chr(G− e,Q)−Chr(G/e,Q) otherwise.



The Thompson groups, graph polynomials, and knot theory. 35

Jones defined a function on F by Q−1(Q− 1)−n+1Chr(Γ (T+,T−),Q) for T± with
n-leaves, as this expression is independent of the choice of the representative of an
element of F . Actually, this function is of positive type on F [7, Proposition 5.2.1]
according to the following definition.

Definition 1. Let G be a discrete group. A function ϕ : G→C is said of positive type
(or positive definite) if the matrix (ϕ(gig−1

j ))i, j is positive semi-definite for any r ∈N,
g1, . . . ,gr ∈ G, and a1, . . . ,ar ∈ C.

The chromatic polynomial allows us to introduce the oriented Thompson group as

→
F= {g ∈ F |ChrΓ (g)(2) = 2}= {g ∈ F | Γ (g) is bipartite}

For g ∈ F , the graph Γ (T+,T−) admits a preferred 2-colouring, with colours + and
−, starting with + on the leftmost vertex.

3 Colourings and a positive semi-definiteness problem

We examine some further combinatorial aspects of the chromatic polynomial in the
above setting.

Proposition 1. Let Ti,Tj,Tk ∈Tn. Consider the Q-colourings of Γ (Ti,Tj) and Γ (Ti,Tk).
We denote their cardinality by Chri j and Chrik, respectively. The number of colour-
ings that are compatible for both Γ (Ti,Tj) and Γ (Ti,Tk) is denoted by Chri jk.Then
the following inquality holds

Chri j +Chrik−Chri jk ≤Chrii .

In particular, it holds
Chri j +Chrik−Chrii ≤Chr jk .

Proof. Taking into account double counting, we have the following inequality

Chri j +Chrik−Chri jk ≤ Q(Q−1)n−1

(as colourings of Γ+(Ti)), which implies

Chri j +Chrik−Q(Q−1)n−1 ≤Chri jk ≤Chr jk.

One can recover the fact that
→
F is a group from the above lemma. Indeed, for Q = 2,

the Chromatic polynomial takes only two values 0, 2 and, thus, given three trees
Ti,Tj,Tk ∈ T with n-leaves such that Chr(Γ (Ti,Tj),Q) = 2, Chr(Γ (Ti,Tk),Q) = 2,
the above inequality tells us that Chr(Γ (Tk,Tj),Q) = 2.

By Jones’ results the matrices (Q−1(Q−1)−n+1Chr(Γ (T i
+,T

j
+),Q))i, j are positive

semi-definite for all choices of trees {T i
+}i with n-leaves. One might wonder whether
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the same conclusion holds only assuming the inequalities in Proposition 1 (together
with few other natural assumptions). In particular, consider a matrix A ∈ Mr([0,1])
such that

1. Aii = 1, for all i;
2. Ai j = A ji, for all i, j;
3. let (i, j,k) ∈ {1, · · · ,r}3 be a triple with mutually distinct indices, then ai j +aik−

1≤ a jk.

We tend to believe that for any r ∈ N a matrix A as above is always positive semi-
definite. This is obviously true for r = 2 and if r = 3 it can be proved without much
troubles. However, already for r = 4 the situation becomes much more involved and
the general argument remains elusive. We mention however that the claim can be
proved in many special cases. Over the years, several conditions ensuring the positive
semi-definiteness have been examined in the literature, although we are not aware of
any result implying a complete solution to the above problem.

If we make the further assuption that A ∈Mr({0,1}), then the matrix satisfies the
following stronger condition

• let (i, j,k) ∈ {1, · · · ,r}3 be a triple with mutually distinct indices. If Ai j 6= 0 and
Aik 6= 0, then A jk 6= 0.

Moreover, the above properties imply that

• for any i, [A2]ii = ∑ j(Ai j)
2 is equal to the number of 1 on the ith row (and column).

• for any i 6= j, Ai j = 0 implies [A2]i j = 0. In fact, [A2]i j = ∑k AikAk j. If [A2]i j 6= 0,
then there exists k0 6∈ {i, j} such that Ai,k0 6= 0, Ak0, j 6= 0. However, this implies
that Ai j 6= 0.

This case corresponds precisely to 2-colourings and there are a handful of proofs
of the claim in this setting. We give a quick sketch of one of them. Our aim is to
show that A can be expressed as a linear combination of orthogonal projections (with
positive coefficients). This establishes the positive semi-definiteness of A.

Consider A2. We define the following matrices A(1), · · · , A(r) ∈Mr({0,1}) as fol-
lows. For any l ∈ 1, . . . ,r, the entries of A(l) are all zero but those such that the corre-
sponding entries in A2 are equal to l, that is

A(l)
i j =

{
1 if (A2)i j = l
0 otherwise

.

Lemma 1. If A(l)
i j 6= 0, for some 1≤ l ≤ r, then for any k ∈ 1, . . . ,r,

Aik 6= 0⇔ A jk 6= 0.

Therefore, the rows i and j of A contain the same number l of non-zero entries (in the
same positions).
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Proof. Suppose instead that Aik = 1 and A jk = 0. Then i, j,k are necessarily distinct
and Ai j must be 0. However, this is impossible by the assumption on A.

Next lemma shows that if a row of A(l) is nonzero then it must coincide with the
corresponding row of A.

Lemma 2. If A(l)
i j 6= 0 and Aik 6= 0, then A(l)

ik 6= 0.

Proof. Suppose instead A(l)
ik = 0. Then by the definition of A(l) we have that [A2]ik =

∑h AihAkh 6= l. As A(l)
i j 6= 0, we have by the Lemma 1 that the rows i, j of A have

exactly l entries equal to 1 (in the same positions). The hypothesis A(l)
ik = 0 means

that the entries equal to 1 in the row k of A are in different positions with respect to
those in the row i. Therefore, there exists an index m such that Aim = 1, Akm = 0. As
i,k,m can be easily seen to be distinct, one has Aik = 0, contradicting the assumption.

As a consequence, if for some i, j one has A(l)
i j 6= 0 then the rows i and j of A(l)

coincide and contain the same number l of non-zero entries.

Lemma 3. The matrices A(k)/k are orthogonal projections.

Proof. By definition, all the matrices A(k)/k are clearly symmetric. They are also
idempotent. In fact, by the above lemma, a row (or a column) of A(k) has either all
the entries equal to 0 or has the same entries of the corresponding row in A. The
conclusion now follows by a straightforward combination of the previous results.

Theorem 1. Under the above hypotheses we have that

A =
n

∑
k=0

A(k)

In particular, the matrix A is positive semi-definite.

Proof. The first equation follows from the definition of A(l). The second claim follows
from the above lemma.

Recently, Vilmos Komornik [9] gave another elegant proof of this result.

4 Further remarks

In the previous section we saw that the chromatic polynomial gives rise to functions
of positive type on the Thompson groups. We mention that many other functions
(coming from graph and knot theory) admit a similar treatment. The following invari-
ants have been studied [7, 1, 2, 3]: Chromatic polynomial, Tutte polynomial, Kauff-
man bracket, Jones polynomial, HOMFLY polynomial, number of Fox-colourings,
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2-variable Kauffman polynomial. We briefly explain the connection with knot theory.
Jones [7] showed that links can be obtained as the closure of elements of the Thomp-
son group F and the result does not depend on the representative up to distant unknots.
Moreover, for elements in

→
F one can naturally orient the obtained link by using the

data corresponding the 2-colouring of the Γ -graph. Therefore, in the same spirit as
for the chromatic polynomial, one can use the HOMFLY polynomial P→

L
(α,z) to pro-

duce functions of positive type on
→
F , the corresponding unitary representation being

associated to the category of oriented forests [3]. There are actually two possible ways
to deal with the HOMFLY, according to whether one choses the trivial *-structure or
not. In the former case one defines the HOMFLY function on

→
F as

P(T+,T−)(α,z) =
[

α
−1
(

1−α−2

z
+ z
)]−n+1

P→
L (T+,T−)

(α,z)

and then shows that for q ∈ R\{±1,0} and k a positive integer, P(T ′+,T ′−)(q
k,q−q−1)

is of positive type. The proof relies upon the statistical mechanical interpretation of
the HOMFLY polynomial discovered in [6] and the following facts

• the quantity c(L(T+,T−))−n is always even, where (T+,T−)∈
→
F , (T+,T−) is a pair

of trees with n leaves and c(L(T+,T−)) is the number of connected components of
the associated link;

• the rotation number rot(
→
L (T+,T−)) = n+−n−, where n+ (resp. n−) is the number

of vertices of Γ (T+,T−) labeled with colour + (resp.−) and by rot(
→
L) the rotation

number of the link
→
L .

The latter case is dealt with in [3] by using an approach developed in [8].
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Finiteness in real cubic fields

Zuzana Masáková and Magdaléna Tinková

Positional representation of numbers in systems with non-integer base β > 1 as de-
fined by Rényi [11] is a suitable alternative to classical decimal or binary notation,
when encountered with the need of finite representation of numbers in an algebraic
field. A particular question is what is the most suitable choice of the base in a real
number field. One of the natural requirements is that elements with eventually pe-
riodic β -expansion form the field Q(β ). By a result of Schmidt [13], this happens
exactly for Pisot bases, i.e. such algebraic integers β > 1 that have all conjugates
inside the unit circle. It is also natural to ask that the set Fin(β ) of numbers with
finite β -expansion is closed under addition, subtraction and multiplication. This so-
called finiteness property or property (F) can be reformulated by Fin(β ) =Z[β ,β−1],
and is satisfied only by Pisot numbers [6]. Moreover, not all of them. A complete
algebraic characterization of Pisot numbers with (F) is known only for the quadratic
case and cubic unit case [1]. For general degree, some sufficient conditions have been
given [6, 7]. If the base is chosen to be a unit, then Z[β ,β−1] = Z[β ] and the (F)
property is equivalent to a certain property of the corresponding Rauzy tiling. Such
geometric interpretation is useful in describing some other arithmetic features of the
numeration system, such number of fractional digits arising in arithmetic operations.

Salem in [12] proved that every real number field can be generated by a Pisot
number β . Bertin et al. [4] provide a non-constructive proof for the fact that β can be
chosen to be a Pisot unit. Requiring moreover the finiteness property, it is no longer
true that every real number field contains such Pisot unit generator. This can be seen
on the case of real quadratic fields. It turns out that existence of a Pisot unit generator
with (F) in Q(

√
m) depends on the period-length of the continued fraction expansion
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of the square-free integer m ∈ N. However, every quadratic field contains a generator
with property (PF), i.e. the set of finite expansions is closed at least under addition.

We focus on the question whether every cubic number field contains a generator
which is a Pisot unit with property (F). We show that this is true in case of all real
cubic fields which are not totally real. We also illustrate that in case of totally real
cubic fields the situation is more complicated. We give classes of fields which contain
unit with (F), but we also give examples of cubic totally real field where no Pisot unit
satisfies the finiteness property.

As a compensation for the number fields without a generator possessing property
(F), we suggest to consider representation in negative base [8]. Analogous property
(−F) can be defined by requiring Fin(−β ) = Z[β ,β−1]. Based on the necessary con-
ditions on β for (−F) provided in [10, 5] and the description of cubic Pisot units with
(−F) given recently in [9], we show that in real quadratic and cubic number fields
not generated by a Pisot unit with (F), one always finds a Pisot unit generator with
property (−F).

We also provide bounds L⊕(β ) on the number of fractional digits appearing when
performing addition and subtraction of β -expansions. Such bounds were sofar given
only for a few cubic examples [3, 2].
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Nearly linear recursive sequences, especially SRS

Attila Pethő

My talk is based on join works with Shigeki Akiyama and Jan-Hendrik Evertse, as
well as with Jörg Thuswaldner and Mario Weitzer.

Let r = (r0, . . . ,rd−1) ∈ Rd , then the mapping τr : Zd 7→ Zd such that

τr(a0, . . . ,ad−1) = (a1, . . . ,ad−1,−[ra])

is called SRS. Equivalently we define the sequence of integers (an) by the nearly
linear recurrence relation, in the sequel nlrs,

r0an + · · ·+ rd−1an+d−1 +an+d = en, 0≤ en < 1.

SRS was extensively studied recently, but only if τr is contractive or indifferent, i.e.
if the roots of the polynomial Xd + pd−1Xd−1 + · · ·+ p0 lie inside or on the unit
circle. Then the orbits of τr are either periodic or grow polynomially. If, however, τr
is expansive no systematic investigation is known for me.

SRS is a special instance of nlrs (bn) of complex numbers for which there exist
A0, . . . ,Ad−1 ∈ C such that

A0bn + · · ·+Ad−1bn+d−1 +bn+d = en

and the sequence (en) is bounded.
With Akiyama and Evertse [1] we investigated nlrs. We proved a Binet-type for-

mula for such sequences, justifying that they are growing usually exponentially. This
does not mean monotone increase, nlrs may have surprisingly large fluctuation. We
show that there exist lrs (bn) such that limsupbn = ∞, liminf |bn| = 0 and bn 6= 0 for
all n. Using this result we construct nlrs of integers, for which the Skolem-Mahler-
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Lech theorem does not hold. This means that infinitely many terms of the sequence is
zero, but their indices do not fit a line.

If (an) is a nlrs and (bn) a bounded sequence then (an + bn) is also a nlrs. Hav-
ing stronger restrictions to nlrs, for example concentrating to expansive SRS, we can
observe similar patterns as for the contractive SRS. There are expansive SRS, which
have some bounded, thus periodic, orbits, others have only unbounded orbits. We
prove that for expanding SRS the existence of bounded orbits is algorithmically de-
cidable.
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Order statistics of the values of words with
respect to the generalised multinomial measure

Ligia L. Cristea and Helmut Prodinger

Okada, Sekiguchi and Shiota [1] introduce the multinomial measure on the unit inter-
val, that is defined with the help of the digital expansions of the numbers in the unit
interval in a certain integer base q in the following way.

Let q ≥ 2 be a positive integer. Denote I = I0,0 = [0,1] and In, j =
[

j
qn ,

j+1
qn

)
, for

j = 0,1, . . . ,qn− 2, In,qn−1 =
[

qn−1
qn ,1

]
, for n = 1,2,3, . . . . Let r = (r0,r1, . . . ,rq−1)

with 0 ≤ ri ≤ 1 and ∑
q−1
k=0 rk = 1. The multinomial measure µq,r is the probability

measure on I defined by

µq,r(In+1,q j+k) = rk ·µq,r(In, j) (1)

for n = 0,1,2, . . . , j = 0,1, . . . ,qn−1, k = 0,1, . . . ,q−1.
We recall that the binomial measure (and generalisations thereof) is used in a

method designed by the authors Kobayashi, Muramoto, Okada, Sekiguchi and Sh-
iota in order to study moments of higher order ∑n<N Sd

q(n) of the sum-of-digits func-
tion, which for an integer q ≥ 2 and any natural number n with the q-adic expansion
n = ∑i≥0 aiqi, with ai ∈ {0,1, . . . ,q−1}, is defined by Sq(n) := ∑i≥0 ai.

In our paper [2] we introduced the generalised multinomial measure. Here a gen-
eralisation consists, roughly speaking, in the fact that instead of dividing the unit in-
terval into a finite number of subintervals of equal length, we divide it into infinitely
(and denumerably) many intervals, such that the j-th subinterval has length pq j−1,
where p,q > 0, and p+q = 1.

One way to define the generalised multinomial measure is the following. We con-
sider the set W of all (finite and infinite) words over the infinite alphabet {0,1, . . .}
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and a probability measure Pr defined on the set of all words. A function value asso-
ciates to every word ω ∈ W a real number value(ω) ∈ [0,1), such that the closure
of the set of all such values value(ω), is the interval [0,1]. Then the measure of an
interval µr,q ([0,a)), with 0 ≤ a ≤ 1 can be defined in a natural way with the help of
the probability Pr, where r = (r0,r1, . . .) is a sequence of real numbers (parameters)
with 0≤ ri ≤ 1 and ∑

q−1
k=0 rk = 1.

In my talk I present results on the behaviour of the average minimum value an
among n words of W chosen independently at random with respect to the generalised
multinomial measure µr,q for certain values of the parameters r j, j = 0,1, . . . .

Furthermore, I show results for the average maximum value among n words. We
note that the final formulae obtained for the asymptotics show a certain duality.

Acknowledgements L.L. Cristea is supported by the Austrian Science Fund (FWF), stand-alone
project P27050-N26, and by the Austrian Science Fund (FWF) project F5508-N26, which is part of
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Discrepancy bounds for β -adic Halton sequences

Jörg Thuswaldner

Van der Corput and Halton sequences are well-known low-discrepancy sequences.
In the 1990ies Ninomiya defined analogues of van der Corput sequences for β -
numeration and proved that they also form low-discrepancy sequences provided that
β is a Pisot number. Hofer, Iacó, and Tichy define β -adic Halton sequences and show
that they are equidistributed for certain parameters β = (β1, . . . ,βs).

In this talk we give discrepancy estimates for β -adic Halton sequences for which
the components βi are m-bonacci numbers. Our methods include dynamical and ge-
ometric properties of Rauzy fractals that allow to relate β -adic Halton sequences to
rotations on high dimensional tori. The discrepancies of these rotations can then be
estimated by classical methods relying on W. M. Schmidt’s Subspace Theorem.

Jörg Thuswaldner
University of Leoben, Austria e-mail: jorgthus@gmail.com

47





Algebraic structure and numeration systems for
circular words

Isabelle Dubois

We investigate some properties of finite abelian groups defined by equivalence rela-
tions on circular words. In particular, we show how the formalism of circular words
gives rise naturally to the notion of numeration systems for some finite abelian groups,
and to periodic expansions of real numbers in [0;1[.

Our basic structure is the notion of circular words, introduced in the algebraic
context in [2] by B. Rittaud and L. Vivier.

A circular word of length ` is a finite word made of ` letters on the alphabet Z,
indexed by Z/`Z. The set of circular words of length ` is then an abelian group and we
consider an equivalence relation that defines a “carry” given by an integer polynomial.
More precisely, given a polynomial P(X) =∑0≤i≤d aiX i ∈Z[X ], the carry equivalence
≈ defined by P on circular words W = (w0 . . .w`−1) (where the indices are modulo `)
is based on the relations:

∀i mod `,W ≈ (w0 . . .(wi−d +a0) . . .(wi−1 +ad−1)(wi +ad)wi+1 . . .w`−1).

When P has no roots of unity, the quotient group of circular words of length ` by
this carry equivalence is a finite abelian group whose structure is determined by alge-
braic and arithmetic tools. We can then define a numeration system on these groups,
which leads to a numerical system of the classes of finite circular words and to peri-
odic expansions of some real numbers.

Some examples are given, in particular for a carry equivalence from a linear poly-
nomial aX −b, or from a quadratic polynomial X2− pX −q generalizing the results
of [1]. Algebraic rather than combinatorial tools are used, which allow a more sys-
tematic and general study.

This is a joint work with Benoı̂t Rittaud.
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A constrained Diophantine equation on
symmetric numbers in different bases

Stefano Arnone, Corrado Falcolini, Francesco Moauro, and Matteo Siccardi

Abstract Any number may be written in many different ways, using different strings
in different bases. In few, very special cases, a symmetry emerges which is usually
hidden beneath the surface: the strings “230” in base 164 and “164” in base 230
are both equal to 54284 in base 10. This talk analyzes the infinite solution set of
the (constrained) Diophantine equation that implements such symmetry, and shows
interesting patterns emerging both from a geometrical and analytic point of view. We
will discuss these patterns and formulate a conjecture on the number of solutions of
the equation.

The relationship between numbers in different bases will be investigated.
In order to avoid ambiguities, our symbols will be numerals in base ten, e.g. in the

following {1,15}16 will be used in place of what is commonly written as 1F16. As
far as notation is concerned, N with no lower indices will be used to denote the list,
N = {nP,nP−1, · · · ,n2,n1,n0}, while N with a lower index (representing a base) will
indicate the number, evaluated in that base, Nb = nPbP + nP−1bP−1 + · · ·+ n1b+ n0.
For instance, 230 = {2,3,0} whereas 230164 = 2 · (164)2 +3 · (164)1 +0 · (164)0.

Now, “a kind of magic” may take place: {2,3,0} {1,6,4} = {1,6,4} {2,3,0},
where the equal sign refers to the equality of the two numbers represented by the
different lists in different bases. The above is a shorthand for
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francesco.moauro@gmail.com
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{2,3,0} {1,6,4}
= 2·(1 ·102+6·101+4 ·100)2+3 ·(1 ·102+6·101+4 ·100)1+0 ·(1·102+6 ·101+4·100)0

= {5,4,2,8,4} {1,0}= {1,6,4} {2,3,0}

This phenomenon is not restricted to or peculiar of base ten. For instance,

{2,1,1} {1,2,1}three = {1,2,1} {2,1,1}three,

where the reference base has been written in letters.
Generalizing the simple observation that

N {1,0}= {1,0} N, (1)

N being any list except {0} and {1}, we will speculate on the existence of solutions
to the following equation:

N Mb = M Nb. (2)

For the sake of clarity and effectiveness, we expand eq. (2)

P

∑
k=0

nk

(
Q

∑
i=0

bimi

)k

=
Q

∑
i=0

mi

(
P

∑
k=0

bknk

)i

, (3)

where b is the base and the lists N,M contain P+1 and Q+1 elements respectively.
All elements — mi,nk — are constrained to the range [0,b−1] and, in order to avoid
ill-defined expressions, if one list contains one element only, the other cannot — that
is (P,Q) 6= (0,0). Such restrictions upon the form of possible solutions will be seen
to play an important role in the following. Solving our problem amounts to finding all
of the solutions to eq. (3).

Meaningful solutions of eq. (2) are lists of integers satisfying a number of con-
straints. Therefore, we are bound to solve a Diophantine equation with additional
constraints.

As eq. (2) is symmetric under the exchange M↔ N, we can and will search for
solutions in M, at fixed N. We can also impose M ≥ N as a non-restrictive constraint.
An immediate consequence of the above is that the solution M = N, hereafter referred
to as the symmetric solution, satisfies eq. (2).

Another solution that is easy to find is given by the following

Theorem 1 Any M satisfies eq. (2) if N = {1,0}

which generalizes eq. (1) to any base b. Such a solution will be hereafter referred to
as the trivial solution.

Regular patterns are seen to emerge when considering simplifying assumptions.
One such well-defined set of solutions is given in the following

Theorem 2 Solutions of eq. (2) exist of the form n0 = 0, nk =
(P

k

)
for k > 0, m0 = 0,

mi =
(Q

i

)
for i > 0, ∀P > Q > 0 and ∀b > max

k

(P
k

)
.
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Due to their structure, for a given P we can read all lists M which are solutions of
eq. (3) from the first rows of a slightly modified Pascal’s triangle.

We next show that solutions exist for lists having only one non-zero element.

Theorem 3 Solutions of eq. (2) exist of the form M = {ah,0, . . . ,0}, N = {ak,0, . . . ,0},
Q = nh+1, and P = nk+1 ∀n ∈ N0,∀a ∈ {1, . . . ,b−1} such that ah,ak < b.

The solutions so far presented are independent of the reference base b, although
Theorems 2 and 3 do have a base-dependent constraint.

Eq. (3) can be interpreted as a constraint on two polynomials in the reference
base, b. More specifically, finding a base-independent solution is tantamount to con-
structing two polynomials in b which commute under composition. Block and Thiel-
man [Block and Thielman, 1951], building on previous work by Ritt [Ritt, 1922,
Ritt, 1923], have shown what the properties of commuting polynomials are in the
case they do not have the same degree, and were able to organize them in two dif-
ferent classes. Translating their results into our “language” allowed us to conclude
that the only base-independent solutions with different number of elements are those
listed above [Pakovich, 2013, Arnone et al., 2017].

1 Solutions with equal number of elements

1.1 Two elements

When M,N contain two elements each, that is P = Q = 1, it is possible to rewrite the
Diophantine eq. (3) as

(n1−1)m0 = (m1−1)n0. (4)

As before, the only dependence upon the base b comes from the constraint that the
elements cannot exceed it, which implies an increase in the number of solutions as
the base grows large. The exact result is

S2(b) = 4(b−1)2 +
b−2

∑
m1=1

ϕ(m1)

⌊
b−2
m1

⌋2

+
b−1

∑
m0=m1+1

gcd(m0,m1)=1

⌊
b−1
m0

⌋2

 , (5)

where ϕ(x) is the Euler totient function.

1.2 Three elements

When M,N contain three elements each, that is P = Q = 2, the Diophantine eq. (2)
takes the form
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Fig. 1 Solutions to eq. (4) for
any base greater than or equal
to ten.
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N Mb = n2(m2b2 +m1b+m0)
2 +n1(m2b2 +m1b+m0)+n0

= m2(n2b2 +n1b+n0)
2 +m1(n2b2 +n1b+n0)+m0 = M Nb, (6)

that is a polynomial equation of degree 7 in 3+3+1 variables, {m2,m1,m0;n2,n1,n0;b},
where the dependence upon b no longer disappears.

Solutions to eq. (6), other than the symmetric ones, have been obtained, up to
b = 400, via a numerical algorithm [Arnone et al., 2017].

Preliminary analysis shows that infinite families of solutions exist, which may be
cast into two different categories. The former contains solutions where the base can be
expressed as a (linear or quadratic) function of an integer, k, an example of which is
given by M = {k+1,2k+1,13k−5}, N = {k,10k+1,5k}, b = 16k+5. The latter is
exemplified by M = {4, 1

2

(
1+8i−8p+

√
1+16p+48p2

)
,0}, N = {3,3i+ 1,0},

b = p− i, for an infinite sequence of ps, coming from the Pell-type structure of one
of the constraints, and a finite range for i for each p. Further investigation reveals
that another, geometric perspective may be adopted, which sheds more light on the
structure of the solution set.

Figure 2 shows the graphs of two second-degree polynomials which commute un-
der composition at a specific, positive integer value of the independent variable b,
together with two secants to such parabolae. The secant lines go through the points
(b,N(b)), (M(b),N(M(b))) and (b,M(b)), (N(b),M(N(b))) respectively. Owing to
the fact that the two polynomials commute at b, N(M(b)) equals M(N(b)), so that b
is a solution to eq. (6).

The point of intersection of the secants, I, can be shown to lie on the bisector of
the first quadrant angle; its coordinates are bounded between b−1 and b. Computing
the coordinates of I for each of the known solutions holds the key to a better repre-
sentation of the whole set. As a matter of fact, re-expressing the known families in
terms of the base b — as opposed to k or p — and other two parameters, and plotting
the pairs1(b,1−{xI(b)}) reveals the patterns shown in fig. 3.

1 Here {xI} stands for the fractional part of xI , {xI}= 1−bxIc.
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Fig. 2 A new, geometric
perspective elucidating the
structure of solutions. The red
curve is N(x), whereas the
green one is M(x).

The grey curves, corresponding to equal values of the two additional parameters,
represent the fine spectral lines of our “Diophantine atom”: for a given value of n2
these are seen to form a band, which gets smaller and smaller the larger n2 grows.
The curves in different colours correspond to equal values of the other additional
parameter: when they intersect a spectral line at a solution, they always cut through
the mid-point of the patch.

Several solutions have been found that have not been classified yet, and the ques-
tion remains as to whether a base b̄ exist such that solutions can be found for all bases
greater than b̄.

1.3 Four or more elements

When P=Q= 3, that is in the case of four elements, eq. (2) is of degree 13 in 4+4+1
variables.

No explicit solutions, except for the symmetric ones, have been found numeri-
cally. This appears to be consistent with a series of results that have been obtained on
bounds for feasible solutions. Indeed, the region in the M−N plane where solutions
might be found shrinks down to a smaller and smaller size as the number of elements
increases.

The lack of non-symmetric solutions when N,M have at least four elements each
motivated us to formulate the following
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Fig. 3: Our “Diophantine atomic” structure.

Conjecture 1. Let ni,mi be non-negative integers,

N = {nP,nP−1, . . . ,n0}, and M = {mP,mP−1, . . . ,m0},

with mPnP 6= 0. Then, ∀b ∈ N ∀P > 2,

N 6= M ⇒ N Mb 6= M Nb.
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On the structure of periodic elements of
simultaneous systems

Gabor Nagy

Abstract It is well-known (see [1]) that (−N1,−N2,Ac) is a simultaneous number
system if and only if 2≤ N1,N2 and |N1−N2|= 1, where N1,N2 are rational integers
and Ac = {0,1, . . . , |N1||N2|−1}. The aim of this talk is to determine the structure of
periodic elements when N1,N2 do not fulfil the aforementioned assumption.
The case of simultaneous systems of Gaussian integers is also considered (see [2]).
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Numbers, systems, applications

Attila Kovács

Abstract The lecture presents the newest results achieved in (1) constructing number
systems in the ring of integers of real quadratic fields, (2) showing how the number
system concept can be applied to kleptographing the RSA public key scheme.

Let Λ be a lattice in Rn and let M : Λ →Λ be a linear operator such that det(M) 6=
0. Let furthermore 0 ∈ D⊆Λ be a finite subset.

Definition 1 The triple (Λ ,M,D) is called a number system (GNS) if every element
x of Λ has a unique, finite representation of the form

x =
L

∑
i=0

Midi ,

where di ∈ D and L ∈ N. L is the length of the expansion.

Here M is called the base and D is the digit set.

Theorem 2 If (Λ ,M,D) is a number system then

1. D must be a full residue system modulo M,
2. M must be expansive,
3. det(In−M) 6=±1. (unit condition)

If a system fulfills the first two conditions then it is called a radix system.

Let ϕ : Λ→Λ , x
ϕ7→M−1(x−d) for the unique d ∈D satisfying x≡ d (mod M). Since

M−1 is contractive and D is finite, there exists a norm ‖.‖ on Λ and a constant C such
that the orbit of every x ∈ Λ eventually enters the finite set S = {x ∈ Λ | ‖x‖ < C}
for the repeated application of ϕ . This means that the sequence x,ϕ(x),ϕ2(x), . . . is
eventually periodic for all x ∈ Λ . Clearly, (Λ ,M,D) is a number system iff for every
x ∈Λ the orbit of x eventually reaches 0.
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A point p is called periodic if ϕk(p) = p for some k > 0. The orbit of a periodic
point p is a cycle. The set of all periodic points is denoted by P . The signature
(l1, l2, . . . , lω) of a radix system (Λ ,M,D) is a finite sequence of non-negative integers
in which the periodic structure P consists of #li cycles with period lenght i (1≤ i≤
ω). Clearly, the signature of a number system is (1).

The following problem classes are in the mainstream of the research: for a given
(Λ ,M,D)

• the decision problem asks if the triple form a number system or not,
• the classification problem means finding all cycles (witnesses),
• the parametrization problem means finding parametrized families of number sys-

tems,
• the construction problem aims at constructing a digit set D to M for which

(Λ ,M,D) is a number system. In general, construct a digit set D to M such that
(Λ ,M,D) satisfies a given signature.

Regarding the decision and classification problem the algorithmic complexity
is unknown. For the practical analysis software packages were designed and im-
plemented (please, visit the talk of Tamás Krutki of this conference), see also
[1, 22, 27, 3, 33, 37].

Families of number systems were analysed by different authors and research
groups, especially for canonical digit sets in the {1,θ , . . . ,θ n−1} basis, where M is the
companion of the polynomial p(x) = c0+c1x+ · · ·+cn−1xn−1+xn ∈Z[x] and f (θ) =
0, since this is the most natural generalization of the usual binary or decimal number
system concept (see [1, 2, 3, 4, 5, 7, 8, 12, 18, 19, 20, 21, 23, 24, 25, 26, 28, 32]).

The construction problem was analysed in the quadratic fields by ([6, 11, 31]), in
two dimensional simultaneous systems by [34, 35], and in general by [14, 29, 36].
There are only a few results regarding the signature analysis [13, 16, 17]. The first
part of the talk is about number system constructions with integers in real quadratic
fields.

There are only a few application regarding the concept of generalized number
systems [9, 10].

Kleptography is the study of stealing information securely and subliminally. A
kleptographic attack is an attack which uses asymmetric cryptography to implement
a cryptographic backdoor. Kleptographic attacks have been designed for RSA key
generation, the Diffie–Hellman key exchange, the Digital Signature Algorithm, and
other cryptographic algorithms and protocols.

The other part of the talk is about how generalized binary number systems can be
applied in cryptography, especially in kleptography.
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8. Körmendi, S., Canonical number systems in Q 3√2, Acta Sci. Math., (Szeged), 50 (1986), 351–

357.
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21. Akiyama, S., Pethő, A., On canonical number systems, Theor. Comp. Sci., 270/(1-2), (2002),
921–933.
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35. Kovács, A., Simultaneous number systems in the lattice of Eisenstein integers, Annales
Univ. Sci. Budapest, Sect. Comp., 41, (2013), 43–55.
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Interactions between digits in Fibonacci
Numeration

Anne Bertrand Mathis

A positive integer m can be written in “Fibonacci base” in a unique way: let (Gn)n≥0
be the numeration sequence G1 = 1, G2 = 2, and Gn = Gn−1 +Gn−2 for n ≥ 3; then
m = εrGr + ...+ ε1G1 where the digits εi belongs to {0,1} and where εi+1εi = 0 for
all i; we say that εr...ε1 is the expansion of m. We set Φ = 1+

√
5

2 so the algebraic

conjugate of Φ is 1−
√

5
2 = −1

Φ
, and Gn = 1√

5

(
Φn+1− (−1)n+1

Φn

)
; Gn is equivalent to

1√
5
(Φ)n+1. We say that εn is the nth digit on the left and we say also that εn is “the

digit of the Φn−1” (ε1 is the digit of unities, ε2 the digit of the Φ , ε3 the digits of the
Φ2and so on) as in base ten in 645 the first digit 5 is the digit of unities, the second
digit 4 is the digit of the dozens, the third digit 6 is the digit of the hundreds.

We prove that at the time where the nth digit increases by 1 it was late with respect
to all (n− i)th digits and becomes (just after growing) early with respect to all (n−
i)th digits. So the digits are interlinked with an extraordinary precision, their motion
being orchestrated by a substitution. You can imagine an helical gears with an infinite
numbers of pulleys, the letters of the substitution playing the role of the pulleys.

An alphabet is a set of letters, a word (finite or infinite) is a sequence on this
alphabet; the length of a finite word w is the number of letters that it contains and is
denoted by | w |. The classical Fibonacci word is defined as follows [6] [7] : we set
σ ′ (a) = ab and σ ′(b) = a; the map σ ′ extends to all word on the alphabet {a,b}
by concatenation; as σ ′ (a) begin with a, σ ′k (a) is the beginning of σ ′k+1 (a) and
iterating the processus we obtain a σ ′−invariant infinite word σ∞ (a) = abaababa...:
this is the Fibonacci word. We shall use another very similar Fibonacci word adapted
to our problem: let B = {b1,b2,b3, ...} be an enumerable set of letters, and let σ be
the map b1 7−→ b1b2, b2 7−→ b3, b3 7−→ b1b4, b4 7−→ b5 and more generally b2k 7−→
b2k+1, b2k+1 7−→ b1b2k+2; the map σ extend to all finite word by concatenation and
as b1 is the beginning of σ (b1), for all n σn (b1) is the beginning of σn+1 (b1); thus
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iterating the process we obtain a σ−invariant infinite word σ∞ (b1) = u0u1... also
called Fibonacci substitutive word. The following Lemma is clear:

Lemma 1. If we replace all the b2k+1 by a and all the b2k by b, σ becomes the
classical substitution σ ′: a 7−→ ab and b 7−→ a; for all n ≥ 0 , | σn (b1) |=| σ ′n (a) |
and σ∞ (b1) becomes the classical Fibonacci word σ ′∞ (a).

Transferring classical results from σ ′ to σ we obtain the:

Lemma 2. For all n≥ 0, | σn (b1) |= Gn+1 and Gn =
1√
5

(
Φn+1− (−1)n+1

Φn+1

)
.

For all n ≥ 1 the expansions of the | σn (b1) |= Gn+1 first numbers (starting from
0) are exactly those admitting at most n digits.

More, m = εrGr + ...+ ε1G1 if and only if the beginning of the substitutive word
σ∞ (b1) = u0u1.... is u0...um = (σ r (b1))

εr(σ r−1 (b1))
εr−1 ...(σ1 (b1))

ε2(σ0 (b1))
ε1 .

Going from m to m+1, the hth digit either increases by 1, or vanishes, or remains
fixed.

Theorem 1. Suppose that the expansion of an integer m is εr...ε1 and that the term
um in the sequence σ∞ (b1) = u0u1... is bk; then the expansion of m+ 1 is obtained
from the expansion of m as follows: the kthdigit on the left εk increased from +1
(or appears if they were no kthdigit), the digits εk−1, ...,ε1 becomes 0 and the digits
εk+1,εk+2, ... do not change.

Thus we obtain a method allowing to write the sequence of integers in Fibonacci
base; the term um point out what to do in order to obtain the expansion of m+1 from
the expansion of m.

Remark: it is possible to expand positive integers in all base β > 1 [3] and this sub-
stitutif phenomen can be generalised to all the bases; one even can expand numbers
of Z in a base −β <−1 [4], define an associated substitution and study his effect on
the expansion of successive integers.

Look for example at the first expansions: G1,G2,G3,G4,G5,G6 = 1,2,3,5,8,13;
the beginning u0...u12 = u0...uG6−1 of σ∞ (b1) = u0u1...u12 is

b1b2b3b1b4b1b2b5b1b2b3b1b6;

the following data (expansions smaller than G6 = 13 = σ5 (b1), just below their po-
sition in the sequence (un)n≥0 and the corresponding bi) explain how to go from m to
m+1:

0 1 10 100 101 1000 1001 1010 10000 10001 10010 10100 10101
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
b1 b2 b3 b1 b4 b1 b2 b5 b1 b2 b3 b1 b6

You can see that till m = 12 if the letter um is bk, this letter says: to go from the
expansion of the number m to the expansion of m+1, add 1 to the kth digit on the left,
replace the hth digit by zero if h < k and do not change the other digits.

And the term uGn−1 is always equal to bn and point out that m+ 1 = Gn = 10n−1

owns n digits.

The kth digit grows Φh=
(

1+
√

5
2

)h
faster than the (h+ k)th digit. So



Interactions between digits in Fibonacci Numeration 67

Theorem and definition 2. Suppose that until reaching a number m the kth digit
increased xk times and the (h+ k)th digit increased xh+k times; we say that the (h+
k)th is late with respect to the kth digit if xh+k <

xk
Φh and is early if xh+k >

xk
Φh .(Φ is an

irrational number so there is never equality).
At the time where the nth digit increase by 1 it was late with respect to all the

(n− i)th digits and becomes (just after growing) early with respect to all (n− i)th

digits.
For all k ≥ 1 and h≥ 1,

∣∣∣xh+k <
xk
Φh

∣∣∣< 1.
Let dn the number of times where the first digit (the digit of unities) has increased

before reaching the number Gn = 10n−1and set G0 = G−1 = 1; then for all n ≥ 1 ,
dn = Gn−2 (we shall consider that d0 = 0) and for n≥ 2 dn =

1√
5

(
Φn−1−

(
−1

Φn−1

))
.

Let n≥ k. The number of times where the (k+1)th digit increased in the | σn (b0) |
first numbers (owning at most n digits ) is dn−k.

Let m = εrGr + ...+ ε1G1 an integer ≥ 1.
Then the number x1 (m) of times where the right digit increased between 0 and m

is x1 (m) = εrdr + ...+ εk+1dk+1 + ...+ ε1d1 = ∑
r
i=1 εiGi−2

The number of times xk+1 (m) where the (k+1)th digit increased between zero and
m is xk+1 (m) = εrdr−k + ...+ εk+1d1 = ∑

r
i=k+1 εiGr−k.

A calculus allows to compare x1 (m) and xk+1 (m) and to prove the Theorem 2.
Another proof can be given using the simplicity of the Rauzy tiling and remains valid
in the quadratic unimodular Pisot case.

Remark: for every base β there is a similar substitution who controls the passing
from m = 1 to m+1; the kth digit grows β h faster than the (h+ k)th digit, this allows
by example to recover Christiane Frougny’s results [1] [2] on carries.
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de Mathèmariques de Luminy (Marseille) 2007, 43-56.
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Bernoulli convolutions, Garsia entropy and local
dimension

Kevin G. Hare

This talk will discuss joint work with Kathryn E. Hare, Kevin R. Matthews, Michael
Ka Shing Ng, Nikita Sidorov and Grant Simms. Much of this work can be found in
[10, 11, 12, 13, 14].

Let β ∈ (1,2). Consider the expansion

x =
∞

∑
j=1

a jβ
− j

where a j ∈ {0,1}. Then a1a2a3 · · · is a beta-expansion for x. It is easy to see that x
will have a beta-expansion if and only if x ∈ Iβ := [0, 1

β−1 ].
One interesting property of non-integer expansions is that it is possible to have

multiple different representations for the same value. For example, consider β the
golden ratio, β ≈ 1.618, the larger root of x2− x−1 = 0. Notice that

1 = 1
β
+ 1

β 2 or
= 1

β
+ 1

β 3 +
1

β 4 or
= 1

β
+ 1

β 3 +
1

β 5 +
1

β 7 +
1

β 9 + · · · .

In the case of the golden ratio, some x have only one expansion (such at x = 0), some
have countably many expansions, and some even have uncountably many expansions.

Intimately connected with beta-expansion is the idea of Bernoulli convolutions,
denoted by µβ . We can think of this as a measure which has weight focused where
there are lots of beta-expansions. These were first studied by by Rényi and by Parry
[20, 23]. Let us recall the basic definitions.

Let µβ denote the Bernoulli convolution parameterized by β on Iβ by

Kevin G. Hare
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1,
e-mail: kghare@uwaterloo.ca

69



70 Kevin G. Hare

µβ (E) = P

{
(a1,a2, . . .) ∈ {0,1}N :

∞

∑
k=1

akβ
−k ∈ E

}

for any Borel set E ⊆ Iβ , where P is the product measure on {0,1}N with P(a1 = 0) =
P(a1 = 1) = 1/2.

An alternate way of defining µβ is as the unique measure such that:

µβ =
1
2

µβ ◦S−1
0 +

1
2

µβ ◦S−1
1 ,

where S j = x/β + j for j = 0,1.
Bernoulli convolutions have been studied since the 1930s (see, e.g., [25] and ref-

erences therein). An important property of µβ is the fact that it is either absolutely
continuous or purely singular.

Recall that a number β > 1 is called a Pisot number if it is an algebraic integer
whose other Galois conjugates are less than 1 in modulus. Erdős [2] showed that if β

is a Pisot number, then µβ is singular. Garsia [7] introduced a new class of algebraic
integers – now referred to as Garsia numbers – and proved that µβ is absolutely
continuous if β is a Garsia number. Solomyak [24] proved that for Lebesgue-a.e.
β ∈ (1,2) the Bernoulli convolution is absolutely continuous.

Definition 1. Given a Bernoulli convolution µβ , by the upper local dimension of µβ

at x ∈ suppµβ , we mean the number

dimlocµβ (x) = limsup
r→0+

log µβ ([x− r,x+ r])
logr

.

Replacing the limsup by liminf gives the lower local dimension, denoted dimlocµβ (x).
If the limit exists, we call the number the local dimension of µβ at x and denote this
by dimloc µβ (x).

It is also known that µβ is exact-dimensional (which is a special case of a general
result in [15]). Namely, there is a number α such that

dimloc(µ) = lim
r→0

log µβ (x− r,x+ r)
logr

= α

for µβ -almost every x. We will call this number α the dimension of µβ and denote
by dim(µβ ). In particular, the exact-dimensionality implies dimH(µβ ) = dim(µβ ).
Clearly, if µβ is absolutely continuous, then dim(µβ ) = 1. Whether the converse is
true for this family, remains unknown.

Garsia [8] introduced the following useful quantity Hβ , called the Garsia entropy,
associated with a Bernoulli convolution. If β is transcendental or algebraic but not
satisfying an algebraic equation with coefficients {−1,0,1} (i.e., it is not of height
one), then Hβ = log2/ logβ > 1.

However, if β is Pisot, then it was shown in [8, 21] that Hβ = dim(µβ ) < 1. Fur-
thermore, Garsia also proved that if Hβ < 1, then µβ is singular.
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Alexander and Zagier in [1] managed to evaluate Hβ for the golden ratio β =
τ with an astonishing accuracy. It turned out that Hτ is close to 1 – in fact Hτ ≈
0.9957. Grabner, Kirschenhofer and Tichy [9] extended this method to the multinacci
numbers, which are the positive real roots of xm = xm−1+xm−2+ · · ·+x+1. No other
values of Hβ correct up to at least two decimal places are known to date.

The Garsia entropy and the dimension of a Bernoulli convolution are connected by
the following result:

Theorem 1 (Hochman, 2014 [15]). If β ∈ (1,2) is algebraic, then

dim(µβ ) = min{Hβ ,1}.

Essentially, this remarkable theorem says that the topological quantity, dim(µβ ), co-
incides with the combinatorial one, Hβ . If β is Pisot, then this is relatively straightfor-
ward (and known since [21]); for all other algebraic β this fact is highly non-trivial.

Using this, we prove that

Theorem 2. For all algebraic β ∈ (1,2) we have dim(µβ )> 0.82.

We also show that:

Proposition 1. If [Q(β 1/k) : Q(β )] = k for some k ≥ 2, then H
β 1/k = kHβ .

Although it is possible for [Q(β 1/k) : Q(β )] 6= k, this does not happen often.

Corollary 0.1. Let k ≥ 2 and β ∈ (1,2) a Pisot number. Assume further that β 1/k is
not a Pisot number. Then H

β 1/k ≥ 1 and dim(µ
β 1/k) = 1.

Using a similar technique we also show

Corollary 0.2. Let k≥ 2, β ∈ (1,2) and deg(β ) = r. Assume further that deg(β 1/k)>
r. Then H

β 1/k ≥ 1 and dim(µ
β 1/k) = 1.

Further, when β is a Pisot number, these Bernoullie convolutions are know to be
of finite type, (first introduced by Ngai and Wang [NW]). This allows us to study in
more detail the possible local dimensions arising from a Bernoulli convolution.

Building on earlier work (c.f., [6, 16, 18, 22]), Feng undertook a study of equicon-
tractive, self-similar measures of finite type in [3, 4, 5]. His main results were for
Bernoulli convolutions. In particular, he proved that despite the failure of the open set
condition, the multifractal formalism still holds for the Bernoulli convolutions whose
contraction factor was the reciprocal of a simple Pisot number (meaning, a Pisot num-
ber whose minimal polynomial is of the form xn− xn−1−·· ·− x−1). A particularly
interesting example is when the contraction factor is the golden ratio with minimal
polynomial x2− x−1 (also called the golden mean).

We first give a simple formula for the value of the local dimension of µ at any “pe-
riodic” point of its support. As a corollary we get that the local dimension exists at
“periodic” points. The finite type condition leads naturally to a combinatorial notion
we call a “loop class”. For a “positive” loop class we prove that the set of attainable lo-
cal dimensions of the measure is a closed interval and that the set of local dimensions
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at periodic points in the loop class is a dense subset of this interval. Similar results
are also given for upper and lower local dimensions. Given two values ` ≤ u within
this interval, we can find an x in this positive loop class with lower local dimension
equal to ` and upper local dimension equal to u.

A consequence of our result is that the set of attainable local dimensions is the
union of a closed interval together with the local dimensions at points in finitely many
loop classes external to the essential class. We will say that a point is an essential point
if it is in the essential class. The set of essential points has full Lebesgue measure on
the support of the measure and in many interesting examples the set of essential points
is the interior of the support of the measure.

When the essential set is the interior of the support of the measure µ, then µ has
no isolated point in its set of attainable local dimensions if and only if dimloc µ(0)
coincides with the local dimension of µ at an essential point. In that case, the set of
attainable local dimensions of µ is a closed interval. The Bernoulli convolution µρ ,
with ρ−1 a simple Pisot number has this property.

However, we construct other examples of Bernoulli convolutions (with contraction
factor a Pisot inverse) which do have an isolated point in their set of attainable local
dimensions. As far as we are aware, these are the first examples of Bernoulli convo-
lutions known to admit an isolated point. We also construct a Cantor-like measure of
finite type, whose set of local dimensions consists of (precisely) two distinct points.
In all of these examples, the essential set is the interior of the support of the measure.

The computer was used to help obtain some of these results. In principle, the tech-
niques could be applied to other convolutions of Bernoulli convolutions, however
even with the simple examples given here, the problem can become computationally
difficult.
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21. F. Przytycki and M. Urbański, (1989) On the Hausdorff dimension of some fractal sets, Studia
Math. 93:155–186.

22. A. Porzio, (1998) On the regularity of the multifractal spectrum of Bernoulli convolutions, J.
Stats. Phys. 91:17-29.
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Bases with two expansions

Vilmos Komornik and Derong Kong

Abstract In this paper we answer several questions raised by Sidorov on the set B2
of bases in which there exist numbers with exactly two expansions. In particular, we
prove that the set B2 is closed, and it contains both infinitely many isolated and ac-
cumulation points in (1,qKL), where qKL ≈ 1.78723 is the Komornik-Loreti constant.
Consequently we show that the second smallest element of B2 is the smallest accu-
mulation point of B2. We also investigate the higher order derived sets of B2. Finally,
we prove that there exists a δ > 0 such that

dimH(B2∩ (qKL,qKL +δ ))< 1,

where dimH denotes the Hausdorff dimension. For more details see arXiv:1705.00473.
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A shrinking hole for β -transformations

Niels Langeveld

Abstract For β ∈ (1,2] let Tβ be the expanding map on the interval [0,1) defined by
Tβ (x) = βx (mod 1). In this talk we consider the set Eβ of all t ∈ [0,1) for which the

forward orbit
{

T n
β
(t) : n≥ 0

}
avoids the hole [0, t). The set Eβ is a Lebesgue null set

of full Hausdorff dimension for all β ∈ (1,2). Different from β = 2, we prove that for
Lebesgue almost every β ∈ (1,2) the set Eβ contains both infinitely many isolated and
accumulation points. Furthermore, we characterise the set of β such that Eβ ∩ [0,δ )
has isolated points for all δ > 0, the set of β for which there exists a δ > 0 such that
Eβ ∩ [0,δ ) has no isolated points and the set of β for which Eβ has no isolated points.
In the last case we show that Eβ is a Cantor set satisfying

lim
δ→0

dimH
(
Eβ ∩ (t−δ , t +δ )

)
= dimH Kβ (t) for all t ∈ Eβ , (1)

where Kβ (t) is the survivor set defined by Kβ (t)=
{

x ∈ [0,1) : T n
β
(x)≥ t for any n≥ 0

}
.

This is joint work with Charlene Kalle, Derong Kong and Wenxia Li.

1 The main theorems

Let us also define the function ηβ : [0,1)→ [0,1] by

ηβ (t) := dimH Kβ (t). (2)

Then by the results from [4] the function ηβ is a continuous, monotone function
with ηβ (0) = 1 and ηβ (1) = 0 and such that η ′

β
(t) = 0 for Lebesgue almost every

t ∈ [0,1). Denote by Bβ the bifurcation set of ηβ , i.e., the set of t ∈ [0,1) where
the function ηβ is not locally constant. Since ηβ is continuous, Bβ has no isolated

University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
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points. For the doubling map Nilsson proved in [2] that the bifurcation set B2 of
this dimension function is a Cantor set of full Hausdorff dimension. In [1] Carminati
and Tiozzo proved for the maps x 7→ kx (mod 1) (k ∈ N≥2) that at every bifurcation
parameter t of the function t 7→ dimH K(t) the local Hölder exponent equals the value
of the function itself. Both [2] and [1] used the fact that B2 equals the set E2 :=
{t ∈ [0,1) : T n

2 (t)≥ t for any n≥ 0}, proved in [2]. Urbański proved in [4] that for
any t ∈ E2,

lim
δ→0

dimH
(
E2∩ (t−δ , t +δ )

)
= dimH K(t). (3)

Similar to β = 2 we define the set Eβ for β ∈ (1,2) as

Eβ :=
{

t ∈ [0,1) : T n
β
(t)≥ t for any n≥ 0

}
. (4)

One might expect that the behaviour of Eβ is similar to that of E2 = B2. Some of our
results indicate similarities between the sets E2 and Eβ . Namely, we have

Theorem 1. For any β ∈ (1,2) the set Eβ is a Lebesgue null set of full Hausdorff
dimension.

This result is unexpected, since the symbolic dynamical system associated to the β -
transformation becomes more and more restricted as β → 1. Apparently this has no
significant influence on the size of Eβ . For other properties we identify a set of β ∈
(1,2) which have more similarities as β = 2. To be able to do so we define cyclically
balanced words and Sturmian words.
For any word u ∈ {0,1}∗, use |u|1 to denote the number of ones. A word w is called
balanced if for every two factors u,v of w of the same length we have

∣∣|u|1−|v|1∣∣≤ 1
and cyclically balanced if w2 is balanced. Let w ∈ {0,1}∞ be a sequence. If it is non-
periodic and

∣∣|u|1− |v|1∣∣ ≤ 1 for any two factors u and v of w, then the sequence
is called Sturmian. Let α : (1,2)→ {0,1}N denote the function assigning to β the
corresponding quasi-greedy β -expansion of 1, i.e.,

α(β ) = α1(β )α2(β ) · · · ,

where 1 = ∑n≥1
αn(β )

β n and α(β ) does not end in an infinite string of zeros. We define
the set

R := {β ∈ (1,2) : α(β ) is cyclically balanced or Sturmian} .

As the following theorem will show this will be the set that has similarities with β = 2.

Theorem 2. For β ∈ R the following statements hold.

(i) Eβ is a Cantor set. Furthermore, for any t ∈ Eβ we have

lim
δ→0

dimH
(
Eβ ∩ (t−δ , t +δ )

)
= ηβ (t). (5)

(ii) The survivor set Kβ (t) has the following properties.
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Fig. 1: Left: the graph of ηβ with β the golden mean. Right: the graph of ηβ with β

the tribonacci constant.

• If t ∈ Eβ , then dimH
(
Kβ (t)∩ [t, t +δ )

)
= ηβ (t) for all δ > 0.

• If t /∈ Eβ , then Kβ (t)∩ [t, t +δ ) = /0 for some δ > 0.

On the other hand, many of our results show that there are fundamental differences
between E2 and Eβ as well. For β ∈ (1,2) the set Eβ has no isolated points if and only
if β ∈ R. Moreover, the Hausdorff dimension of R is zero. In other words, in most
cases Eβ 6= Bβ since ηβ is continuous.
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Let us now define

C3 = {β ∈ (1,2) : the orbit of 1 under the map Tβ avoids [0,δ ) for some δ > 0}.
(6)

We have the following theorem

Theorem 3. Let β ∈ (1,2). The set Eβ ∩ [0,δ ) has isolated points for all δ > 0 if and
only if β 6∈C3.

Note that R⊂C3. In [3] it is shown that C3 is a Lebesgue null set with dimH(C3) = 1.
What we find is that for almost all β ∈ (1,2) any neighbourhood of zero contains both
isolated points and non-isolated points.
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Expansions in non-integer bases in control
problems

Paola Loreti

In this talk we discuss some classes of expansions in non integer-bases describing
how bases can represent physical properties of the system and the alphabet can be
associated to a control acting on the system. Then we discuss a result obtained in
collaboration with C. Baiocchi and V. Komornik (work in progress).

Paola Loreti
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Periodic representations in algebraic non-integer
base

Tomáš Vávra

Abstract We consider (β ,A )-representations of the form ∑
k
i=−∞ aiβ

i with algebraic
base β , |β |> 1, and a finite alphabet A ⊂Q(β ).

We study the following problem: “For which bases β does there exist an alphabet
A such that each element of Q(β ) has eventually periodic (β ,A )-representation?”

We show that this question can be answered in the affirmative if β has no Galois
conjugates on the unit circle. This is an extension of the result of of Baker, Masáková,
Pelantová, and Vávra.

It remains to solve the problem for the bases that have a conjugate on the unit
circle. Such a class of numbers contains for example the Salem numbers for which is
the positive answer to our question conjectured by K. Schmidt. We will discuss the
possible application of our method to these cases.

This is a joint work with V. Kala.

Tomáš Vávra
Department of Algebra, Charles University, Sokolovská 83, 175 86 Praha 8, Czech Republic, e-mail:
avrato@gmail.com
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Self-similar manipulators, Fibonacci sequence
and number systems

Anna Chiara Lai

Abstract We introduce a model for planar manipulators characterised by a self-
similar morphology. We show that related control problems can be set in the frame-
work of non-standard number systems and theory of Iterated Function Systems. We
then focus on models for snake-like manipulators based on Fibonacci sequences:
reachability and local controllability are investigated. This presentation is based on
joint works with Paola Loreti and Pierluigi Vellucci.

1 Introduction

A manipulator is a robotic device composed by several rigid, possibly extensible,
links joint by rotating junctions. Robot fingers, snake-like manipulators and robot
octopus-inspired tentacles are examples of manipulators. The motion of planar ma-
nipulators is constrained on the plane, while redundant manipulators are characterised
by a number of links which is gretar than the degrees of freedom of the device. We
study a model for planar manipulators with an arbitrarily large number of links, the
so-called hyper-redundant planar manipulators. This class of robotic arms is known-
ing an increasing interests among researchers due to their good performances in
constrained enviroments [1]. The peculiarity of the model presented here is a self-
similarity assumption on the links, that gives access to classical methods of the the-
ory of Iterated Function Systems for the investigation of the reachable workspace. We
then focus on the particular case of links scaling according to Fibonacci sequence.

In order to build our model, we assume links and junctions composing the ma-
nipulator to be thin, so to be respectively approximated by their middle axes and
barycentres. We also assume axes and barycentres to be coplanar and, by employing

Anna Chiara Lai
Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via
Scarpa, 16, 00181 Roma, e-mail: anna.lai@sbai.uniroma1.it
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the isometry between R2 and C, we use the symbols x0,x1, ...,xn ∈ C to denote the
position of the barycentres of the junctions. We define lk as the maximal length of the
k-th link. A binary control uk ∈ {0,1} rules the extension of the k-link in particular
we set |xk−xk−1|= uklk, so that if uk = 1 then the k-th link has length lk and if uk = 0
then the k-th link is unextended and the k-th and the k−1-th joints coincide. Moreover
a binary control vk rules the rotation of the k-th link: if vk = 0 then the k− 1-th link
and the k-th link are collinear, if vk = 1 they form an angle π−ω , ω ∈ (0,π) is fixed.
In view of these assumptions, the position of k-th junction xk depends on the k−1-th
junctions according to the discrete controlled dynamical system:

xk = xk−1 +uklke−iω ∑
k
j=1 v j . (1)

A closed formula for xk is given by

xk =
n

∑
k=0

uklke−iω ∑
n
j=1 v j . (2)

We say that a sequence (lk) in R is Linear-Contractive-Recursive (LCR) if there
exists an integer n ∈ N and a linear map F : Rn→ R satisfying lk = F(lk−1, . . . , lk−n)
for every k > n and there exists L < 1 such that |F(x)−F(y)| < L||x− y||∞, where
||(x1, . . . ,xn)||∞ := max{|xk|,k = 1, . . . ,n} denotes the L∞-norm of x ∈ Rn. We are
interested in the asymptotic reachable workspace

W := { lim
n→∞

xn(u,v) | u,v ∈ {0,1}∞} =

{
∞

∑
k=0

uklke−iω ∑
n
j=1 v j | u,v ∈ {0,1}∞

}
.

Also we investigate a subset of W corresponding to the so called full-extension con-
figurations, characterised by extension controls constantly equal to 1:

E := { lim
n→∞

xn(1,v) | v ∈ {0,1}∞}=

{
∞

∑
k=0

lke−iω ∑
n
j=1 v j | u,v ∈ {0,1}∞

}
.

Example 1. The geometric sequence lk = q−k for some q > 1 is LCR. Indeed lk =
lk−1q−1 for every k ∈ N. In this case the asymptotic reachable workspace W is
a self-similar set [3]. Moreover note that the full-rotation configurations x(u,1) =
∑

∞
k=0 uk

e−iωk

ρk are expansions in the complex base q := ρe−iω with digits (uk).

Example 2. The scaled Fibonacci sequence lk = fkq−k is LCR, where fk is the k-th
Fibonacci number, q > ϕ and ϕ is the Golden Mean. We discuss this case in Section
3 below.

2 Self-similar manipulators

In [4], the properties of LCR sequences are applied to the study of a simplified ver-
sion of (1) corresponding to case un ≡ 1, i.e., to the full-extension configurations. In
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particular, a relation with fractal geometry is established: the reachable set is showed
to be a suitable projection of a self-similar set. The core idea is to build an Iterated
Function System (IFS) naturally associated to (lk). To this end, recall that the dual of
Rn is isomorphic to Rn itself, namely every linear map F : Rn→ R can be identified
with an element a ∈ Rn. In other words, there exists a = (a1, . . . ,an) ∈ Rn such that
for every k > n

lk = 〈a,(lk−1, . . . , lk−n)〉.

Now, we define the n×n matrix

A :=
(

a1 . . .an−1 an
In−1 0n−1

)
,

where In−1 denotes the (n−1)-dimensional identity matrix. By construction, for ev-
ery k > n

A(lk−1, lk−2, . . . , lk−n)
T = (lk, lk−1, . . . , lk−n+1)

T , (3)

that is A acts on (lk) as a shift operator with window of length n. We say that a map
F is eventually contractive if some of its iterations Fk, with k sufficiently large, is
a contractive map. We call a finite set of eventually contractive maps an eventually
contractive IFS. We now consider the affine eventually contractive IFS (Fu)u∈{0,1}
defined on Cn

Fu(x) := e−iωu(Ax+B) u ∈ {0,1}, (4)

where B = (ln, ln−1, . . . , l1)T . Note that by (3)

AkB = (lk+n, . . . , lk+1)
T ∀k > 0. (5)

Moreover by Hölder inequality the spectral radius of A is lower than 1 and it can be
proved that this a sufficient condition to have an unique compact attractor for the IFS
(Fu)u∈{0,1}.

Theorem 1 ([4]). Let F (S) := ∪u∈{0,1}Fu(S) be the Hutchinson operator associated
to (Fu)u∈{0,1} and denote by π1 the projection of a vector of Cn on its first compo-
nent. Let Q∞ be the (unique) invariant set of (Fu)u∈U . Then asymptotic reachable
workspace corresponding to full extension configurations E satisfies

E =

{
∞

∑
k=0

lke−iω ∑
k
n=0 vn | vn ∈ {0,1}

}
= π1(Q∞)

and for every bounded set S⊂ Cn we have E = π1(limk→∞ F k(S)).

3 Fibonacci manipulators

We assume now that the length of the links is governed by the recursive relation
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lk+1 =
1
q

lk +
1
q2 lk−1

with l0 = 1 and l1 = 1
q for some q > ϕ – recall that ϕ denotes the Golden Mean.

The assumption q > ϕ ensures the convergence of the series ∑
∞
k=0 lk, representing the

maximal total length of the manipulator: a closed formula for (lk) is given by

lk =
fk

qk .

where ( fk) is Fibonacci sequence, namely f0 = f1 := 1 and fk+2 = fk+1 + fk for all
k ≥ 0 and one has that the radius of convergence of the power series ∑k=0 fkyk is 1

ϕ
.

The following local controllability holds1

Theorem 2 ([6]). Let p ∈ N and q(p) be the greatest real solution of the equation

∞

∑
k=0

fpk

qpk = 2.

If ω = 2π
d
p for some coprime integers d, p ∈ N and if q ∈ (ϕ,q(p)], then the asymp-

totic reachable workspace

W =

{
∞

∑
k=0

uk
fk

qk e−iω ∑
k
n=0 vn | u,v ∈ {0,1}∞

}

contains a neighborhood of the origin.

We present also a result on the quantity

L(u) =
∞

∑
k=0

uk
lk
qk

representing the total length of manipulator corresponding to the extension control
sequence u ∈ {0,1}∞. We consider the set

L := {L(u) | u ∈ {0,1}∞}=

{
∞

∑
k=0

uk
fk

qk | u ∈ {0,1}
∞

}
.

In order to give a complete characterisation of L we introduce the quantities:

1 We recall that a manipulator is locally controllable if its reachable workspace contains a neighbor-
hood of the origin
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S(q, j) :=
∞

∑
k=0

f j+k

qk

Q(−1) := ϕ;
Q( j) := greatest solution of the equation S(q, j+1) = q f j

=
1

2 f j
( f j+2 +

√
f 2

j+2 +8 f 2
j ).

Note that Q(0) = 1+
√

3.

Theorem 3 ([6, 2]). For all j ≥ 0 if q ∈ (Q( j−1),Q( j)], then L is composed by the
disjoint union of 2 j intervals:

L =
⋃

u0,...,u j−1∈{0,1}

[
j−1

∑
k=0

fk

qk uk,
j−1

∑
k=0

fk

qk uk +S(q, j)

]
. (6)

In particular, if q ∈ (ϕ,1+
√

3], then L is the interval [0,∑∞
k=0

fk
qk ].

Moreover if q≥ 1
2 (ϕ

2 +
√

ϕ2 +1) then the map u 7→ xu = ∑
∞
k=0

fk
qk uk is increasing

with respect to the lexicographic order and L is a totally disconnected set.
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Digit frequencies and self-affine sets with
non-empty interior

Simon Baker

Abstract In this talk I will discuss recent results on digit frequencies in the setting of
expansions in non-integer bases, and self-affine sets with non-empty interior. Within
expansions in non-integer bases I will give details of a recent result which states
that if β ∈ (1,1.787 . . .) then every x ∈ (0, 1

β−1 ) has a simply normal β -expansion.

Employing similar ideas I will show that if β ∈ (1, 1+
√

5
2 ) then every x ∈ (0, 1

β−1 ) has
a β -expansion for which the digit frequency does not exist, and a β -expansion with
limiting frequency of zeros p, where p is any real number sufficiently close to 1/2.
For a class of planar self-affine sets I will show that if the horizontal contraction lies
in a certain parameter space and the vertical contractions are sufficiently close to 1,
then every nontrivial vertical fibre contains an interval. This approach lends itself to
explicit calculation and give rise to new examples of self-affine sets with non-empty
interior. One particular strength of this approach is that it allows for different rates of
contraction in the vertical direction.

Simon Baker
Mathematics institute, University of Warwick, Coventry, CV4 7AL, UK e-mail: simon-
baker412@gmail.com
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Fig. 1: An example of a self-affine set where it can be shown that each vertical fibre
contains an interval.



Essentially nonnormal numbers for random
Cantor series expansions

Bill Mance and Roman Nikiforov

The set of essentially nonnormal numbers in base b, Lb, consists of those numbers
where no digital frequencies exists in their b-ary expansion. It was proven by S. Al-
beverio, M. Pratsiovytyi, and G. Torbin in [2] that Lb has full Hausdorff dimension.
We extend this result to a large class of Cantor series expansions and considering
numbers not only whose digital frequencies do not exist but whose block frequencies
also do not exist.

A basic sequence is a sequence of integers greater than or equal to 2. Given a
basic sequence Q = (qn)

∞
n=1, the Q-Cantor series expansion of a real number x is the

(unique) expansion of the form

x = E0 +
∞

∑
n=1

En

q1q2 · · ·qn
(1)

where E0 = bxc and En is in {0,1, · · · ,qn−1} for n≥ 1 with En 6= qn−1 infinitely of-
ten. For a basic sequence Q = (qn), a block B = (b1,b2, · · · ,b`), and a natural number
j, define

IQ, j(B) =
{

1 if b1 < q j,b2 < q j+1, · · · ,b` < q j+`−1
0 otherwise .

and let

Qn(B) =
n

∑
j=1

IQ, j(B)
q jq j+1 · · ·q j+`−1

.

A real number x is Q-normal if for all blocks B such that limn→∞ Qn(B) = ∞
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Roman Nikiforov
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lim
n→∞

NQ
n (B,x)
Qn(B)

= 1.

where NQ
n (B,x) is the number of occurences of the block B in the sequence (Ei)

n
i=1

of the first n digits in the Q-Cantor series expansion of x. Motivated by this definition

we say that x is Q-essentially nonnormal if the limit limn→∞
NQ

n (B,x)
Qn(B)

does not exist for
all B such that limn→∞ Qn(B) = ∞ and call this set L∗Q. Clearly, when qn = b for all
n, we have Lb ( L∗Q. We improve the result in [2] by not only showing that L∗Q has
full Hausdorff dimension in this special case, but that its Hausdorff dimension is 1
for other classes of basic sequences. Furthermore, we will show that the Hausdorff
dimension of L∗Q will be 1 almost surely when the bases qn are i.i.d. random variables
where the expecation of E[logq1] < ∞. Furthermore, our result will even hold if we
consider the set LAP

Q of real numbers where a similar limit doesn’t exist for numbers
whose Cantor series digits are sampled along all nontrivial arithmetic progressions.

Our construction surprisingly will use a recent result of Joseph Vandehey on num-
bers normal with respect to the regular continued fraction expansion. In [1], he proved
that if x = [a0;a1,a2, · · · ] is the continued fraction of x and if x is continued fraction
normal, then for every pair of integers m,r with m ≥ 2 and r ≥ 0, the real number
[0;ar,am+r,a2m+r, · · · ] is not normal with respect to the regular continued fraction
expansion. We will use this property to construct members of LAP

Q .
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Computing with generalized number systems
using the computer algebra system SYGNM

Tamás Krutki, Bence Németh and Attila Kovács

Abstract As computational methods become increasingly important in scientific re-
search and education there is a high demand for all kinds of mathematical software.
Computer algebra systems aim to provide both symbolic and numerical capabilities
covering a wide range of mathematical topics. The development of some of the most
widely used computer algebra systems has began over 30 years ago, which means
that these systems are outdated in some aspects and do not fully take advantage of
new technologies and software engineering methods that appeared since then. A new,
general purpose computer algebra system architecture and its implementation is pre-
sented which aims to fix several problems of current systems. Part of this new system
is a built-in package for computations with generalized number systems, contain-
ing functionality which is not found in other computer algebra systems. The number
systems package is efficient and well integrated into the general purpose computer
algebra environment, however it is also available as a separate C++ library. The cur-
rent capabilities of the number systems package and plans for future number system
related developments are presented. Both the new computer algebra system and the
generalized number systems library will be released as open source software.
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Examining the number system property with
probabilistic algorithms

Péter Hudoba and Attila Kovács

Abstract The world of generalized number systems contains many challenging ar-
eas. In some cases the complexity of the arising problems is unknown. Researching
these problems are important since they can be applied e.g. in cryptography. In this
talk we focus on experimenting with probabilistic methods by which we can support
the analysis of the “decision problem”. To be more precise we present two Las Vegas
type probabilistic algorithms and measurements regarding the attraction domain dis-
tributions. We implemented our solutions in the computer algebra system Sage (some
parts in C++).

1 Extended abstract

Let Λ be a lattice in Rn and let M : Λ →Λ be a linear operator such that det(M) 6= 0.
Let furthermore 0∈D⊆Λ be a finite subset. Lattices can be seen as finitely generated
free Abelian groups.

Lattices have many significant applications in pure mathematics (Lie algebras,
number theory and group theory), in applied mathematics (coding theory, cryptog-
raphy) because of conjectured computational hardness of several lattice problems,
and are used in various ways in the physical sciences.

In this talk we consider number expansions in lattices.

Definition 1. The triple (Λ ,M,D) is called a number system (GNS) if every element
x of Λ has a unique, finite representation of the form

Péter Hudoba
Eötvös Loránd University, Budapest Hungary, e-mail: peter.hudoba@inf.elte.hu

Attila Kovács
Eötvös Loránd University, Budapest Hungary e-mail: attila.kovacs@inf.elte.hu
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x =
L

∑
i=0

Midi ,

where di ∈ D and L ∈ N. L is the length of the expansion.

Here M is called the base and D is the digit set. It is easy to see that similarity
preserves the number system property, i.e., if M1 and M2 are similar via the matrix Q
then (Λ ,M1,D) is a number system if and only if (QΛ ,M2,QD) is a number system
at the same time. If we change the basis in Λ a similar integer matrix can be obtained,
hence, no loss of generality in assuming that M is integral acting on the lattice Zn.

If two elements of Λ are in the same coset of the factor group Λ/MΛ then they
are said to be congruent modulo M. The following theorem is well-known.

Theorem 1. If (Λ ,M,D) is a number system then

1. D must be a full residue system modulo M,
2. M must be expansive,
3. det(In−M) 6=±1. (unit condition)

If a system fulfills the first two conditions then it is called a radix system.

Let ϕ : Λ →Λ , x
ϕ7→M−1(x−d) for the unique d ∈ D satisfying x≡ d (mod M).

Since M−1 is contractive and D is finite, there exists a norm ‖.‖ on Λ and a constant C
such that the orbit of every x∈Λ eventually enters the finite set S = {x∈Λ | ‖x‖<C}
for the repeated application of ϕ . This means that the sequence x,ϕ(x),ϕ2(x), . . . is
eventually periodic for all x ∈ Λ . Clearly, (Λ ,M,D) is a number system iff for every
x ∈Λ the orbit of x eventually reaches 0.

A point p is called periodic if ϕk(p) = p for some k > 0. The orbit of a periodic
point p is a cycle. The set of all periodic points is denoted by P .

The following problem classes are in the mainstream of the research: for a given
(Λ ,M,D)

• the decision problem asks if the triple form a number system or not.
• the classification problem means finding all cycles (witnesses).
• the parametrization problem means finding parametrized families of number sys-

tems.
• the construction problem aims at constructing a digit set D to M for which

(Λ ,M,D) is a number system.

The algorithmic complexity of the decision and classification problems is still un-
known. In this talk we propose two new probabilistic methods improving the running
time of determining the number system property.

• We analysed the Garsia operators (the companions of all expansive polynomials
with constant term ±2) and monitored the orbits of randomly chosen points. In
case of non-number systems in order to find a witness it was enough to calculate
the orbit of a very few number of randomly chosen points from S.
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• According to the conjecture of the second author ([2]) we obtained that in a non-
number system case there were always at least one point around zero (having co-
ordinates from {0,±1}) that converged to a non-zero periodic point. If we combine
this observation with the previous algorithm we can find witnesses really fast with
high probability.

References
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Normal Subsequences of Automatic Sequences

Clemens Müllner

In 2013 Drmota, Mauduit and Rivat observed that the subsequence along the squares
(t(n2))n≥0 of the Thue-Morse sequence (t(n))n≥0 (that can be defined by t(n) =
s2(n) mod 2, where s2(n) denotes the binary sum-of-digits function) is a normal se-
quence on the alphabet {0,1}.

The purpose of this talk is to discuss this result also from a more general point
of view. The Thue-Morse sequence is a special case of an k-automatic sequence
(a(n))n≥0, that is, a sequence where the n-th element is the output of a deterministic fi-
nite state automaton, where the input is the base k expansion of n. Automatic sequence
have a sub-linear subword complexity - so they are far from being normal. Further-
more, linear subsequences of automatic sequences are again automatic sequence and,
therefore, have again sub-linear subword complexity. However, when we consider a
subsequence a(φ(n)), where φ(n)/n→ ∞ the situation can change completely - as
(t(n2))n≥0 shows. Thus, we discuss the question for which subsequences - and for
which automatic sequences - we may expect a normal sequence.

Recent results in this direction, e.g., by Lukas Spiegelhofer and the author (who
considered φ(n) = bncc for the Thue-Morse sequence, where 1 < c < 3/2) and by
the author (who considered block-additive functions like the Rudin-Shapiro sequence
and φ(n) = n2) indicate that there might be a more general principle behind.
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Totally Real Algebraic Numbers, Bogomolov
Property, and Dynamical Zeta Function of the
β -shift

Jean-Louis Verger-Gaugry

Abstract Schinzel (1973) obtained the lower bound 1
2 log(1+

√
5/2) = 0.24 . . . for

the Weil’s height h(α) of any totally real algebraic integer α 6= 0, 6= ±1, optimally.
This problem of minoration of the height is related to the problem of Lehmero for
Salem numbers with Mahler’s measure M(α). Bombieri and Zannier (2001) intro-
duced the property of Bogomolov for any field F ⊂Q, by analogy with Bogomolov’s
Conjecture: by definition F has the property of Bogomolov relative to h if and only if
h(α) = 0 or admits a lower bound > 0 for any α ∈ F . Amoroso and Zannier (2000)
proved it for Kab, where K is a number field. Bombieri and Zannier (2001) for to-
tally p-adic fields, Habegger (2011) for Q(Etors), where E/Q is an elliptic curve. Fili
and Miner (2016), using limit equidistribution theorems of Favre and Rivera-Letelier,
proved liminfh(α)≥ 0.12 . . . for α in the field of totally real algebraic numbers Qtr;
Pottmeyer (2016) obtained the limit infimum liminfh(α) ≥ 7

4π2 ζ (3) by other tech-
niques. In this work we show that the dynamical zeta function of the β -shift relative
to the arithmetical Rényi-Parry dynamical system, with β = α , α ∈ Qtr, allows to
prove that the property of Bogomolov for Qtr is true, with a global explicit minora-
tion.
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On the Hausdorff dimension faithfulness of
expansions with infinite alphabet and properties
of non-normal numbers

Roman Nikiforov

The notion of the Hausdorff dimension is well known, but in many cases it is a rather
non-trivial problem to give the exact dimension. One approach to the simplification of
the calculation of the Hausdorff dimension consists in some restrictions of admissible
coverings.

A fine covering family Φ is said to be a faithful family of coverings for the Haus-
dorff dimension calculation on [0,1] if dimH(E,Φ) = dimH(E),∀E ⊆ [0,1].

The first phenomenon we will talk about is connected with the problem of faith-
fulness of the family of cylinders generated by the expansions with infinite alphabet
(continued fractions, Lüroth expansion, Sylvester expansion and other).

We will also discuss properties of sets of essentially non-normal numbers defined
in different systems of numeration.

Roman Nikiforov
Dragomanov National Pedagogical University, Pyrogova St. 9, 01601, Kyiv, Ukraine, e-mail: rniki-
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On Weyl’s theorem on Uniform Distribution and
Ergodic Theorems

Radhakrishnan Nair and Entesar Nasr

We say sequence a {x1, . . . ,xN} is uniformly distributed modulo one if

lim
N→∞

1
N

#{1≤ n≤ N : xn ∈ I}= |I|

for every interval I ⊆ [0,1).
We also say a sequence of natural numbers (kn)n≥1 is Hartman uniform distributed

(on Z) if it is uniformly distributed in residue classes modulo m, for each natural num-
ber m > 1, and for each irrational number α , the sequence ({knα})n≥1 is uniformly
distributed modulo one. Here and henceforth, for a real number y we use {y} to de-
note its fractional part. Note that if (kn)n≥0 is Hartman uniformly distributed, and if
we set

F(N,z) :=
1
N

N−1

∑
n=0

zkn , (N = 1,2, · · ·)

we have F(N,1) = 1 for all N ≥ 1 and if z 6= 1 we have limN→∞ F(N,z) = 0. A list of
examples is given in the next section .

Let (X ,B,µ) be a probability space and let T : X → X be a measurable map, that
is also measure-preserving. That is, given A ∈B, we have µ(T−1A) = µ(A), where
T−1A denotes the set {x ∈ X : T x ∈ A}. We call (X ,B,µ,T ) a dynamical system. We
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say the dynamical system is ergodic if T−1A = A for A ∈B means that either µ(A)
or µ(X\A) is 0.

We say (kn)n≥0 is Lp good universal if for each dynamical system (X ,B,µ,T ) and
for each f ∈ Lp(X ,β ,µ) the limit

lim
N→∞

1
N

N−1

∑
n=0

f (T knx),

exists µ almost everywhere.
Let ψ(x) = α0 +α1x +α2x2 + . . .+αkxk, with αk irrational. In the sequel call

(k j) j≥1 good if it is Hartman uniform distributed on Z and L∞-good universal.

Theorem 1. The sequence (ψ(k j)) j≥1 is uniform distribution modulo one if (k j) j≥1
is good.

This theorem has a number of implications.
We say a set of natural numbers S has positive Banach density B(S) if there exists a

sequence of intervals (Ik)
∞
k=1 in N with Ik = [ak,bk]∩N and bk−ak tending to infinity

as k tends to infinity such that

lim
k→∞

|S∩ Ik|
|Ik|

= B(S)

and for any other sequence of intervals (I′k)
∞
k=1 in N such that |I′k| tends to infinity as

k tends to infinity we have

limsup
k→∞

| S∩ I′k |
| I′k |

≤ B(S).

We say a sequence k of positive integers is a set of intersectivity if given any set of
natural numbers S of positive Banach density B(S) there exists an integer k in k such
that we can find s1 and s2 both in S satisfying

k = s1− s2.

We say a sequence of natural numbers k = (k j)
∞
j=1 is a sequence of Poincaré re-

currence if given any measure preserving dynamical system on a probability space
(X ,β ,µ,T ) and any set A in β of positive measure there exists an element k of k such
that

µ(A∩T−kA)> 0.

Theorem 2. Suppose φ is a polynomial mapping the natural numbers to themselves,
such that φ(0) = 0. Then the sequence (φ(k j)) j≥1 is Poincaré recurrent if (k j) j≥1 is
good.

Theorem 3. Suppose φ is a polynomial mapping the natural numbers to themselves,
such that φ(0) = 0. Then the sequence (φ(k j)) j≥1 is intersective if (k j) j≥1 is good.
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For f ∈ Lp(X ,B,µ), with p≥ 1 set ‖ f‖p = (
∫

X | f |pdµ)
1
p .

Theorem 4. Suppose that φ is a polynomial mapping the natural numbers to them-
selves, such that φ(0) = 0 and that (k j) j≥1 is good. Then for the dynamical system
(X ,B,µ,T ) and f ∈ Lp(X ,B,µ), for p≥ 1. Then there exists f such that

lim
N→∞

∥∥∥∥∥ 1
N

N−1

∑
n=0

f (T φ(kn)x)− f

∥∥∥∥∥
p

= 0.

It is natural to ask if Theorem 1.5 is true almost everywhere.
We say a set S contained in Z is Glasner if for every infinite set A contained in T

and ε > 0, some dilation nA = {nx : x ∈ A} is ε dense (that is nA intersects every
interval of length ε). This definition is motivated by the fact that in 1979 S. Glasner
showed that given an infinite set A ⊂ T there exists a natural number n such that nA
is ε dense in T. We have

Theorem 0.6 : Suppose (kn)n≥1 good. Let ψ be a polynomial of degree k ≥ 1
mapping the natural numbers to themselves. Suppose δ > 0. Then there exists
ε(ψ,δ ) > 0 such that if 0 < ε < ε(ψ,δ ) given any set X contained in T of
cardinality s with

s > (
1
ε
)2k+δ

has an ε dense dilation of the form ψ(kn)X, for some integer n.

1 List of known good sequences

1. The natural numbers: The sequence (n)∞
n=1 is L1-good universal. This is Birkhoff’s

pointwise ergodic theorem.
2. Condition H: Sequences (an)

∞
n=1 that are both Lp-good universal and Hartman

uniformly distributed can be constructed as follows. Denote by [x] the integer part
of a real number x. Set an = [τ(n)] (n = 1,2, . . .), where τ : [1,∞)→ [1,∞) is
a differentiable function whose derivative increases with its argument. Let Ωm
denote the cardinality of the set {n : an ≤ m}, and suppose, for some function
ϕ : [1,∞)→ [1,∞) increasing to infinity as its argument does, that we set

ρ(m) = sup
{z}∈

[
1

ϕ(m)
, 1

2

)
∣∣∣∣∣ ∑

n : an≤m
e(zan)

∣∣∣∣∣,
where e(x) = e2πix for a real x. Suppose also, for some decreasing function ρ :
[1,∞)→ [1,∞) and some positive constant ω > 0, that
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ρ(m)+Ω[ϕ(m)]+
m

ϕ(m)

Ωm
≤ ωρ(m).

Then if we have
∞

∑
n=1

ρ(θ n)< ∞

for all θ > 0, we say that (an)
∞
n=1 satisfies condition H.

Sequences satisfying condition H are known to be both Hartman uniformly dis-
tributed and Lp-good universal. Specific sequences of integers that satisfy condi-
tion H include an = [τ(n)] (n = 1,2, . . .) where:

I. τ(n) = nγ if γ > 1 and γ /∈ N.
II. τ(n) = elogγ n for γ ∈ (1, 3

2 ).

III.τ(n) = bknk + · · ·+b1n+b0 for bk, . . . ,b1 not all rational multiplies of the same
real number.

IV.Hardy fields: By a Hardy field, we mean a closed subfield (under differentia-
tion) of the ring of germs at +∞ of continuous real-valued functions with ad-
dition and multiplication taken to be pointwise. Let H denote the union of all
Hardy fields. Conditions for (an)

∞
n=1 = ([η(n)])∞

n=1, where η ∈H to satisfy
condition H are given by the hypotheses of Theorems 3.4, 3.5 and 3.8. in [?].

3. A random example: Suppose that S = (bn)
∞
n=1 is a strictly increasing sequence

of natural numbers. By identifying S with its characteristic function χS, we may
view it as a point in Λ = {0,1}N, the set of maps from N to {0,1}. We may
endow Λ with a probability measure by viewing it as a Cartesian product Λ =

∏
∞
n=1 Xn, where, for each natural number n, we have Xn = {0,1} and specify the

probability νn on Xn by νn({1}) = ωn with 0≤ωn ≤ 1 and νn({0}) = 1−ωn such
that limn→∞ ωnn = ∞. The desired probability measure on Λ is the corresponding
product measure ν = ∏

∞
n=1 νn. The underlying σ -algebra A is that generated by

the cylinders
{(∆n)

∞
n=1 ∈Λ : ∆n1 = αn1 , . . . ,∆nk = αnk}

for all possible choices of n1, . . . ,nk and αn1 , . . . ,αnk . Then almost every point
(an)

∞
n=1 in Λ , with respect to the measure ν , is Hartman uniformly distributed.

See Proposition 8.2 (i) in [?] for the details of this. Again Hartman uniformly
distributed sequences are called ergodic sequences in this paper.

4. Block sequences: Suppose that (an)
∞
n=1 =

⋃
∞
n=1[dn,en] is ordered by absolute value

for disjoint ([dn,en])
∞
n=1 with dn−1 = O(en) as n tends to infinity. Note that this

allows the possibility that (an)
∞
n=1 is zero density. This example is an immediate

consequence of Tempelman’s semigroup ergodic theorem. See page 218 of [T].
Being a group average ergodic theorem this pointwise limit must be invariant.
which ensures that the block sequence must be Hartman uniformly distributed.
The proof of this, which we don’t need in this paper and is hence forgone is a
simple exercise in spectral theory.

5. Random perturbation of good sequences: Suppose that (an)
∞
n=1 is an Lp-good uni-

versal sequence which is also Hartman uniformly distributed. Let θ = (θn)
∞
n=1 be
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a sequence of N-valued independent, identically distributed random variables with
basic probability space (Y,A ,P), and a P-complete σ -field A . Let E denote
expectation with respect to the basic probability space (Y,A ,P). Assume that
there exist 0 < γ < 1 and β > 1/γ such that

an = O(enγ

) and E logβ

+ |θ1|< ∞.

Then (an + θn(ω))∞
n=1 is both Lp-good universal and Hartman uniformly dis-

tributed [NW].
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Fractals and space-filling curves viewed by a new
numerical computation system using infinities
and infinitesimals

Fabio Caldarola

Abstract In the first part of the talk we briefly introduce a new computational system
based on infinite and infinitesimal quantities and we show how to work numerically
with it in a very handy way. Then we describe the “state of the art” giving a quick
overview of how this new computational methodology has already been successfully
applied in a number of theoretical and computational research areas: if time allows
we will choose and explain briefly some examples.

In the second part we focus on some space-filling curves and d-dimensional frac-
tals, and we present a double level of treatment: at “finite” and at “infinite”. In the first
setting we analyze deeply the generating sequences of the considered fractals and, in
particular, we study the characteristics of various d-dimensional generalizations; in
the second setting we use the new computational machinery to investigate their be-
havior at “infinity” making a precise and detailed analysis of such geometric fractal
objects, in a similar way as for ordinary finite shapes and familiar geometric entities.

Lastly, adopting the new point of view, we show as each fractal or space-filling
curve considered previously, gives rise to a large family of infinitely many self-similar
objects.

1 Introduction

In this paper we want to give, rather than a detailed treatment of the topics of the
talk, some guidelines to introduce the reader to a new computational system, to show
him some of the several possible applications in different fields and, above of all,
to provide some references and a discussed bibliography for further, more complete
readings.

Fabio Caldarola
Dep. of Mathematics and Computer Science, University of Calabria, Cubo 31/B, Ponte Bucci, 87036
Rende (CS), Italy, e-mail: caldarola@mat.unical.it
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In particular the organization of the paper is as follows: in Section 2 we will give
the rudimenta of the mentioned new numerical system recently introduced by Ya. D.
Sergeyev; in its essence, it represents an alternative to the classical view of the set of
natural numbers N (and of the larger sets Z, Q, R), and it is simple to use as we or-
dinarily do with N. Sergeyev’s system is based on infinite and infinitesimal quantities
like Robinson’s approach to non-standard analysis (see [1]), but it is different from
the last, especially for the great versatility of use and its strong computational char-
acter. For detailed introduction surveys to Sergeyev’s system, which show how one
is able to work numerically with infinities and infinitesimals in a handy way as with
finite numbers, the reader can see [2, 3, 4, 5] and the book [6], written in a popular
way and easily understandable also by a high school student.
This computational methodology has already been successfully applied in a number
of theoretical and computational research areas as optimization and numerical differ-
entiation (see [7, 8, 9, 10]), cellular automata (see [11, 12]), Euclidean and hyperbolic
geometry (see [13, 14]), percolation (see [15, 16, 17]), fractals (see [18, 19, 20, 21, 22,
17]), infinite series and the Riemann zeta function (see [23, 24, 25]), the first Hilbert
problem, Turing machines and supertasks (see [26, 27, 28, 29]), numerical solution
of ordinary differential equations (see [30, 31, 32, 33]), etc.

In the talk at the conference we will focus on some space-filling curves and d-
dimensional fractals, referring to some works of the author ([34], [35], [18] and [36]),
but here, for problem of space, we give some details only for one of them: the d-
dimensional Sierpinski tetrahedron.
We want to point out that, for each of the mentioned objects of the talk and for the
d-dimensional Sierpinski tetrahedron in the following, we present a double level of
treatment: at “finite” and at “infinite”. In the first setting we analyze deeply the gener-
ating sequences which approximate the considered fractals, first in dimension 2 and
3 to have viewable pictures of them, then we study accurately the characteristics of
various d-dimensional generalizations. In the second setting, i.e. at infinity, almost all
measures related to such fractals (or space-filling curves) approaches 0 or +∞, and
we can not say any more by traditional analysis. For instance, these are totally indis-
tinguishable from classical mathematics, even though they have, per se, a completely
different meaning. So, using the new computational machinery we referred above to
investigate the behavior at “infinity”, we obtain, in each case, a whole family of values
expressed in the new system and, by defining equivalence relations between them, or
looking at their ratios written in power series in the new system, or employing other
methods, we are able to make a precise and detailed analysis of the behavior of such
geometric fractal objects, in a similar way as for ordinary finite shapes and familiar
geometric entities.
During the discussion of the topics we will suggest various further directions of re-
search and how it is possible to generalize the results communicated in the talk. We
in fact believe that papers using the new approach will be more and more numerous
in the next years for two main reasons: the great versatility which allows to apply the
new computational system to a really large variety of subjects, and the fact that it has
been introduced so recently that many of the possible application areas are still totally
unexplored.
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2 The new computational system: a brief description

In this section we want to give some of the strictly indispensable notions and some
examples that allow us to work with the new computational system. The main idea
followed by Ya. D. Sergeyev in introducing his new system, is to find a way to mea-
sure infinite and infinitesimal quantities in an easy, handy and useful way for calcu-
lations and applications. Hence, in the early 2000s, he proposed a system based on
two different fundamental units of measure: the familiar natural number 1 for finite
quantities and another that had the same functions as 1, but for infinite quantities:
it is the grossone, expressed by the new numeral©1 and formally introduced by the
Infinite Unit Axiom (IUA)(see, for example, [6, 2, 37]). The new infinite number ©1
has several different properties and characterizations: for instance, it represent the
number of elements in the set of natural numbers N, but it is necessary to emphasize
immediately that ©1 is not equal to the Cantor’s cardinality ω , ℵ0, ℵ1, etc., or to
other yet known entity or symbols. An important property we need for our employ of
the new computational method in this paper, is that©1 is the last element in the set of
natural numbers of the new system, and moreover, every sequential process can not
have more than©1 steps.
As regards explicit computations, the numeral©1 allows one to express and to order
a huge variety of numerals representing different infinities and infinitesimals; for in-

stance, ©1 ,
©1
3

, 2©1 , ©1 − 10, ©1 5.2 are examples of infinities and ©1 −1,
3
©1

, ©1 −10,

−©1 −5.2 are examples of infinitesimals.
The way to do computations inside the new system is easy and intuitive: for example,
in many simple cases it coincides with the one in the field of rational functions R[x],
where©1 takes the place of the unknown variable x. Even though the variety of possi-
ble operations, expressions and computations in the new system, is much larger than
the one in the field R[x], we remark that all they are quite intuitive and easy to use; in
the following we give some examples of computations and main relations:

• 0 ·©1 =©1 ·0 = 0, ©1 0 = 1, 0©1 = 0, 1©1 = 1, ©1 −©1 = 0,
©1
©1

= 1;

• 0 ·©1 −1 =©1 −1 ·0 = 0,
(
©1 −1

)0
= 1, ©1 −1−©1 −1 = 0,

©1 −1

©1 −1 = 1;

• ©1 ·©1 −1 = 1, ©1 −1 > 0, ©1 2 ·©1 −3.4 =©1 −1.4,
©1 2

©1 −3.4 =©1 5.4;

• 3 ·
(
©1 −4

)
= 3©1 −12,

(
3
2
©1 2 +3

)
·
(
1−2©1 −2)= 3

2
©1 2−6©1 −2;

•
©1 2.1 +2−3©1 −3.4

©1 1.1 +2©1 = 3©1 +2©1 −1.1−3©1 −4.5;

•
(
2©1
)3

= 23©1 ,
(
2 ·3©1 −5©1

)
·
(
−4 ·2©1

)
=−8 ·26©1 +20 ·©1 ·2©1 ;
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•
(
2©1 −3+3 ·2−2©1 ) · (22©1 −2 ·2−©1

)
= 23©1 −3 ·22©1 +1+6 ·2−©1 −6 ·2−3©1 ;

• 0 <
2π

©1 3.5 <
1
©1 2 < 1 <

©1
6
−4 <

©1
6

<©1 <©1 +3 <©1 2−4 < 2©1 −3©1 .

We think that the previous examples are enough to give an idea sufficiently clear
of how to do basic computations in the new system. We point out that it is also
possible to use an on-line calculator called the Infinity Computer and available at
[38]. For more details about the system, the way to do computations, and some
applications, the reader can see, for example, [2, 3, 4, 5, 6, 39, 40], or also sev-
eral other papers and information available at the home page of Ya. D. Sergeyev,
at http://wwwinfo.deis.unical.it/yaro/

Since the conference Numeration 2017 focuses also on mathematical logic, we
conclude this section by informing that, for a formal logic point of view on the theory
of grossone, the reader can also see, for example, the paper of G. Lolli [41]. Moreover,
in [42] it is possible to find a brief survey on the history of infinities and infinitesimals
in mathematics.

3 The Sierpinski d-dimensional tetrahedron

The Sierpinski gasket, also called the Sierpinski triangle and denoted by ∆ 2, is one of
the most known and very popular fractal set; it has the exterior shape of an equilateral
triangle, and is subdivided recursively into smaller similar triangles, from which the
central ones are removed at each step as in Fig. 1.

(a) ∆ 2
1 (b) ∆ 2

2 (c) ∆ 2
3

Fig. 1: The first three steps in the construction of the Sierpinski gasket ∆ 2, starting
from ∆0, the regular triangle of unitary side.

The equivalent 3-dimensional object of the Sierpinski gasket is called the Sierpin-
ski tetrahedron and denoted by ∆ 3: the first steps in its construction are shown in Fig.
2. But clearly, it is also possible to construct, in the same way, a d-dimensional fractal
object in every dimension d > 2: this is what we will do, with some details, in the
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(a) ∆ 3
1 (b) ∆ 3

2 (c) ∆ 3
3

Fig. 2: The first three steps in the construction of the 3-dimensional Sierpinski tetra-
hedron, starting from the regular tetrahedron ∆ 3

0 of side one.

following.
First of all we recall that the generalization of a triangle or tetrahedron to arbitrary
dimension d > 0, is what is called a d-simplex or, less commonly, a d-dimensional
tetrahedron. More precisely, a d-simplex is a d-dimensional polytope which is the
convex hull of d + 1 affinely independent points in RD, D > d + 1 and, of course, it
is called regular if all its edges have the same length.
The use of simplexes is widespread in many areas of mathematics like algebraic ge-
ometry, algebraic topology and especially in singular homology; but we advise the
reader that what in literature is called the standard d-simplex is different from our
notion of unitary d-simplex or unitary d-tetrahedron, denoted by ∆ d

0 and widely used
in the following. In fact, whilst the first has edge length

√
2 because it is the convex

hull of the standard basis (1,0, . . . ,1), . . . ,(0, . . . ,0,1) of Rd+1, that is{
(x0, . . . ,xd) ∈ Rd+1

∣∣∣∣∣ d

∑
i=0

xi = 1 and xi > 0 for all i = 0, . . . ,d

}
,

the second is a d-tetrahedron whose edges have all unitary length. We recall that the
d-volume of a regular d-simplex is equal to

√
d +1

d!
√

2d
· l d , (1)

where l is the length of its edges. Moreover, if 0 6 k 6 d, every k-dimensional face
(briefly k-face) of a d-simplex is a k-simplex itself, and since any k+ 1 points from
the d + 1 vertices of a d-simplex identify uniquely a k-face, then, the number of the
k-faces of a d-simplex is given by the binomial coefficient(

d +1
k+1

)
. (2)
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Now let d > 2 be a fixed integer; to build a fractal ∆ d which generalizes the Sierpinski
gasket ∆ 2 and the Sierpinski tetrahedron ∆ 3, we define a sequence

{
∆ d

n
}

n. Note that
∆ d

0 is yet defined and ∆ d
1 is the union of d+1 regular tetrahedra of side 1/2, each one

built in a corner of ∆ d
0 . Then we can adopt two equivalent inductive constructions at

the generic step n> 2 to obtain ∆ d
n : the first one consists to repeat a copy of ∆ d

1 , scaled
by ln−1 := (1/2)n−1, in each small tetrahedron of side ln−1 constituting ∆ d

n−1, instead
the second construction consists to replicate a copy of ∆ d

n−1, scaled by l1 = 1/2, in
each of the d +1 tetrahedrons of side l1 composing ∆ d

1 .
Finally, for every d > 2, the d-dimensional Sierpinski tetrahedron ∆ d is the limit
limn→+∞ ∆ d

n , and note that it is also equal to
⋂

n∈N ∆ d
n .

Now we want to attach to each of such fractal ∆ d , some sequences of real numbers{
vd,k

n
}

n which give a k-dimensional valuation of the elements of the generating se-
quence

{
∆ d

n
}

n. More precisely we pose the following

Definition 1. For all integers d > 2 and n > 0, let vd,d
n be the d-volume of ∆ d

n . More-
over, if 0 6 k < d, let vd,k

n be the sum of the k-volumes of the k-dimensional elements
(briefly k-elements) lying on the (d−1)-dimensional boundary surface of ∆ d

n .

The next proposition gives a general expression for vd,k
n , but first note that, if N(d)

n is

the number of tetrahedra of side ln =
(

1
2

)n

which make up ∆ d
n , then

N(d)
n = (d +1)n, (3)

for every n > 0.

Proposition 1. For all n > 0 and d > 2, we have

vd,k
n =


√

k+1

k!
√

2k
·
(

d +1
k+1

)
·
(

d +1
2k

)n

if 1 6 k 6 d,

(d +1)n+1 +d +1
2

if k = 0.

(4)

For the proofs of the results in this and the next section we refer to [34].
For every d > 2 and 0 6 k 6 d, we pose

vd,k
∞ := lim

n→+∞
vd,k

n (5)

and denote by dim(∆ d) the fractal dimension of ∆ d . For comprehensive references
about the general theory of the dimension of a fractal, the reader can see [43] or [44];
in our particular case, it is simple to prove that

dim(∆ d) =
ln(d +1)

ln2
= log2(d +1), (6)
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Table 1: The values of the limit 5 in dependence from d and k, until the dimension
d = 8 and for d = 15,32,63,127. It is obvious that in the missing lines, for example
d ∈ {16, . . . ,30} or d ∈ {32, . . . ,62}, the values of vd,k

∞ until k = 9, are the same as
for d = 15 and d = 31, respectively.

d dim
(
∆ d
)

vd,0
∞ vd,1

∞ vd,2
∞ vd,3

∞ vd,4
∞ vd,5

∞ vd,6
∞ vd,7

∞ vd,8
∞ . . .

2 log2 3 +∞ +∞ 0 - - - - - - . . .
3 2 +∞ +∞

√
3 0 - - - - - . . .

4 log2 5 +∞ +∞ +∞ 0 0 - - - - . . .
5 log2 6 +∞ +∞ +∞ 0 0 0 - - - . . .
6 log2 7 +∞ +∞ +∞ 0 0 0 0 - - . . .
7 3 +∞ +∞ +∞

35
3
√

2
0 0 0 0 - . . .

8 log2 9 +∞ +∞ +∞ +∞ 0 0 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 4 +∞ +∞ +∞ +∞

91
√

5
2 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 5 +∞ +∞ +∞ +∞ +∞

18879
√

3
10 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63 6 +∞ +∞ +∞ +∞ +∞ +∞

3235501
√

7
30 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
127 7 +∞ +∞ +∞ +∞ +∞ +∞ +∞

5957094385
84 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for every d > 2 (see, for example, [45]). In Table 1 there are collected some values
of vd,k

∞ and dim(∆ d). From Proposition 1, it is trivial that the sequence vd,k
n converges

if and only if d 6 2k− 1, and converges to a nonzero value if and only if k > 2 and
d = 2k−1; in the last case the limit value is

v2k−1,k
∞ =

√
k+1

k!
√

2k
·
(

2k

k+1

)
. (7)

It is also clear that the number of occurrences of +∞ in the d-th row of Table 1 is
given by dlog2(1+d)e for all d > 2 (cf. (6)), where dxe is the ceiling of x ∈ R.

4 The exact measures of the d-dimensional Sierpinski tetrahedron
through infinite and infinitesimal computation

In the previous section we computed vd,k
n for finite values of n and we obtained that

vd,k
∞ is zero, or a positive number equal to (7), or +∞: that is all what we can say

from classical analysis. It is also quite obvious that the various zeros and infinities
appearing in Table 1 have not the same meaning, because they arise from a compu-
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tation of a k-dimensional volume related to a d-dimensional object where k and d
are different for each entry. For example, v2,0

∞ , representing the infinite grow of the
number of vertices of ∆ 2

n , has a completely different meaning from v2,1
∞ , representing

the grow of its perimeter, or from v3,1
∞ , v4,2

∞ which comes from a 2-dimensional area,
or from v8,3

∞ which is related to a 3-volume in a 8-space, etc. But traditional analysis,
having got no appropriate language and notations, is not able to see these differences
and such infinite quantities are all equal, and denoted by the same symbol +∞. We
can also use the same argument for the zeros of Table 1, and hence it is clear that
traditional computing systems are inadequate to treat many phenomena occurring in
mathematics, like those we are speaking about.

In this section we show as, adopting the new computing system for infinities and
infinitesimals quantities based on the grossone©1 , we can give a rich description of
the behavior at infinity of the previous constructive processes as, and maybe more
than, the one at finite.
For example, if we execute©1 steps in the construction of ∆ d , we obtain the following
values for the related k-volumes

vd,k
©1 =

√
k+1

k!
√

2k

(
d +1
k+1

)
·
(

d +1
2k

)©1
(8)

in the case 1 6 k 6 d, and

vd,0
©1 =

d +1
2
· (d +1)©1 +

d +1
2

(9)

for k = 0 (see Proposition 1).

Definition 2. Let α and β be any quantities of the new computational system.

(i) α and β are said of the same order (in symbols ord(α) = ord(β ), or α ∼ord β ) if
their quotient is finite but not infinitesimal, that is, more precisely, if there exist
two positive real number m,M ∈ R such that 0 < m < α/β < M.
In case α,β are both infinite or infinitesimal quantities, they are also called infini-
ties of the same order or infinitesimals of the same order, respectively.

(ii)α and β are said equivalent (in symbols α ∼eq β , or simply α ∼ β ) if their quotient
is 1 up to infinitesimals. In other words, if for all ε ∈ R+ we have 1− ε < α/β <
1+ ε .
As before, in case α,β are infinite or infinitesimal quantities, they are also called
equivalent infinities or equivalent infinitesimals, respectively.

It is trivial that both the relations introduced in Definition 2 (i) and (ii) are equivalence
relations, so for example, we can ask about the equivalence class of vd,k

©1 , using the
relation ∼ord or ∼eq.
Recall that at the beginning of the section we said that the symbols +∞ and 0 in Table
1 are not distinguishable for traditional mathematics; instead, Corollary 0.1, which is
an immediate consequence of Theorem 1 (ii), states that, in the analogue new version
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of Table 1, the elements vd,k
©1 are all distinct. But Theorem 1 establishes more: our

purpose is to give information about the partition of the following sets

V d :=
{

vd,k
©1

∣∣∣ 0 6 k 6 d
}
, W d :=

d⋃
i=2

V i for all d > 2,

and W :=
⋃
d>2

V d ,

(10)

in equivalence classes. We denote the equivalence class of vd,k
©1 in W , with respect the

relation ∼ord or ∼eq, by
[
vd,k
©1

]
ord

and
[
vd,k
©1

]
eq

, respectively.

Before to state Theorem 1, we write in the following lemma an important consequence
of the equations (8) and (9).

Lemma 1. For all d > 2 and 0 6 k 6 d we have ord
(

vd,k
©1

)
= ord

((
d +1

2k

)©1 )
.

Moreover

vt,h
©1 ∼ord vd,k

©1 if and only if t +1 = 2h−k · (d +1). (11)

The proof of the previous lemma is an easy check; now we are ready to state the main
theorem of the section.

Theorem 1.

(i) Let d > 2 and denote by νd the number of equivalence classes in the set W d with
respect the equivalence relation ∼ord . Then

νd =


3 if d = 2,

3d2 +9d +6
8

+
(−1)d

4
·
⌈

d +1
2

⌉
if d > 3.

(12)

Moreover, a system of minimal representatives of the classes in W is

RW :=
⋃{

V d ∣∣ d even > 2 or d = 3
}

∪
{

v t,h
©1

∣∣∣∣ t odd > 5 and h = 0 or
t +3

2
6 h 6 t

}
,

(13)

and for every v t,h
©1 ∈RW , its equivalence class is

[
v t,h
©1

]
ord

=

{
v2 j−h(t+1)−1, j
©1

∣∣∣∣ j ∈ N0, j > h
}
. (14)

(ii) Each equivalence class in W under the relation ∼eq consists of a single element.
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For the proof of the theorem the interesting reader can see [34]. We remark that a
trivial consequence of part (ii) of the preceding theorem, is the following

Corollary 0.1. The elements vd,k
©1 are all distinct for every d > 2 and 0 6 k 6 d.

Note moreover that W is clearly a totally ordered set, but the explicit relation is not
obvious at first sight; an immediate consequence of Lemma 1 and of Theorem 1 (ii),
is that

vt,h
©1 > vd,k

©1 if and only if

{
t > 2h−k · (d +1)−1 or

t = 2h−k · (d +1)−1 and h > k
,

where “>” has the obvious meaning between the elements of W .

Remark 0.1. To prove that all the elements vd,k
©1 of the new computational system are

effectively distinct, is not a trivial issue; for instance, when k,h > 1, it is equivalent to
show that the following system

√
k+1

k!
√

2k
·
(

d +1
k+1

)
=

√
h+1

h!
√

2h
·
(

t +1
h+1

)
d +1

2k =
t +1

2h

(15)

has no integer solutions 2 6 d < t, 1 6 k 6 d and 1 6 h 6 t. But to prove the nonexis-
tence of such solutions of a Diophantine system as (15), is a non trivial problem; for
example, by using the most powerful computer algebra systems or scientific compu-
tational software available today, like Mathematica

r

11.0 by Wolfram Research Inc.,
or many others, it is not possible to obtain any answer except for very small values
of t cause the complexity of (15). Instead, as consequence of our results, we can give
a full response to this problem and to similar ones arising from the other cases. In
particular, Corollary 0.1, which follows from Theorem 1 (ii), guarantees that all the
numbers in W are effectively distinct and a Diophantine systems like (15) has no non-
trivial solutions.
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On relations between systems of numerations and
fractal properties of subsets of non-normal
numbers

Iryna Harko

The report is devoted to analysis of the dependence of fractal and topological proper-
ties of subsets of non-normal numbers on systems of numerations.

Till 1994 the set of numbers, which are non-normal w.r.t. s-adic expansion, was
considered as a ”rather small” one in the sense of Lebesgue measure as well as in the
sense of the Hausdorff-Besicovitch dimension. After the proof of the superfractality
of sets of non-normal and essentially non-normal numbers for s-adic and some other
expansions [2] and construction of such systems of representation for which the set of
essentially non-normal numbers was of full Lebesgue measure, the conjecture about
the superfractality and topological massivity of the set of essentially non-normal num-
bers (independently of the choice of a system of numeration) became dominating.

Probabilistic approach is shown to be very useful to prove the superfractality of
the set of essentially non-normal numbers for Q-expansions [3], Q∞-expansions [4]
and Q∗-expansions (under additional assumptions inf

i,k
qik > 0 on the matrix Q∗).

We shall answer the following problems, which are well motivated by the above
arguments:

1. Is the condition inf
i,k

qik > 0 necessary for the superfractality of the set of Q∗-

essential non-normal numbers?
2. Are there systems of numeration, for which the corresponding set of essentially

non-normal numbers is not a superfractal?
To answer the first question we show, in particular, that there are Q∗-expansions of

real numbers, for which the corresponding set of essentially non-normal numbers has
zero Hausdorff-Besicovitch dimension: dimH(L(Q∗)) = 0.

Theorem 1 ([1]). Let
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Q∗ = ‖qik‖, q2k =
1

(k+1)k+1 , q0k = q1k =
1−q2k

2
, i ∈ {0,1,2}.

Then
dimH(L(Q∗)) = 0.

So, we also refuted the conjecture about the superfractality of the set of essentially
non-normal numbers independently of the choice of a system of numeration.

Moreover, we prove the existence of such Q∗-expansions of real numbers, for
which even the whole set D(Q∗) of all non-normal numbers has zero Hausdorff-
Besicovitch dimension: dimH(D(Q∗)) = 0.

Theorem 2 ([1]). Let Q∗ = ‖qik‖, i ∈ {0,1,2, . . . ,s−1}.
Let A = {n : n = 10k,k ∈ N}, B = {n : n 6= 10k,k ∈ N,n ∈ N},
and let

q1k = q2k = . . .= qs−1,k =

{
1

(s−1)(k+1)k+1 , if k ∈ B;
1
s , if k ∈ A.

q0k =

{
1− 1

(k+1)k+1 , if k ∈ B;
1
s , if k ∈ A.

Then
dimH(D(Q∗)) = 0.

We also give the sufficient conditions that the set L(Q∗) of essentially non-normal
numbers is of full and zero Hausdorff–Besicovitch dimension.

Theorem 3 ([1]). If all entries of a matrix Q∗ are bounded from below by some
positive constant q∗, i.e.,

inf
i,k

qik ≥ q∗ > 0,

then the set L(Q∗) of essentially non-normal numbers is of full Hausdorff dimension,
i.e.,

dimH L(Q∗) = 1.

Theorem 4 ([1]). Let Q∗ = ‖qik‖, i ∈ A = {0,1, . . . ,s−1}, and let there exists a digit
i0 ∈ A, such that ∀α > 0 the condition: lim

k→∞
sk ·qα

i0,k
= 0 is satisfied.

Then dimH(L(Q∗)) = 0.
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On Littlewood and Newman polynomial
multiples of Borwein polynomials

Paulius Drungilas, Jonas Šiurys, Jonas Jankauskas

Abstract A Newman polynomial has all the coefficients in {0,1} and constant term 1,
whereas a Littlewood polynomial has all coefficients in {−1,1}. We call P(X)∈Z[X ]
a Borwein polynomial if all its coefficients belong to {−1,0,1} and P(0) 6= 0. We ex-
ploit an algorithm developed previously by Lau and Stankov in their research on the
spectra of numbers and independently by Akiyama, Thuswaldner and Zaı̈mi in their
study of Height Reducing Property. The algorithm decides whether a given monic
integer polynomial with no roots on the unit circle |z| = 1 has a non-zero multiple
in Z[X ] with coefficients in a finite set D ⊂ Z. Our results are as follows. For every
Borwein polynomial of degree≤ 9 we determine whether it divides any Littlewood or
Newman polynomial. We show that every Borwein polynomial of degree ≤ 8 which
divides some Newman polynomial divides some Littlewood polynomial as well. For
every Newman polynomial of degree ≤ 11, we check whether it has a Littlewood
multiple, extending the previous results of Borwein, Hare, Mossinghoff. We find ex-
amples of polynomials whose products and squares have no Littlewood or Newman
multiples, while the original polynomials possess such multiples. Described results
were presented in the paper “On Littlewood and Newman polynomial multiples of
Borwein Polynomials” (to appear in AMS Mathematics of Computation).
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An introduction to p-adic systems: A new kind of
number system

Mario Weitzer

In this talk a new kind of number system on the p-adic integers Zp will be introduced
which generalizes and provides a common framework for several different notions,
such as positional notation systems, the 3n+1 problem, integer fibred systems, or per-
mutation polynomials. This framework allows notions and methods of one discipline
to be translated to the other, admitting new points of views in both areas. Further-
more, it provides interesting examples of new discrete dynamical systems showing
unexpected behavior.
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Salem numbers as unusual Mahler measures

Artūras Dubickas

Recall that for a polynomial

f (x) = a(x−α1) . . .(x−αn) ∈ C[x], where a 6= 0,

its Mahler measure is defined by M( f ) := |a|∏n
j=1 max{1, |α j|}. The polynomial f

is called reciprocal if the set of its roots {α1, . . . ,αn} is equal to {α−1
1 , . . . ,α−1

n }, i.e.
f (x) =±xn f (x−1), and nonreciprocal otherwise. A root α > 1 of a monic irreducible
polynomial f in Z[x] of degree 2n≥ 4 is called a Salem number if f is reciprocal and
has 2n−2 roots on the unit circle |z|= 1.

Let L0 be the set of all possible Mahler measures of nonreciprocal (but not neces-
sarily irreducible) polynomials in Z[x]. Various aspects of the set of Mahler measures

L := {M( f ) : f ∈ Z[x]}

and of its subset of nonreciprocal measures

L0 := {M( f ) : f ∈ Z[x], f −nonreciprocal}

have been investigated in the papers of Adler and Marcus [1], Boyd [2], [3], [4],
Dixon and the author [5], the author [7], Schinzel [9]. One of the problems from the
BIRS workshop “The Geometry, Algebra and Analysis of Algebraic Numbers” held
in 2015 in Banff (Canada) suggested by David Boyd 7(c) was the following:

• Does L0 contain any Salem numbers?

The problem, as stated, was actually solved in [5] by Dixon and the author (see also
[6]). Selecting, for instance, the nonreciprocal quartic polynomial x4− x+ 1 whose
Galois group is isomorphic to S4 and Mahler measure is equal to the product
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|β |2 = ββ
′ = 1.40126 · · · ∈ L0

of two complex conjugate roots β and β ′ = β of x4− x+ 1 that are outside the unit
circle, we see that α = ββ ′ must be of degree 6 over Q and, thus it is a Salem number
(in this case, with minimal polynomial x6− x4− x3− x2 + 1). This is true for any
totally complex nonreciprocal quartic unit β whose Galois group is doubly transitive:
each such Mahler measure M(β ) belongs to the set L0 and at the same time it is a
Salem number of degree 6.

This construction seems, however, an accidental one. So one may ask a more gen-
eral question:

• Are there Salem numbers of other degrees in the set L0?

It turns out that

Theorem 1. The set of nonreciprocal Mahler measures L0 contains infinitely many
Salem numbers of degree d = 4 and also of each degree d = 4`+2, where ` ∈ N.

This theorem and some other related results have been proved in [8].
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On multiplicative independent bases for
canonical number systems in cyclotomic number
fields

Manfred Madritsch

In the present talk we focus on number systems in the ring of integers of cyclotomic
number fields. Our goal is to show a variant of Cobham’s theorem [2] stating that the
only sets that are recognizable with respect to two multiplicative independent bases
are finite unions of arithmetic progressions.

We start with the cases of fourth and third roots of unity, which correspond to the
ring of Gaussian and Eisenstein integers, respectively. In the case of quadratic number
fields the polynomials giving rise to a base have been completely characterized. In
particular, the possible bases are of the form −m± ζ3 and −m± ζ4 with m ≥ 1 a
positive integer and ζk a primitive kth root of unity.

Moreover we clearly have that if −m+ζk is a base of a numeration system, then it
is also an integral power base of the ring of integers. Győry [3] showed that there
are only finitely many integral power bases and a conjecture of Bremner [1] and
Robertson [6] states that the only possible power bases for Z[ζk] are ζk, ηk := (1+
ζk)
−1 and θk := (1−ζk)

−1. This has been verified for several small values of k.
Let β1, . . . ,βr be the integral power bases of Z[ζk] then a result of Kovacs and

Pethő [4] states that there exists Mi such that −m+βi is a base for m≥Mi. Our first
result state that −m+ ζk, −m+ηk and −m+θk are bases of numeration systems in
Z[ζk] provided that m≥ ϕ(k)+1 where ϕ is Euler’s totient function.

Now we turn to the second ingredient: the multiplicative independence. We call
two bases α and β multiplicative independent if the only solution (m,n) of the equa-
tion αm = β n over the integers is the trivial solution (m,n) = (0,0). Our second result
shows that −m+ζk and −n+ζk are multiplicative independent provided that m 6= n
and k 6= 2,3,4,6. The excluded cases were already treated by Madritsch and Ziegler
[5].

The last part considers the variant of Cobham’s theorem [2]. The four exponents
conjecture states that for any two pairwise Q-independent pairs of complex numbers

Manfred Madritsch
Universit de Lorraine, 54506 Vandouevre-lès-Nancy, France e-mail: manfred.madritsch@univ-
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(x1,x2) and (y1,y2) at least one of the numbers

ex1y1 , ex1y2 , ex2y1 and ex2y2

is transcendent. We can show that under the four exponents conjecture every subset
S ⊂ Z[ζk] which is α- and β -recognizable for multiplicative independent α and β

has to be syndetic. In this context a subset S ⊂ Z[ζk] ⊂ C is called syndetic if there
exists r > 0 such that for each γ ∈Z[ζk] the intersection S∩B(γ,r) is non-empty (here
B(γ,r) is the closed disk with center γ and radius r.

This is joint work with Paul Surer from the Universität für Bodenkultur and Volker
Ziegler from the University of Salzbourg.
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Topology of a class of p2-crystallographic
replication tiles

Benoı̂t Loridant and Shu-qin Zhang

Abstract We study the topological properties of a class of planar crystallographic
replication tiles. Let M ∈Z2×2 be an expanding matrix with characteristic polynomial
x2 +Ax+B (A,B ∈ Z, B≥ 2) and v ∈ Z2 such that (v,Mv) are linearly independent.
Then the equation

MT +
B−1

2
v = T ∪ (T +v)∪ (T +2v)∪·· ·∪ (T +(B−2)v)∪ (−T ) (1)

defines a unique nonempty compact set T satisfying T o = T . Moreover, T tiles the
plane by the crystallographic group p2 generated by the π-rotation and the transla-
tions by integer vectors. Leung and Lau [2] proved in the context of self-affine lattice
tiles with collinear digit set that T ∪ (−T ) is homeomorphic to a closed disk if and
only if 2|A|< B+3. However, this characterization does not hold anymore for T itself
(see Figure 1, for instance). We prove that

The crystile T is disk-like if and only if−2≤ A≤ 1 and B≥ 2 or A = B = 2.

To achieve this, we find that the crystallographic replication tiles as (1) are homeo-
morphic to the tiles defined as follows,

g(T ) = T ∪
(

T +

(
1
0

))
∪·· ·∪

(
T +

(
B−2

0

))
∪ (−T ) (2)

where
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g(x,y) =
(

0 −B
1 −A

)(
x
y

)
+

(B−1
2
0

)
(3)

is an expanding mapping on R2. Thus to prove the result, it is sufficient to prove it for
T given by (2).

As a result of [3], we notice that the lattice tile T ` given by(
0 −B
1 −A

)
T ` = T `∪

(
T `+

(
1
0

))
∪·· ·∪

(
T `+

(
B−1

0

))
. (4)

is a translation of T ∪(−T ) for fixed A and B. For the case 2|A|−B< 3, the associated
lattice T ` is disk-like by the result of Leung and Lau [2] and a result of Akiyama
and Thuswaldner [1] on CNS tiles allow us to estimate the set of neighbors of T .
Then finding out the disk-like tiles for this case will rely on the construction of the
associated neighbor graphs for the whole class. Then using a criterion of Loridant and
Luo [4], we can check the disk-likeness of a crystile. For the case 2|A|−B ≥ 3, we
use a purely topological argument to prove that the associated tiles are not disk-like.

(a) The lattice tile T ` (b) The crystallographic tile T

Fig. 1: Lattice tile and Crystile for A = 2,B = 3.
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Fig. 2: B = 3. For A = 2 on the left, T is not disk-like and for A =−2 on the right, T
is disk-like




