
Cyclic Multiplicative-Additive Proof Nets
of Linear Logic with an Application

to Language Parsing

Vito Michele Abrusci and Roberto Maieli(B)

Department of Mathematics and Physics, Roma Tre University,
Largo San Leonardo Murialdo, 1, 00146 Rome, Italy

{abrusci,maieli}@uniroma3.it

Abstract. This paper concerns a logical approach to natural language
parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear
logic (LL). It first provides a syntax for proof structures (PSs) of the
cyclic multiplicative and additive fragment of linear logic (CyMALL).
A PS is an oriented graph, weighted by boolean monomial weights,
whose conclusions Γ are endowed with a cyclic order σ. Roughly, a PS π
with conclusions σ(Γ) is correct (so, it is a proof net), if any slice ϕ(π),
obtained by a boolean valuation ϕ of π, is a multiplicative (CyMLL) PN
with conclusions σ(Γr), where Γr is an additive resolution of Γ , i.e. a
choice of an additive subformula for each formula of Γ . The correctness
criterion for CyMLL PNs can be considered as the non-commutative
counterpart of the famous Danos-Regnier (DR) criterion for PNs of the
pure multiplicative fragment (MLL) of LL. The main intuition relies on
the fact that any DR-switching (i.e. any correction or test graph for a
given PN) can be naturally viewed as a seaweed, that is, a rootless planar
tree inducing a cyclic order on the conclusions of the given PN. Unlike
the most part of current syntaxes for non-commutative PNs, our syntax
allows a sequentialization for the full class of CyMALL PNs, without
requiring these latter to be cut-free.

One of the main contributions of this paper is to provide a charac-
terization of CyMALL PNs for the additive Lambek Calculus and thus
a geometrical (non inductive) way to parse sentences containing words
with syntactical ambiguity (i.e., with polymorphic type).

1 Introduction

Proof nets (PNs) are one of the most innovative inventions of linear logic
(LL, [7]): they are used to represent demonstrations in a geometric (i.e., non
inductive) way, abstracting away from the technical bureaucracy of sequential
proofs. Proof nets quotient classes of derivations that are equivalent up to some
irrelevant permutations of inference rules instances.

In this spirit, we present a syntax for PNs of the cyclic multiplicative and
additive fragment of linear logic (CyMALL, Sect. 1.1). This syntax, like the orig-
inal one of Girard [8], is based on weighted (by boolean monomials) proof struc-
tures with explicit binary contraction links (Sect. 2). The conclusions Γ (i.e.,
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 43–59, 2016.
DOI: 10.1007/978-3-662-53042-9 3

44 V.M. Abrusci and R. Maieli

a sequence of formula occurrences) of any PS are endowed with a cyclic order
σ on Γ . Naively, a CyMALL PS π with conclusions σ(Γ) is correct if, for any
slice ϕ(π), obtained by a boolean valuation ϕ of π, there exists an additive
resolution (i.e., a multiplicative restriction of ϕ(π)) that is a CyMLL PN with
conclusion σ(Γr), where Γr is an additive resolution of Γ (i.e. a choice of an
additive sub-formula for each formula of Γ). In turn, the correctness criterion
for CyMLL PNs can be considered as the non-commutative counterpart of the
famous Danos-Regnier (DR) criterion for proof nets of linear logic (see [5,6]).
The main intuition relies on the fact that any DR-switching for a PS (i.e. any
correction or test graph, obtained by mutilating one premise of each disjunc-
tion �-link) can be naturally viewed as a rootless planar tree, called a seaweed,
inducing a cyclic ternary relation on the conclusions of the given proof structure.

Unlike some previous syntaxes for non-commutative logic, like e.g., [3,13],
this new syntax admits a sequentialization (i.e., a correspondence with sequential
proofs) for the full class of CyMLL PNs including those ones with cuts. Actually,
the presence of cut links is “rather tricky” in the non-commutative case, since cut
links are not equivalent, from a topological point of view, to tensor links (like in
the commutative MLL case): indeed, tensor links make new conclusions appear
that may disrupt the original (i.e., in presence of cut links) order of conclusions.

CyMALL PNs satisfy a simple (lazy) convergent cut-elimination procedure
(Sect. 2.2) in Laurent-Maieli’s style [12]: our strategy relies on the notion of
dependency graph of an eigen weight p (Definition 9), that is, the smallest &p-
box that must be duplicated in a commutative &p/C-cut reduction step [14].
Moreover, cut-reduction preserves PNs sequentialization (Sect. 2.3).

CyMALL can be considered as a conservative classical extension of
Lambek Calculus (LC, see [1,11,17]) one of the ancestors of LL. The LC rep-
resents the first attempt of the so called parsing as deduction, i.e., parsing of
natural language by means of a logical system. Following [4], in LC, parsing is
interpreted as type checking in the form of theorem proving of Gentzen sequents.
Types (i.e. propositional formulas) are associated to words in the lexicon; when
a string w1...wn is tested for grammaticality, the types t1, ..., tn associated with
the words are retrieved from the lexicon and then parsing reduces to proving
the derivability of a one-sided sequent of the form � t⊥n , ..., t⊥1 , s, where s is the
type associated with sentences. Moreover, forcing constraints on the Exchange
rule, by e.g. allowing only cyclic permutations over sequents of formulas, gives
the required computational control needed to view theorem proving as pars-
ing in Lambek Categorial Grammar style. Anyway, LC parsing presents some
syntactical ambiguity problems; actually, there may be:

1. (non canonical proofs) more than one cut-free proof for the same sequent;
2. (lexical polymorphism) more than one type associated with a single word.

Now, proof nets are commonly considered an elegant solution to the first problem
of representing canonical proofs; in this sense, in Sect. 3, we give an embedding
of extended MALL Lambek Calculus into Cyclic MALL PNs. Concerning the
second problem, in Sect. 4, we propose a parsing approach based on CyMALL
PNs that could be considered a step towards a proof-theoretical solution to

Cyclic MALL Proof Nets with an Application to Language Parsing 45

the problem of lexical polymorphism. Technically, CyMALL proof nets allow to
manage formulas superposition (types polymorphism) by means of the additive
&-links, or dually, ⊕-links. By means of Lambek CyMALL PNs, we propose the
parsing of some sentences, suggested by [18], which make use of polymorphic
words; naively, when a word has two possible formulas A and B assigned, then
we can combine (or super-pose) these into a single additive formula A&B.

1.1 The Cyclic MALL Fragment of Linear Logic

We briefly recall the necessary background of the Cyclic MALL fragment of
LL, denoted CyMALL, without units (see [1]). We arbitrarily assume literals
a, a⊥, b, b⊥, ... with a polarity: positive (+) for atoms, a, b, ... and negative (−)
for their duals a⊥, b⊥.... A formula is built from literals by means of the two
groups of connectives: negative, � (“par”) and & (“with”) and positive, � (“ten-
sor”) and ⊕ (“plus”). For these connectives we have the following De Mor-
gan laws: (A � B)⊥ = B⊥�A⊥, (A�B)⊥ = B⊥

� A⊥, (A&B)⊥ = B⊥ ⊕ A⊥,
(A ⊕ B)⊥ = B⊥&A⊥. A CyMALL (resp., CyMLL) proof is any derivation tree
built by the following (resp., by only identities and multiplicative) inference rules
where sequents Γ,Δ are sequences of formula occurrences endowed with a total
cyclic order (or cyclic permutation).

identities: axiom� A,A⊥ � Γ,A A⊥Δ
cut� Γ,Δ

multiplicatives:
� Γ,A � B,Δ

�� Γ,A � B,Δ

� Γ,A,B �� Γ,A�B

additives:
� Γ,A � Γ,B

�� Γ,A�B

� Γ,Ai ⊕i=1,2� Γ,A1 ⊕i A2

A total cyclic order can be thought as follows; consider a set of points of an
oriented circle; the orientation induces a total order on these points as follows: if
a, b and c are three distinct points, then b is either between a and c (a < b < c)
or between c and a (c < b < a). Moreover, a < b < c is equivalent to b < c < a
or c < a < b.

Definition 1 (total cyclic order). A total cyclic order is a pair (X,σ) where
X is a set and σ is a ternary relation over X satisfying the following properties:

1. ∀a, b, c ∈ X,σ(a, b, c) → σ(b, c, a) (cyclic),
2. ∀a, b ∈ X,¬σ(a, a, b) (anti-reflexive),
3. ∀a, b, c, d ∈ X,σ(a, b, c) ∧ σ(c, d, a) → σ(b, c, d) (transitive),
4. ∀a, b, c ∈ X,σ(a, b, c) ∨ σ(c, b, a) (total).

Negative (or asynchronous) connectives correspond to true determinism in the
way we apply bottom-up their corresponding inference rules. In particular,
observe that Γ must appear as the same context (with the same order) in both
premises of the &-rule. Positive (or synchronous) connectives correspond to true

46 V.M. Abrusci and R. Maieli

non-determinism in the way we apply, bottom-up, their corresponding rules;
there is no deterministic way to split, bottom up, the context (Γ,Δ) in the �-
rule; similarly, there not exist a deterministic way to select, bottom up, ⊕1 or
⊕2-rule.

2 Cyclic MALL Proof Structures

Definition 2 (CyMALL proof structure). A CyMALL proof structure (PS)
is an oriented graph π whose edges (resp., nodes) are labeled by formulas (resp.,
by connectives) of CyMALL and built by juxtaposing the following special graphs,
called links, in which incident (resp., emergent) edges are called premises (resp.,
conclusions):

& C

A&B A

A B A A BB A B A AA A⊥

cutax

A A⊥

� ⊕1 ⊕2

A ⊕ B A ⊕ BA�BA B

In a PS each premise (resp., conclusion) of a link must be conclusion (resp.,
premise) of exactly (resp., at most) one link. We call conclusion of a PS any
emergent edge that is not premises of any link. We call CyMLL proof structure,
any PS built by only means of axioms, cut and multiplicative links (�,�).

Definition 3 (Girard CyMALL proof structure). A Girard proof structure
(GPS) is a PS with weights associated as follows (a weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node
(eigen weights are supposed to be different);

2. then we associate a weight, a product of (negation of) boolean vari-
ables (p, p, q, q...) to each node, with the constraint that two nodes have
the same weight if they have a common edge, except when the edge
is the premise of a & or C-node; in these cases we do like below:

if p does not occur in w

w

w.pw.p

with w1.w2 = 0

w1 w2

w = w1 + w2C

v2 v1 v2v1

&p

3. a conclusion node has weight 1;
4. if w is the weight of a &-node, with eigen weight p, and w′ is a weight depend-

ing on p and appearing in the proof structure then w′ ≤ w.

A weight w depends on the eigen weight p if p or p̄ occurs in w. A node L with
weight w depends on the eigen weight p if w depends on p or L is a C-node and
one of the weights just above it depends on p.

Cyclic MALL Proof Nets with an Application to Language Parsing 47

Remark 1. Observe that:

1. since weights associated to a PS are products (monomials) of the Boolean
algebra generated by the eigen weights associated to a proof structure, then,
for each weight w associated to a binary contraction node, there exists a
unique eigen weight p that splits w into w1 = wp and w2 = wp. We sometimes
index a C-link with its toggling variable p, see the next left hand side picture;

2. the graph π1 (the next r.h.s. picture) is not a GPS since it violates condition
4 of Definition 3; indeed, if w = q is the weight of the &p-link and w′ = p
is a weight depending on p and appearing in the proof-structure then p
≤ q.

v1 v2

wp wp

Cp

w

w = wp + wp̄

C

C

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

p

w′ = p

w = q

cut

π1

2.1 Correctness

Definition 4 (slices, switchings, resolutions). Let π be a CyMALL GPS.

– A valuation ϕ of π is a function from the set of all weights of π into {0, 1}.
– Fixed a valuation ϕ for π, the slice ϕ(π) is the graph obtained from π by

keeping only those nodes with weight 1 together with their incident edges.
– Fixed a slice ϕ(π) a multiplicative switching S for π is the non-oriented graph

Sm
ϕ (π) built on the nodes and edges of ϕ(π) with the modification that for each

�-node we take only one premise (left/right switch).
– Fixed a slice ϕ(π) an additive switching, denoted Sa

ϕ(π) is a multiplicative
switching Sm

ϕ (π) for π, in which for each &p-node we erase the (unique)
premise in ϕ(π) and we add an oriented edge, called jump, from the &p-node
to an link L whose weight depends on the eigen weight p.

– An additive resolution ϕr(π) for a slice ϕ(π) is the graph obtained by replacing
in ϕ(π) each unary link L (a link that, possibly, after the valuation has a single
premise) by a single edge that is the (unique) premise of L. In particular, each
conclusion of ϕr(π) will be labeled by a multiplicative (CyMLL) formula.

We call additive resolution of a CyMALL sequent Γ what remains of Γ after
deleting one of the two sub-formulas in each additive (sub)formula of Γ .

In the following we characterize, by a correctness criterion, those CyMALL
GPSs corresponding to proofs. This correctness criterion (Definition 7) is defined
in terms of the correctness of CyMLL PSs (Definition 6). There exist several
syntaxes for CyMLL proof nets; here we adopt the syntax of [2] inspired to [13].

Definition 5 (seaweeds). Assume π is a CyMLL PS with conclusions Γ and
assume S(π) is an acyclic and connected multiplicative switching for π; S(π) is

48 V.M. Abrusci and R. Maieli

the rootless planar tree whose nodes are labeled by �-nodes, and whose leaves
X1, ...,Xn (with Γ ⊆ X1, ...,Xn) are the terminal (pending) edges of S(π); S(π)
is a ternary relation, called a seaweed, with support X1, ...,Xn; an ordered triple
(Xi,Xj ,Xk) belongs to the seaweed S(π) iff:

– the intersection of the three paths XiXj, XjXk and XkXi is the node �l;
– the three paths Xi�l,Xj�l and Xk�l are in this cyclic order while moving

anti-clockwise around the �l-node as below.

Xk

XjXi

l

If A is an edge of the seaweed S(π), then Si(π) ↓A is the restriction of the
seaweed S(π), that is, the sub-graph of S(π) obtained as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge A.
2. delete the graph not containing A.

Fact 1 (seaweeds as cyclic orders). Any seaweed S(π) can be viewed as a
cyclic total order (Definition 1) on its support X1, ...,Xn; in other words, if a
triple (Xi,Xj ,Xk) ∈ S(π), then Xi < Xj < Xk are in cyclic order. Intuitively,
we may contract a seaweed (by associating the �-nodes) until it collapses into
single n-ary �-node with n pending edges (its support), like in the example below.

c

d
a

b

e →

c

d

a

b

e →

c

b

ea

d

Definition 6 (CyMLL proof net). A CyMLL PS π is correct, i.e. it is a
CyMLL proof net (PN), iff:

1. π is a standard MLL PN, that is, any switching S(π) is a connected and
acyclic graph (therefore, S(π) is a seaweed);

2. for any �-link A B
A�B the triple (A,B,C) must occur in this cyclic order in any

seaweed S(π) restricted to A,B, i.e., (A,B,C) ∈ S(π) ↓(A,B), for all pending
leaves C (if any) in the support of the restricted seaweed.

Example 1 (CyMLL PSs). We give below an instance of CyMLL PN π1 with its
two restricted seaweeds, S1(π1) ↓(B1,B⊥

2) and S2(π1) ↓(B1,B⊥
2), both satisfying

condition 2 of Definition 6.

Cyclic MALL Proof Nets with an Application to Language Parsing 49

B1

ax
ax

cut

ax

��
B⊥

2 B2

π1

B1�B⊥
2 B3�B⊥

3

B⊥
3B3B⊥

1

B2 B⊥
1

B1

ax
ax

cut

�
B2

ax

B⊥
3

B3�B⊥
3

B3B⊥
1B⊥

2

S1(π1) ↓(B1,B⊥
2)

B2 B⊥
1

B1

ax
ax

cut

�
B2

ax

B3B⊥
1B⊥

2 B⊥
3

S2(π1) ↓(B1,B⊥
2)

B2 B⊥
1 B3�B⊥

3

Mellies’s Counter-Example. Observe that, unlike what happens in the com-
mutative MLL case, the presence of cut links is “quite tricky” in the non-
commutative case, since cut links are not equivalent, from a topological
point of view, to tensor links: these latter make appear new conclusions that
may disrupt the original (i.e., in presence of cut links) order of conclusions.
In particular, the Mellies’s proof structure1 below (see page 224 of [17]) is
not correct according to our correctness criterion since there exists a A B

A�B

link and a switching S(π) s.t. ¬∀C, (A,B,C) ∈ S(π) ↓(A,B), contradicting
condition 2 of Definition 6: following the crossing dotted lines in the next
r.h.s. figure, you can easily verify ∃C pending s.t. (A,C,B) ∈ S(π) ↓(A,B).

cut

ax ax

�

ax

ax

ax
ax

��

C

A B
� �

cut

ax ax

�

ax

ax

ax
ax

�

�

�

C

B
�

A

¬∀C, (A, B, C) ∈ S(π) ↓A.B

∃C, (A, C, B,) ∈ S(π) ↓A.B

Definition 7 (CyMALL proof net). We call correct (or proof net, GPN)
any CyMALL GPS π s.t., its conclusions Γ are endowed with a cyclic order
σ(Γ) and for any valuation ϕ of π:

1. each additive switching Sϕ(π) is an acyclic and connected graph (ACC);
2. there exists an additive resolution ϕr(π) for ϕ(π) that is a CyMLL PN with

cyclic order conclusions σ(Γr), where Γr is an additive resolution of Γ .

Example 2 (CyMALL GPSs). Observe that the following proof structure π, on
the left hand side, is not correct: actually, fixed a valuation ϕ s.t. ϕ(p) = 1,
there exists an additive switching Sϕ(π) (with a jump) that is not ACC (see
the center side figure). Nevertheless, any slice ϕ(π) is ACC; for each slice ϕ(π)
there exists indeed an additive resolution ϕr(π) that is a CyMLL PN like that
one, on the rightmost hand side, with conclusions C � A,A⊥�C⊥. Observe,
Γr = (C � A,A⊥�C⊥) is an additive resolution of the conclusion of π, Γ =
(B&C) � A, (A⊥�C⊥) ⊕ (A⊥�B⊥).

1 This PS is considered as “a measure of the satisfiability degree” of correctness criteria
of non-commutative logic: any “good” criterion should recognize this PS as uncorrect.

50 V.M. Abrusci and R. Maieli

C

C

⊕ ⊕&p

ax

ax

ax

ax

p

p p

p

1 1

p

p

p

p

π

� �

(A⊥�C⊥) ⊕ (A⊥�B⊥)

11

(B&C) A

C

C

⊕&p

ax

ax

p

p

1 1

p

�
1

(B&C) A

p

Sϕ(π)

(A⊥�C⊥) ⊕ (A⊥�B⊥)

ax

ax

�

A⊥�C⊥

C A

ax

ax

ϕr(π)

Similarly, the proof structure below is not correct: you can easily get an
additive switching with a cycle like that one in (blue) dashed line.

C C&p &q

cut

a

ax

ax

ax

C C

ax

ax

p̄

pp

p̄ q̄

q

CC

ax

ax

q̄

q

Finally, the proof structure below is correct.

C

ax

ax

&p

cut

C

ax

ax

π &q

There currently exist other syntaxes for MALL PNs like the recent one by
Hughes–van Glabbeek [10]. Unlike the Girard’s one, this new syntax only works
with “uniform proof structures”, i.e., proof structures with only η-expanded
axioms and with contraction links only immediately below the axiom links.

2.2 Cut Reduction

Definition 8 (ready cut reduction). Let L be a cut link in a proof net π
whose premises A and A⊥ are conclusions of, resp., links L′ and L′′ with both of
these different from contraction C. Then we define the result π′ (called, reduc-
tum) of reducing a ready cut in π (called, redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by
removing in π both formulas A,A⊥ (as well as L) and giving to L′′

(resp., to L′) the other conclusion of L′ (resp., L′′) as new conclusion:

cut

ax

A �wA L′
A

L′′L′′

Cyclic MALL Proof Nets with an Application to Language Parsing 51

(�/�)-cut: if L′ is a �-link with remises B and C and L′′ is a �-link
with premises C⊥ and B⊥, then π′ is obtained by removing in π both for-
mulas A and A⊥ as well as the cut link L together with L′ and L′′ and by
adding two new cut links with, resp., premises B, B⊥ and C,C⊥, as follows:

cut

B C

cut
w w

C⊥ B⊥

� cut
w

C⊥C

π � π′

B B⊥

(&/⊕)-cut: if L′ is a &p-link with premises B and C and L′′ is a ⊕2-
link (resp., a ⊕1-link) with premise B⊥ (resp., C⊥), then π′ is obtained in
three steps: first remove in π both formulas A, A⊥ as well as the cut link
L with L′ and L′′, then replace the eigen weight p by 1 (resp., p by 0) and
keep only those links (vertexes and edges) that still have non-zero weight;
finally we add a cut between B and B⊥ (resp., between C and C⊥) as below.

cut

&p cut

BBCB ⊥

w

wpwp w

π � π′[p/1]

B⊥

⊕2

Theorem 1 (stability of GPN under ready cut reduction). Assume π is
a GPN that reduces to π′ in one step of ready cut reduction, then π′ is a GPN.

Proof. Stability of condition 1 of Definition 6 and condition 1 of Definition 7,
under ready cut reduction, follows as a consequence of the next graph theoretical
property (see pages 250–251 of [9]):

Property 1 (Euler-Poicaré invariance). Given a graph G, then (�CC − �Cy) =
(�V − �E), where �CC, �Cy, �V and �E denotes the number of, respectively,
connected components, cycles, vertexes and edges of G.

Meanwhile, stability of condition 2 of Definition 6 (resp., condition 2 of
Definition 7) follows simply by calculation.

The confluence problem - Reducing a cut involving a contraction link as (at
least) one of its premises may lead to different reductum, depending on which
sub-graph of the redex we decide to duplicate. For instance, as illustrated below,
reducing the commutative cut of the last proof net of Example 2 leads either to
π1 or to π2 (in the next picture), depending on which additive box, &q or &p,
we decide to duplicate. There is no a-priori way to make π1 and π2 “equal”.
Girard, in [8], did not give a solution for this problem which has been later
provided by Laurent and Maieli in [12]. Here we present an original lazy com-
mutative cut reduction that simplifies the latter: technically, our reduction relies
on the notion of dependency graph (Definition 9), i.e. the smallest &-box needed

52 V.M. Abrusci and R. Maieli

for duplication (see [14]). This cut reduction procedure preserves the notion of
GPN (Theorems 1 and 2) and it is strong normalizing (Theorems 3 and 4).

ax

ax

C &′
q

C

ax

ax

&′′
q

Cp

cut

cut
&p

ax

ax

π1

C

ax

ax

ax

ax

C

Cq

&p′

&p′′

cut

cut
&q

ax

π2

ax

Definition 9 (empire and spreading). Assume a proof structure π, an eigen
weight p and a weight w, then:

– the dependency graph of p (w.r.t. π), denoted Ep, is the (possibly disconnected)
subgraph of π made by all links depending on p;

– the spreading of w over π, denoted by w.[π], is the product of w for π, i.e., π
where we replaced each weight v with the product of weights vw.

Definition 10 (commutative cut reduction). Let L be cut link in a proof
net π whose premises A and A⊥ are the respective conclusions of links L′ and
L′′ s. t. at least one of them is a contraction link C. Then we define the result
π′ (reductum) of reducing this commutative cut L in π (redex), as follows:

(C/�)-cut: if L′ is a C-link and L′′ is a �-link, then π reduces
in one (C/�) step to π′ (the (C/�) step is analogous) as follows:

cut

C

w

w wwpwp

π:

L

B⊥C⊥B�CB�C
C C

cut

cut

cut

cut

ax
ax

ax
ax

wp w

wp w

π′:

C⊥ B⊥B�C B�C

(C/C)-cut: if both L′ and L′′ are C-links, then there are two cases:
1. either the weight w of both L′ and L′′ splits on the same p

variable, then π reduces in one (Cp/Cp) step to π′ as follows

cut

cutπ � π′

cut

A A A⊥ A⊥ AA A⊥ A⊥

wp

w wp

wp
wp

wpwp

Cp Cp

2. or the weight w of L′ (resp., w of L′′) splits on p (resp.,
on q) then π reduces in one (Cp/Cq) step to π′ as follows

Cyclic MALL Proof Nets with an Application to Language Parsing 53

cut
w

wp wp wqwq

A A⊥ A⊥A

π:

Cp Cq

C C

cut

cut

cut

cut

ax
ax

ax
ax

C C

AA A⊥ A⊥

wpq

wpq

wpq

wpq

wp

wp

wq

wq

π′:

(C/⊕i)-cut: if L′ is a C-link and L′′ a ⊕i=1,2-link, then π reduces in one (C/⊕)
step to π′ as follows

cut

π � π′

w

wpwp

C

cut

ax

cut

⊕i

⊕i ⊕i

ax

C

cut
w

wp wp
B&C B&C

B&C B&C

B⊥

B⊥ B⊥

B B

B⊥

(C/&)-cut: if L′ is a C-link and L′′ a &p-link, then π reduces in one (C/&)
step to π′ as follows

cut

&p

B ⊕ C B ⊕ C

χ

wp wpwq

w

wq

A A⊥

Cq

π :

C⊥ B⊥ B ⊕ C

cut

B ⊕ C

&p′′ &p′
wq̄

C⊥ B⊥ C⊥ B⊥

cut

q̄.[E ′
p′] q.[E ′′

p′′]

CC

......

...

A1 An

χ′ wn

w1q̄ wnqwnq̄

w1

w1q

wq

with the assumptions that graphs q̄.[E ′
p′] and q.[E ′′

p′′] are obtained as follows:
1. we take two copies, E ′

p and E ′′
p , of the dependency graph Ep of p;

2. we replace in E ′
p (resp., in E ′′

p) p with a new variable p′ (resp., p′′);
3. we spread q̄ (resp., q) over E ′

p′ (resp., over E ′′
p′′).

Technical details of proofs of Theorems 2, 3 and 4 can be found in [14].

Theorem 2 (stability). If π is a GPN that reduces to π′ in one step of com-
mutative cut reduction then π′ is a GPN too.

Theorem 3 (termination). We can always reduces a proof net π into a proof
net π′ that is cut-free, by iterating the reduction steps of Definitions 8 and 10.

Theorem 4 (confluence). Assume π is a proof net s.t. it reduces in one step
α to π′ (π �α π′) and it reduces in an other step β to π′′ (π �β π′′); then,
there exists a proof net σ such that both π′ reduces, in a certain number of steps,
to σ (π′ �∗ σ) and π′′ reduces, in a certain number of steps, to σ (π′′ �∗ σ).

54 V.M. Abrusci and R. Maieli

2.3 Sequentialization

There exists a correspondence, called sequentialization (Theorem 5), between
PNs and sequential proofs.

Lemma 1 (splitting). Let π be a CyMLL PN with at least a �-link or cut-
link and with conclusions Γ not containing any terminal �-link (so, we say π
is in splitting condition); then, there must exist a �-link A B

A�B (resp., a cut-link
A A⊥

) that splits π in two CyMLL PNs, πA and πB (resp., πA and πA⊥).

Proof. Consequence of the Splitting Lemma for commutative MLL PNs [7].

Lemma 2 (PN cyclic order conclusions). Let π be a CyMLL PN with con-
clusions Γ , then all seaweeds Si(π) ↓Γ , restricted to Γ , induce the same cyclic
order σ on Γ , denoted σ(Γ) and called the (cyclic) order of the conclusions of π.

Proof. By induction on the size 〈�V, �E〉2 of π.

Corollary 1 (stability of PN order conclusions under cut reduction).
If π, with conclusions σ(Γ), reduces in one step of cut reduction to π′, then also
π′ has conclusions σ(Γ).

Theorem 5 (sequentialization of CyMLL PNs). Any CyMLL PN with
conclusions σ(Γ) can be sequentialized into a CyMLL sequent proof with the
same cyclic order conclusions σ(Γ).

Proof. By induction on the size of the given proof net π via Lemmas 1 and 2.

Theorem 6 (sequentialization of CyMALL PNs). A CyMALL GPN with
conclusions σ(Γ) can be sequentialized into a CyMALL sequent proof with the
same cyclic conclusions σ(Γ) and vice-versa (de-sequentialization).

Proof. There are two parts.
Sequentialization-part. Any CyMALL proof net π can be sequentialized into

a proof Π, by induction on the number of &-links. The base of induction cor-
responds to the sequentialization of the CyMLL proof nets (Theorem5). The
induction step follows by the sequentialization of standard MALL PNs (see [8])
where the only novelty is to show that: if a PN π contains a terminal &-link
L, then π can be toggled3 at L in two PNs preserving conditions 1 and 2 of
Definition 7.

De-sequentialization-part. Any CyMALL proof Π of σ(Γ) can be de-
sequentialized into a PN π of σ(Γ), by induction of the height of Π derivation.

2 Number of vertexes and number of edges.
3 We say that a terminal &p-link of a GPN π is toggling when the restriction of π w.r.t.

p and the restriction of π w.r.t. p̄ are both correct GPSs. We call the restriction
of π w.r.t. p (resp., w..r.t. p̄) what remains of π when we replace p with 1 (resp.,
p with 1) and keep only those vertexes and edges whose weights are still non-zero
(see [8]).

Cyclic MALL Proof Nets with an Application to Language Parsing 55

Unlike most part of correctness criteria for non-commutative proof nets,
like [3,13], our syntax enjoys a sequentialization for the full class of CyMLL
PNs (with possible cuts). Observe that, Mellies’s counter-example (Exam-
ple 1) represents a non-sequentializable proof structure that becomes correct
(therefore, sequentializable) after cut reduction.

3 Embedding Lambek Calculus into CyMALL PNs

Definition 11 (Lambek formulas and sequents of CyMALL). Assume A
and S are, respectively, a formula and a sequent of CyMALL.

1. A is a pure Lambek formula (pLF) if it is a CyMLL formula recursively built
according to this grammar: A := positive atoms | A � A | A⊥�A | A�A⊥.

2. A is an additive Lambek formula (aLF or simply LF) if it is a CyMALL
formula recursively built according this grammar: A := pLF | A&A | A ⊕ A.

3. S is a Lambek sequent of CyMALL iff S = (Γ⊥, A), where A is a non-void
LF and Γ⊥ is a possibly empty finite sequence of negations of LFs (i.e., Γ is
a possibly empty sequence of LFs and Γ⊥ is obtained by taking the negation
of each formula in Γ).

4. A Lambek proof is any derivation built by means of the CyMALL inference
rules whose premise(s) and conclusions are CyMALL Lambek sequents.

Definition 12 (Lambek proof net). We call Lambek CyMALL proof net
(resp., pure Lambek CyMLL proof net) any CyMALL PN (resp., CyMLL PN)
whose edges are labeled by LFs (resp. pLFs) or negation of LFs (resp., pLFs)
and whose conclusions form a Lambek sequent.

Corollary 2. Any Lambek CyMALL proof net π is stable under cut reduction,
i.e., if π reduces in one step to π′, then π′ is a Lambek CyMALL proof net too.

Proof. Consequence of Theorems 1 and 2. Trivially, each reduction step preserves
the property that each edge of the reductum is labeled by a Lambek formula or
the negation of a Lambek formula.

Theorem 7 (de-sequentialization of Lambek CyMALL proofs). Any
proof of a CyMALL Lambek sequent � σ(Γ⊥, A) can be de-sequentialized into
a Lambek CyMALL PN with conclusions σ(Γ⊥, A).

Proof. By induction on the height of the given sequent proof (similarly to the
de-sequentialization part of Theorem6).

Theorem 8 (sequentialization of Lambek CyMALL PNs). Any Lambek
CyMALL PN of σ(Γ⊥, A) can be sequentialized into a Lambek CyMALL proof
of the sequent � σ(Γ⊥, A).

Proof. Sequentialization follows by induction on the number &-links of the given
PN. The base of induction is given by next Theorem9. The induction step, simply
follows by Theorem 6.

56 V.M. Abrusci and R. Maieli

Theorem 9 (sequentialization of pure Lambek CyMLL PNs). Any Lam-
bek CyMLL PN of σ(Γ⊥, A) can be sequentialized into a Lambek CyMLL proof
of � σ(Γ⊥, A).

Proof. See details in [2].

4 Language Parsing with Lambek CyMALL PNs

In order to show how powerful PNs are, in this section we adapt to our syntax,
some linguistics (typing) examples suggested by Richard Moot in his PhD the-
sis [18]. We use s, np and n as the types expressing, respectively, a sentence, a
noun phrase and a common noun. According to the “parsing as deduction style”,
when a string w1...wn is tested for grammaticality, the types t1, ..., tn associated
with the words are retrieved from the lexicon and then parsing reduces to prov-
ing the derivability of a two-sided sequent of the form t1, ..., tn � s. Recall that
proving a two sided Lambek derivation t1, ..., tn � s is equivalent to prove the
one-sided sequent � t⊥n , ...t⊥1 , s where t⊥i is the dual (i.e., the linear negation) of
each type ti. Therefore, any phrase or sentence should be written like in a mirror
(observing the opposite natural direction).

Assume the following lexicon, where linear implication −◦ (resp., ◦−) is tra-
ditionally used for expressing types in two-sided sequent parsing style:

1. Vito = np;
2. Sollozzo = np;
3. him = (s◦−np)−◦s = (s�np⊥)⊥�s = (np � s⊥)�s;
4. trusts = (np−◦s)◦−np = (np⊥�s)�np⊥.

Cases of lexical ambiguity follow to words with several possible formulas A and
B assigned it. For example, a verb like “to believe” can express a relation between
two persons, np’s in our interpretation, or between a person and a statement,
interpreted as s, like in these examples:

(1) Sollozzo believes V ito; (2) Sollozzo believes V ito trusts him.

We can express this polymorphism by two lexical assignments as follows:

5. believes = (np−◦s)◦−np = (np⊥�s)�np⊥;
6. believes = (np−◦s)◦−s = (np⊥�s)�s⊥.

Typically, additives are used to capture cases of lexical ambiguity. When a word
has two possible formulas A and B assigned it, we can combine these into a single
additive formula A&B (resp., A⊕B). Thus, we can collapse assignments 5 and 6
into the following single additive assignment:

7. believes = ((np−◦s)◦−np)&((np−◦s)◦−s) = ((np⊥�s)�np⊥)&((np⊥�s)�
s⊥).

Cyclic MALL Proof Nets with an Application to Language Parsing 57

Equivalently, via distributivity of negative connectives, we could also move the
additive ”inside” and generate a more compact lexical entry, in which the two
assignments share their identical initial parts (see also [19] on type polymorphism):

8. believes = ((np−◦s)◦−(s ⊕ nps)) = ((np⊥�s)�(np⊥&s⊥)).

Using that, we can then move lexical ambiguity into proof nets. In the
following we give two equivalent Lambek PNs as parsing of the addi-
tive superposition of sentences (1) and (2); the first (resp., the sec-
ond) PN makes use of the lexical entry 7 (resp., the lexical entry 8).

�

np

trustshim Vito

s

s⊥

�

np

C

believes

s⊥ np

np

np⊥ np⊥

C

Sollozzo s

s s

C&p

np⊥

(Vito) & (him trusts Vito)

⊕2⊕1

(1, p)

(2, p)

(3, p)

np�

s

s⊥
np

(5, p̄)

(6, p̄)

(4, p̄)

(1, p̄)
(3, p̄)

np⊥

np⊥

(2, p̄) s⊥

�

np

np⊥

trustshim

�

np

np⊥ np⊥

C

Sollozzo s

s s

C

C

np

C

s⊥s⊥

&p

np⊥ nps

believes(Vito) & (him trusts Vito)

⊕1 C⊕2

(3, p)

Vito

(2, p)

�
np

s

s⊥

(2, p̄)
(3, p̄)

(4, p̄)
(5, p̄)

(6, p̄)

np⊥

(1, p̄)

(1, p)

s⊥

Observe that, for each slice of each proof net above, ϕp(π) and ϕp̄(π),
there exists an additive resolution that is a CyMLL PN with the same
sequentialization:

ϕp(π) ⇒ Π1 : axp
1

np⊥, np

axp
2

s⊥, s
axp

3
np, np⊥

�
s⊥

� np, np⊥, s
�

np⊥, np � (s⊥
� np), np⊥, s

58 V.M. Abrusci and R. Maieli

ϕp̄(π) ⇒ Π2 : axp̄
1s⊥, s

axp̄
2np⊥, np

axp̄
3s⊥, s

axp̄
4np, np⊥

�
s⊥

� np, np⊥, s
�

s, np⊥, np � (s⊥
� np), np⊥

�
s�np⊥, np � (s⊥

� np), np⊥
�

s⊥
� (s�np⊥), np � (s⊥

� np), np⊥, s

axp̄
5s⊥, s

axp̄
6np, np⊥

�
s⊥

� np, np⊥, s
�

s⊥
� (s�np⊥), np � (s⊥

� np), np⊥, s � (s⊥
� np), np⊥, s

�2

((s⊥
� (s�np⊥))�(np � (s⊥

� np)))�np⊥, s � (s⊥
� np), np⊥, s

5 Conclusions

As future work we aim at investigating the how topological correctness criteria
based on graph rewriting (or retraction) of MALL proof structures [6,15] may be
used for (linguistic) parsing. Naively, retraction criteria allow to switch from the
paradigm of “parsing as deduction” to the paradigm of “parsing as rewriting”
(see, e.g., [16]). Moreover, retraction could also be a useful computational tool
for studying the complexity class of the CyMALL correctness criterion.

Acknowledgements. We thank the anonymous reviewers, Michael Moortgat and
Richard Moot for their useful comments and suggestions. This work was partially
supported by the PRIN Project Logical Methods of Information Management.

References

1. Abrusci, V.M.: Classical conservative extensions of Lambek calculus. Stud. Logica.
71(3), 277–314 (2002)

2. Abrusci, V.M., Maieli, R.: Cyclic multiplicative proof nets of linear logic with
an application to language parsing. In: de Paiva, V., de Queiroz, R., Moss, L.S.,
Leivant, D., de Oliveira, A. (eds.) WoLLIC 2015. LNCS, vol. 9160, pp. 53–68.
Springer, Heidelberg (2015)

3. Abrusci, V.M., Ruet, P.: Non-commutative logic I: the multiplicative fragment.
Ann. Pure Appl. Logic 101(1), 29–64 (2000)

4. Andreoli, J.-M., Pareschi, R.: From Lambek calculus to word-based parsing. In:
Proceedings of Substructural Logic and Categorial Grammar Workshop, Munchen
(1991)

5. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Logic 28,
181–203 (1989)

6. Danos, V.: La Logique Linéaire appliquée à l’étude de divers processus de normal-
isation (principalment du λ-calcul). Ph.D. thesis, Paris (1990)

7. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
8. Girard, J.-Y.: Proof-nets: the parallel syntax for proof theory. In: Logic and Alge-

bra. Marcel Dekker (1996)
9. Girard, J.-Y.: Le point aveugle. Cours de Logique, vol. I, Vers la Perfection. Ed.

Hermann, Paris (2006)
10. Hughes, D., van Glabbeek, R.: Proof nets for unit-free multiplicative-additive linear

logic. In: Proceedings of IEEE LICS (2003)
11. Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65,

154–170 (1958)

Cyclic MALL Proof Nets with an Application to Language Parsing 59

12. Laurent, L., Maieli, R.: Cut elimination for monomial MALL proof nets. In: Pro-
ceedings of IEEE LICS, Pittsburgh, USA, pp 486–497 (2008)

13. Maieli, R.: A new correctness criterion for multiplicative non-commutative proof-
nets. Arch. Math. Logic 42, 205–220 (2003). Springer-Verlag

14. Maieli, R.: Cut elimination for monomial proof nets of the purely multiplicative
and additive fragment of linear logic. IAC-CNR Report, no. 140 (2/2008). HAL
Id: hal-01153910. https://hal.archives-ouvertes.fr/hal-01153910

15. Maieli, R.: Retractile proof nets of the purely multiplicative and additive fragment
of linear logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 363–377. Springer, Heidelberg (2007)

16. Maieli, R.: Construction of retractile proof structures. In: Dowek, G. (ed.) RTA-
TLCA 2014. LNCS, vol. 8560, pp. 319–333. Springer, Heidelberg (2014)

17. Moot, R., Retoré, C.: A logic for categorial grammars: Lambek’s syntactic calculus.
In: Moot, R., Retoré, C. (eds.) The Logic of Categorial Grammars. LNCS, vol. 6850,
pp. 23–63. Springer, Heidelberg (2012)

18. Moot, R.: Proof nets for linguistic analysis. Ph.D. thesis. Utrecht University (2002)
19. Morrill, G.: Additive operators for polymorphism. In: Categorial Grammar: Logical

Syntax, Semantics and Processing. Oxford University Press (2011)

https://hal.archives-ouvertes.fr/hal-01153910

	Cyclic Multiplicative-Additive Proof Nets of Linear Logic with an Application to Language Parsing
	1 Introduction
	1.1 The Cyclic MALL Fragment of Linear Logic

	2 Cyclic MALL Proof Structures
	2.1 Correctness
	2.2 Cut Reduction
	2.3 Sequentialization

	3 Embedding Lambek Calculus into CyMALL PNs
	4 Language Parsing with Lambek CyMALL PNs
	5 Conclusions
	References

