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Abstract. In this work we present a paradigm of focusing proof search
based on an incremental construction of retractile (i.e, correct or sequen-
tializable) proof structures of the pure (units free) multiplicative and ad-
ditive fragment of linear logic. The correctness of proof construction steps
(or expansion steps) is ensured by means of a system of graph retraction
rules; this graph rewriting system is shown to be convergent, that is,
terminating and confluent. Moreover, the proposed proof construction
follows an optimal (parsimonious, indeed) retraction strategy that, at
each expansion step, allows to take into account (abstract) graphs that
are "smaller” (w.r.t. the size) than the starting proof structures.
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1 Introduction

This work aims to make a further step towards the development of a research
programme, firstly launched by Andreoli in 2001 (see [1], [2] and [3]), which
points to a theoretical foundation of a computational programming paradigm
based on the construction of linear logic proofs (LL, [8]). Naively, this paradigm
relies on the following isomorphism: proof = state and construction (or inference)
step = state transition. Traditionally, this paradigm is presented as an incremen-
tal (bottom-up) construction of possibly incomplete (i.e., open or with proper
axioms) proofs of the bipolar focusing sequent calculus (see Sect. 2 for a brief
introduction). This calculus satisfies the property that the complete (i.e., closed
or with logical axioms) bipolar focusing proofs are fully representative of all
closed proofs of linear logic: this correspondence is, in general, not satisfied by
the polarized fragments of linear logic. Bipolarity and focusing properties ensure
more compact proofs since they get rid of some irrelevant intermediate steps
during proof search (or proof construction).

Now, while the view of sequent proof construction is well adapted to the-
orem proving, it is inadequate when we want to model some proof-theoretic
intuitions behind, e.g., concurrent logic programming which requires very flex-
ible and modular approaches. Due to their artificial sequential nature, sequent
proofs are difficult to cut into modular (reusable) concurrent components.
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A much more appealing solution consists of using the technology offered by
proof nets of linear logic or, more precisely, some forms of de-sequentialized (ge-
ometrical, indeed) proof structures in which the composition operation is simply
given by (possibly, constrained) juxtaposition, obeying some correctness criteria.
Actually, the proof net construction, as well the proof net cut reduction, can be
performed in parallel (concurrently), but despite the cut reduction, there may
not exist executable (i.e., sequentializable) construction steps: in other words,
construction steps must satisfy a, possibly efficient, correctness criterion. Here,
a proof net is a particular "open” proof structure, called transitory net (see
Sect. 3), that is incrementally built bottom-up by juxtaposing, via construction
steps, simple proof structures or modules, called bipoles. Roughly, bipoles cor-
respond to Prolog-like methods of Logic Programming Languages: the head is
represented by a multiple trigger (i.e., a multiset of positive atoms) and the body
is represented by a layer of negative connectives with negative atoms. We say
that a construction step is correct (that is, a transaction) when it preserves,
after juxtaposition, the property of being a transitory net: that is the case when
the given abstract transitory structure retracts (after a finite sequence of rewrit-
ing steps) to an elementary collapsed graph (i.e., single node with only pending
edges). Each retraction step consists of a simple (local) graph deformation or
graph rewriting. The resulting rewriting system is shown to be convergent (i.e.,
terminating and confluent), moreover, it preserves, step by step, the property of
being a transitory structure (see Theorem 1 and Lemma 1 in Sect. 3.1). Tran-
sitory nets (i.e., retractile structures) correspond to derivations of the focusing
bipolar sequent calculus (Sect. 4, Theorem 2).

The first retraction algorithm for checking correctness of the proof structures
of the pure multiplicative fragment of linear logic (MLL), was given by Danos in
his Thesis ([6]); the complexity of this algorithm was later shown to be linear,
in the size of the given proof structure, by Guerrini in [10]. Then, the retraction
criterion was extended, respectively, by the author, in [14], to the pure mul-
tiplicative and additive (MALL) proof nets with boolean weights and then by
Fouqueré and Mogbil, in [7], to polarized multiplicative and exponential proof
structures.

Traditionally, concerning proof nets of linear logic, the main interest on the
retraction system is oriented to study the complexity of correctness criteria or
cut reduction. Here, our (original) point of view is rather to exploit retraction
systems for incrementally building (correct) proof structures. Indeed, the conver-
gence of our retraction system allows to focus on particular retraction strategies
that turn out to be optimal (in the graph size) w.r.t. the problem of incremen-
tally constructing transitory nets. Actually, checking correctness of an expanded
proof structure is a task which may involve visiting (i.e., retracting) a large por-
tion of the so obtained net: some good bound for these task would be welcome.
Here, we show that checking correctness (retraction) of a MALL transitory net,
after a construction attempt, is a task that can be performed by restricting to
some "minimal” (i.e., already partially retracted) transitory nets. The reason is
that some subgraphs of the given transitory net will not play an active role in
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the construction process, since they are already correct and encapsulated (i.e.,
border free): so, their retraction can be performed regardless of the construction
process (that is the main content of Corollary 1, in Sect. 3.2).

Finally, we give in Sect. 5 a comparing with some related works concerning;:

1. analogous attempts to give a theoretical foundation of computational pro-
gramming paradigms based on the construction of proofs of intuitionistic or
linear logic (notably, some works of Pfenning and co-authors, [4], and some
works of Miller and co-authors, [15] and [5]);

2. alternative syntaxes for additive-multiplicative proof structures (mainly,
those ones given, respectively, by Girard [8] and Hughes—van Glabbeek
in [11]).

2 Construction of Bipolar Focusing Proofs

In this section we give a brief presentation of the bipolar focusing sequent calculus
introduced by Andreoli; more technical details can be found in [1]. We start with
the basic notions of the MALL fragment of LL, without units and Mix rule. We
arbitrarily assume literals a,a’, b, b+, ... with a polarity: negative for atoms and
positive for their duals. A formula is built from literals by means of the two
groups of connectives:

— negative, 2 ("par”) and & ("with”);

— positive, ® ("tensor”) and @ (”plus”).

A proof is then built by the following rules of the MALL sequent calculus:

id I,A A AL I A A, B I'A B IA I'B I A;

A A+ T A at “FAASB © T AwB ° TA2E % T Ao d b=t?

The bipolar focusing sequent calculus is a refinement of the previous one,
based on the crucial properties of focusing and bipolarity (see, also, [12]). The
focusing property states that, in proof search (or proof construction), we can
build (bottom up) a sequent proof by alternating clusters of negative inferences
with clusters of positive ones. As consequence of this bipolar alternation we get
more compact proofs in which we get rid of the most part of the bureaucracy
hidden in sequential proofs (as, for instance, irrelevant permutations of rules).
Remind that, w.r.t. proof search, negative (resp., positive) connectives involve a
kind of don’t care non-determinism (resp., true non-determinism).

A monopole is a formula built on negative atoms using only the negative
connectives, while a bipole is a formula built from monopoles and positive atoms,
using only positive connectives; moreover, bipoles must contain at least one
positive connective or be reduced to a positive atom, so that they are always
disjoint from monopoles. Given a set F of bipoles, the bipolar focusing sequent
calculus X[F] is a set of inferences of the form

I I,

T B

where the conclusion I is a sequent made by a multiset of negative atoms and the
premises I, ..., I}, are obtained by fully focusing decomposition of some bipole
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B € F in the context I' (therefore, I, ..., I, are mutiset of negative atoms
t00). More precisely, due to the presence of additives (in particular the sum @
connective) a bipole B is naturally associated to a set of inferences By, ..., Byt1,
where m is the number of @& connectives present in B. For instance, in the purely
multiplicative fragment of LL (i.e, MLL), the bipole B = a* @ b*+ ® (¢®d) R e,
where a,b, ¢, d and e are (negative) atoms, yields the inference below (on the left
hand side), more compact than the explicit one (on the right hand side):

Ied
Ied Ae o I, co9d Ae ®
T A a,b I A, (cvd) @ e b, bt a,a*

I''Aa,b,at @bl @ (cpd) ®e

where I' and A range over a multiset of negative atoms; the identity axioms
a,at and b, bl are omitted in the bipolar sequent proof for simplicity. Observe,
the couple a and b plays the role of a trigger (or multi-focus) of the B inference;
more generally, a trigger (of a bipole) is a multi-set of duals of the positive atoms
occurring in the bipole. Intuitively, the main feature of the bipolar focusing se-
quent calculus is that its inferences are triggered by multiple focus, like in [15]
and and [5]. Bipoles are clearly inspired by the methods used in logic program-
ming languages: the positive layer of a bipole corresponds to the head, while the
negative layer corresponds to the body of a Prolog-like method.

The bipolar focusing sequent calculus, with only logical axioms (id), has been
proven in [1] to be isomorphic to the focusing sequent calculus, so that (closed)
proof construction can be performed indifferently in the two systems. The main
idea behind this isomorphism is the bipolarisation technique, that is a simple
procedure that allows to transform any provable formula F' of the LL sequent
calculus into a set of bipoles, called universal program of the bipolar sequent
calculus. In Example 1 we give an instance of (closed) bipolar focusing derivation.

Ezample 1. Assume the universal program U = {B; = f* @ (v9gehe(d&e)),
By = 2t ® (a&b), B3 = gt ®@ ((at @ bt)®@ct) a By =ht ®@c® (d- @ et)}.
Each bipole induces a non empty set of bipolar inferences as follows:
— both bipoles B; and Bs induce a single inference
Ix,g,h,d Ix,g,he B, resp., Ia b
I f I

— while both bipoles B3 and B, induce two inferences

By

I
I'g,a,c

Ic , Ic
Tha Pvowd 7o

B and BY  resp.,

F "
I,g,bc By
Then, the resulting bipolar focusing proof IT of f if built as follows:

11 1"

B ——— B! EEY !
gac Uy, Tghe 5 _gac Béu gbe 3,
a,9.b,d " bghd ' ‘aghe ' bghe !
B2 BZ
x,9,h,d x,9,h,e
By

f

Although this derivation is quite compact and abstract, it still presents some
structural drawbacks like duplications of some sub-proofs. Therefore, we will
move, in the next section, to more flexible proof structures.



Construction of Retractile Proof Structures 323

3 Bipolar Transitory Structures

In this section we introduce the de-sequentialized version of the bipolar focusing
sequent calculus, i.e. a graphical representation of bipolar structures (eventually
correct, i.e. bipolar nets) which preserves only essential sequentializations.

Definition 1 (links). Assume an infinite set L of resource places a, b, ¢, ... (also
ports or addresses ). A link consists of two disjoint sets of places, top and bottom,
together with a polarity, positive or negative, and s.t. a positive link must have
at least one bottom place, while a negative link must have exactly one bottom
place. The border or frontier of a link is the set of its top and bottom places.

Graphically, links are represented like in Fig. 1 and distinguished by their
shape: triangular for negative and round for positive links. Top (resp., bottom)
places are drawn as edges incident to a vertex. We may use variables z?, P, 2P, ...
for links with a polarity p € {4+, —}, and the compact expression link™ (resp.,
link™) for a positive (resp., negative) link. Moreover, we define some relations
on the set of links; in particular, given two links, x and y, we say:

— they are adjacent if they have (or share) a common place;

— x is just above (resp., just below) y if there exists a place that is both at the
bottom (resp., top) of z and at the top (resp., bottom) of y;

— they are connected if they belong to the transitive closure of the adjacency
relation.

Definition 2 (transitory structure). A transitory structure (TS) is a set 7
of links satisfying the following conditions:

1. if two links are one above the other, then they have opposite polarity;

2. if two links have a top (resp. bottom) place in common, then they must have
the same polarity;

3. if two negative links have a top place in common, then they must share their
(unique) bottom place.

Moreover, a TS 7 is called:

— bipolar (BTS), if any place occurring at the top of some positive link of
7 also occurs at the bottom of some negative link of m and vice-versa (the
bottom place of any negative link also occurs at the top of some positive link);

— negative hyperlink, if it is a set of, at least two, negative links with same
bottom place;

— positive hyperlink, if it is a set of connected positive links;

— bipole, when it contains exactly one positive link; a bipole is then called ele-
mentary (or multiplicative) when it does not contain any negative hyperlink.

Finally, in a TS m, the set of bottom (resp., top) places that do not occur at the
top (resp., bottom) of any link of w is called the bottom (resp., top) border or
frontier of w. If the top border of w is empty, then 7 is called closed. A place
shared by at least two links of the same polarity is called (additive) multiport.
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AB(B&C) = (A% B)&(A5C)

Fig. 1. Links, hyperlinks, bipoles and bipolar transitory structures

Intuitively, w.r.t. the standard syntax of proof nets of linear logic, negative
(resp., positive) links correspond to generalized (i.e., n-ary) '®-links (resp., ®-
links). Similarly, negative (resp., positive) hyperlinks correspond, modulo dis-
tributivity and associativity of linear connectives, to generalized & (resp., @)
of negative (resp., positive) links. Instances of negative and positive hyperlinks
are, respectively, given in the leftmost and middle side pictures of Fig. 1, where
links are enclosed within dashed lines; graphically, these hyperlinks represent the
distributive law of negative (%8 /&), respectively, positive (®/@®) connectives. An
instance of BTS is also given in the rightmost picture of Fig. 1, with two bipoles
enclosed within dashed lines (bullets, o, graphically represent multiports). Intu-
itively, bipoles correspond to bipolar inferences of the sequent calculus.

3.1 Retraction of Bipolar Transitory Structures

We are interested in those BTSs that correspond to bipolar focusing sequent
proofs: these correct BTSs will be called bipolar transitory nets (BTN). In the
following we will give a geometrical way to characterize BTNs: actually we will
show that BTNs are those BTSs whose abstract structures retract, by means
of sequences of rewriting rules (graph deformation steps), to special terminal
collapsed graphs . This retraction technique was primarily exploited by Danos
in his thesis ([6]), limited to the multiplicative proof structures (see rules Ry, Ry
and R3 of Definition 5) and then extended by Maieli in [14] to the multiplicative
and additive proof structures. The latter work provides a binary version of rules
Rs5 and Rg of Definition 5 that only works with closed proof structures labeled
by boolean monomial weights (see [9]). Here, we further extend these techniques,
by generalizing the rules above, to weightless proof structures that are focusing,
bipolar, possibly open and with n-ary links.

Definition 3 (abstract structure). An abstract structure (AS) is a undi-
rected graph m* equipped with a set C(7*) of pairs of coincident edges: two edges
are coincident if they share at least a vertex, called base of the pair. Fach pair
has a type a € {2, &,C} (where C' denotes the additive contraction). We call
cluster of type a a tuple of edges that are pairwise pairs of C(m*) with type «.
A pair (resp., cluster) is graphically denoted by a crossing arc close to the base.
Some pending edges (i.e., edges that are incident to only one node) of an AS are
called conclusions (resp. hypotheses) of the AS. We call collapsed any acyclic
AS 7 with at most a single node and C(7*) = {).
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Notation: a dashed edge incident to a vertex v is a compact representation of
possibly several edges (with possibly clusters) incident to v; variables a, b, ¢, ...
denote (dashed) edges; possibly partially dotted arcs with labels « € {7®, &, C}
are compact representations of pairs (clusters) of type «; vertices may be denoted
by naturals inside (dotted) circles @, @, ... . A cluster of n edges, ay, ..., a,, with
type «, is denoted by «a(aq, ..., a,) (sometimes, simply a,).

Definition 4 (abstraction). We may transform (abstract) a given BTS m,
with bottom border I' and top border A, in to an AS 7* (also abstraction of )
with conclusions I' and hypothesis A, built by applying the following procedure:

1. alink™ with border ay, ..., a, becomes a vertex with incident edges a1, ..., ay;
2. a link™ with top places aq, ...,a, and bottom place b becomes a vertex that
is base for a cluster ’9(aq,...,an) and with b as an additional incident edge;

3. a place (multiport) a that is bottom (resp., top) place of n links™ becomes
a vertex that it is base of a cluster &(ay, ...,an) (resp., C(ai,...,an)) with n
copies of a, and with an additional incident edge labeled by a;

4. a place (multiport) a that is top (resp., bottom) place of n links™ becomes a
vertex that is base of a cluster C(aq, ..., a,), with n copies of a, and with an
additional incident edge labeled by a;

5. we may compact ™ by some applications of structural retractions Ry, Rs.

Definition 5 (retraction system). Given an AS ©*, a retraction step is a
replacement (also, deformation or rewriting) of a subgraph S (called, retrac-
tion graph) of * with a new graph S’ (called, retracted graph), leading to ©*
according to one of the following rules Ry, ..., Ry.

Ry (structural): with the condition that, like in Fig. 2, the retraction graph of
7* contains a vertex ® with only two incident edges, a and b, none of them
pending; then, this graph is replaced in ©'* by a single new edge c s.t. any
pair of C(m*) containing a or b is replaced in C(7'™*) by a pair of the same
type and with c at the place of a orb.

Ry (structural): with the condition that, like in Fig. 2, the retraction graph
of ™ contains two distinct vertices ® and @ with a common edge ¢ not
occurring in any pair of C(7*); then, one of these two nodes, ® or @, together
with the edge ¢, does not occur in 7'*; moreover, C(m*) = C(n"*).

R3 (multiplicative):! with the condition that, w.r.t. the retraction graph of ©*
in Fig. 2, all vertices are distinct and there exists a cluster 9(ay, ..., an), with
base in @, whose edges, a,—1 and a, are also incident to vertex @; moreover,
an—1 and a, do not occur in any pair, except the cluster 9(ay, ..., an). Then,
7" (resp. C(n'*) ) is obtained from * (resp. from C(7*)) by erasing a,, (resp.,
by replacing (a1, ..., an) with (a1, ..., an_1)).

Ry (associative):? with the conditions that, w.r.t. the retraction graph of T in
the Fig. 2 (all vertices are distinct):

1. vertex @ is a base for the cluster a(ay, ...,an);

! Intuitively, this rule corresponds to the replacement of an axiom by its 1-ezpansion.
2 Intuitively, this rule corresponds to the associativity of, respectively, g, & and C.
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2. vertex @ is a base for the cluster c(by,...,bm);

3. ae{9,& C} andn,m > 2;

4. the only edges incident to the vertex @ are by, ...,bm, Gy .

Then, the edge a,, (resp., vertex @) does not occur in ©* and both clusters,
alar,...,an) and a(by,...,by) of C(1*), are replaced in C(n"*) by an unique
cluster a(ay, ..., ap—1,b1, ..., bm) with base in vertex ®.

Fig. 2. Structurals (R1, R2), multiplicative (R3) and associative (R4) retractions

Rs (distributive):® with the condition that, w.r.t. the retraction graph of ©* in
Fig. 3, all vertices are distinct and each vertex v; (1 <1i <mn) has only a;,b;
and ¢; (1 <i<n) asincident edges with the following conditions:

1. ¢; is an edge occurring in the cluster &(ci, ..., ¢y, d) with base in vy ;

2. b; is an edge occurring both in the cluster C(by, ..., by,), with base in vertex
vk, and in the cluster 2;(a;,b;), with base in vertex v;;

3. a; is a non empty bundle of edges occurring in the cluster 9(a;,b;);
moreover, each edge e € a; must satisfy one of the following conditions:
(a) either it is a pending edge or an edge incident to a vertex with only

pending edges not labeled by any conclusion of 7*; in that case, there
must exist at least such an analogous edge for each bundle a1, ..., ayn;
(b) or it must occur in a C cluster and, in that case, for each bundle
ai,...,an, there must exist exactly one edge that occurs in this C
cluster too.
Then, 7 retracts to «'* like in Fig. 3. Observe that edges by, ..., by, , except
one, b;, do not occur in 7'*; similarly, the cluster C(by,...,by) & C(7'*).
Moreover, new edges g and e are added to w'* (similarly, new pairs,
2(bi,g) and &(d,e) occur in C(n™*) with base, respectively, in the new
vertex vy and vy ).

R¢ (semi-distributive):* with the condition that, w.r.t. the retraction graph of
7 in Fig. 3, all vertices are distinct and each vertex v;, with 1 < i < n, has
only a;,b; and ¢; (1 < i< n) asincident edges with the following conditions:

1. ¢; is an edge occurring in the cluster &(ci, ..., cn, d) with base in vy ;

2. b; is an edge occurring in the cluster C(by,...,by,) with base in vy;

8. a; 1s, possibly, a bundle of edges occurring neither in a pair with b; nor
m a pair containing c;.

3 A reminiscence of the distributivity (&7—, (a9 f))&d I (&7 (a; )9 f)&d (see [14]).
* Reminiscence of the semi-distributivity (&7, (f ® a;))&d - (f ® (&i=1(a:))&d ([14]).
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Then, ©* retracts to n'* like in Fig. 8. Observe, ©'* does not contain any
b1, ..., by except one, b;, (resp., C(b1,...,b,) & C(n'*)). Finally, in 7" we add
a new edge g and a new vertex vy (resp., a, possibly, new cluster &(d, g’) €
C(n"™*) with base vy ).

Fig. 3. Retraction rules: distributive (Rs) and semi-distributive (Rs)

R (&-annihilation): with the conditions that, w.r.t. the retraction graph of 7*
i Fig. 4, all vertices are distinct and each a;, with 1 < i < n, is an edge
occurring in the cluster &(aq,...,an); moreover, each a; must belong to a
collapsed subgraph of ™ non containing conclusions of ™, with the condition
that any couple a;,a; (1 < 4,5 < n) cannot belong to the same collapsed
graph. Then, in ©*, each a; will be disconnected from vy, (so, &(aq, ...,a,) ¢
C(m™)).

Rg (#-annihilation): with the condition that, w.r.t. the retraction graph of ©*
in Fig. 4, all vertices are distinct and edges aq,...,a, occur in a cluster
2(at, ..., an); then, T retracts to ©'*, like in Fig. 4, whenever d is:

1. either a bundle of pending edges not labeled by any conclusion of 7 and
not occurring in a pair with any a;;

2. or a bundle of pending edges not occurring in any pair with any a; and
e is also a bundle of pending edges with at least one of them labeled by a
conclusion of m and none of them occurring in a pair with any a;.

Then, in 7'* the edge a,, will be disconnected form vertex ®; therefore, C(n'*)

will contain all the pairs of C(7*) except those one containing ar,.

Ry (merge): with the condition that, w.r.t. the retraction graph of 7 in Fig. 4,
all vertices are distinct and x7 and x5 are both collapsed AS made, resp., by
a vertexr @ and a vertex @, with, resp., only pending edges ai, ...,an>1 and
b1,...,b;m>1, with by, that is neither a conclusion nor an hypothesis of 7*.
Then, 7'* is obtained by gluing x; with x5 and erasing @ and by, .

We say that 7* retracts to 7'* when there exists a non empty finite sequence
of retraction steps starting at 7* and terminating at 7'*; then, we say that 7* is
retractile when there exists a o* # 7* s.t. 7 retracts to o*. A non retractile AS
is called terminal. A sequence of retraction steps is said complete when it ends
with a terminal AS. An AS collapes when it retracts to a collapsed graph. A pair
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Fig. 4. Retraction rules: annihilations (R7 and Rs) and merge (Ry)

of possible (or admissible) retraction instances for 7*, R; and R;, with i # j, is
called a critical pair (denoted by R;|R;) when the application of R; inhibits the
application of R; (or vice-versa).

Theorem 1 (convergence of retraction). If 7* is an AS with conclusions
I' and hypothesis A then, any complete retraction sequence starting at ™ ends
with a terminal AS x*; moreover, if x* is collapsed, then any complete retraction
sequence starting at ™ ends with x*.

Proof. Termination is proved by (lexicographic) induction on the complezity
degree of *, that is, the triple (P, 4N, {E), where "P”, "#N” and "{E” denotes
respectively the number of pairs, nodes and edges of 7*.

For the confluence, we reason, analogously, by induction on the complexity
degree of the starting 7*. It is not difficult to show that for each critical pair,
R5|Rs5, R5|Rs and Rg|Rs, we can find, in a few steps, an almost local confluence
strategy that allows to apply the induction reasoning.

Next Lemma 1 intuitively says that abstraction commutes under retraction;
it will play a crucial role in the sequentialization of BTSs (Theorem 2, Sect. 4).

Lemma 1 (abstraction). Assume 7* is an AS that retracts to ©'* by an in-
stance of R; (i =1,...,9) and assume there exists a BTS 7 that abstracts to m*;
then, we can find a BTS ©' whose abstraction is w'*.

Proof. It is to show, for each R;—;, .. 9, how to locally deform some bipoles of
the given BTS 7 in such a way to get a BTS 7/ whose abstraction is 7'*.

Definition 6 (bipolar transitory net). A BTS w with bottom border I' and
top border A, is correct, that is a bipolar transitory net (BTN), when its ab-
straction 7, with conclusions I and hypothesis A, collapses.

Ezample 2. In Fig. 5 we give an instance of (closed) BTS 7 (Pic. A1) obtained
by juxtaposing bipoles S, B2, 85, 8%, 8, and BY. Observe, 7 is correct (it is a
BTN) since its abstraction 7* (Pic. Ag) collapses after few retraction steps:

1. first we get the AS of Pic. As after some instances of distributive retraction
Rs5 applied to the dotted retraction graph of Pic. As;

2. then we get the AS of Pic. A4 after a couple of instances of semi-distributive
retractions Rg applied to the dotted retraction graphs of Pic. As;

3. finally, we get the collapsed graph after three multiplicative retractions in-
stances R3 applied to the dotted retraction graphs of Pic. A4 (modulo some
structural retractions).
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" £ , . 7
Picture A, Picture Ay Picture As

Fig. 5. Bipolar net (Pic. A1) with its collapsing abstractions (Pics. A2 3,4)

3.2 Construction of Transitory Nets via Optimal Retraction

Analogously to the construction of bipolar focusing sequent proof seen in Sect. 2,
in the construction of BTNs, places are decorated by type information, that is,
occurrences of negative atoms. A bipole § is viewed as an agent which contin-
uously attempts to perform a bottom-up expansion step of the given BTN
this step cousists of adding (by a gluing operation "x”) a non empty cluster
(a sum, indeed) of bipoles from the top border places whose types match the
trigger, i.e. the bottom places, of the given bipoles. Not all construction steps
are admissible. We will only consider those ones that preserve correctness by
retraction. Now, checking correctness of an expansion is a task which, a-priori,
repeatedly involves wvisiting (i.e., retracting) the whole portion of the expanded
BTS. Actually, we could avoid, at each construction step, considering the whole
structure built up, by e.g. taking advantage of the incremental construction in
such a way to reduce the complexity of the contraction task. That is exactly
the content of the next Corollary 1, immediate consequence of the Convergence
Theorem 1. Intuitively, Corollary 1 allows us to incrementally pursue an optimal
retraction strategy that manages, when they exist, abstract correction graphs
that are strictly smaller (w.r.t. the complexity degree) than the starting ones.

Corollary 1 (optimal retraction). Let m be a BTN (with a non empty top
border) and let 8 a non empty cluster (a sum) of bipoles, whose bottom border
matches some places of the top border of w. Assume 7 abstracts to m* and assume
n* is the AS, which ©* retracts to, by only applying those retraction instances
whose retraction graph does not contain pending (border) edges. Then, (m* 5)*

collapses iff n* x B* collapses too.
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Example 3. We graphically show a reason why Corollary 1 ”delays” those re-
tractions that involve the border of the abstraction associated to the BTN to be
expanded. Actually, assume 7 abstracts to an AS 7* with hypothesis a, b,d, e, f
and conclusion ¢, like in the graph below the dotted line of Pic. By in Fig. 6.
Assume 7'* is obtained from 7* by an instance of distributivity Rs applied to
the couple of *2-pairs with, respectively, base @ and ®, like in the graph below
the dotted line of Pic. Bs: this retraction involves the border a, b and d. Now, if
we expand 7* by the (abstract) sum of bipoles (51 @ B2)*, through the border
d, e, we get the AS 7* x (81 @ B2)* (the whole Pic. B1) whose retraction does not
collapse® while the expanded AS 7/* (31 @ 2)* (the whole Pic. By) collapses.

Picture By Picture By Picture C

Fig. 6. Expansion steps (Pics. Bi, B2) and a BTS (Pic. C)

4 Sequentialization of Bipolar Transitory Nets

In this section we show that correct BTSs correspond (sequentialize) to proofs
of the bipolar focusing sequent calculus and vice-versa.

There exists an almost direct correspondence (modulo associativity and dis-
tributivity of linear connectives) between a sequential bipole B and a an additive
sum of bipoles B = {81 @ --- ® Bp>1}, as follows:

1. the positive layer of B corresponds to the positive hyperlink made by the
positive links of B connected through the border (see Definition 1);

2. the negative layer of B corresponds to the set of negative hyperlinks of B;

3. the negative literals (i.e., atoms) of B correspond to the top places of B while
(the dual of) the positive literals of B correspond to the bottom places of B;

5 It is no longer possible to apply rule Rs since condition 8b of Definition 5 is violated.



Construction of Retractile Proof Structures 331

4. each bipole ; corresponds to the i-th bipolar inference induced by the se-
quential bipole B (see Example 1 in Sect. 2).

In general, ports (resp. multiports) correspond to a single (resp., multiple) occur-
rence of literals. Then, we say that a bipolar sequential proof IT with hypothesis
A and conclusions I' de-sequentializes to w, when 7 is a BTN with top border A
(resp., bottom border I") and each instance of the i-th bipolar inference induced
by B € II corresponds to a bipole 3; € w. The other way round, from BTNs to
bipolar sequential proofs, is called sequentialization.

Theorem 2 ((de-)sequentialization). A sequent proof IT2, with conclusions
I' and hypothesis A, de-sequentializes in to a BTN =, with bottom places I and
top places A and vice-versa (sequentialization ).

Proof of the de-sequentialization part: we proceed by induction on the size
of II, via the correspondence stated above between sequential bipoles and
graphical bipoles, modulo associativity and distributivity of connectives.

Proof of the sequentialization part: it is given by induction on the com-
plexity degree of the abstraction 7* corresponding to the given 7. By the
Abstraction Lemma 1, we show that at each retraction step 7* ~»g, 7'*, for
1 =1,...,9, it is possible to recover a BTN #’ from the retracted AS 7'*,
with same border. Then, by hypothesis of induction, 7’ sequentializes to a
proof H}é/ from which, finally, by deformations of IT" (i.e., permuting some
bipolar inferences of IT"), we get a sequential proof IT 14. We reason by cases,
according to R;, with 1 <1¢ < 9.

Ezample 4. Observe, the closed bipolar net given in Example 2 (Fig. 5, Pic.
A1), sequentializes in to the bipolar focusing proof IT displayed at the end of
Example 1; we illustrates how the sequentialization works in that case. Assume
m (Pic. Ay, Fig. 5) abstracts to 7* (Pic. Az) and assume 7* retracts to ©'* like
in Pic. As, after a block of distributive retractions (without losing generality, we
may treats a sequence of retractions of the same type Ry as a single generalized
retraction Rs). By Abstraction Lemma 1 we may build a BTN 7/ from 7 like in
Pic. C of Fig. 6; then, by hypothesis of induction we know that 7’ sequentializes
to the bipolar sequent proof I’ below:

1 / "

g7a:C Bé/ g7b?c 3/ g7a7c BBII g7b7c -BS//
a7g,h,d ! bvgahvd Bi avg’hve ! bvgvhae B;
x,9,h,d X,g.he o,
70,0y g !
f 1

Clearly, 7 is nothing else that 7" in which we replaced bipoles 81 and 87 with
the single bipole ;. Since bipole 1 (resp., 87) corresponds (sequentializes) to
the inference B (resp., BY), then 7 sequentializes to IT obtained from II’ by
simply replacing the two inferences B and B} with the unique inference B

which trivially corresponds to bipole ;.



332 R. Maieli

5 Conclusions, Related and Future Works

In this work we provided:

1. a very simple syntax for open proof structures (BTSs) that allows to extend
the paradigm of proof construction to the MALL fragment of LL. In partic-
ular, we set a precise correspondence, called sequentialization (Theorem 2)
between focusing bipolar sequent proofs and correct BTSs (i.e., BTNs);

2. a convergent retraction system to check correctness of BTNs (Theorem 1);

3. an optimal strategy for incrementally building BTNs (Corollary 1).

Concerning other attempts to give a theoretical foundation of computational
paradigms based on sequent proof construction, we only mention:

— some works of Pfenning and co-authors, from 2002 and later (see, e.g., [4]),
which rely neither on focusing (or polarities) nor on proof nets but on softer
notions of sequent calculus proofs;

— some works of Miller and co-authors which generalize focused sequent proofs
to admit multiple ”foci”: see, e.g., [15] and [5]; the latter also provides a bi-
jection to the unit-free proof nets of the MLL fragment, but it only discusses
the possibility of a similar correspondence for larger fragments. At this mo-
ment, we are exploring a direct sequentialization from retractile transitory
nets to, possibly open, multi-focus sequential calculi.

Concerning the related literature on additive proof nets, although there currently
exist several satisfactory syntaxes for MALL proof structures, we briefly discuss
some reasons that lead us to avoid most of them (at least in this first approach):

— Glrard, [8]: requiring boolean (monomial) weights over proof structures is a
condition that prevents certain transactional structures: take e.g. a simple
BTS containing a single positive hyperlink or the rightmost BTS of Fig. 1;

— Hughes-van Glabbeek, [11]: similarly to the previous one, this syntax seems
well adapt to take in to account only closed proof structures; actually, it has
the inconvenient of allowing additive contractions only immediately below
the axiom links; although this canonical form has great advantages for se-
mantical reasons, it does not seem adapted to the composition of arbitrary
modules that may require "non canonical” contractions.

Moreover, since these syntaxes make, more or less, explicit reference to graph
dependencies (like jumps) they, a-priori, seem to garble the " principle of locality”
required by retraction systems. Finally, as future works, we aim at investigating:

— the complexity class of the optimal BTNs construction;
— an extension of the retraction system that could preserve BTNs under the
(almost local) cut reduction proposed by Laurent and Maieli in [13].
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