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a b s t r a c t

The paper presents in full detail the first linear algorithm given in the literature (Guerrini
(1999) [6]) implementing proof structure correctness formultiplicative linear logicwithout
units. The algorithm is essentially a reformulation of the Danos contractibility criterion
in terms of a sort of unification. As for term unification, a direct implementation of the
unification criterion leads to a quasi-linear algorithm. Linearity is obtained after observing
that the disjoint-set union-find at the core of the unification criterion is a special case of
union-find with a real linear time solution.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper is the long and complete version of [6], in particular, it contains a detailed description of the algorithm and
the proofs of the statements given there.

The first linear time algorithm for verifying the correctness of proof nets for multiplicative linear logic without units was
presented in [6]. Starting from the result in [6], another linear algorithm has been given by Murawski and Ong [13,14]. The
above algorithms are linearwhen executed on sequential RAMs. If one takes Turingmachines instead, a recent and surprising
result by Jacobé deNaurois andMogbil has shown that correctness ofmultiplicative proof structures is NL-complete [8]. (We
recall that NL is the class of the decision problems which can be solved by a non-deterministic log-space Turing machine.)

Since the goal of the paper is to give an efficient (and practical) sequential implementation of proof net correctness, the
only computational model taken into account is the sequential RAM. Indeed, while there is no direct connection between
the polynomial degree of a polytime problem on RAMs and its degree on Turing machines (a problem solvable with a
linear time algorithm by a RAM may be P-complete on Turing machines), finding the exact computational complexity of
a polytime problem on (non-)deterministic Turing machines may be of great interest when looking for efficient parallel
implementations. In particular, it may help in finding the exact position of the problem inside the Boolean circuit hierarchies
NC or AC (for a definition of these classes see [17]). For instance, in the case of proof nets, the result by Jacobé de Naurois
and Mogbil gives the Boolean circuit characterization of the problem also, since AC0

⊂ NL ⊆ AC1.

1.1. Proof nets

We shall consider only multiplicative linear logic without constants. In the case with constants, proof net correctness is
NP-hard [9].

A multiplicative proof net is a graph representation of a multiplicative linear logic derivation [5]. The proof net N
corresponding to the derivation Π is a (directed) hypergraph with a link (i.e. a hyperedge) for each rule and a vertex for
each formula occurrence s.t. every link of N connects the active formulas of the corresponding rule of Π . For instance, let
Π be a cut-free derivation using atomic axioms only and ending with the sequent ⊢ A. The corresponding proof net N is
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formed of a part isomorphic to the syntax tree of the formula A, plus a set of connections between pairs of occurrences of
dual atoms, i.e. between pair of leaves of the syntax tree; in particular, each node of the syntax tree corresponds to a O or
�-link, while each pairing connection corresponds to an axiom link.

The derivation Π establishes an ordering, say a sequentialization, among the links of the corresponding proof net N . In
general, the sequentialization of a proof net is not unique. For instance, let us assume that Π ends with ⊢ AOB, COD and
that the last two rules ofΠ introduce the principal connectives of AOB and COD; then the proof net N corresponding toΠ
does not depend on the actual order of that pair of rules.

1.2. Proof structures and correctness criteria

Aproof structure is a hypergraphbuilt in accordwith the syntax of proof nets, butwithout following any sequentialization
order. A correctness criterion is a test that, given a proof structure N , answers yes when N is a proof net and no when there
is no sequentialization of N . The Danos–Regnier switching condition is the most known correctness criterion: let a switch of
N be the graph obtained by disconnecting one of the premises of each O-link; then N is a proof net iff every switch of N is a
tree [3].

If n is the number of O-links in N , the Danos–Regnier criterion checks 2n graphs. Moreover, there is good evidence that
correctness cannot be inferred by the inspection of a fixed subset of the switches of N . For instance, for any n, we can
construct a proof structure s.t. only one (or two, or three, etc.) of its switches is not a tree.

The situation is different for the multiplicative proof nets of non-commutative (and cyclic) linear logic. In that case, the
Danos–Regnier criterion does not suffice for correctness; a proof net of commutative linear logic with only one conclusion
is a non-commutative proof net iff it is a planar graph. Because of this additional requisite, verifying the correctness of a
non-commutative proof structure requires the inspection of two switches only [15]. Unfortunately, planarity does not play
any role in the commutative case; therefore, in order to obtain a linear algorithm, we must resort to something else.

Danos contractibility was the first step towards an efficient correctness criterion. In his thesis [2], Danos gave a set of
shrinking rules for proof structures, characterizing proof nets as the only proof structures that contract to a point. Each
shrinking rule removes a link (which corresponds to a constant time operation), then the shrinking of a proof net with n
links requires n shrinking steps; but, since at each step we may need a linear search on the links of the net in order to find
the next link to shrink, Danos contractibility can be implemented in quadratic time.

The idea of Danos was improved and extended by showing that it could be presented as a parsing algorithm [9,7].

1.3. The first linear time algorithm

The first algorithm implementing a correctness criterion for multiplicative proof structures in linear time was that
presented in [6]. This solution, which will be the main topic of this paper as well, is essentially an efficient implementation
of parsing as a sort of unification.

Like term unification, the unification criterion can be formulated as a disjoint-set union-find problem. The use of any
union-find α-algorithm leads to a quasi-linear implementation of the criterion (that is, linear up to a factor α that is a sort
of inverse of the Ackermann function). Although that kind of algorithm is to all extents and purposes linear (there is no
feasible experiment showing their non-linearity) and behaves very well in practice (their constants are very small), a more
detailed analysis of the union-find required by the unification criterion shows that this is a special case with a real linear
time solution. Therefore, getting rid of the α factor, we can conclude that checking the correctness of a multiplicative proof
net is linear.

We stress that all the efficient algorithms derived from contractibility and parsing verify correctness by constructing
a sequentialization. Therefore, we have the particularly surprising result that forgetting the sequentialization of a proof
net does not imply the loss of any information, not even in terms of the computational resources required to recover a
sequentialization. The reconstruction of a sequentialization can be done in linear time, that is in the minimal time required
for reading the whole proof net.

1.4. Another linear time solution

After the publication of the first linear time algorithm, another linear time algorithm for correctness of multiplicative
proof structures was given by Murawski and Ong [13,14]. Their solution implements a correctness criterion for Lamarche’s
essential nets [10,11]. Essential nets are a polarized version of proof nets for intuitionist multiplicative linear logic.
Polarization induces an orientation on the edges of proof nets that allows one to view them as DAG’s (directed and acyclic
graphs), for which one can give a direct formulation of the correctness criterion. But, since any proof net can be transformed
into an essential net in linear time, Murawski and Ong’s algorithm gives a linear time solution for correctness of proof nets
too.

The solution given in [6], which we shall see in the rest of the paper as well, rests on efficient solutions for the union-find
disjoint set problem. As already stated, the general solution for union-find leads to quasi-linear or α-algorithms, but in some
special cases – and that used by the algorithm that we shall analyze in the following is one of these cases – we can eliminate
the α-factor to obtain a true linear solution. Remarkably, Murawski and Ong’s solution verifies (computes) the so-called
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Fig. 1. Abstract proof structure links.

dominator trees associated with an essential net, a problem whose efficient (linear) implementation requires a special case
of union-find.

1.5. Structure of the paper

In Section 2, we shall define the hypergraph structures that underlie proof structures, the so-called abstract proof
structures.

In Section 3, we shall define proof nets, the Danos–Regnier correctness criterion, and present the contractibility and the
parsing approaches to proof structure correctness.

In Section 4, we shall see the sequentialization theorem, namely that a direct consequence of the equivalence between
the Danos–Regnier and parsing criterion is that every Danos–Regnier correct proof structure can be sequentialized into a
proof of multiplicative linear logic without units.

In Section 5, we shall discuss the computational complexity of the correctness criteria presented above.
In Section 6, we shall reformulate the parsing criterion in terms of a sort of unification.
In Section 7, we shall present an efficient implementation of unification that we shall name sequential unification.

Sequential unification exploits the fact that the rules of the algorithm for the unification criterion can be implemented
by following a particular order determined by the topology of the structure.

In Section 8, we shall analyze the cost of sequential unification. In particular, we shall see that using a standard
α-algorithm implementation of union-find we get a quasi-linear cost. However, by noticing that the actual union-find
required by sequential unification is a special case for which there is a true linear solution, we show that sequential
unification is indeed linear.

2. Abstract proof structures

The correctness of a proof structure depends only on its topology. The actual value of the formulas plays a role in
restricting the valid proof structure that wemay consider, in particular, in controlling how proofs can be combined through
cuts.

In this section we shall define the hypergraph structures associated with every proof structure, the so-called abstract
proof structures.
Definition 1 (Link). A link is a pair β ◃ α in which β and α are two disjoint sets of vertices that are not simultaneously
empty, namely α ∩ β = ∅ and α ∪ β ≠ ∅. A vertex u is a premise of the link when u ∈ β , or a conclusion when u ∈ α.

Each premise or conclusion of a link has a distinct name (e.g., in a link with two premises, the names might be left and
right; in a link with n conclusions, we might distinguish the 1st, the 2nd, . . . , the nth conclusion). However, since we shall
not consider cut-elimination, names will not play any relevant role in the following.

A link without premises, source link, or without conclusions, target link, is a root link and is denoted by 0
◃.

In an abstract proof structure, or aps for short (see Definition 2), there are two kinds of root links: axiom links (source
links with two conclusions) and dummy links (target links with one premise). The other links that can appear in an aps are
of two kinds: unary links and binary links, denoted by 1

◃ and 2
◃, respectively. Both these kinds of links have two premises and

one conclusion. A summary of aps links with the corresponding pictorial representation is given in Fig. 1.
Definition 2 (Aps). An abstract proof structure (aps)G over the verticesV(G) is a set of linksG = β1 ◃ α1 ;β2 ◃ α2 ;. . .;βk ◃
αk s.t.
(1) the shape of every link in G is one of the four given in Fig. 1;
(2) every vertex in V(G) is a conclusion of exactly one link;
(3) every vertex in V(G) is a premise of at most one link and at least one vertex in V(G) is not premise of any link of G;
(4) the premise of every dummy link is the conclusion of a binary link.

We shall say that a vertex that is not a premise of any link of G is a conclusion of G, and we shall write G − α to denote that
α is the (non-empty) set of the conclusions of G.
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Fig. 2. Sequentialization.

Let us say that a premise of a set of links G is a vertex that is not a conclusion of any link of G. By definition, the set of the
premises of an aps is empty, while the set of its conclusions cannot be empty. In the following it will be useful to consider
substructures, namely sets of links contained in some aps, with a possibly non-empty set of premises and a possibly empty
set of conclusions.
Definition 3 (Asl). A non-empty set of links G′ is an abstract structure of links (asl) if G′ ⊆ G, for some aps G. A premise of G′
is a vertex that is not the conclusion of any link in G′. We shall write G′ : α1 − α0 to denote that α1 is the set of the premises
of G′ and α0 is the set of its conclusions.

Given an aps G, every asl G′ ⊆ G is a sub-asl (or an abstract substructure of links) of G. When G′ is an aps, G′ is a sub-aps
(or an abstract proof substructure) of G also.

2.1. Concrete proof structures

Definition 2 does not postulate anything about the intended meaning of G. The concrete examples corresponding to that
abstraction are the proof structures of the multiplicative constant-free fragment of linear logic. Therefore, G is a concrete
proof structure (cps) when V(G) = F ∪ C is formed of a set F of occurrences of multiplicative linear logic formulas and a set
C of occurrences of the reserved symbol cut, s.t. every link of Gmatches one of the following patterns:

0
◃ A, A⊥ A, B 1

◃ AOB cut
0
◃ A, A⊥ 2

◃ cut A, B 2
◃ A � B

with A, B ∈ F .
Remark 4. A cps differs from a usual proof structure because of the representation of cuts. In a cps, tensors and cuts collapse
into the same type of link (with the minor technicality of a dummy below every cut). In fact, for checking correctness, there
is no difference between a tensor and a cut (compare the tensor and cut rules in Fig. 2).

3. Proof nets

3.1. Sequentializable proof structures

The class Seq of the sequentializable aps is the smallest set of aps inductively defined by the rules in Fig. 2, with the
proviso that in each of those rules, u0 is a fresh vertex, and that, in the rules tensor and cut, V(G1)∩V(G2) = ∅. (These side
conditions are implicit if one assumes that Seq contains well-formed aps only.)
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The rules in Fig. 2 are the graph theoretic abstraction of the derivation rules of multiplicative linear logic. In particular,
any sequentialization of a cps G (i.e. any derivation of G ∈ Seq) corresponds to a linear logic derivation.

3.2. Danos–Regnier correctness criterion

We shall represent graphs by means of their incidence relation. An (undirected) graph is a pair (V ,⌢), where ⌢ is
a symmetric and anti-reflexive binary relation over the set of vertices V . We shall use ⌣ to denote the negation of ⌢.
Therefore, u ⌢ v will mean that there is an edge between u and v, while u ⌣ v will mean that there is no edge between u
and v.

Definition 5 (Switch). A switch S of the asl G is a graph (V(G),⌢)whose edges are defined by the following rules:

(1) each axiom link of G is replaced by an edge between its conclusions, that is u1 ⌢ u2 for every 0
◃ u1, u2 ∈ G;

(2) each unary link is replaced by an edge (only one) between its conclusion and one of its premises, that is (u1 ⌢ u0) ∧

(u2 ⌣ u0) or (u2 ⌢ u0) ∧ (u1 ⌣ u0) for every u1, u2
1
◃ u0;

(3) each binary link is replaced by a pair of edges between its conclusion and its premises, that is (u1 ⌢ u0) ∧ (u2 ⌢ u0)

for every u1, u2
2
◃ u0.

The edges introduced by the previous items are the only edges in a switch, that is u1 ⌣ u2 for every pair of vertices u1, u2
to which we cannot apply one of the above items.

Let us remark that a dummy link does not introduce any edge in a switch.
If G is an asl, Sw(G) is the set of its switches.

Definition 6 (DR-Correctness, apn). An asl G is DR-correct when every S ∈ Sw(G) is connected and acyclic, namely S is a
tree. A DR-correct aps is said an abstract proof net (an apn).

We shall say that an asl G is DR-acyclic when every switch of G is acyclic, or is DR-connected when every switch of G is
connected.

The number of connected components of any switch of an aps G is related to the number of axioms and binary links in G.

Lemma 7. Let G be a DR-acyclic aps. Let n2 be the number of binary links and na be the number of axiom links in G. Then, every
switch of G has

k(G) = na − n2

connected components.

Proof. We exploit the fact that the number of connected components of an acyclic graph is equal to ne− nv , where ne is the
number of the edges of the graph and nv is the number of its vertices. Let n1 be the number of unary links in G. By definition,
the number of the vertices of G is equal to the number of the conclusions of the links of G, namely nv = 2na+n1+n2; while
the number of edges in any switch of G is ne = na+ n1+ 2n2. Therefore, every switch of G has nv − ne = na− n2 connected
components. �

Lemma 8. An aps G is an apn iff na = n2 + 1 and it is DR-acyclic or DR-connected.

Proof. The only if direction and the fact ‘‘G isDR-acyclic with na−n2 = 1 implies G isDR-correct’’ are immediate corollaries
of Lemma 7. Then, let us assume that G is DR-connected with na− n2 = 1. As seen in the proof of Lemma 7, for every switch
S of G, na − n2 = nv − ne, where nv is the number of vertices in the switch and ne is the number of edges. Therefore, since S
is connected by hypothesis, it cannot contain cycles. Summing up, G is DR-acyclic. �

The previous lemma shows that in order to prove the correctness of an aps, first of all, one can verify that the number of
axioms is one more than the number of its binary links, then it suffices to verify either that the aps is DR-correct or that it is
DR-acyclic.

Remark 9. If G is an asl, the statements in Lemmas 7 and 8 can be easily reformulated by adding the number np of the
premises of G to the number of the vertices of G. Thus, a DR-acyclic asl G has k(G) = np + na − n2 connected components
and G is DR-correct iff np + na = n2 + 1 and it is DR-acyclic or DR-connected.

3.3. The vertical partial order

The vertices of an apn (or of a DR-correct asl) can be ordered according to the vertical layout in Fig. 1. In fact, given an asl
G, let us say that u1 is immediately below u0 (or that u0 is immediately above u1) when G contains a link α0, u0 ◃ α1, u1.

Lemma 10. For everyDR-acyclic asl, the least preorder 4 induced by the binary relation ‘‘ u1 is immediately below u0’’ is a partial
order.
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Fig. 3. Contraction rules (c-rules).

Proof. Let ϕ = u0 4 u1 4 · · · 4 uk be a cyclic chain s.t. u0 = uk is the only vertex that appears twice in the sequence, and
ui is immediately below ui+1 for i = 0, . . . , k − 1. It is readily seen that there is S ∈ Sw(G) s.t. ϕ is a path in S. But, since S
is acyclic by hypothesis, k = 0. �

As an immediate consequence of the previous lemma, in a DR-acyclic asl, the maximal elements of the vertical preorder
are either conclusions of a link without premises or premises of the asl. In particular, in any DR-acyclic aps G all themaximal
elements are conclusions of axiom links, and in G there is at least one axiom link.

3.4. Contractibility

If we know that a sub-asl G0 of an aps G is DR-correct, checking the correctness of G = G1 ;G0 can be reduced to checking
the correctness of G1. In fact, in every switch of G0 : β − α there is a path between every pair of vertices u, v ∈ α ∪ β .
Therefore, let G′ be the structure obtained from G by replacing G0 with a new link β ∗

◃ α; any switch of G is topologically
equivalent to a corresponding switch of G′, provided that the new link β ∗

◃ α is interpreted as a tree connecting the vertices
α ∪ β .

Definition 11 (Star Link, Contracting Structures). A star link is a link β ∗

◃ α with any number of premises and conclusions
(but, by the definition of link, α∪β ≠ ∅). A contracting asl (or a contracting aps) is an asl (an aps) that may contain star links
also. A switch S = (|G|,⌢) of the contracting asl G is a graph satisfying the constraints in Definition 2 plus:

(5) β ∗

◃ α ∈ G implies that there is a permutation u0, u1, . . . , uk of α, β s.t. ui ⌢ ui+1, for i = 0, 1, . . . , k− 1.

A contracting asl G is DR-correct if every switch of G is connected and acyclic.

Lemma 12. Let G = G1 ; G0 be a DR-correct contracting asl s.t. the contracting asl G0 : β − α is DR-correct. G is DR-correct iff
the contracting asl G′ = G1 ; β

∗

◃ α is DR-correct.

Proof. Every S ∈ Sw(G) can be transformed into an S ′ ∈ Sw(G′) by replacing the S0 ∈ Sw(G0) contained in S with an
S∗ ∈ Sw(β

∗

◃ α), and vice versa. By hypothesis, both S∗ and S0 are trees. Therefore, there exists S ∈ Sw(G) that is not a tree
iff there exists S ′ ∈ Sw(G′) that is not a tree. �

The previous lemma suggests the contraction rules, or c-rules, in Fig. 3. The application of a c-rule cannot introduce an
invalid link, i.e. a star link without premises and conclusions, or with a conclusion that is also a premise of the link. Because
of this, the 1

◃-rule and the ∗◃-rule can be applied only if

( 1
◃) in the 1

◃-rule, u0 ∉ β;
( ∗◃) in the ∗◃-rule, α1 ∩ β2 = α2 ∩ β1 = ∅ and at least one of α1, α2, β1, β2 is not empty.

It is readily seen that the above provisos always hold in a DR-correct aps.
The key point of the c-rules is that every star link introduced along the c-reduction of an asl G corresponds to a sub-asl

of G.
Lemma 13. Let G be a contracting asl s.t. G →∗c G′. For every star link β ∗

◃ α in G′, there exists a unique DR-correct sub-asl
G0 : β − α of G s.t. G0 →

∗
c β

∗

◃ α and, if G = G1 ; G0 and G′ = G′1 ; β
∗

◃ α, then G1 →
∗
c G′1.

Proof. By induction on the length of the derivation G→∗c G′ we prove the existence of G0. Then, let us assume that there is
another DR-correct sub-asl G′0 : β − α. Let G

′

0 = G′′0 ; Gx, with G′′0 = G0 ∩ G′0. Since every vertex is a premise/conclusion of
at most one link, it is readily seen that G′′0 : β − α and, as a consequence, Gx : −. But this implies Gx = ∅ also, otherwise
in any switch S of G′0 the vertices of G′′0 and the vertices of Gx would be in distinct connected components, contradicting the
hypothesis that G′0 is DR-correct. Thus, G

′

0 ⊆ G0. But, since by the previous reasoning we can get G0 ⊆ G′0 also, we conclude
that G0 = G′0. �

Therefore, DR-correctness is an invariant of c-reduction.

Lemma 14. Let G be a contracting asl s.t. G→∗c G′. The contracting asl G′ is DR-correct iff G is DR-correct.

Proof. By induction on the number of star links in G′ and by Lemmas 12 and 13. �
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Fig. 4. Parsing rules.

The rewriting system defined by the c-rules is terminating. Moreover, every DR-correct contracting asl has only one
normal form.

Lemma 15. Let G : β − α be a contracting asl.

(1) There is no infinite c-reduction of G.
(2) If G is DR-correct, β ∗

◃ α is the only normal form of G.

Proof.
(1) Every application of a c-rule decreases the number of root links, or the number of binary links, or the number of links in

the contracting asl.
(2) Let us start with the case β = ∅. Let G →∗c G′ with G′ in normal form. G′ does not contain any binary or root link

(otherwise, it would not be a normal form). By Lemma 14, G′ is DR-correct and contains at least a link ∗◃ γ (the link
above any vertex of G′ that is maximal w.r.t. the vertical partial order extended to the case of contracting structures, see
Lemma 10). The set γ contains some vertices u1, . . . , uk that are not conclusions of G′ and some conclusions of G′, that
is γ = u1, . . . , uk, α

′ with α′ ⊆ α. For i = 1, . . . , k, the vertex ui is premise of a unary link ui, vi
1
◃ wi s.t. vi ∉ γ (by the

hypothesis that G′ is in n.f.). As a consequence, every switch of G′ s.t. vi ⌢ wi contains the switch of ∗◃ γ as an isolated
connected component; which does not lead to a contradiction (by hypothesis G is DR-correct and then, by Lemma 14,
G′ is DR-correct too) only if k = 0 and γ = α′ = α and G′ = ∗

◃ α.
When β = u1, . . . , uk ≠ ∅, let us take the DR-correct aps Gβ obtained by adding a root link 0

◃ ui for every ui ∈ β , that is
Gβ = G; 0

◃ u1 ; . . . ;
0
◃ uk. We have already proved that ∗◃ α is the only normal form of Gβ . Now, let us take any reduction

G→∗c G′; there is a corresponding reduction of Gβ s.t.

Gβ →∗c G′; 0
◃ u1 ; . . . ;

0
◃ uk →

∗

c G′; ∗◃ u1 ; . . . ;
∗

◃ uk →
∗

c
∗

◃ α.

In particular, when G′ is in normal form, G′ = β ∗

◃ α. �

We can then define the following contractibility criterion: an asl G : β − α is correct when→c reduces G to a structure
formed of a star link only, i.e. G is correct iff β ∗

◃ α is its normal form (the only one) w.r.t.→c . This criterion yields to another
characterization of proof nets [2].

Proposition 16 (c-Correctness). Let us say that the contracting aps G − α is c-correct when G→∗c
∗

◃ α. Then, G is c-correct iff
G is DR-correct.

Proof. It is an immediate consequence of Lemmas 14 and 15. �

3.5. Parsing

The proof of Proposition 16 [2,9,7] suggests a particular strategy for the application of the contractibility criterion. In fact,
in any c-correct contracting asl G, there is at least a contraction G→c G′ such that G′ is obtained by applying one of the rules
in Fig. 3 at a source link. In other words, the contraction rules can be applied following an uppermost strategy. We can then
define the parsing reduction, or p-reduction, as the transitive and reflexive closure of the parsing rules, or p-rules, in Fig. 4.

As for the c-rules, we must ensure that the p-rules do not introduce invalid links. Because of this, we have to add the
proviso that the ∗◃-rule can be applied only if α ≠ ∅ (that always hold in a DR-correct asl). The other rules do not require any
particular proviso instead. In fact, the assumption that in an asl a vertex is premise/conclusion of at most one link implies
the correctness on the right-hand sides of these rules; in particular, the assumption that the left-hand side is an asl, in the
1
◃-rule implies that u0 ∉ α, while in the 2

◃-rule implies that α1∩α2 = ∅ and uo ∉ α1 ∪ α2.
The p-rules define a parsing algorithm for proof nets. In fact, any reduction G→∗c

∗

◃ α yields a sequentialization of G − α.

Definition 17 (Parsing Aps). A parsing aps is a contracting aps that contains star links without premises only.

The p-rules define a subsystem of the c-rules.
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Lemma 18. If G→∗p G′, then G→∗c G′.
Proof. By inspection of the contraction and parsing rules. �

As a consequence, we have that the p-reduction is terminating and that DR-correctness is an invariant of p-reduction.
Therefore, in order to show that, as the c-rules, the p-rules define a correctness criterion, we have to prove that ∗◃ α is the
only normal form of a DR-correct aps G − α. For that purpose, let us first extend Lemma 8 to parsing aps (let us note that
the star links without premises are a sort of axiom links).
Lemma 19. Let G be a DR-correct parsing aps. If n∗ is the number of star links, na the number of axiom links and n2 the number
of binary links in G, then

n∗ + na − n2 = 1.

Proof. The only difference w.r.t. Lemma 7 is that we have to add h vertices and h − 1 edges for every star link in G. Thus,
if c∗ is the number of conclusions of star links, we have to add c∗ vertices and c∗ − n∗ edges. Summing up, nv − ne =

(2na + n1 + n2 + c∗)− (na + n1 + 2n2 + c∗ − n∗) = n∗ + na − n2. �

Lemma 20. The only p-normal form of any DR-correct parsing aps G − α is the parsing aps ∗◃ α.

Proof. Let G →∗p G′ with G′ in normal form. By Lemmas 14 and 18, G′ is DR-correct. Let G′ = G0;
∗

◃ α1 ; . . . ;
∗

◃ αl, where
G0 is an aps that does not contain star links. By hypothesis, G′ does not contain p-redexes, more precisely: (i) G0 does not
contain axiom links; (ii) no u ∈ αi can be premise of a dummy link; (iii) for every u ∈ αi s.t. u, v

1
◃ w ∈ G0, v ∉ αi. Since

G0 = ∅ implies l = 1 and α1 = α (by the assumption that G′ is DR-correct), we shall show that G0 ≠ ∅ contradicts the
hypotheses on G′.
Let αx

i = {u ∈ αi : u, v
x
◃ w ∈ G0}, with x = 1, 2 (by (ii), αi = α1

i ∪ α
2
i ). G0 ≠ ∅ implies that α2

i ≠ ∅ for every i,
otherwise, by (iii), we could construct a switch S with an isolated connected component (by taking S s.t., for every u ∈ α1

i ,
if u, v 1

◃ w ∈ G0, then u⌣ w). If G0 ≠ ∅, there are at least n∗ = l conclusions of star links that are premises of binary links.
But, since n∗ = n2 + 1 (by (i) and Lemma 19), if G0 ≠ ∅, there is at least a link u, v 2

◃ w s.t. u and v are both conclusions of
star links, for instance, u ∈ αi and v ∈ αj. The case i = j contradicts the DR-correctness of G′, while the case i ≠ j contradicts
that G′ is a p-normal form. �

Proposition 21 (p-Correctness). Let us say that the proof structure G − α is p-correct when G→∗p
∗

◃ α. Then, G is p-correct iff
G is DR-correct.
Proof. It follows from Lemma 18 (only if) and Lemma 20 (if). �

4. Sequentialization

The parsing rules simulate the inference rules in Fig. 2. In fact, G ∈ Seq iff G is p-correct. Therefore, any proof of
Proposition 21 proves the sequentialization theorem too, see [9,7] also.
Theorem 22 (Sequentialization). An aps G is an apn iff G ∈ Seq.
Proof. By Proposition 21, it suffices to prove, by induction on the size of G, that G is p-correct iff G ∈ Seq. The base case, an
aps formed of an axiom link only, is trivial.

The inductive case for the if direction follows by the induction hypothesis and by the observation that: if the last rule in
the derivation of G ∈ Seq is a par inference, then the last rule of the corresponding p-reduction is a 1

◃-rule; if it is a tensor

inference, then the corresponding rule is a 2
◃-rule; if it is a cut inference, then the corresponding p-reduction ends with a

2
◃-rule followed by a ∗◃-rule.

We are left to prove the inductive case for the only if direction. Let us assumew.l.o.g. that in the reductionπ : G→∗p
∗

◃ α

every 2
◃-rule that eliminates a 2

◃-linkwhose conclusion is the premise of a dummy link is immediately followed by the ∗◃-rule
that eliminates the dummy link too. Thus, if the last rule of π is a ∗◃-rule, we have that G→∗p

∗

◃ α1, u1;
∗

◃ α2, u2 ; u1, u2
2
◃

uo ; uo
0
◃, with α = α1, α2, for some binary link u1, u2

2
◃ u0 above the dummy link u0

0
◃. By Lemma 13 (let us mention

that, by Lemma 18, we can assume that the c-reductions in the statement of Lemma 13 are p-reductions), for i = 1, 2, there
are Gi − αi, ui s.t. Gi →

∗
p
∗

◃ αi, ui. Then, since by the induction hypothesis Gi ∈ Seq, by a cut inference we conclude that

G ∈ Seq. The cases in which the last rule of π is a 2
◃-rule or a 1

◃-rule are proved in the same way: the 2
◃-rule becomes a

tensor inference, while the 1
◃-rule becomes a par inference. �

5. Computational complexity

Let us define the size of a proof structure G as the number of registers size(G) required for thememorization of G on some
random access machine (RAM). Although the definition of size(G) depend on the representation of G, in any non-redundant
encoding, size(G) is linear in the number of vertices of G.
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Remark 23 (Asymptotic Notation). Let us recall the definition of the following classes of positive functions:

O(f (n)) = {g(n) | ∃c, k > 0 : n > k⇒ c f (n) ≥ g(n)} (asymptotic upper-bound);
Ω(f (n)) = {g(n) | ∃c, k ≥ 0 : n > k⇒ c f (n) ≤ g(n)} (asymptotic lower-bound);
Θ(f (n)) = O(f (n)) ∩Ω(f (n)).

In the following, we shall also use O(f (n)),Θ(f (n)) andΩ(f (n)) to denote a generic element of the corresponding classes.
We shall also use the= symbol to denote that a function is in a given class, for instance, g(n) = O(f (n)).

Using the asymptotic notation, size(G) = Θ(|V(G)|). Moreover, since the number of links in G is linear in the number
of vertices of G (i.e. |G| = Θ(|V(G)|)), size(G) = Θ(|G|) also. In the following, we shall analyze the worst case asymptotic
complexity of DR-correctness in terms of size(G).

D(anos)R(egnier)-correctness is the simplest and most appealing characterization of the proof structures that can be
inductively constructed according to the rules of multiplicative linear logic. However, a straight application of the Danos–
Regnier criterion requiresΘ(size(G) 2size(G)) time: an aps G with n = Θ(|G|) unary links has 2n switches and checking that
a switch is a tree requiresΘ(|G|) time. Instead, the criteria that we have presented in Sections 3.4 and 3.5 are quadratic. We
could easily give a parsing strategy checking correctness in O(n log n) time, but we shall do much better in the following.

6. Unification

It is a trivial programming exercise to give an algorithm equivalent to parsing that, instead of removing the vertices
contracted along the reduction, marks them with a token. Moreover, since the key properties of the parsing algorithm are
that every ∗◃-link corresponds to a sub-apn and that the parsing of a new sub-apn can be started at any point by replacing
an axiom link with a ∗◃-link, we might also assume that more then one sub-apn is marked/parsed in parallel by distinct
marking/parsing threads. This parallel marking approach will be presented as a sort of unification algorithm in the rest of
this section.

However, in order to get a (sequential) linear algorithm, we shall see that we have to resort to a more sequential
marking/parsing strategy. In particular, we shall see that the marking of a new sub-apn may be started only when the
current marking thread reaches one of the premises of a 2

◃-link lwhose second premise has not been marked yet—in terms
of the parsing rules, one of the conclusions of the ∗◃-link corresponding to the current parsing thread is one of the premises
of a 2

◃-link whose second premise is not the conclusion of a ∗◃-link. When this happens, the current marking thread must be
suspended and a new thread must be started picking an axiom above the 2

◃-link l. The details of the sequential unification
algorithm deriving from these considerations will be given in Section 7; where we shall also see that whenever we reach
a situation such as the one described above, if the asl is correct, then all the links (and in particular the axioms) above the
second premise of the 2

◃-link l have not been marked yet.

6.1. Parallel unification

The rules of the parallel algorithm for unification are:

(start) Assign a fresh token to the conclusions of an unmarked axiom (axiom 0
◃-rule).

(forward) Assign the token t to the conclusion of a unary link whose premises contain t ( 1
◃-rule).

(unify) When the premises of a binary link contain two distinct tokens s and t , equate s and t and assign s or t to the
conclusion of the link ( 2

◃-rule).
Each of the previous rules corresponds to a virtual application of a parsing rule (the rule written in parentheses). The

only parsing rule without correspondence in the unification approach is the ∗◃-rule (see Remark 24).
In order to give a more formal account of the rules described above, let us assume that

(1) a token is a set of integer indexes and distinct tokens correspond to disjoint sets;
(2) ‘‘assign the token t to the vertex v’’ means ‘‘mark the vertex v with any index in t ’’;
(3) a vertex contains the token t when it has been marked by one of the indexes in t;
(4) in the start rule, ‘‘fresh’’ means ‘‘the least index in the interval [0, k] that has not been used yet’’, where k + 1 is the

number of axioms in the aps (for h ≥ 0, [0, h] denotes the closed interval of N from 0 to h; [0, h[ denotes instead the
corresponding right open interval, i.e. [0, h[ = [0, h] \ {h});

(5) in the unify rule, ‘‘equate’’ means ‘‘unite the sets of’’.

If the aps G has k + 1 axioms, the application of a sequence of marking rules leads to the construction of a pair µ :: π ,
where µ : V(G) ⇀ [0, k] is a (partial) marking function and π is a partition of the range of µ s.t. every element of π is a
token and
(1) the asl G[µ, t] formed of the set of links whose premises and conclusions contain the token t ∈ π is an aps;
(2) if G[µ, t] − α, then there exists a parsing reduction G[µ, t] →∗p

∗

◃ α (and then G[µ, t] is DR-correct);
(3) there is G→∗p G′ s.t. G′ is obtained from G by replacing each G[µ, t] − αt with ∗◃ αt , for every t in π .
A formal proof of the above statements will be given in Proposition 27.
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Fig. 5. Unification.

Fig. 6. Unification: a pictorial account.

Remark 24. In themarking approach, and then in the unification rules of Fig. 5, a marking rule has the purpose of extending
to the conclusions of a link the marking of the premises of the link—with the relevant exception of the start-rule, which has
the purpose to mark the conclusions of an axiom. Therefore, we do not need any particular treatment for dummy links (this
is not the case for the parsing rules, where we need the ∗◃-rule to parse dummy links, see Fig. 4). Moreover, a dummy link
is included into the asl G[µ, t] as soon as its premise contains the token t , that is as soon as the 2

◃-link above it propagates
the token t to its conclusion. In other words, the rules in Fig. 5 suffice to ensure that a dummy link is parsed together with
the 2

◃-link above it.

Every parsing reduction induces a corresponding unification reduction: for any G→∗p G′, there is a pair µ :: π of G s.t.
there is a one-to-one correspondence between the star links in G′ and the set of the asl’s G[µ, t] s.t. t ∈ π (let us recall that
G[µ, t] is the asl formed of the set of links whose premises and conclusions contain the token t ∈ π ).

Fig. 5 defines the rewriting system (parametric on G) that, when the reduction starts with the empty marking, derives
the valid markings of G. Let us recall that a marking function is a partial function µ : V(G) ⇀ [0, h[, where h ≤ k and k+ 1
is the number of axioms in G. In the rules of Fig. 5 we use the following notations:

(1) the marking function µ with range [0, h[ is represented by means of the list of the pairs αi → i, where αi is a set of
vertices and 0 ≤ i < h, with αi ∩ αj = ∅ if i ≠ j. The vertices in αi are the vertices of G marked by i; then µ(u) = i for
every u ∈ αi;

(2) a partition is represented by means of a list of disjoint sets ti, namely π = (t1 ; . . . ; tl);
(3) if µ has range [0, h[, then next(µ) = h;
(4) µ(u) = ⊥when µ(u) is undefined;
(5) µ[α → i] is the marking µ′ s.t. µ′(u) = i, when u ∈ α, and µ′(u) = µ(u), otherwise;
(6) π(i) is the canonical representative of the set containing i, for instance, its least element;
(7) if π(i) ≠ π(j), then π [i = j] is the partition obtained from π by merging the set containing i and the set containing j.

Any application of the rules in Fig. 5 starts with the empty marking () :: () and, when () :: ()
G
−→

∗
u µ :: π , we shall write

↓
G (µ :: π).
Fig. 6 gives a pictorial account of the unification rules. In Fig. 6, π and π ′ are the partitions before and after the rewriting,

respectively, and the relevant values of the marking functions are drawn in the place of the corresponding vertices.
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Remark 25 (Threads). Let ρ be a unification reduction s.t. ↓G (µ :: π), and t be some token in π . The thread corresponding
to t is the subset of the rewriting rules in ρ that assign an index i ∈ t to some vertex of G. Each thread of ρ spans the sub-aps
G[µ, t]. Interpreting each thread as an independent unification process running in parallel with the other threads, we see
that each start rule creates a new thread, and that the unify and forward rules are thread synchronization directives: forward
asks for the synchronization of the threads of its premises; unify signals that the threads of its premises have synchronized
and unites them into a unique thread.

When G has k + 1 axioms and ↓G (µ :: π), the range of µ is an interval [0, h[ with h ≤ k + 1, and π is a partition of
[0, h[with a class for each thread of the reduction. Then, G is an apn iff there is a marking pairµ :: π of G s.t.µmarks all the
vertices of G and π equates all the tokens in the range of µ, that is G is an apn iff the unification of G ends up with a unique
thread that spans all G.

Definition 26 (Unifier, u-Correctness). Let G be an aps with k + 1 axiom links. A marking function µ is a unifier of G when
µ is a total function onto [0, k] and ↓G (µ :: 0, . . . , k). The aps G is u-correct when it has a unifier.

Proposition 27. A proof structure is u-correct iff it is DR-correct.

Proof. By Proposition 21, it suffices to prove that an aps G is u-correct iff it is p-correct.
Only if direction. Given the aps G − α, let ↓G (µ :: π) with π = (t1 ; . . . ; tl). Let G[µ :: π ] be the parsing aps obtained by
replacing G[µ, ti] − αi with ∗◃ αi, for i = 1, . . . , l (the fact that G[µ, ti] is an aps follows from the observation thatµ(v) ∈ ti
implies µ(w) ∈ ti for every pair of vertices v ≺ w). By induction on the length of the unification reduction ρ that leads to
µ :: π , we see that G[µ, ti] →∗p

∗

◃ αi. When π is a unifier, l = 1 and G[µ, t1] = G. Thus, G→∗p
∗

◃ α.
If direction. Let G →∗p G′ with G′ = G0;

∗

◃ α1 ; . . . ;
∗

◃ αl, where G0 does not contain any star link. By Lemma 13,
G = G0;G1; . . . ;Gl with Gi →

∗
p
∗

◃ αi for i = 1, . . . , l. By induction on the length of the parsing reduction, there exists
↓

G (µ :: π)with π = (t1 ; . . . ; tl) s.t. G[µ, ti] = Gi. In particular, when G→∗p
∗

◃ α, the marking function µ is a unifier. �

Remark 28. Let ρ be a unification reduction. Afterm starts and n unifys, ρ containsm− n threads—a thread for each token.
Since a successful unification ends with only one thread, when G has a unifier, G contains k+1 axioms iff G contains k binary
links.

6.2. Ready and waiting links

During unification, a link is armed when both its premises contain a token, and is idle otherwise. Each forward or unify
rule fires an armed link and, because no rule can erase or change the token assigned to a vertex, no link can be fired twice.
However, not every armed link can be fired. For instance, an armed binary link whose premises contain the same token is
a deadlock. Neither can an armed unary link whose premises contain distinct tokens can be fired; since a following unify
might unite the tokens of its premises, such a unary link is in a waiting state. An armed link that is not waiting and is not a
deadlock is ready to be fired. A vertex is in the same state as the link above it: a vertex is ready when it is the conclusion of
a ready link.

The unification algorithm consists of amain loop that picks a ready vertex (link) and fires one of the rules in Fig. 5. During
this process, unification queries and updates the set of vertices that are ready and the set of vertices that are waiting, say
R and W respectively. In particular, after removing and marking a ready vertex v from R, one of the following two cases
applies:

(1) if the marking of v arms a unary link with conclusion w, then insert w in the set of the ready vertices R or in the set of
the waiting verticesW , according to its state;

(2) if the marking of v arms a binary link with conclusionw andw is not a deadlock, then apply a unify rule, putw in R, and
move the waiting vertices that become ready fromW to R.

6.3. Implementation of unification

The following two considerations must be taken into account, if we want to implement unification efficiently.

a. First of all, let us observe the basic operations that we need on the sets of indexes in the partition π :
(a) The side conditions of the forward and of the unify rules require one to know if the indexes assigned to the premises

of an armed link belong to the same set.
(b) The application of a unify rule requires one to merge two disjoint sets of indexes into a unique set.

The above operations correspond to basic operations on the abstract data structure of a disjoint-set, and can be
efficiently implemented by the so-called union-find algorithm.

b. If the set of waiting vertices W has no structure, finding the waiting vertices that have become ready after a unify rule
requires scanning all W . As a consequence, a flat implementation of W causes a linear cost of unify, and an overall
quadratic cost for unification, at least. The solution to this problem consists in choosing a particular strategy for the
application of unification, which we shall call sequential unification, and which will be presented in Section 7.
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6.3.1. Disjoint set union-find
As already remarked, the data structure implementing the partition π must be optimized for the so-called disjoint-set

union-find operations [1, Chapter 22]:

FindSet(i): It computes the least element in the token of i (i.e. it computes π(i)).
Union(i, j): It merges the tokens of i and j and leaves the other tokens unchanged (i.e. it computes π [i = j], provided that

π(i) ≠ π(j)).
MakeSet(i): It adds the token {i} to π (i.e. it computes (π; i), provided that π(i) = ⊥).

Efficient data structures for (disjoint-set) union-find have been widely studied and used (e.g., in term unification [12]). The
main property of the corresponding algorithms, also known as α-algorithms, is that the overall cost of m FindSet, Union
andMakeSet operations is UF(m, n) = O(m α(m, n)), where n is the number ofMakeSet operations and α is a very slowly
increasing function—in terms of growth slope, α is the inverse of the Ackermann function.

Remark 29. From a theoretical point of view, an α-algorithm is not linear, for α(h, k) is not a constant. Nevertheless, in
any conceivable application, α(h, k) < 4. In fact, α(h, k) = min{i ≥ 1 : Ack(i, ⌊h/k⌋) > lg k}, where Ack (the Ackermann
function) is defined by: Ack(1, j) = 2j; Ack(i, 1) = Ack(i−1, 2); Ack(i, j) = Ack(i−1,Ack(i, j−1)); in particular, Ack(2, n)
is a tower of exponentials of length n. Then, for every h ≥ k, Ack(4, ⌊h/k⌋) ≥ Ack(4, 1) = Ack(2, 16), that is far greater
than the estimated number of atoms in the observable universe (roughly 1080).

However, even using an efficient solution for union-find with a (pseudo-)linear cost, without an efficient data structure
for the representation of the waiting verticesW , the algorithm that we get is (pseudo-)quadratic.

7. Sequential unification

The worst case for the unification algorithm is when the proof structure G is correct—in that case, every unification
reduction ofG requires |G| steps. As already noticed, this does not immediately imply linearity. In fact, for a correct evaluation
of the computational cost of unification, we must take into account the cost of choosing the rule that applies and the cost
of the operations on the partition π—the marking function µ is not a problem, it is an index field in the records used to
represent links.

The rules in Fig. 5 define a parallel unification algorithm: there is a thread for each token and the threads run in parallel
(see Remark 25). Unfortunately, this parallel point of view does not give any help in implementing the data structures of the
ready vertices R and thewaiting verticesW , as vertices are inserted andmoved from R andW in no particular order. Instead,
an efficient implementation of R and W requires finding a good unification strategy; in particular, it requires controlling
thread creation.

During unification, the start rules number axioms (the index of an axiom is that of its conclusions) according to the order
in which they are visited. Therefore, the token of i is older than the token of j when π(i) < π(j), and similarly for the
corresponding threads. Now, let us say that a ready link belongs to a thread if the rule that can fire it belongs to that thread
(see Remark 25), e.g., a ready unary link belongs to the thread of its premises token. We want to control the order in which
the links are fired by giving priority to the youngest thread in a unification reduction.

The youngest thread (token) of a reduction is its active thread (token). An active link is a ready link that belongs to the
active thread, while an active vertex is the conclusion of an active link.

Definition 30 (Sequential Strategy). After an initialization step that fires an axiom (any one), the sequential strategy for the
application of the unification rules in Fig. 5 is formed of the following two steps:

(1) Repeat firing an active link, if any, as long as you do not mark a vertex v that is the premise of a binary link whose other
premisew is not marked.

(2) When step 1 ends marking the vertex v, fire an axiom (i.e. start a new thread) above the vertex w found in step 1 and
return to step 1.

The sequential strategy ensures that threads are united according to their age. In fact, when the thread of i creates a
new thread assigning the index j to some axiom, by construction, j > x for every x in the token of i. Moreover, there is a
binary link whose commitment is to unite the thread of i and the thread of j. Then, let us assume that j creates a new thread
assigning the index j+1 to some axiom; there is a binary link whose commitment is to unite the threads of j and j+1. After
some steps, let the thread of j + 1 unite with the thread of i. If j and j + 1 are not in the same thread, there are two binary
links committed to unite the same pair of threads—the thread of j and the thread of i and j + 1. Therefore, unification will
eventually reach a deadlock.

Let ↓G (µ :: π) be obtained according to the sequential strategy. If [0, h[ is the range of µ, there is a sequence
i0 < · · · < in < · · · < il+1, with i0 = 0 and il+1 = h, s.t. π splits [0, h[ in the subintervals [i0, i1[, [i1, i2[, . . . , [il, il+1[. Now,
let us represent π by means of the stack σ = i0 : · · · : in : · · · : il and write σ(i) = in when in ≤ i < in+1. The ready vertices
can be arranged into a stack of sets R = ρ0 : · · · : ρn : · · · : ρl, s.t. v ∈ ρn iff v is the conclusion of a unary link belonging to
the thread of in, and then ρl is the set of the active vertices. Each unify merges the intervals [il−1, il[ and [il, h[, and adds the
vertices in ρl−1 to the set of the active links, namely a unify pops il from σ and merges the two sets on the top of R.
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Fig. 7. Sequential unification: main rules.

Using the sequential strategy has a consequence on the structure of the waiting vertices too. Let us say that v0 iswaiting
for i when it is the conclusion of a unary link v1, v2

1
◃ v0 s.t. i = π(µ(v1)) and µ(v1) < µ(v2) (note that this means

π(µ(v1)) < π(µ(v2)) also); we can assume that W is a function (or an array) s.t.: for j = i0, . . . , il−1 (we recall that
σ = i0 : · · · : il), W (j) is the set of vertices that are waiting for j; otherwise, W (j) = ⊥. Since unify unites the tokens of il
and il−1, after a unify, we have that:

(1) the vertices in W (il−1) become ready and active, i.e. they must be added to the set on the top of R;
(2) for n < l− 1, the vertices inW (in) keep waiting for in.

The latter considerations lead to the sequential unification algorithm, whose main rules are given in Fig. 7. The following
notations are new:

(1) W ′ = W [i←[ u], with the proviso W (i) ≠ ⊥, means thatW ′(i) = W (i), u, whileW ′(j) = W (j), if j ≠ i;
(2) W ′ = W [i → ⊥] andW ′ = W [i → ∅] set the value ofW ′(i) to⊥ and to ∅, respectively, leavingW ′(j) = W (j), for j ≠ i

(we stress thatW (j) = ∅means that the jth stack has been initialized and is empty, whileW (j) = ⊥means that the jth
stack is undefined, therefore no operation can be done on it).
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Fig. 8. Sequential unification: answer rules.

The rules for sequential unification are completed by the answer rules in Fig. 8. An instance of an answer rule can only
be the last rule of a sequential unification reduction; moreover, by Proposition 37, we shall see that the last rule of any
maximal sequential unification reduction is an instance of an answer rule, that is true and false are the only normal forms
of sequential unification.

Fig. 9 gives a pictorial account of sequential unification. We have added the case in which the vertex v popped from R is
the premise of a deadlock; by the way, this corresponds to an incorrect aps.

Sequential unification rewrites four-tuples with the shape µ :: σ :: W :: R. Let
G
−→

∗
s be the transitive and reflexive

closure of
G
−→s; in the following, we shall write ⇓G (µ :: σ :: W :: R), when (() :: () :: () :: ())

G
−→

∗
s (µ :: σ :: W :: R).

For technical reasons, in the rules of sequential unification, we do not mark a vertex immediately after firing the link
above it; instead, we put it into R. This simplifies the specification of the algorithm, preserving the property that each set in
R contains the vertices that are ready to be marked with the corresponding index in σ .

Apart for init, each rule in Fig. 7 pops a vertex u from R, marks it with the top index of σ , verifies the state of the link
below u and, according to this state, performs some operations on µ :: σ :: W :: R. For instance, when u is the premise of a
unary link with conclusion v; if we can apply await, then u is a premise of a waiting link, andwait inserts its conclusion v in
the proper set of W ; if we can apply a forward, then u is the premise of a ready link, and forward inserts its conclusion v in
the top set of R. We remark new: it implements step 2 of the sequential strategy.

Remark 31. We recall that R is a stack of sets, i.e. R = α0 : α1 : . . . : αk. Therefore, the vertex u popped from R is any vertex
in αk. We also remark that, when the top set of R is empty, no rule of sequential unification applies. In particular, the case in
which k > 0 and αk = ∅ corresponds to a deadlock and cannot arise in an apn.

Neglecting the cost of the union-find operations, all the sequential unification rules apart from new can be executed in
O(1) time. This is not true for new, as it requires us to go up along the net until we find an axiom. The function in Fig. 10
implements this search.

During the search, NextAxiom sets a tag associated to each vertex. That tag, initially equal to false, is true when the
vertex v has already been visited by some NextAxiom or when v is the conclusion of the axiom fired by init—in practice,
after initializing all the tags to false, we can assume that the starting axiom is found calling NextAxiom(v), where v is any
vertex. According to this,NextAxiom(v) returns an errorwhenever v has already been visited, i.e.µ(v) ≠ ⊥ or tag(v) = true
(if NextAxiom is properly called by init and by new only; both cases are not possible in an apn). We stress that the use of
tags ensures that NextAxiom cannot loop (by the way, this might happen in an incorrect aps) and that, during sequential
unification, either NextAxiom does not visit any vertex twice or it stops after finding an already marked vertex.
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Fig. 9. Sequential unification: a pictorial account.

Every sequential unification reduction corresponds to a (parallel) unification reduction. More precisely, whenever ⇓G

(µ :: 0 : i1 · · · : il :: W :: R)with next(µ) = h, we have ↓G (µ :: [0, i1[; [i1, i2[; . . . ; [il, h[) also. Moreover, if G is an apn and
µ is not a unifier, the top set of R is not empty. Hence, sequential unification of an apn cannot stop before finding a unifier.

7.1. Correctness of sequential unification

In order to prove correctness of sequential unification (Proposition 37), we prove by induction on the length of any non-
empty reduction

(⊥ :: ∅ :: ⊥ :: ∅)
G
−→

∗

s (µ
′
:: σ ′ :: W ′ :: R′)

G
−→s (µ :: σ :: W :: R)
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Fig. 10. The NextAxiom function.

some useful invariants of the main rules of sequential unification (Fact 32 and from Lemma 33 to Lemma 36). The fact
that true and false are the only normal forms of sequential unification, namely that every maximal sequential unification
reduction ends with an answer rule, will be proved in Proposition 37.

Fact 32. Let σ = i1 : i2 · · · : il and σ ′ = i′1 : i
′

2 · · · : i
′

l′ .

(1) The length of σ (σ ′) is equal to the number of sets in R (R′). That is

R = ρ1 : ρ2 : · · · : ρl R′ = ρ ′1 : ρ
′

2 : · · · : ρ
′

l′

(2) W (i) ≠ ⊥ iff i = in, for some 1 ≤ n < l (and W ′(i) ≠ ⊥ iff i = i′n, for some 1 ≤ n < l′). Therefore, if we take

W (in) = Wn W ′(i′n) = W ′n

u ∈ Wn (and u ∈ W ′n) only if u is a conclusion of a unary link and µ(u) = ⊥.
(3) Let us define

Vn = {u ∈ V(G) | σ(µ(u)) = in} V ′n = {u ∈ V(G) | σ ′(µ′(u)) = i′n}
V n = Vn ∪ ρn V ′n = V ′n ∪ ρ

′
n

V =
l

n=1 Vn V ′ =
l′

n=1 V
′
n

V =
l

n=1 V n V ′ =
l′

n=1 V ′n

V ′ ⊆ V and V ′ ⊆ V ; moreover, if the last rule is not init, |V | = |V ′ + 1|.

Proof. By induction on the length of the derivation and by case analysis of the last rule. �

The notations introduced in Fact 32 will be used in all the lemmas of this section.
According to the definition in Fact 32, Vn is the set of the vertices marked by an index in the equivalence class (the token)

of in. By the next lemmas instead, we shall see (Lemma 34) that ρn is a set of vertices ready to be marked by the index in,
namely that every vertex in ρn has not beenmarked yet and that it is either a conclusion of an axiomwhose other conclusion
has already been marked by an index in the class of in, or a conclusion of a link whose premises have been marked by an
index in the class of in. According to this, V n is the set of vertices that at a given point are spanned by the indexes in the class
of in, and that correspond to a sub-aps (see Lemma 35).

The next lemmas will be proved by induction on the length of the derivation and by case analysis of the last rule. We
stress that, since the first rule of every non-empty sequential unification reduction is an init, the base case of the induction
will be that of a reduction formed of an init rule only.

First of all, we take into account axioms, proving that either none of the conclusions of an axiom has been marked, or
that both the conclusions have been or will be marked by indexes in the same class.

Lemma 33. Let 0
◃ u′, u′′ ∈ G. One of the following two cases holds:

a. u′, u′′ ∉ V .
b. There is a unique n s.t. u′, u′′ ∈ V n and

(a) u′ ∈ ρn implies µ(u′) = ⊥;
(b) if n < l, then u′ ∈ ρn implies u′′ ∈ Vn;
(c) if n = l, then u′, u′′ ∈ ρl implies V l = ρl = {u′, u′′}.
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Proof. The base case is trivial. Therefore, to conclude the proof, it suffices to analyze the following possibilities.

a. u′, u′′ ∉ V ′. If the last rule is not a new, no vertex in V \ V ′ is conclusion of an axiom link. Therefore, u′, u′′ ∉ V . Now, let
us assume that the last rule is a new that involves the axiom 0

◃ v1, v2. By the side condition of new, µ(v1) = µ(v2) = ⊥
and ρ ′l′ ≠ {v1, v2}; that is, by the induction hypothesis, V \ V ′ = {v1, v2}. Then, when {u′, u′′} = {v1, v2}, b holds with
n = l; otherwise, a holds.

b. u′, u′′ ∈ V ′m for somem ≤ l′. If the last rule is a
concl, nop, wait, forward. We have that: (i) for n < l′ = l, V ′n = Vn and ρn = ρ ′n; (ii) Vl = V ′l ∪ {v} for some v s.t.
ρ ′l = ρ, v and ρl = ρ, α, for some ρ, where α is empty or equal to the conclusion of a unary link. This suffices to
conclude that u′, u′′ ∈ V n iff n = m and that items 1, 2 hold. Now, in order to conclude item 3 too, let us notice that
m = l and u′, u′′ ∈ ρl implies u′, u′′ ∈ ρ ′l ; but, by the induction hypothesis, u′, u′′ ∈ ρ ′l implies v ∉ ρ ′l = {u

′, u′′}.
Therefore, {u′, u′′} ⊈ ρl.

new. Let us start by proving u′, u′′ ∉ {Vl}. In particular, let us prove {u′, u′′} ≠ {v1, v2}. This is definitely the casewhen
{u′, u′′} ⊈ ρ ′n. In fact, w.l.o.g., let u′ ∉ ρ ′n; we have u′ ∈ Vn and, by the side condition of the rule, µ(v1) = µ(v2) = ⊥.
Now, let {u′, u′′} ⊆ ρ ′n. By the induction hypothesis, that implies n = l′ and ρ ′l′ = {u

′, u′′}.W.l.o.g., let us assume that u′
is the premise of the binary link in the rule. The side condition of the rule impliesµ(u′) ≠ ⊥ andµ(v1) = µ(v2) = ⊥.
Therefore, as Vl = ∅ (by il = next(µ′)), this complete the proof of u′, u′′ ∉ V l. Now, after noticing that V n = V ′n and
ρn = ρ

′
n for n < l′ = l− 1, that Vl′ = Vl′ ∪ {v}, and that ρ ′l = ρl, v, we can proceed as in the cases seen above.

unify. We have: Vn = V ′n and ρn = ρ ′n for n < l = l′ − 1; Vl = V ′l ∪ V ′l+1 ∪ u1 and ρ ′l = ρ ′l+1, u1 for some

ρ and ρl = ρ ′l , ρ
′

l+1,Wl, u0, where u1, u2
2
◃ u0 is the binary link in the redex of the rule. Therefore, u′, u′′ ∈ Vn

iff n = min{m, l}. Moreover, for m < l, items 1 and 2 hold immediately by the induction hypothesis. For m = l,
{u′, u′′} ⊈ ρ ′l by the induction hypothesis. For m = l + 1 instead, we can have u′, u′′ ∈ ρl only if u′, u′′ ∈ ρ ′l+1; but,
u′, u′′ ∈ ρ ′l+1 implies u1 ∈ {u′, u′′} (by the induction hypothesis) and u1 ∉ ρl. As a consequence, for m = l, l + 1,
item 3 holds because of the fact that {u′, u′′} ⊈ ρl. �

We consider now the case of a 1
◃ and 2

◃-links, namely of some u′, u′′ ◃ u ∈ G. If the conclusion u has been marked by an
index in or it is ready to be marked by in (namely u ∈ ρn), then all the vertices above it (every v ≻ u) have been marked by
an index in the class of in (and in the case u ∈ ρn, the vertex u has not been marked yet). Instead, u is waiting for in, that is
u ∈ Wn, iff u is the conclusion of a 1

◃-link, and one of its premises has been marked with an index in the class of in, while
the other premise has been marked with an index in the class of im, for some m > n. Finally, it is not the case that the two
premises of a 2

◃-link might be marked with indexes in distinct classes.

Lemma 34. Let u′, u′′ ◃ u ∈ G and n = 1, . . . , l.

a. u ∈ Vn implies v ∈ Vn for every v ≻ u;
b. u ∈ ρn iff µ(u) = ⊥ and v ∈ Vn for every v ≻ u;
c. u ∈ Wn, with n < l, iff u′′ ∈ Vm for some m > n, u′ ∈ Vn and u′, u′′ 1

◃ u ∈ G;
d. u′ ∈ Vn and u′′ ∈ Vm with m ≠ n only if u′, u′′ 1

◃ u ∈ G.

Proof. As a preliminary step, let us remark that, by the induction hypothesis and Lemma 33, u ∈ ρ ′l′ only if µ(u) = ⊥ and
that V = V ′ ∪ {v} for some v ∈ ρ ′l′ . Then, just for the proof of the lemma, let us defineρn = {u ∈ V(G) | µ(u) = ⊥∧ ∃v ≻ u ∧ ∀v ≻ u : v ∈ Vn}Wn = {u ∈ V(G) | ∃u′, u′′ 1

◃ u ∈ G s.t. u′ ∈ Vn ∧ ∃m > n : u′′ ∈ Vm}.

With these notations, items b and c become ρn =ρn and Wn = Wn, respectively.
We can now prove each item of lemmas by induction on the length of the derivation (the base case is immediate).

a. Whichever is the last rule, Vn = V ′n for n < min{l, l′}. Then, for n ≥ min{l, l′}, let us proceed by cases w.r.t. the last rule
of the reduction.
concl, nop, wait, forward: As l = l′, we have n = l only and Vl = V ′l ∪ {u

′
} for some u′ ∈ ρ ′l .

new: As l = l′ + 1, we have the cases n = l− 1, l. But, Vl = ∅ and Vl−1 = V ′l−1 ∪ {u
′
} for some u′ ∈ ρ ′l−1.

unify: As l = l′ − 1, we have n = l only and Vl = V ′l ∪ V ′l+1 ∪ {u
′
} for some u′ ∈ ρ ′l+1.

In each of the previous cases, a follows by the induction hypothesis (a and b).
b. Whichever is the last rule, ρn = ρ ′n andρn =ρ ′n for n < min{l, l′}. For the other values of n, let us proceed by cases w.r.t.

the last rule.
concl, nop, wait, new: l′ ≤ l andρl′ =ρ ′l′ ∪ {u′} for some u′ s.t. ρl′ = ρ ′l′ ∪ {u

′
}. Moreover, new is the only case in which

l′ < l = l′ + 1; but, after a new,ρl =ρ ′l = ∅. By the induction hypothesis, we conclude.
forward: l′ = l and there is u1, u2

1
◃ u0 ∈ G s.t. u2 ∈ Vn and, for some ρ, ρ ′l = ρ ∪ {u1} and ρl = ρ ∪ {u0}. By the

induction hypothesis,ρ ′l = ρ ∪ {u1} (by b) and µ(u0) = ⊥ (by a). Therefore,ρl = ρ ∪ {u0}.
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unify: As l = l′ − 1, we have to analyze the case n = l only. By inspection of the rule, ρl = ρ ′l ∪ ρ ∪ W ′l ∪ {u0}

and ρl+1 = ρ ∪ {u1} for some ρ and some u1, u2
2
◃ u0 ∈ G s.t. u2 ∈ Vl. By the induction hypothesis, we see that:ρ ′l+1 = ρ ∪ {u1} (by b); u0 ∉ V ′ (by a); for w ∈ Wl, µ(w) = ⊥ (by c and a) and v ∈ V ′l ∪ V ′l+1 for every v ≻ w (by

c). Therefore, ρ ∪ρ ′l ∪Wl ∪ {u0} = ρl ⊆ ρl. Now, let w ∈ ρl with w ≠ u0 and w ∉ ρ ∪ ρ ′l+1; by definition, w is not
conclusion of an axiom. If w′ ∈ V ′n with n = l or n = l+ 1, then w ∈ ρ ′n \ {u1} = ρ

′
n \ {u1} ⊆ ρl. Now, let us assume

that there exist w′ ∈ V ′l and w
′′
∈ V ′l+1 with w′, w′′ ≻ w. By the induction hypothesis (item a), we can take, w.l.o.g.,

w′, w′′ ◃ w. By the induction hypothesis (c and d), w′, w′′ 1
◃ w and w ∈ Wl ⊆ ρl. Summing up,ρl ⊆ ρl. Since we

have already seen the converse, we conclude.
c. Let us proceed by case analysis.

concl, nop, forward, unify: Trivial, as Wn = W ′n for n < l′ = l.
new: As in the previous case for n < l′ = l− 1. If n = l− 1, Wl−1 = ∅ and Vl = ∅ (by the definition of the rule); so,Wl−1 = ∅ also.
forward: Let u1, u2

1
◃ u0 be the link in the redex, with u1 ∈ Vl and u2 ∈ Vm. It is readily seen that Wn = W ′n for n ≠ m

and that Wm = W ′m ∪ {u0}.
d. By inspection of the rules. �

We can now conclude that every V n determines a sub-aps of G defined by

Gn = {α ◃ u ∈ G | u ∈ V n} ∪ {
0
◃ u1, u2 ∈ G | u1, u2 ∈ V n} ∪ {u

0
◃ ∈ G | u ∈ Vn}.

In fact, let α′ ◃ α ∈ Gn. By Lemmas 33 and 34, u ∈ V n for every u ∈ α, α′. Moreover, every vertex in ρn is a conclusion of
Gn, that is

Gn − γn, ρn where γn = {u ∈ Vn | u
0
◃ ∉ G ∧ ∀v ≺ u : v ∉ V n}

and Gn is correct.

Lemma 35. Gn →
∗
p
∗

◃ γn, ρn for n = 1, . . . , l.

Proof. The case of init is trivial, as l = 1 and G1 =
0
◃ u1, u2 (refer to the corresponding rule for the names of the vertices).

In the other cases, Gn = G′n for n < l (by inspection of the rules). While, by Lemmas 33 and 34, when the last rule is a

concl: Gl = G′l or Gl = G′l ; u
0
◃ if u 0

◃ ∈ G.
nop, wait: Gl = G′l .
forward: u1, u2 ∈ ρ

′

l , γ
′

l and Gl = G′l ; u1, u2
1
◃ u0.

new: Gl =
0
◃ v1, v2.

unify: u1 ∈ ρ
′

l+1, u2 ∈ γ
′

l and Gl = G′l ; G
′

l+1 ; u1, u2
2
◃ u0.

In every case, we conclude by the induction hypothesis. �

The previous lemma shows that every equivalence class of indexes corresponds to a sub-apn. The new-rule is the rule
that creates a new class of indexes starting the marking of a new sub-apn from an axiom. The new-rule applies when the
sequential unification marks, with the last index il in σ , one of the premises u1 of a 2

◃-link whose other premise u2 has not
been marked yet. If [il, h[ is the equivalence class of il, the new-rule finds the premise of an axiom above u2 and starts from
such an axiom a new marking with the index il+1 = h. It is readily seen that in this case there is a switch with a path that
connects a conclusion of Gl+1 to a conclusion of Gl (the vertex u1) through the tensor u1, u2

2
◃ u0. This implies also that,

in an apn, the classes of il and il+1 must be merged by a unify-rule whose 2
◃-link is u1, u2

2
◃ u0. Moreover, in an apn, if

marking with il we reach the premise u1 of a binary link whose other premise u2 has been already marked, we must have
µ(u2) = il−1, otherwise we would have a switch with two distinct paths between the two correct sub-apn Gl−1 and Gl. By
the same reasoning, in an apn we also have to exclude the case in which u2 has not been marked but there is v ≻ u2 that
has been already marked. The next lemma formally states and proves the above facts.

Lemma 36. Let v′, v′′ 2
◃ v ∈ G.

a. If v′ ∈ γn, then n < l and
(a) v′ is the only premise of a binary link in γn;
(b) v′′ 4 w for somew ∈ V n+1;
(c) if G is an apn, for everyw < v′′ eitherw ∉ V orw ∈ Vm for some m > n.
Therefore, γl does not contain premises of binary links and, for n = 1, . . . , l − 1, there is a unique sequence of binary links
v′n, v

′′
n

2
◃ vn ∈ G s.t. v′n ∈ γn and a sequence of verticeswn+1 < v′′n s.t.wn+1 ∈ V n+1.

b. If v′ ∈ γl and G is an apn, then either v′′ ∈ γl−1 orw ∉ V for everyw < v′′.
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Proof. Let us start by proving that A implies B. That is, let us assume that A and that v′ ∈ ρl; we shall prove that, if w ∈ V
for some w < v′′ and v′′ ∉ γl−1, then G is not an apn. Let us take the maximum m ≤ l − 1 for which there exists w < v′′

s.t. w ∈ Vm; w.l.o.g., let w = wm ∈ γm ∪ ρm. For k = m, . . . , l − 1, let v′k, v
′′

k
2
◃ vk be the unique binary link s.t. v′k ∈ γk

and letwk+1 ∈ γk+1 be any vertex s.t.wk+1 < v′′k (the link and the vertex exist by the induction hypothesis). For the sake of
the exposition, let v′′m−1 = v

′′ and v′l = v
′. For k = m, . . . , l, let v′′k−1 ⌢ φk ⌢ wk be the ascending path from v′′k−1 to wk

(that is, φk is a path in some switch of G and vk−1 ≺ w ≺ wk for every w ∈ φk) and let wk ⌢ φk ⌢ v′k be a path in some
switch of Gk (this path exists by Lemma 35). Let ψk = φk ⌢ wk ⌢ φk. It is readily seen that v′′k−1 ⌢ ψk ⌢ v′k is a path in
some switch of G. Now, let us take the composition of the paths ψk; that is, let ψ = ψm ⌢ v′m ⌢ vm ⌢ v′′m ⌢ · · · ⌢ ψl.
If for no w ∈ V(G) there exists a pair h ≠ k s.t. w ∈ ψh and w ∈ ψk, there is a switch of G that contains the cycle
v ⌢ v′′(= v′′m−1) ⌢ ψ ⌢ v′(= v′l ) ⌢ v; that is, G is not an apn. Otherwise, let w ∈ ψh ∩ ψk with h < k. It is readily seen
thatw ∈ φh ∩ φk. By construction, v′′k−1 ≺ w ≺ wh. So, as k− 1 ≥ h, G is not an apn (by the induction hypothesis).

Now, let us prove A by induction on the length of the reduction. In the base case (an init rule only), l = 1 and ρ1 = ∅.
Therefore, let us analyze the other cases under the assumption v′ ∈ γn for some n.

concl, nop, wait, forward: Trivial.
new: As γl = ∅, n < l = l′ + 1. If n < l − 1, we conclude by the induction hypothesis. So, let n = l − 1. We see

that γl−1 = γ ′l−1, u1 (refer to the rule for the names of the vertices). By the induction hypothesis, γ ′l−1 does not
contain premises of binary links. So, v′ = u1 is the only premise of a binary link in γl−1. Moreover, v′′ = u2 and
u2 4 v1 ∈ V l. Asw ∉ V

′
for everyw < u2 and V = V

′
∪ V l (by the induction hypothesis), we conclude.

unify: By the induction hypothesis, for n < l = l′ − 1. When n = l, let us notice that u1 (refer to the rule for the names
of the vertices) is the only conclusion of a binary link in γ ′l = γ , u1 and that γ ′l+1 does not contain conclusions of
binary links (by the induction hypothesis). Therefore, as γl = γ ′l+1, γ (recall that u0 ∈ ρl), we conclude. �

We are now ready to prove that sequential unification is correct and that, if n is the number of vertices of G, it executes
at most n+ 2 steps: one for each vertex marked, plus one init rule and one true/false rule.

Proposition 37. Let n = |V(G)|. Either ⇓G true or ⇓G false in at most n + 2 reduction steps. Moreover, ⇓G true after n + 2
reduction steps iff G is an apn.

Proof. By Lemmas 33 and 34, when the last rule is not an init, |V | = |V ′| + 1 ≤ n. Therefore, the longest reduction that we
can have starts with an init and ends with a true/false after n applications of the other rules. Moreover, as (µ :: σ :: W :: ρ)

G
−→s true only if V = V(G), every reduction ending with true requires exactly n+ 2 steps.

In order to prove that true and false are the only normal forms, let us verify that for every (µ :: σ :: W :: ρ) there is a
rule that we can apply. If ρl = ∅, we can apply truewhen V = V(G) or false1 otherwise. Therefore, let us assume ρl = ρ, u.
If u is a conclusion of G or the premise of a dummy link, we can apply concl. The rules nop,wait and forward cover every case
in which u is premise of a unary link. We leave the case in which u, u′ 2

◃ v ∈ G. If u′ ∈ V , by Lemma 36, u′ ∈ Vl−1; so, we
can apply unify. Therefore, let µ(u′) = ⊥. When w ∈ V for some w ≻ u′, we can apply false2. So, let us assume µ(w) = ⊥
for every w ≻ u′. It is readily seen that either u′ ≻ u′ or there is 0

◃ v1, v2 with v1 < u′. Now, if µ(v2) = ⊥ and v2 ≠ u1, we
can apply new; otherwise, we can apply false2.

Let (µ :: σ :: W :: ρ
G
−→u true). By hypothesis, l = 1, ρ = ρ1 = ∅ and V = V(G). Let G − α. It is readily seen that

G = G1 and α = γ1 (by V = V(G)). So, by Lemma 35, G→p
0
◃ α; that is, G is an apn (by Lemma 21).

In order to conclude, we have to prove that ⇓G false only if G is not an apn. Let (µ :: σ :: W :: ρ)
G
−→u false. We

distinguish the cases of false rule.

1. ρl = ∅ and µ(v) = ⊥ for some v. By Lemma 36, γl does not contain premises of binary links. By Lemma 34, for every
u′ ∈ γl with u′, u′′ 1

◃ u ∈ G, u′′ ∉ Vl (in fact, u′′ ∈ Vn would imply u ∈ ρl; but, as ρl = ∅, this is not the case). Therefore, for
every u′ ∈ γl s.t. u′, u′′

1
◃ u ∈ G, let us take a switch with u ⌢ u′′; it is readily seen that there is no connection between

v and anyw ∈ Vl.
2. There is u1, u2

2
◃ u0 ∈ Gwith u1 ∈ ρl andµ(u2) = ⊥, and one of the two cases of the side condition holds.When u2 ≺ u2,

G cannot be DR-correct (by Lemma 10). In the other case, by item C of Lemma 36, G is not an apn. �

8. The cost of sequential unification

Sequential unification allows one to efficiently implement the data structures for the waiting and ready vertices (see
Section 6.2), which we denotedW and R in the quadruples of sequential unification.

• R is a stack of sets of vertices. The only operations that we have to perform on R are: to get a vertex from or to put a vertex
into the set on the top of the stack; to insert a new set with the conclusions of an axiom; to merge the two sets on the
top of the stack with a set of waiting vertex obtained fromW .
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• W is an array of sets. The set W [i] is defined only if i is an index in σ (the minimal element in some class of indexes).
The only operations that we have to perform on a set inW is the insertion of an element. All the waiting vertices in a set
W [j] become ready at the same time, when j becomes the last index in σ . This happens when i is the second-top index
in σ and a unify rule removes the top index j. This operation forces the moving of the set W [i] from W and its merging
with the two top sets in R.

Summing up, since we do not need to find elements in the sets inW or R – almost all the rules analyze and mark a ready
vertex from R, but such a vertex can be any one, and not a particular one, in the top set of R – we can use any standard data
structure for sets that implements insertion, deletion and union in constant time.

For thepartitionσ instead,wehave to use a disjoint set union-find implementation (see Section 6.3). In thisway, since any
sequential unification terminates in at most n+ 2 steps, where n = |V(G)|, and since, apart for the union-find operations,
the cost of the application of a rule of sequential unification is constant, we get a pseudo-linear algorithm for sequential
unification, namely an algorithm with a cost O(nα(n,m)), for some m < n, where α is the very slow increasing function
described in Section 6.3.

Such pseudo-linear α-algorithms are practically linear (see Remark 29) and, since the constants in the upper-bound for a
union-find α-algorithm are small, a pseudo-linear implementation using an α-algorithm is frequently preferred to a linear
solution whose upper-bound requires bigger constants (e.g., this is the case for term unification).

However, there is a special case – and the disjoint-set union-find used by the sequential unification is an instance of it–
where the amortized cost of union-find becomes linear without any particular increasing of the upper bound constants [4].
The linear algorithm for that special case uses an α-algorithm, but, exploiting the order in which sets are united, optimizes
the size of the problem on which to apply the α-algorithm. Let us see how that technique applies in the case of sequential
unification.

8.1. A special case of union-find

The natural data structure for the implementation of σ = i0 : · · · : in : · · · : il is an array of bits b s.t. b[i] = 0, for
i = i0, . . . , il, and b[i] = 1, otherwise. In this way, setting b[in] to 1 unites the intervals [in−1, in[ and [in, in+1[, while σ(i) is
the greatest j ≤ i s.t. b[j] = 0. In order to optimize the use of memory registers, we represent b by means of an array B of
words of length w and define b[i] = bit(i mod w, B[i ÷ w]),2 where bit(n, x) is the nth bit of x (start counting bits from 0).
Computingσ(i)decomposes in the following steps: (i) check if the bit ofσ(i) is in theword i÷w, e.g., bymeans of the function
firstz(n, x) that returns the greatest m ≤ n s.t. bit(m, x) = 0, if any, and −1 otherwise; (ii) if firstz(i mod w, i ÷ w) = −1,
find the greatest n < i÷ w s.t. B[n] contains a bit equal to 0; (iii) return firstz(i mod w, B[i÷ w]), if this is not equal to−1,
or firstz(w − 1, B[n]), otherwise.

Step (ii) is the critical operation. Before analyzing it, let us remark that firstz(n, x) is O(1). For instance, let us assume
that the processor computes bor(x, y) (the bitwise-or of the words x and y) in O(1) time3; let x = mask(i) be the word s.t.
bit(j, x) = 0, for j ≤ i, and bit(j, x) = 1, for j > i; let lastz(x) be equal to the greatest j s.t. bit(j, x) = 0, if any, and equal to
−1, otherwise. Then, firstz(i, x) = lastz(bor(mask(i), x)). Now, mask and lastz can be implemented by means of two tables
of length O(w) and O(2w), respectively. That is, at the cost of a O(2w) initialization, firstz(n, x) is O(1).

The efficient algorithm for σ(i) uses a disjoint-set data structure for the implementation of step (ii). In fact, let j0 <
· · · < jn < · · · < jk be the sequence of indexes s.t.: if j = jn, then B[j] contains at least a 0; otherwise, B[j] does not
contain any 0 (by hypothesis, j0 = 0, for in any case b[0] = 0). If jk+1 = L is the length of B, then B splits into the family
of disjoint intervals [j0, j1[, [j1, j2[, . . . , [jk, jk+1[, and step (ii) is a FindSet of the corresponding disjoint-set problem. Hence,
using an α-algorithm, the cost of n find/set-bit operations on b is O(n α(n + L, L)), plus O(2w) for the initialization of
firstz(n, x). Then, if N is the length of b and w = Ω(log logN) (but even smaller values of w suffice [16]), α(n + L, L) =
α(n+ O(N/ log logN),O(N/ log logN)) = O(1); that is, n union-find operations on b cost UF(n,N) = O(n)+ O(2w).

8.2. Sequential unification is linear time

Any sequential unification of G requires at most |V(G)| steps—no vertex can be inserted twice into R and, when G is an
apn, every vertex transits into R; moreover, asNextAxiom does not visit the same vertex twice, the amortized cost of its calls
is O(size(G)). The array b has a bit for each axiom, i.e. N = O(size(G)). The number of find-bit operations is bound by the
number of unary links (wait is the only rule that requires a find-bit); the number of set-bit operations is bound by the number
of binary links. Therefore, sequential unification costs O(size(G))+UF(2 size(G), size(G)). Moreover, whenw ≤ log size(G)
andw = Ω(log log size(G)),4 the cost simplifies to O(size(G))+ O(size(G))+ O(size(G)).

Theorem 38. The cost of any sequential unification of an aps G is O(size(G)).

2 Where i÷ w is the integer quotient of i divided byw and i mod w is its remainder.
3 If n is the size of the problem, one of the basic hypotheses of the RAM model is that its word length is O(log n). Under that hypothesis, the arithmetic

and bitwise operations on words have cost O(1).
4 That assumptions onw are compatible with the basic hypothesisw = O(size(G)), see footnote 3.
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9. Conclusions

Let us remark that sequential unification is not just a theoretical trick for finding a theoretically linear time algorithm for
correctness practically superseded by non-optimal but more effective algorithms. In fact, all the steps leading to the linear
algorithm correspond to natural optimizations that do not increase the constants in the upper-bound.

Apart for the result on the complexity of correctness, the unification criterion is interesting from a semantical point of
view. The operations that unification performs at each O/�-link correspond to synchronization directives: a O-link asks
for the synchronization of its premise; a �-link (or cut) notifies that its premises have synchronized. This issue has not
been investigated yet, but the interpretation of that directives in some kind of process algebra might lead to some kind of
interpretation of proof nets in terms of concurrent processes.
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