
Digital Object Identifier (DOI):
10.1007/s00153-004-0242-2

Arch. Math. Logic 44, 167–193 (2005) Mathematical Logic

Roberto Maieli · Quintijn Puite

Modularity of proof-nets
Generating the type of a module

Received: 8 May 2003 / Revised version: 15 December 2003 /
Published online: 25 May 2004 – © Springer-Verlag 2004

Abstract. When we cut a multiplicative proof-net of linear logic in two parts we get two
modules with a certain border. We call pretype of a module the set of partitions over its
border induced by Danos-Regnier switchings. The type of a module is then defined as the
double orthogonal of its pretype. This is an optimal notion describing the behaviour of a
module: two modules behave in the same way precisely if they have the same type.

In this paper we define a procedure which allows to characterize (and calculate) the
type of a module only exploiting its intrinsic geometrical properties and without any explicit
mention to the notion of orthogonality. This procedure is simply based on elementary graph
rewriting steps, corresponding to the associativity, commutativity and weak-distributivity of
the multiplicative connectives of linear logic.

1. Introduction

“Switchings should be seen as dense subset of para-proofs.”
[J.-Y. Girard, On the meaning of logical rules I, 1998, p. 40–41]

The notion of modularity plays a central role in the current programming lan-
guages and techniques: the major part of them make sensitive use of concepts like
modules, objects, components, etc. When we build a large program it is natural to
cut it into reusable sub-units, or modules, which should result to be correct; this
correctness must be checked locally, without involving the whole program. More-
over, when we branch together some modules in order to get a unit, the inner part of
these modules should play no role; actually, the only information required should
be the specifications of their interfaces, also called types. The type of a module tells

R. Maieli: Department of Computer Science, University of Rome “La Sapienza”;
e-mail: maieli@dsi.uniroma1.it.

Q. Puite: Department of Philosophy, University “Roma Tre”;
e-mail: puite@logica.uniroma3.it

This work was carried out at the University “Roma Tre”, in the framework of the European
TMR Research Programme “Linear Logic in Computer Science”. The authors are grateful to
Paul Ruet and to the anonymous referee for their useful comments and remarks on a previous
version of this paper.

Correspondence to: R. Maieli: Department of Computer Science, University of Rome “La
Sapienza”; e-mail: maieli@dsi.uniroma1.it.

Send offprint requests to: Roberto Maieli

Key words or phrases: Linear logic – Proof-nets – Modules – Weak (or linear) distributivity

168 R. Maieli, Q. Puite

us about the behavior of this module. In particular, it says that if the branching of
modules is done according to their types then the correctness of the whole resulting
structure will only depend on the local correctness of the involved modules. At
the end of the 80ths J.-Y. Girard has shown in [Gir87a] that proof-nets of linear
logic [Gir87] (at least the multiplicative fragment) are suitable “in order to prove
that the respect of specification implies correctness”. Let us recall the question of
modularity of proof-nets, as formulated in [Gir87a]:

“Assume I am given a program P and I cut it in two parts, arbitrarily. I
create two (very bad) modules, linked together by their border. How can I
express that my two modules are complementary, in other terms, that I can
branch them by identification of their common border? One would like to
define the type of the modules as their plugging instructions: these plugging
instructions should be such that they authorize the restoring of the original
P .”

Formally a module of multiplicative linear logic is a structure with a specified bor-
der, consisting of all of the hypotheses and some of the conclusions. The conclusions
not belonging to the border are called the proper conclusions (see Section 2). Our
main question concerns how to code the behavior of a module as a function on the
border only.

By a slight modification of the original terminology adopted in [DR89] we call
pretype of a module the set of partitions over the border induced by the systems
of Danos-Regnier switchings. Then the type of a module is defined as the double
orthogonal of its pretype, according to [Gir87a]1 (see Section 3). The type is an
optimal notion describing the behavior of a module: two modules behave in the
same way precisely when they have same type.

We now give a characterization of the type of a module which does not make
explicit mention to the notion of orthogonality. This characterization only relies
on a constructive procedure which allows us to calculate the type of a module,
simply by starting from its Danos-Regnier type, here called pretype. The procedure
iterates inside the module some elementary steps of graph rewriting, illustrated
in Section 4 and only based on the associativity and commutativity of ⊗ and ℘

and the weak-distributivity laws. The weak-distributive laws correspond to the fol-
lowing (well known) theorems of linear logic: A ⊗ (B

&

C) � (A ⊗ B)

&

C) and
A ⊗ (B

&

C) � (A ⊗ C)

&

B (see [CS97], [AJ94] and Section 8 for a discussion of
these works).

In order to show that our rewrite method is complete w.r.t. the type of a module
we cut our reasoning in two parts: in Section 6 we study the case when a module
is a formula-tree, then in Section 7 we discuss the general case (a module with
axioms).

We claim, in Section 8, that our characterization of the type of module can have
nice applications to the design of (distributed) theorem provers based on proof-nets.

1 In [Gir87a] is given an other definition of the type of a module in terms of permuta-
tions instead of partitions of the border formulas. This choice is justified by the different
style of the correctness criterion of proof-nets formulated in terms of trip over the switched
proof-structures.

Modularity of proof-nets 169

Moreover, it implements only some purely geometrical properties on proof-nets,
dislike to other methods which rely on the sequent calculus like, for instance, the
so called method of “the organization of a formula-tree”, due to Danos-Regnier
and illustrated in Section 5. For this reason our method could be easily extended
to characterize the type of modules of other fragments of linear logic like the non-
commutative one [AR00], for which the Danos-Regnier method fails as shown in
Section 8.

2. The multiplicative fragment of linear logic

The class of formulas of the multiplicative fragment of linear logic (MLL) is defined
as the smallest class containing the sets of atoms α1, α2, . . . and their formal nega-
tions α⊥

1 , α⊥
2 , . . . , and closed under the multiplicative disjunction

&

(par) and
conjunction ⊗ (tensor). Negation (−)⊥ is defined by (α)⊥ := α⊥; (α⊥)⊥ := α,
(A

&

B)⊥ := A⊥ ⊗ B⊥ and (A ⊗ B)⊥ := A⊥ &

B⊥. Sequents are multisets of
formulas, and the inference rules are the axiom-rule, cut-rule, ⊗-rule and

&

-rule:

id� A, A⊥ � �, A � A⊥, �
cut� �, �

� �, A � B, � ⊗� �, A ⊗ B, �

� �, A, B &

� �, A

&

B

A structure is a graph consisting of axiom-links, cut-links, ⊗-links and

&

-links

A⊥ A

axiom

A⊥ A

cut

A

��
��

��
B

��
��

��

A ⊗ B

A

��
��

��
B

��
��

��

A

&

B

such that each formula is at most once the conclusion of a link and at most once
the premise of a link. A formula which is not conclusion of any other link is called
hypothesis; whereas a formula which is not premise of any link is called conclusion.
A proof-structure is a structure without hypotheses. To each derivation π we can
associate a proof-structures π with the same conclusions as π , in which case we
call π the sequentialization of π . A module is a structure with a specified border,
consisting of all of the hypotheses and some of the conclusions. The conclusions
not belonging to the border are called the proper conclusions.

A Danos-Regnier switching (shortly, DR-switching) of a structure is a choice
for one of the two premises of each

&

-link, and the corresponding correction graph
is obtained by erasing the other premise. The correctness criterion says that a proof-
structures is a proof-net iff all correction graphs are trees. Danos and Regnier have
also shown that a proof-structure is a proof-net if and only if it is sequentializable
(Sequentialization Theorem, [DR89]).

170 R. Maieli, Q. Puite

3. The Danos-Regnier type of a module

3.1. Generalized partitions

For a module M with set of border formulas B (usually taken {1, 2, . . . , n} by
a coding), each DR-switching s results in a correction graph with m connected
components �1, . . . , �m and possibly some cycles. Enumerating for each compo-
nent �k the border formulas i1

k , . . . , i
nk

k it contains and indicating the number c of
elementary cycles, we obtain the generalized partition

pM,s = {{i1
1 , . . . , i

n1
1 }, . . . , {i1

k , . . . , i
nk

k }, . . . , {i1
m, . . . , inm

m }}
c

over Binduced by switching s. If a component �k does not meet the border then
nk = 0 whence the corresponding class in pM,s equals {}. There may be several
such classes, hence formally pM,s is a multiset.

Erasing an edge either decreases c by 1 or increases the number of components
by 1 (c remaining unchanged), which shows that χM,s := m − c is constant for all
switchings whence only depending on M . In particular, if all correction graphs are
acyclic, m = ∣∣pM,s

∣∣ is invariant under s.
The pretype PM of M is the set of all these induced generalized partitions.

Example 1. The module

(3)

A⊥

��
��

��
��

��
��

� A

��
��

��
B

��
��
��

A

&

B

��
��
�

B⊥

��
��

� C

��
��
�

A⊥ ⊗ (A

&

B) B⊥ &

C

(1) (2)

has pretype{ {{1}, {2, 3}}0 ,
{{1, 2}, {3}}0 ,

{{1}, {}, {2, 3}}1 ,
{{1}, {2}, {3}}1

}
.

Every formula F = F(αi1 , . . . , αin) with n different atomic subformulas cor-
responds with a module (also written F) with proper conclusion F and border
consisting of the hypotheses αi1 , . . . , αin (coded by i1, . . . , in). Its pretype PF is
a set of ordinary partitions over {i1, . . . , in}.

The pretype of the formula-tree module ((α1

&

α2) ⊗ α3)

&

α4 is

{ {{1, 3}, {2}, {4}} ,
{{1}, {2, 3}, {4}}

}
.

Modularity of proof-nets 171

α1

��
��

��
α2

��
��
��

α3

��
��
��
��
��
��
��

α4

��
��
��
��
��
��
��
��
��
��
��

α1

&

α2

��
��

�

(α1

&

α2) ⊗ α3

��
��

�

((α1

&

α2) ⊗ α3)

&

α4

Given an ordinary partition

p = {{i1
1 , . . . , i

n1
1 }, . . . , {i1

k , . . . , i
nk

k }, . . . , {i1
m, . . . , inm

m }}

over {1, . . . , n} (n = ∑m
k=1 nk) let us consider the formula p̂ := A1

&

(A2

&

(. . .

(Am−1

&

Am) . . .)) where each Ak equals αi1
k

⊗ (αi2
k

⊗ (. . . (α
i
nk−1
k

⊗ α
i
nk
k

) . . .)).

This formula (considered as module) has a singleton pretype, consisting in the par-
tition p. More general, we call a bipole any formula-tree, where no

&

-link is in the
scope of a ⊗-link. In other words, a bipole is a generalized

&

-link (eventually with
arity 0) of generalized ⊗-links, like in the next figure (see also [And01]):

i1
1

��
��

�
. . . i

n1
1

��
��
�

i1
m

��
��

�
. . . i

nm
m

��
��
�

⊗1

��
��

��
�

. . . ⊗m

��
��

��
�

&

Up to associativity and commutativity of ⊗ and

&

the formula p̂ is the unique
bipole satisfying Pp̂ = {p}.
Remark 1. Apart from the allowed emptyness of some classes used to represent
some border disconnected components, our definition generalizes the ordinary no-
tion of partition (see Section 2.1 in [DR89]) by the indication of elementary cycles,
which enables us to code modules which have some cyclic correction graphs. But,
in order to prove the main results of this paper it is enough to consider the ordi-
nary notion of partition; so replacing our definition by the original one should be
considered harmless.

3.2. Orthogonality

Given two generalized partitions p and q over {1, . . . , n}, let us define G(p, q) as
the graph which has for vertices the classes of p and q, and an edge between two
classes if they share a point and moreover a circuit for every elementary cycle.

172 R. Maieli, Q. Puite

Example 2. G(
{{1, 2}, {3}}0 ,

{{1}, {}, {2, 3}}1) equals

1,2

��
��

��
��

�

																									 3

��
��

��
��

�
p��

1 2,3 q��

Two partitions p and q are orthogonal (notation p ⊥ q) iff G(p, q) is a tree.
In this case p and q are acyclic (c = 0) and G(p, q) consists of n edges and hence
(being a tree) n + 1 vertices, i.e. |p| + |q| = n + 1. Moreover, if the border is
non-empty (n > 0) p (as well as q) contains only non-empty classes (∀k : nk > 0)
and is hence an ordinary partition.

Two sets of generalized partitions P and Q over {1, . . . , n} are said to be
orthogonal (notation P ⊥⊥⊥ Q) iff they are pointwise orthogonal. Given a set P of
partitions over {1, . . . , n}, we write P ⊥ for the maximal such Q, i.e. for the set of
partitions over {1, . . . , n} that are orthogonal to all the elements of P . (For empty
P we should specify n, notation P = ∅n, in which case P ⊥ = ∅⊥

n is nothing else
than the set of all generalized partitions over {1, . . . , n}. This set is infinite, since
it contains e.g. all

{{1, 2, . . . , n}}
c

(c ∈ N).)
We call P a fact iff P = P ⊥⊥.

Lemma 3. Let A, B and the Ai be sets of generalized partitions over {1, . . . , n}.
Then the following hold:

1. A ⊥⊥⊥ ∅n;
2. A ⊥⊥⊥ B iff A ⊆ B⊥ iff B ⊆ A⊥;
3. A ⊆ B implies B⊥ ⊆ A⊥;
4. A ⊆ A⊥⊥;
5. A ⊥⊥⊥ B iff A⊥⊥ ⊥⊥⊥ B⊥⊥;
6. A⊥ = A⊥⊥⊥;
7. (A ⊥⊥⊥ B and A⊥ ⊥⊥⊥ B⊥) iff (A⊥ = B⊥⊥) iff (B⊥ = A⊥⊥);
8. In case A ⊥⊥⊥ B and A⊥ ⊥⊥⊥ B⊥: (B⊥ = A and B = A⊥) iff

(A⊥⊥ = A and B = B⊥⊥);
9. A is a fact iff ∃B : A = B⊥;

10. (
⋃

i Ai)
⊥ = ⋂

i A⊥
i ;

11. (
⋂

i Ai)
⊥ ⊇ ⋃

i A⊥
i .

From Lemma 3 we infer that an arbitrary intersection of facts is a fact. For a
union this does not hold; otherwise each P would be a fact as P = ⋃

p∈P {p}, while
all singleton pretypes are facts, by the following Lemma 4. Every A is contained in
the fact A⊥⊥. Actually, this is the smallest fact A is contained in: if A ⊆ B⊥ then
A⊥⊥ ⊆ B⊥.

Modularity of proof-nets 173

Lemma 4. The pretype of a bipole p̂ is a fact: Pp̂ = {p} = P ⊥⊥
p̂

.

Proof. Pp̂ ⊆ P ⊥⊥
p̂

trivially holds (Lemma 3). For the other way around, sup-

pose p′ ∈ P ⊥⊥
p̂

; we have to prove that p′ ∈ Pp̂ = {p}, i.e. that p′ = p. Given

a, b ∈ {1, . . . , n} which do not belong to the same class in p there is a q ∈ P ⊥
p̂

for
which they do belong to the same class, e.g. a partition consisting of n−|p| single-
tons and one class of cardinality |p| containing one element of each class of p (see
figure below). As {p′} ⊥⊥⊥ P ⊥

p̂
, in particular p′⊥q, whence also in p′ the elements

a and b must belong to distinct classes to avoid a cycle. So p′ is a refinement of p,
obtained by splitting some classes of p. But |p| = n + 1 − |q| = |p′| so p′ is the
trivial refinement of p, viz. p.

•, . . . , •, a

��
��
��
��
��
��
��
��

��� •, . . . , •, b

��
��
��
��
��
��
��
��

																																												 •, . . . , •, c1

��
��
��
��
��
��
��
��

. . . •, . . . , •, ck

��
��
��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
�

p��

• . . . • • . . . • • . . . • . . . • . . . • a, b, c1, . . . , ck
q��

��
From the definition of proof-net (all correction graphs are trees) we directly

infer that two modules connected along their common border constitute a proof-net
iff their respective pretypes are orthogonal:

Proposition 5. Let M and M ′ be two modules with border {1, . . . , n} resp.
{1′, . . . , n′}. Then M
i∼i′ M ′ is a proof-net iff PM ⊥⊥⊥ PM ′ .

Reformulating the right hand side as P ⊥⊥
M ⊥⊥⊥ P ⊥⊥

M ′ , we see that the interaction
of M with other modules M ′ is completely determined by P ⊥⊥

M , whence we define
the type TM of M as this bi-orthogonal:

TM := P ⊥⊥
M .

Two modules have the same type iff they behave the same:

Proposition 6. Let M1 and M2 be two modules with border {1, . . . , n}, n > 0.
Then TM1 = TM2 if and only if for all modules M ′ (with border {1′, . . . , n′})
M1
i∼i′ M ′ is a proof-net precisely if M2
i∼i′ M ′ is a proof-net.

Proof. The (only if)-part is immediate: suppose P ⊥⊥
M1

= P ⊥⊥
M2

, then P ⊥⊥
M1

⊥⊥⊥ P ⊥⊥
M ′

iff P ⊥⊥
M2

⊥⊥⊥ P ⊥⊥
M ′ . The other way around, suppose for all modules M ′ (with border

{1′, . . . , n′}) M1
i∼i′ M
′ is a proof-net precisely if M2
i∼i′ M

′ is a proof-net. We
will prove that P ⊥

M1
⊆ P ⊥

M2
, implying (by symmetry) that P ⊥

M1
= P ⊥

M2
and hence

that P ⊥⊥
M1

= P ⊥⊥
M2

. Given p ∈ P ⊥
M1

, by non-emptyness of PM1 there is a q ∈ PM1

such that p⊥q. So p is an ordinary partition, and let p̂ be the bipole defined in

174 R. Maieli, Q. Puite

Example 1, to which we attach some axiom-links turning hypothesis border into
conclusion border if necessary. As Pp̂ = {p} ⊆ P ⊥

M1
we know Pp̂ ⊥⊥⊥ PM1 whence

by assumption also Pp̂ ⊥⊥⊥ PM2 , implying p ∈ P ⊥
M2

. ��

3.3. Empty border

Generalized partitions provide a nice interpretation for the case with empty border
(n = 0). In general, a module M without border will have pretype consisting of
generalized partitions of the form

{{}, . . . , {}}
c

depending on the number of con-
nected components m in a correction graph and the number of elementary cycles c.

A module M without border is a proof-net iff PM =
{ {{}}0

}
, i.e. iff every correc-

tion graph is a tree (one component, no cycles). The empty module ∅ has only one

correction graph (zero components), whence P∅ =
{ {}

0

}
. As G(

{{}}0 ,
{}

0)

equals

p��

q��

we have
{{}}0 ⊥ {}

0 whence

{ {{}}0

}
⊥⊥⊥

{ {}
0

}
(1)

i.e. P� ⊥⊥⊥ P∅ for � a proof-net and ∅ the empty module. By Proposition 5 this
means that �
 ∅ is a proof-net. Observe that (1) has nothing to do with P ⊥⊥⊥ ∅0
which holds trivially (for any set P of generalized partitions over the empty border)
as the universal quantifier ranges over the empty set (of partitions over the empty
border).

3.4. Correctness

We call a module M correct iff P ⊥
M �= ∅n, implying (in case n > 0) that PM consists

only in ordinary (not generalized) partitions. E.g., the module in the Example 1 is
not correct. A non-empty module with empty border is correct iff it is a proof-net.

Every substructure M of a proof-net � is a correct module, even when M = �

and the border is empty (by (1)). The other way around every correct module
is always completable to a proof-net (e.g. in case n > 0 by attaching p̂ where
p ∈ P ⊥

M). A module is incorrect iff P ⊥
M = ∅n, i.e. iff TM = P ⊥⊥

M = ∅⊥
n . So for

fixed n all incorrect modules have the same type, implying by Proposition 6 that
they behave the same; indeed, none of them forms a proof-net with any module M ′.

Modularity of proof-nets 175

3.5. The pretype of a formula-tree

In Example 1 we defined the pretype of a formula-tree, considered as module: every
formula F = F(αi1 , . . . , αin) with n different atomic subformulas corresponds
with a module (also written F) with proper conclusion F and border consisting
of the hypotheses αi1 , . . . , αin (coded by i1, . . . , in). Its pretype PF is a set of
ordinary partitions over {i1, . . . , in}.

Theorem 7. Let F = F(αi1 , . . . , αin) be a formula-tree with n different atomic
subformulas. Then

(PF⊥)⊥ = (PF)⊥⊥.

Proof. According to Lemma 3 it is equivalent to prove

PF⊥ ⊥⊥⊥ PF and P ⊥
F⊥ ⊥⊥⊥ P ⊥

F .

The first statement follows from the fact that F⊥
 F is a proof-net (namely the
eta-expanded identity). The second relies upon cut elimination: if p ∈ P ⊥

F⊥ and

q ∈ P ⊥
F they are ordinary, and p̂
PF⊥ is a proof-net as well as q̂
P ⊥

F . Connecting
them by a cut link yields a proof-net with normal form p̂
 q̂ showing p⊥q. ��

4. A rewrite relation

4.1. Definition

We define a rewrite relation on (untyped) structures generated by the associativity
and commutativity of ⊗ and

&

and the weak-distributivity:

(1) (2) (3)

A

��
��

��
B

��
��
��

C

��
��
��
��
��
��
��

F := A

&

B

��
��

� →

(A

&

B) ⊗ C

(0)

(1) (2) (3)

A

��
��

��
��

��
��

��
B

��
��

��
C

��
��
��

B ⊗ C

��
��
�

=: F ′

A

&

(B ⊗ C)

(0)

(2)

In the sequel we assume F and F ′ like above and F ′′, obtained by rewriting F

in the following way:

176 R. Maieli, Q. Puite

(1) (2) (3)

A

��
��

��
B

��
��
��

C

��
��
��
��
��
��
��

F := A

&

B

��
��

� →

(A

&

B) ⊗ C

(0)

(2) (1) (3)

B

��
��

��
A

��
��
��

C

��
��
��
��
��
��
��

B

&

A

��
��

� →

(B

&

A) ⊗ C

(0)

(2) (1) (3)

B

��
��

��
��

��
��

��
A

��
��

��
C

��
��
��

A ⊗ C

��
��
�

=: F ′′

B

&

(A ⊗ C)

(0)

Proposition 8. Let � be a proof-structures containing a sub-structure F and �′
and �′′ the two proof-structures obtained by replacing F by F ′, respectively F ′′.
Then � is a proof-net if and only if �′ and �′′ are proof-nets.

Proof. Only-part - Let � be a proof-net containing F . By deleting F from � we
obtain a module M with border {0, 1, 2, 3}, and as � = M
 F is a proof-net we
know

PM ⊥⊥⊥ PF =
{ {{1}, {2, 3, 0}} ,

{{2}, {1, 3, 0}}
}
.

So any q ∈ PM must have 3 classes, and the elements 0 (inhabiting a class with 2,
3 resp. 1, 3, i.e. with all elements) and 3 must be in singleton classes, whence

PM =
{ {{1, 2}, {3}, {0}}

}
.

But then also

PM ⊥⊥⊥ PF ′ =
{ {{1}, {2, 3, 0}} ,

{{1, 0}, {2, 3}}
}
,

showing that �′ = M
 F ′ is a proof-net.
By analogous reasoning we conclude �′′ = M
 F ′′ is a proof-net.
If-part - We show F ′ and F ′′ together can take over the role of F in the fol-

lowing sense:

PF ′ =
{ {{1}, {2, 3, 0}} ,

{{1, 0}, {2, 3}}
}

so

P ⊥
F ′ =

{ {{1, 2}, {3}, {0}} ,
{{1, 3}, {2}, {0}}

}
, and

PF ′′ =
{ {{2}, {1, 3, 0}} ,

{{2, 0}, {1, 3}}
}

so

P ⊥
F ′′ =

{ {{1, 2}, {3}, {0}} ,
{{2, 3}, {1}, {0}}

}
, hence

(PF ′ ∪ PF ′′)⊥ = P ⊥
F ′ ∩ P ⊥

F ′′ =
{ {{1, 2}, {3}, {0}}

}
= P ⊥

F .

So, suppose �′ = M
 F ′ and �′′ = M
 F ′′ are proof-nets, then PM ⊥⊥⊥
PF ′ ∪ PF ′′ , so PM ⊆ (PF ′ ∪ PF ′′)⊥ = P ⊥

F which shows that � = M
 F is a
proof-net. ��

Modularity of proof-nets 177

Proposition 9. Let M be a module and M ′ and M ′′ the two modules obtained by
replacing a substructure F of M by F ′, respectively F ′′. Then PM ⊆ PM ′ ∪ PM ′′ .

Proof. Observe that all geometrical connections induced by the switchings of M

are present in the right-hand side of the inclusion. ��
We will now generalize P ⊥

F = P ⊥
F ′ ∩P ⊥

F ′′ = (PF ′ ∪PF ′′)⊥ to arbitrary modules
M in which we replace F .

Proposition 10. Let M be a module and M ′ and M ′′ the two modules obtained by
replacing a substructure F of M by F ′ respectively F ′′. Then P ⊥

M = P ⊥
M ′ ∩ P ⊥

M ′′ =
(PM ′ ∪ PM ′′)⊥.

Proof. Let M be a module containing F and let M ′ (resp. M ′′) be the module
obtained after replacing F by F ′ (resp. F ′′). First we will show that P ⊥

M ⊆ P ⊥
M ′ .

Given p ∈ P ⊥
M , then {p} ⊥⊥⊥ PM and p is an ordinary partition, so p̂
M is a proof-

net. By Proposition 8 also p̂
 M ′ is a proof-net, implying {p} ⊥⊥⊥ PM ′ whence
p ∈ P ⊥

M ′ . Similarly P ⊥
M ⊆ P ⊥

M ′′ , whence P ⊥
M ⊆ P ⊥

M ′ ∩ P ⊥
M ′′ .

The other way around, suppose p ∈ P ⊥
M ′ ∩P ⊥

M ′′ , then both p̂
M ′ and p̂
M ′′

are proof-nets, whence also p̂
 M is a proof-net, implying p ∈ P ⊥
M . ��

The property that P ⊥
M ⊆ P ⊥

M ′ also implies that PM ′ ⊆ P ⊥⊥
M ′ ⊆ P ⊥⊥

M = TM , so
the pretypes of the reducts of M remain in the type of M , i.e.

Lemma 11. Let → be the rewrite relation defined by 2, associativity and commu-
tativity of ⊗ and

&

. Let M be a module. Then
⋃

N :M→∗N
PN ⊆ TM.

Remark 2. Our aim is to show the inclusion of Lemma 11 to be an equality, i.e.

P ⊥⊥
M ⊆

⋃

N :M→∗N
PN.

We know P ⊥
M = P ⊥

M ′ ∩ P ⊥
M ′′ , and if from this we could conclude P ⊥⊥

M =
P ⊥⊥

M ′ ∪ P ⊥⊥
M ′′ we would be done since then

P ⊥⊥
M = P ⊥⊥

M ′ ∪ P ⊥⊥
M ′′ =

⋃

N :M ′→∗N
PN ∪

⋃

N :M ′′→∗N
PN ⊆

⋃

N :M→∗N
PN

by induction hypothesis (assuming we may reason by induction). However, from
P ⊥

M = P ⊥
M ′ ∩ P ⊥

M ′′ we may only conclude P ⊥⊥
M ⊇ P ⊥⊥

M ′ ∪ P ⊥⊥
M ′′ and this inclusion

may be strict. This in turn means that the inclusion
⋃

N :M ′→∗N
PN ∪

⋃

N :M ′′→∗N
PN ⊆

⋃

N :M→∗N
PN

may be strict.

178 R. Maieli, Q. Puite

Consider the following example: let M be the formula ((1 ⊗ 2)

&

3) ⊗ (4

&

5)

and M ′ = (((1 ⊗ 2)

&

3) ⊗ 4)

&

5, M ′′ = (((1 ⊗ 2)

&

3) ⊗ 5)

&

4. M ′ and M ′′
are the reducts obtained from M after we apply one step of 2, associativity and
commutativity. Then

⋃

N :M→∗N
PN ={3 &

4

&

(1 ⊗ 2 ⊗ 5), 3

&

5

&

(1 ⊗ 2 ⊗ 4), 3

&

(1 ⊗ 4)

&

(2 ⊗ 5),

3

&

(1 ⊗ 5)

&

(2 ⊗ 4), 4

&

(1 ⊗ 2)

&

(3 ⊗ 5), 5

&

(1 ⊗ 2)

&

(3 ⊗ 4)};

⋃

N :M ′→∗N
PN ={3 &

5

&

(1 ⊗ 2 ⊗ 4), 5

&

(1 ⊗ 2)

&

(3 ⊗ 4)};

⋃

N :M ′′→∗N
PN ={3 &

4

&

(1 ⊗ 2 ⊗ 5), 4

&

(1 ⊗ 2)

&

(3 ⊗ 5)}.

Clearly the union of latter two sets is strictly included in the former set. We can
interpret this fact as follows: it is not true that every rewrite sequence may be con-
verted into one starting (up to associativity and commutativity) with M → M ′ or
M → M ′′; possibly we first have to apply the 2 to another

&

-link.

4.2. A reducing complexity for formula-trees

Suppose M is a formula-tree. We will define the complexity of M in such a way
that it strictly decreases under the 2 and remains constant under associativity and
commutativity of ⊗ and

&

.
For a formula-tree M and a node v we define pv as the number of

&

-links
in the subtree with root v and we define tv similarly as the number of ⊗-links in
the subtree with root v. Denoting the root of M also by M , with this notation pM

(resp. tM) equals the total number of

&

(resp. ⊗) links occurring in M .
We define the complexity c(M) of M by

c(M) =
∑

l a ⊗-link of M

pl1(1 + tl2) + pl2(1 + tl1),

where l1 and l2 are the two premises of l.
If c(M) = 0 either the sum is empty (i.e. there are no ⊗-links) or for every

⊗-link l the summand pl1(1 + tl2) + pl2(1 + tl1) = 0, i.e. both pl1 and pl2 vanish.
This means no

&

’s dominate a ⊗, so M is a bipole as defined in Example 1: a
generalized

&

of generalized ⊗.

Lemma 12. c(M) ≤ pMtM , and c(M) = pMtM iff M is the negation of a bipole:
a generalized ⊗ of generalized

&

.

Proof. By induction on M . For M an atom the result holds.
If M = M1

&

M2 then c(M) = c(M1) + c(M2) ≤ pM1 tM1 + pM2 tM2 while
pMtM = (pM1 + 1 + pM2)(tM1 + tM2) = pM1 tM1 + pM2 tM2 + (1 + pM2)tM1 +

Modularity of proof-nets 179

(pM1 +1)tM2 ≥ pM1 tM1 +pM2 tM2 . Equality holds iff it holds for M1 and M2 (so iff
they are negated bipoles) and iff M1 and M2 are ⊗-free, i.e. iff M is a generalized

&

.
If M = M1⊗M2 then c(M) = c(M1)+c(M2)+pM1(1+tM2)+pM2(1+tM1) ≤

pM1 tM1 + pM2 tM2 + pM1(1 + tM2) + pM2(1 + tM1) = pMtM . Equality holds iff
it holds for M1 and M2 (so iff each of them is a generalized ⊗ of generalized

&

),
i.e. iff M is. ��

Lemma 13. Let M be a formula-tree and M ′ the formula-tree obtained by replacing
a substructure F by F ′. Then 0 ≤ c(M ′) < c(M).

Proof. The substructure F defines 4 sub-trees Ti of M , and we denote the number
of

&

and ⊗ in Ti by pi and ti .

p1, t1 p2, t2 p3, t3

T1 T2 T3

A

��
��

��
B

��
��
��

C

��
��
��
��
��
��
��

F := A

&

B

��
��

� →

(A

&

B) ⊗ C

T0

p0, t0

p1, t1 p2, t2 p3, t3

T1 T2 T3

A

��
��

��
��

��
��

��
B

��
��

��
C

��
��
��

B ⊗ C =: F ′

A

&

(B ⊗ C)

T0

p0, t0

In the summand of c(M) = ∑
l a ⊗-link of M pl1(1 + tl2) + pl2(1 + tl1) we con-

sider the different cases for l. If l is the ⊗-link belonging to F , the summand
(1 +p1 +p2)(1 + t3)+p3(1 + t1 + t2) becomes p2(1 + t3)+p3(1 + t2) for c(M ′)
whence reduces by (1+p1)(1+t3)+p3t1 ≥ 1. For all other ⊗-links l the summand
is invariant; this is clear when l belongs to T1, T2 or T3, but also for l belonging
to T0 the involved numbers do not changes (although the involved subtrees may
change by the rewriting). ��

The proof shows that c(M) reduces by at least one. It reduces by 1 if p1 = 0 = t3
and either p3 = 0 or t1 = 0.

Lemma 14. Let M be a formula-tree and M ′ the formula-tree obtained by applying
associativity or commutativity for ⊗ or

&

. Then 0 ≤ c(M ′) = c(M).

180 R. Maieli, Q. Puite

Proof. We consider first associativity for ⊗. The 2 ⊗-links define 4 sub-trees Ti of
M , and we denote the number of

&

and ⊗ in Ti by pi and ti .

p1, t1 p2, t2 p3, t3

T1 T2 T3

A

��
��

��
B

��
��
��

C

��
��
��
��
��
��
��

A ⊗ B

��
��

� →

(A ⊗ B) ⊗ C

T0

p0, t0

p1, t1 p2, t2 p3, t3

T1 T2 T3

A

��
��

��
��

��
��

��
B

��
��

��
C

��
��
��

B ⊗ C

��
��
�

A ⊗ (B ⊗ C)

T0

p0, t0

The two indicated ⊗-links in the summation c(M) = ∑
l a ⊗-link of M pl1(1 + tl2)+

pl2(1+tl1) lead to p1(1+t2)+p2(1+t1)+(p1+p2)(1+t3)+p3(1+t1+1+t2) =
2(p1 + p2 + p3) + p1(t2 + t3) + p2(t1 + t3) + p3(t1 + t2) and they also lead to
this value in the summation c(M ′). For all other ⊗-links l the summand is invari-
ant; this is clear when l belongs to T1, T2 or T3, but also for l belonging to T0 the
involved numbers do not changes (although the involved subtrees may change by
the rewriting).

For commutativity for ⊗ observe that pl1(1+tl2)+pl2(1+tl1) is symmetric. For
associativity or commutativity for

&

all summands in c(M) are clearly invariant. ��

4.3. Alternative definition of complexity

Given a vertex v of M , we call its complexity c(v) the number of ⊗-links strictly
below, and all ⊗-links above the other premise of such a ⊗-link below.Alternatively
said:

c(v) := # { t a ⊗-link of M | t ∧ v is a ⊗-link strictly below v} .

The complexity of a link is the complexity of its conclusion vertex. Observe that
c(v) is the number of ⊗-links not above or equal to v, which are reachable from v

by an appropriate DR-switching.
We define

c′(M) =
∑

p a

&

-link of M

c(p).

Proposition 15. c(M) = c′(M).

Modularity of proof-nets 181

Proof.

c′(M) =
∑

p a

&

-link of M

{ t a ⊗-link of M | t ∧ p is a ⊗-link below p}

=
∑

p a

&

-link of M

∑

t a ⊗-link of M

χ(t ∧ p is a ⊗-link below p)

=
∑

l a ⊗-link of M

∑

p � l a

&

-link of M

∑

t a ⊗-link of M

χ(l = t ∧ p)

=
∑

l a ⊗-link of M








∑

p � l1 a

&

-link of M

∑

(t = l) ∨ (t � l2) a ⊗-link of M

1



 +

+



∑

p � l2 a

&

-link of M

∑

(t = l) ∨ (t � l1) a ⊗-link of M

1









=
∑

l a ⊗-link of M

pl1(1 + tl2) + pl2(1 + tl1) = c(M).

��
For some of the proofs in the previous subsection this definition shortens the

reasoning considerably. E.g.

c′(M) =
∑

p a

&

-link of M

c(p) ≤
∑

p a

&

-link of M

tM ≤ pMtM

yields Lemma 12 again.
For Lemma 13, we distinguish the different

&

-links in the summation.
- If p is the

&

-link occurring in F , c(p) = t ′0 + 1 + t3 which reduces to t ′0.
- If p is one of the p1

&

-links occurring in T1, c(p) = t ′1 + t ′0 +1+ t3 which reduces
to t ′1 + t ′0.
- If p is one of the p2

&

-links occurring in T2, c(p) = t ′2 + t ′0 + 1 + t3 which
remains t ′2 + t ′0 + 1 + t3.
- If p is one of the p3

&

-links occurring in T3, c(p) = t ′3 + t ′0 + 1 + t1 + t2 which
reduces to t ′3 + t ′0 + 1 + t2.
- If p is one of the p0

&

-links occurring in T0, c(p) is unaltered, although an
involved subtree may alter.

In total, c′(M) hence reduces by 1 + t3 + p1(1 + t3) + p3t1 as we saw before.
It is immediate that the complexity of a

&

-link p only depends on the

&

-cluster
it belongs to; all other

&

’s in this cluster have the same complexity. Moreover, the
complexity of a

&

-link does not change if we modify certain ⊗-clusters. Hence we
immediately obtain Lemma 14.

5. The organization of a formula-tree module

In this section we consider MLL′, multiplicative linear logic with arbitrary (but
disjoint) atomic axioms. The rules are given by

182 R. Maieli, Q. Puite

ax� �
� �, A � B, � ⊗� �, A ⊗ B, �

� �, A, B &

� �, A

&

B

where � stands for one or more different positive atoms αk .We require that all atoms
occurring in a sequent are different, yielding a restriction on the applicability of the
two logical rules.

The notion of proof-structures is defined as before (we allow the general axiom
links and no cut links). A proof-structures is a proof-net iff the Danos-Regnier
correctness criterion holds iff its sequentializable in MLL′.

If a derivation π derives a formula F = F(αi1 , . . . , αin), then the axioms of π

induce a proper partition oF,π over {i1, . . . , in}: two indices are in the same class
iff the corresponding atoms are a conclusion of the same axiom. The organization
OF of F is the set of all these organizations oF,π . E.g.

� 1, 3, 4
� 1, 3

&

4 � 2
� 1 ⊗ 2, 3

&

4
� (1 ⊗ 2)

&

(3

&

4)

has organization
{{1, 3, 4}, {2}}

and considering all other derivations of F = (1 ⊗ 2)

&

(3

&

4) we find that

OF =
{ {{1, 3, 4}, {2}} ,

{{1, 3}, {2, 4}} ,
{{1, 4}, {2, 3}} ,

{{1}, {2, 3, 4}}
}
.

Lemma 16. Given an ordinary partition p then:

Pp̂ = {p} = Op̂⊥ .

Proof. The left equation follows from the definition of bipole (see Example 1). For
the right equation observe that p corresponds to the organization of the derivation
of the formula p̂⊥. ��

We will now show the relation between OF⊥ and O
F ′⊥ for reducts F ′ of F under

the rewrite relation of the previous section: 2-rule, associativity and commutativity
of ⊗ and

&

. In particular it follows from the first lemma that if F →∗ p̂ we obtain
a particular element of OF⊥ : Op̂⊥ = {p} ⊆ OF⊥ .

Lemma 17. If F → F ′ then O
F ′⊥ ⊆ OF⊥ .

Proof. Let p ∈ O
F ′⊥ be given, say p ∈ o

F ′⊥,π ′ .
In case the rewrite step is the 2 then π ′ is of the form as indicated below on the left.
We can transform it to a proof π of F⊥ = G[(A⊗B)

&

C] with same organization,
showing p ∈ OF⊥ :

· · ·
...

� �, A

· · ·
...

� 	, B, C &

� 	, B

&

C

...

�, B

&

C ⊗� �, �, A ⊗ (B

&

C)

...

� G[A ⊗ (B

&

C)]

becomes

· · ·
...

· · ·
...

� �, A � 	, B, C ⊗� 	,���,AAA ⊗⊗⊗ B, C &

� 	,���, (AAA ⊗⊗⊗ B)

&

C

...

� �,���, (AAA ⊗⊗⊗ B)

&

C

...

� G[(A ⊗ B)

&

C]

Modularity of proof-nets 183

In case the rewrite step is a direction of associativity for ⊗, then replacing

· · ·
...

· · ·
...

� 	, B, C &

� 	, B

&

C

...

� �, A, B

&

C &

� �, A

&

(B

&

C)

...

� G[A

&

(B

&

C)]

by

· · ·
...

· · ·
...

� 	, B, C

...

� �, A, B, C &

� �, A

&

B, C) &

� �, (A

&

B)

&

C)

...

� G[(A

&

B)

&

C]

yields a proof π of F⊥ = G[(A

&

B)

&

C] with same organization, showing
p ∈ OF⊥ .
In case the rewrite step is a direction of associativity for

&

, then replacing

· · ·
...

� �, A

· · ·
...

� 	, B � �, C ⊗� 	, �, B ⊗ C

...

�, B ⊗ C ⊗� �, �, A ⊗ (B ⊗ C)

...

� G[A ⊗ (B ⊗ C)]

by

· · ·
...

· · ·
...

� �, A � 	, B ⊗� 	,���,AAA ⊗⊗⊗ B � �, C ⊗� 	, �,���, (AAA ⊗⊗⊗ B) ⊗ C

...

� �,���, (AAA ⊗⊗⊗ B) ⊗ C

...

� G[(A ⊗ B) ⊗ C]

yields a proof π of F⊥ = G[(A ⊗ B) ⊗ C] with same organization, showing
p ∈ OF⊥ .
Finally, in case the rewrite step is commutativity for ⊗ or

&

, then the result is
immediate. ��

Lemma 18. If F = G ⊗ H and c(F) > 0 then

OF⊥ ⊆
⋃

F ′:F→∗F ′
c(F)>c(F ′)

O
F ′⊥ .

Proof. Suppose c(F) > 0 and let p ∈ OF⊥ be given. We have to show that there
is an F ′ such that F →∗ F ′, c(F) > c(F ′) and p ∈ O

F ′⊥ .
As F = G ⊗ H we know p = oG⊥ &

H⊥,π for a certain π which we can take
negatively focalized:

� �⊥, A⊥ � B⊥, �⊥
⊗

� �⊥, A⊥ ⊗ B⊥, �⊥ &

� G⊥, H⊥ &

� G⊥ &

H⊥

So all formulas in � �⊥, A⊥ ⊗ B⊥, �⊥ are final-

&

free, i.e. in � and � there are
only atoms or

&

’s. Moreover, at least one of the two contexts � and � is non-empty,
say �. We choose F ′ as follows:

184 R. Maieli, Q. Puite

⊗�

��
��

��
��

��
��

��
��

��
� A

��
��

� B

��
��
�

⊗�

��
��
��
��
��
��

A

&

B

��
��

�
F → →

(A

&

B) ⊗ (⊗�)

��
��
�

(⊗�) ⊗ ((A

&

B) ⊗ (⊗�))

⊗�

��
��

��
��

��
��

��
��

��
� A

��
��

��
��

��
��

B

��
��

� ⊗�

��
��
�

B ⊗ (⊗�)

��
��
�

= F ′

A

&

(B ⊗ (⊗�))

��
��
�

(⊗�) ⊗ (A

&

(B ⊗ (⊗�)))

where the first step consists of associativity and commutativity. F ′ is clearly a
reduct of F and of smaller complexity by Lemma 13. We can derive F ′⊥ still by
the organization p.

� �⊥, A⊥ &

� &

(�⊥), A⊥

� B⊥, �⊥ &

� B⊥,

&

(�⊥) &

� B⊥ &&

(�⊥) ⊗
� &

(�⊥), A⊥ ⊗ (B⊥ &&

(�⊥)) &

� &

(�⊥)

&

(A⊥ ⊗ (B⊥ &&

(�⊥)))

��

6. Generating the type of a formula-tree module

In this section we show (Theorem 22) that the type of a formula-tree module F

is exactly the big union of the pretypes of all the reducts obtained by the iterative
rewriting of the module F .

Proposition 19. (Danos-Regnier [DR89]) Given a formula-tree module F then
PF ⊆ OF⊥ .

Proof. To see this, consider the following deductive system of (ordinary) partitions
over a set containing the element 0 (we consider them as “pointed” partitions). For
a partition, instead of {p1, . . . , pm} we write � p1, . . . , pm; p = {�1}, . . . , {�m}
and q = {�1}, . . . , {�m′ } are lists of classes; �, the �k , � and the �k lists of
elements, all disjoint in the appropriate sense.

ax� {k, 0}
� p, {�, 0} � q, {�, 0} ⊗� p, q, {�, �, 0}

� p, {�, 0} � q, {�, 0} &

L� p, q, {�, 0}, {�}
� p, {�, 0} � q, {�, 0} &

R� p, q, {�}, {�, 0}
First observe that every switching s of the module F corresponds to a binary tree
with nodes ⊗,

&

L and

&

R, whence to a proof tree πs in this system. Moreover πs

derives a partition p such that after forgetting the element 0 (notation p) we obtain
exactly pF,s , the partition induced by s.

Modularity of proof-nets 185

We claim that for each switching s of the module F , inducing the partition
pF,s , there is a sequent calculus derivation of the orthogonal formula F⊥ from
the organization pF,s of its subformulas. Actually, we will prove by induction on
the ‘construction’ s of p that there is a pointed sequent calculus derivation of F⊥
from the (pointed) organization p: a derivation from organization q in which the
hypothesis corresponding to the class of p containing 0 is marked.

The base case given by
ax� {k, 0} �→ � k

If F is complex, let us assume that

π

� p, {�, 0} �→ � �1 . . . � �m � �

� F⊥
1

and that

π ′
� q, {�, 0} �→ � �1 . . . � �m′ � �

� F⊥
2

If the last rule deriving the partition of the module F is the ⊗-rule (F = F1⊗F2),
we define

π

� p, {�, 0}
π ′

� q, {�, 0} ⊗� p, q, {�, �, 0}
�→

� �1 . . . � �m′

� �1 . . . � �m � �, �

� F⊥
1 , �

� F⊥
1 , F⊥

2

� F⊥
1

&

F⊥
2

which yields a pointed derivation of F⊥ = F⊥
1

&

F⊥
2 from organization

{
p, q,

{�, �, 0}}.
If the last rule deriving the partition of the module F is the

&

L-rule (F =
F1

&

F2), we define

π

� p, {�, 0}
π ′

� q, {�, 0} &

L� p, q, {�, 0}, {�}
�→

� �1 . . . � �m � �

� F⊥
1

� �1 . . . � �m′ � �

� F⊥
2

� F⊥
1 ⊗ F⊥

2

which yields a pointed derivation of F⊥ = F⊥
1 ⊗ F⊥

2 from organization
{
p, q,

{�, 0}, {�}}. The

&

R-rule is similar.

Observe that there is an alternative assignment for the ⊗-rule: if the last rule
deriving the partition of the module F = F1 ⊗F2 is the ⊗-rule, we could also have
defined

186 R. Maieli, Q. Puite

π

� p, {�, 0}
π ′

� q, {�, 0} ⊗� p, q, {�, �, 0}
�→

� �1 . . . � �m

� �1 . . . � �m′ � �, �

� �, F⊥
2

� F⊥
1 , F⊥

2

� F⊥
1

&

F⊥
2

which yields a priori another pointed derivation of F⊥ = F⊥
1

&

F⊥
2 from organiza-

tion
{
p, q, {�, �, 0}}.

As an example, the switching

1

L ��
��

��
2

��
��
��

3

��
��
��
��
��
��
��

4

R

��
��
��
��
��
��
��
��
��
��
��

&

��
��

��

⊗

��
��

��

&

(0)

induces the element
{{1, 3}, {2}, {4}} of the pretype of ((1

&

2) ⊗ 3)

&

4. We derive
this partition by the derivation as indicated below on the left, and it translates into
the derivation of ((1 ⊗ 2)

&

3) ⊗ 4 on the right.

� {1, 0} � {2, 0} &

L� {1, 0}, {2} � {3, 0} ⊗� {1, 3, 0}, {2} � {4, 0} &

R� {1, 3}, {2}, {4, 0}

�→

� 1, 3 � 2
� 1 ⊗ 2, 3

� (1 ⊗ 2)

&

3 � 4
� ((1 ⊗ 2)

&

3) ⊗ 4

In general the inclusion PF ⊆ OF⊥ is strict. We borrow the example from
[DR89], where F is ((1

&

2) ⊗ (3

&

4)) ⊗ (5 ⊗ 6). Then for every p ∈ PF the ele-
ments 5 and 6 will be in the same class, while OF⊥ contains

{{1, 3}, {2, 5}, {4, 6}}:

� 1, 3 � 2, 5
� 1 ⊗ 2, 3, 5 � 4, 6

� 1 ⊗ 2, 3 ⊗ 4, 5, 6
� ((1 ⊗ 2)

&

(3 ⊗ 4)), (5

&

6)

� ((1 ⊗ 2)

&

(3 ⊗ 4))

&

(5

&

6)

Modularity of proof-nets 187

One could ask if there is an inductive definition of OF⊥ . For F⊥ = F⊥
1 ⊗ F⊥

2
we can show that OF⊥ is the pointwise union of OF⊥

1
and OF⊥

2
. However, if

F⊥ = F⊥
1

&

F⊥
2 then OF⊥ is not the pointwise ‘merge’ of OF⊥

1
and OF⊥

2
. Indeed,

again the above example shows that in any such merge 5 and 6 are in the same
class, since O5

&

6 = {{5, 6}}.

Lemma 20. If F →∗ F ′ then PF ′ ⊆ OF⊥ .

Proof. PF ′ ⊆ OF ′⊥ by Proposition 19 and O
F ′⊥ ⊆ OF⊥ by Lemma 17. ��

The next theorem shows that every organization OF is a fact.

Theorem 21. (Danos-Regnier [DR89]) Let F = F(αi1 , . . . , αin) be a formula-tree
with n different atomic subformulas. Then

(PF)⊥ = OF .

Proof. Given p ∈ OF we build a sequent calculus derivation of F from general-
ized axioms according to organization p. The corresponding proof-net shows that
{p} ⊥⊥⊥ PF .

The other way around, given a proof-net p̂
F , sequentialization gives a proof
of F from the generalized axioms, showing p ∈ OF . ��
Theorem 22 (Type of a formula-tree). Given a formula-tree module F , then

TF =
⋃

F ′:F→∗F ′
PF ′ .

Proof. By P ⊥⊥
F = P ⊥

F⊥ = OF⊥ it is enough to show

OF⊥ ⊆
⋃

F ′:F→∗F ′
PF ′

since the other inclusion holds by Lemma 11 for arbitrary modules. We apply
induction on the size of F .

If F is an atom the result is clear.
If F = G

&

H , then

OF⊥ = OG⊥⊗H⊥

= {
g ∪ h | g ∈ OG⊥ , h ∈ OH⊥

}

⊆
{

g ∪ h | g ∈
⋃

G′:G→∗G′
PG′ , h ∈

⋃

H ′:H→∗H ′
PH ′

}

⊆
⋃

F ′:F→∗F ′
PF ′ .

If F = G ⊗ H we apply induction on the complexity c(F). If c(F) = 0 then
F is a bipole, hence a ⊗-tree, and the result is immediate. If c(F) > 0 then by

188 R. Maieli, Q. Puite

Lemma 18 given p ∈ OF⊥ we know there is an F ′ reduct of F of strictly lower
complexity such that p ∈ O

F ′⊥ , hence by induction hypothesis

p ∈
⋃

F ′′:F ′→∗F ′′
PF ′′ ⊆

⋃

F ′′:F→∗F ′′
PF ′′ .

��

7. Generating the type of a general module

Theorem 22 says that the iteration of the rewrite relation → allows us to gener-
ate the full type of a formula-tree module. But does Theorem 22 generalize to all
modules, with possibly, axiom links? In other words, does the following equality

P ⊥⊥
M =

⋃

M ′:M→∗M ′
PM ′

hold when M is an arbitrary module? Unfortunately the answer is “no”, as we will
see.

Let M be an arbitrary correct cut-free module with one proper conclusion and
with border consisting entirely of hypotheses. We write M = F
 A where F is a
formula and A a set of axiom-links. Now

PM = {p | p ∈ PF }

where p is obtained from p by contracting the classes according to A. We could
ask the question whether the same holds for the types:

P ⊥⊥
M =

{
p | p ∈ P ⊥⊥

F

}
(3)

If yes, then the result of Theorem 22

P ⊥⊥
F =

⋃

F ′:F→∗F ′
PF ′

would generalize to arbitrary modules:

P ⊥⊥
M =

{
p | p ∈ P ⊥⊥

F

}

=
{

p | p ∈
⋃

F ′:F→∗F ′
PF ′

}

=
⋃

F ′:F→∗F ′
{p | p ∈ PF ′ }

=
⋃

M ′:M→∗M ′
PM ′ .

Modularity of proof-nets 189

However, we only know:

PM = {p | p ∈ PF } ⊆
{

p | p ∈ P ⊥⊥
F

}
⊆ P ⊥⊥

M (4)

where the last inclusion is a consequence of the fact that for every q ∈ P ⊥
M the

partition q ∪ a belongs to P ⊥
F . Consequently (3) holds if either PM is a fact or M

is a formula-tree (so, there are no axioms at all) or M has empty border (i.e. is a
proof-net). But in general the last inclusion of (4) is strict, even if PF is a fact, as
we will see in the following example.

Example 23. Let F be the formula ((1

&

2) ⊗ 3)

&

(4 ⊗ ((5 ⊗ 6)

&

(7 ⊗ 8))). Its
pretype equals

PF = { {{1}, {2, 3}, {5, 6}, {4, 7, 8}} , {{1}, {2, 3}, {7, 8}, {4, 5, 6}} ,

{{2}, {1, 3}, {5, 6}, {4, 7, 8}} , {{2}, {1, 3}, {7, 8}, {4, 5, 6}} }
and we can easily check that its type coincides with its pretype, so PF is actually a
fact (e.g, by Theorem 22). Now, by attaching the axiom-links {1, 7} and {3, 5} we
get the next module M

5 ��
(6)

��
7 ��

(8)
��

1

��
��

��
(2)

��
��
��

⊗

��
��

��
� ⊗

��
��

��
�

&

�� 3
��

(4)
��

&

��
⊗

���������� ⊗

����������

&

(9)

whose pretype is

PM = { {{2}, {4, 6, 8}} , {{8}, {2, 4, 6}} , {{2, 6}, {4, 8}} }
Any partition p ∈ P ⊥

M should consist of 3 classes, hence 2 singletons and one
pair. The element 4 cannot be in the same class as 6 or 8 or 2. Also 6 cannot be
in the same class with 4 or 8 or 2. So there is only one possibility for p, namely
p = {{4}, {6}, {2, 8}}, which is indeed in P ⊥

M :

P ⊥
M = { {{4}, {6}, {2, 8}} }.

190 R. Maieli, Q. Puite

Its complement consists of partitions with 2 classes of the form {{2, . . . }, {8, . . . }},
whence

P ⊥⊥
M = { {{2}, {8, 4, 6}} , {{2, 6}, {8, 4}} , {{2, 4}, {8, 6}} , {{2, 4, 6}, {8}} }

which strictly contains

{
p | p ∈ P ⊥⊥

F

}

because the latter is equal to {p | p ∈ PF } (PF is a fact), i.e. to PM .
Why is q := {{2, 4}, {8, 6}} not in

{
p | p ∈ P ⊥⊥

F

}
? Let us examen all parti-

tions p over the border {1, 2, 3, 4, 5, 6, 7, 8} such that p = q. We obtain them by
breaking, successively for every axiom link {a, b}, any class X of q in two parts,
with a and b in the distinct new classes. E.g. for the axiom link {1, 7} we can
break the class {2, 4} in four ways into two classes {1, . . . }, {7, . . . }, yielding the
partitions:

{ {{1}, {7, 2, 4}, {8, 6}} , {{1, 4}, {7, 2}, {8, 6}} ,

{{1, 2}, {7, 4}, {8, 6}} , {{1, 2, 4}, {7}, {8, 6}} }

and similar partitions when we break the class {8, 6} by axiom link {1, 7}. Now,
for the partition {{1}, {7, 2, 4}, {8, 6}} there are 21 + 23 + 22 possibilities to break
a class by axiom link {3, 5}. We conclude that there are 104 candidate p satisfying
p = q.

So the question becomes: why does none of these candidate p belong to P ⊥⊥
F ?

The answer follows by a careful analysis of (PF⊥)⊥, which we know to be equal to
P ⊥⊥

F by Theorem 7. Let p be one of the above candidates and suppose p ∈ (PF⊥)⊥.
This leads to a contradiction by the following reasoning.

If {2, 4, . . . } ∈ p or {6, 8, . . . } ∈ p, then p �∈ (PF⊥)⊥, which follows from
appropriate switchings in the formula-tree F⊥ that would yield a cycle. So both
classes of q have to be nontrivially broken (in the above sense), i.e. p must be of
the form {{2, a}, {4, b}, {6, c}, {8, d}} where {{a, b}, {c, d}} = {{1, 7}, {3, 5}}. In
case {c, d} = {1, 7}, then either {6, 1}, {8, 7} ∈ p or {6, 7}, {8, 1} ∈ p. However,
{6, 1} �∈ p and {8, 1} �∈ p by appropriate switchings. In case {c, d} = {3, 5}, then
either {6, 3}, {8, 5} ∈ p or {6, 5}, {8, 3} ∈ p. However, {6, 3} �∈ p and {8, 3} �∈ p.

Example 23 shows that in general the rewriting method is not able to extract the
type of a module with axioms. In other words the rewrite method is not complete
w.r.t. the types of all modules. However, this method does give a positive answer to
the question of building the orthogonal of a general module (a straight consequence
of the following Theorem 24). This is enough for building the type of any module.

Theorem 24 (Type orthogonal). Let P be a set of partitions of a set X, then

P ⊥ =
⋂

p∈P

Tp̂⊥ .

Modularity of proof-nets 191

Proof. First observe that we can associate to any partition p its corresponding
bipole p̂ (see Example 1) whose pretype is then

{p} = Pp̂ = (Pp̂)⊥⊥ = (Pp̂⊥)⊥ (5)

by, respectively Example 1, Lemma 4 and Theorem 7. So, the orthogonal type of a
set of partitions P is equal to

P ⊥ =
⋂

p∈P

{p}⊥ =
⋂

p∈P

((Pp̂⊥)⊥)⊥ =
⋂

p∈P

Tp̂⊥ (6)

by Lemma 3 and (5). ��
Theorem 24 expresses P ⊥ in terms of Tp̂⊥ , which we know how to build by

Theorem 22 (p̂⊥ being a formula-tree). In particular, for a module M we obtain
TM (i.e. P ⊥⊥

M) by applying Theorem 24 twice (once for PM and once for P ⊥
M).

8. Conclusions, related and further works

We presented an algorithmic characterization of the type of a module which relies
only on some geometrical properties of proof-nets. In particular, this procedure
does not refer to the sequent calculus neither to an abstract notion of orthogonality.
The procedure iterates inside the module some elementary steps of graph rewriting,
illustrated in Section 4, and only based on the associativity and commutativity of ⊗
and

&

and the weak-distributivity laws. These laws, corresponding to the theorems
of linear logic A⊗(B

&

C) � (A⊗B)

&

C) and A⊗(B

&

C) � (A⊗C)

&

B, are also
been ivestigated in some papers on category theory, [CS97], and game semantics,
[AJ94].

In [CS97] Cockett and Seely showed that the weak (or linear) distributivity
is precisely what is needed to model Gentzen’s cut rule (in the absence of other
structural rules) and can be strengthened in a natural way to generate *-autonomous
categories.

InAbramsky and Jagadeesan’s paper on game semantics for linear logic, [AJ94]
the following “rewrite” laws are mentioned2:

law 1 : let � = C[A ⊗ (B

&

C)], �1 = C[(A ⊗ B)

&

C] and �2 = [(A ⊗ C)

&

B]
(binary) sequents3, then:

(∀i) � � �i and � � ⇔ (∀i) � �i

law 2 : let � = C[A⊗ (B ⊗C)], �1 = C[A⊗ (B

&

C)] and �2 = C[A

&

(B ⊗C)]
(binary) sequent, then:

(∀i) � � �i and � � ⇔ (∀i) � �i

2 These laws corresponds to Lemma 2 and 3 of the preliminary version of [AJ94] appeared
in the Proceedings of the Conference on Foundations of Software Technology and Theoret-
ical Computer Science, December 1992. The authors thank the anonymous referee for the
reference to Proposition 9.

3 Naively a binary sequent is a sequent where each pair of literals is specified with distinct
atoms.

192 R. Maieli, Q. Puite

where C[.] is a monotone context, i.e., with the hole [.] appearing only under the
scope of tensors and par. Now, while the first law corresponds, clearly, to the linear
distributive one, it is not so immediate the meaning of law 2 in terms of module
rewrite4.

As further work we aim to extend our rewrite method to other fragments of
linear logic like the non-commutative one (NL, [AR00]). Actually, due to some
intrinsic difficulties of the NL sequent calculus, it seems quite hard to try to extend
to such a fragment techniques like the so called method of the “organization of
a formula-tree” (seen in section 5), for getting the type of a module. Naively, the
Danos-Regnier method would identify the organizations of the two tensors of NL,
⊗ (commutative) and � (non commutative):

O(A ⊗ B) = O(A � B) = {{{A}, {B}}}.

This would mean the two modules M ′ = A ⊗ B and M ′′ = A � B have the same
type, so they behave in the same way when they are plugged to the same (non-com-
mutative) module, which is, in general, not true. If we branch M ′, respectively M ′′
with the module M = B⊥�A⊥ we get only one correct proof-net of MNL, the one
on the right hand side:

A

��
��

��
B

��
��
��

B⊥

��
��

� A⊥

��
��
�

A ⊗ B B⊥�A⊥

A

��
��

��
B

��
��
��

B⊥

��
��

� A⊥

��
��
�

A � B B⊥�A⊥

A naive solution could be to add some structure (order) to the partitions belong-
ing to the type of a non-commutative module. This goal could be reached by: (i)
finding the good rewrite rules for the non-commutative structures, (ii) extracting
from the final objects of the rewriting (the non-commutative bipoles), the good
structure for those partitions corresponding to the bipoles.

Moreover, the rewrite method could also implement a (distributed) theorem
prover based on proof-nets. E.g., assume we want to find a proof-net with the
unique conclusion F (we can always assume a proof-net with a unique conclu-
sion, by a terminal generalized

&

-link): first we build both the formula-trees of F

and F⊥, then we start with rewriting F⊥ until we get the first bipole with only
binary ⊗-trees. If F is provable then there will always exist at least such a bipole
with only binary ⊗-subtrees: these binary ⊗-trees play the role of axioms for the
module F .

4 At the moment we are investigating this law.

Modularity of proof-nets 193

References

[AJ94] Abramsky, S., Jagadeesan, R.: Games and Full Completeness for Multiplicative
Linear Logic. J. Symbolic Logic 59 (2), 543–574 (1994)

[AR00] Abrusci, V.M., Ruet, P.: Non commutative logic I: the multiplicative fragment.
Annals of Pure and Applied Logic 101, 29–64 (2000)

[And92] Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2, 1992

[And01] Andreoli, J.-M.: Focussing and proof construction. Annals of Pure and Applied
Logic 107, 131–163 (2001)

[CS97] Cockett, J.R.B., Seely, R.A.G.: Weakly Distributive Categories. Journal of Pure
and Applied Algebra, 114, 133–173 (1997)

[DR89] Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

[Gir87] Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
[Gir87a] Girard, J.-Y.: Multiplicatives. Rendiconti del Seminario Matematico dell’Uni-

versità e Policlinico di Torino, special issue on Logic and Computer Science,
pp. 11–33, 1987

