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Overview

» Topic : we compare the Parallel Syntax (proof-nets, graphs)
w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs
of Linear Logic (Girard, 1987).

» Question : finding an intrinsic (geometrical, non inductive)
criterion for detecting those graphs (proof-nets) that
correspond to sequential proofs of the purely multiplicative
and additive fragment of linear logic (MALL)

» Answer : a correctness criterion formulated like an algorithm
which implements simple graph rewriting rules.

» Hint : an initial idea of a retraction correctness criterion for
proof nets of MLL, the purely multiplicative fragment of linear
logic (Danos, 1990).
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MALL

» Formulas A, B, ... are built from literals by the binary
connectives ® (tensor), @ (par), & (with) and & (plus).
> Negation (.)* extends to any formula by de Morgan laws:
(Ao B): = (BLgAl) (AB)*t = (Bt @ At)
(A&B)*+ = (Bt ¢ AY) (A® B)* = (B+&AY)
> Sequents I, A are sets of formula occurrences Ay, ..., Ap>1,
proved using the following rules (we omit I-):

ax A A, A+

» identity: A Al
y A A A cut
» multiplicatives: u(@ A B o
’ ' rAA®B [ ASE
rA r,B
» additives: LA r,B & ) @1 ) @,

I',A&B r,A@B r,AEBB
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A AL B, B+
D2 D1 N
A Bt @ A+ B,B+ @ At C,C
A&B,BL & AL CwCt
A&B, (Bt @ At)® (CeCt)

A AL C,Ct B,B* C,Cct
— & P @1

A Bt o At CeCH B,B+ o A" CeCH

A (B @ AY) @ (C9CH) B, (B3 AN ® (CeCt)

A&B, (Bt @ At)® (C9CH)
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Equivalence of proofs

» We would like consider equivalent (in some sense) two
sequent proofs (trees) when they differ only for the order in
which the derivation rules are applied.

» This idea leads to the notion of proof structure (graph).

» In particular, some proof structures (proof nets) can be seen
as quotients of classes of sequent proofs that are equivalent
modulo irrelevant permutation of sequent rules.
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A PS is an oriented graph s.t. each edge is labelled by a MALL
formula and built on the set of nodes according to the following
typing constraints:

B A\/A
&2
/\ ?‘ f \V # ¥
At A®B A$B A&B AeB AeB A

Figure: MALL Links

> entering (resp., exiting) edges are premises (resp., conclusions)

» pending edges are called conclusions of PS
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Request for a Correctness Criterion

» We are interested in finding an intrinsic (geometrical, non
inductive) criterion for detecting those proof structures that
are correct, i.e. that correspond to proofs of MALL.

» For doing that we need to go trough some more abstract
objects (Abstract Proof Structures) which allow us to get rid
of some concrete matters of proof structures
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—an APS is a non oriented graph G equipped with a set C(G) of
pairwise disjoint pairs of coincident edges labelled by formulas;

— a base of a pair is a common vertex, labelled by a %2, & or C-arc;
—a PN is mapped into an APS as follows:

B Ao A /P AN
A AL —— @ — \Y
A A

o8B 2B
Af:LZ A’. A B /g_L\ B
©® - + ooy
A& B
A Ay ALD Ay AuB
A A C

AB ) AYB é@/ i A?A

A® B A® B A A
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A PS 7 with conclusions Ay, ..., A,, with n > 1, is correct (i.e., it
is a proof net) if its corresponding APS 7* retracts to a single
node e, by iterating the following retraction rules (Ry, ..., Rs)

a PS 7 is a PN iff its corresponding APS 7* ~~* @
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Additive Retraction Rules: Rz and Ry
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Distributive Retraction Rule: Rs

(b2c)&(bed) F be(c&d)
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Theorem
A proof 7 of a sequent I can be de-sequentialized in to a proof net
m~ with same conclusion.

Proof.
We associate a link to each derivation rule, then we proceed by
induction on 7. [l
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A AL B, Bt
D2 D1 n
A BL @ AL B,BL @ AL % C,C °
A&B, Bt @ At CeCt
A&B, (B & At) @ (CoCh)
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A slicing squentialization: & first (bottom-up)

(Bre At)® (C2Ch) (Br @ AY) @ (CeCh)
A, A+ 1 B,Bt 1
; ®s C,C o : ®1 C,C
A B-a At CeCt B,BL @ AL CeCt
®
A (Bta Ab)® (CsCh) B,(B* @ AY)® (CeCth)

ALB, (Bt @ At)® (C9CH)



Confluence

Theorem
If a PN 7 retracts to e, then all retraction sequences start with 7*
and terminate with e.
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Conclusions

Retractile Correctness Criteria for PN :
» can be seen as concurrent (parsing) algorithms for
proof-search;

» alternative to sequential algorithms performed on sequent
calculi;

» more efficient and compact, since they are performed on PN
(class of equivalent proofs, modulo permutability of rules);

» with low complexity (linear, quadratic, ...)

> lead to possible applications like Transactional Systems,
navigation of Formal Ontologies ...
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