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“proofs” vs “proof nets”
In his seminal article on linear logic (LL, 1987), Jean-Yves Girard
develops two alternative notations for proofs:

I a sequential syntax where proofs are expressed as derivation
trees in a sequent calculus

` C ,C⊥

` A,A⊥ ` B,B⊥ ⊗
` A⊗ B,B⊥,A⊥ O
` A⊗ B,B⊥OA⊥

Π′ : ⊗
` C ,C⊥ ⊗ (A⊗ B),B⊥OA⊥

` C ,C⊥
` A,A⊥ ` B,B⊥ ⊗
` A⊗ B,B⊥,A⊥ ⊗

` C ,C⊥ ⊗ (A⊗ B),B⊥,A⊥
Π′′ : O

` C ,C⊥ ⊗ (A⊗ B),B⊥OA⊥

I a parallel syntax where proofs are expressed as bipartite graphs
called proof-nets

⊗

A

O

A⊥B⊥B

⊗

C⊥

B⊥OA⊥
C

C⊥ ⊗ (A⊗ B)

π



“proof nets” vs “proofs alike“

I PNs are one of the most innovative inventions of LL: they represent
demonstrations in a ”geometric” (i.e., ”non inductive”) way,
abstracting away from the technical bureaucracy of sequent proofs.

I PNs quotient classes of derivations that are equivalent up to some
irrelevant permutations of inference rules instances.

I while a derivation tree defines a unique proof-net, a PN may
represent several derivation trees, each derivation tree
witnessing a particular order of the PN sequentialization;

I a PN requires to separate “real proofs” (proof-nets) from
“proof alike” (proof-structures) using correctness criteria;

I correctness criteria reveal the ”geometric” essence of the logic,
beyond its ”grammatical” presentation as a sequent calculus.

` A,A⊥

` A,A⊥ ` B,B⊥ ⊗
` A⊗ B,B⊥,A⊥ O
` A⊗ B,B⊥OA⊥

Π′ : ⊗
` A,A⊥ ⊗ (A⊗ B),B⊥OA⊥

⊗

A

O

A⊥B⊥B

⊗ B⊥OA⊥

π

A
A⊥

A⊥ ⊗ (A⊗ B)

⊗

A

O

A⊥B⊥B

⊗ B⊥OA⊥
A

A⊥

A⊥ ⊗ (A⊗ B)

π′



the CyMLL fragment of linear logic

I Assume literals a, a⊥, b, b⊥, ... with a polarity:
positive for atoms, a, b, ... and negative a⊥, b⊥... for their duals.

I A formula is built from literals by means of two groups of
connectives: negative O (”par”) and positive 4 (”tensor”).

I De Morgan laws: (A 4 B)⊥ = B⊥OA⊥ and (AOB)⊥ = B⊥ 4 A⊥.

I A CyMLL proof is any derivation tree built by the following
inference rules where sequents Γ,∆ are lists of formulas occurrences
endowed with a total cyclic order (or cyclic permutation):

id` A,A⊥
` Γ,A A⊥∆

cut` Γ,∆

` Γ,A ` B,∆ 4` Γ,A 4 B,∆

` Γ,A,B O` Γ,AOB

I Negative (or asynchronous) connectives correspond to true
determinism in the way we apply bottom-up their corresponding
inference rules: the application of O-rule is completely deterministic.

I Positive (or synchronous) connectives correspond to true
non-determinism in the way we apply bottom-up their rules: there is
no deterministic way to split the context Γ,∆ in the 4 (or cut) rule.



Definition (proof structure)
A CyMLL proof-structure (PS) is an oriented graph π, in which edges
(resp., nodes) are labeled by formulas (resp., by connectives) of CyMLL
and built by juxtaposing the below (bipartite) graphs, called links, in
which incoming edges are called premises while outgoing edges are called
conclusions of the link:

ax

A A⊥

A

cut

A B A B

▽

A▽B

A⊥

4

A 4 B

In a PS π:

I each premise of a link must be conclusion of exactly one link of π;

I each conclusion of a link must be premise of at most one link of π.

A conclusion of π is any outgoing edge that is not premises of any link.

In the following we characterize those CyMLL PSs that are images of

CyMLL proofs: these are called correct proof structures or proof nets



Checking Correctness of PSs
Correctness of any PS can be checked interactively, by “switching” (i.e.
“testing”) the given PS. No need to invoke a “semantics“.

Definition (switchings)
Assume π is a CyMLL PS with conclusions Γ:

I a Danos-Regnier switching S for π, denoted S(π), is the
(non-oriented) graph built on nodes and edges of π with the
modification that for each O-node we take only one premise
(left/right O-switch)

A BA⊥B⊥

4 O
π

C D

A BA⊥B⊥

4 O

C D

SL(π)

A BA⊥B⊥

4 O

C D

SR(π)



Checking Correctness of PSs (continues)
“the right order of links” in a correct PS can be checked interactively.

Definition (seaweeds)
Assume π is a CyMLL PS with conclusions Γ:

I let S(π) be an acyclic and connected switching for π;

S(π) is the rootless planar tree whose nodes are labeled by
4-nodes, and whose leaves A1, ...,An (with Γ ⊆ A1, ...,An) are the
terminal, i.e., pending, edges of S(π);

S(π) is a ternary relation, called seaweed, with support A1, ...,An;
a triple (A,B,C ) belongs to S(π) iff:

I paths AB, BC and CA intersect in the node 4i ;
I while moving anti-clockwise around the 4i -node, the three

paths A4i ,B4i and C4i are in this cyclic order

AA⊥

O

C

SL(π)

DD⊥

B

4



Fact (seaweeds as cyclic orders)
Any seaweed S(π) can be viewed as a cyclic total order (a cyclic,
anti-reflexive, transitive and total ternary relation) on its support Γ:
if a triple (A,B,C ) ∈ S(π), then A,B,C are in cyclic order, A < B < C .

Naively, we may contract a seaweed (by associating the 4-nodes) until
we get a single n-ary 4-node with n incident pending edges (its support).

c

d
a

b

e

4

4 4

7→

c

d

a

b

e

4

4

7→

c

b

ea

d

4

If D is an edge in S(π), then Si (π) ↓D is the restriction of the seaweed
S(π) obtained from S(π) as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge D;

2. delete the graph not containing D

AA⊥

O

C

SL(π)

DD⊥

B

4

A⊥

C

D⊥

4
SL(π)↓A,D

A D



Definition (CyMLL proof net)
A PS π is correct, i.e. it is a CyMLL proof net (PN), iff:

1. π is a standard MLL PN, that is, any switching S(π) is a connected
and acyclic (ACC) graph (i.e., S(π) is a seaweed);

2. for every O-link A B
AOB , the triple (A,B,C ) must occur in this cyclic

order in any seaweed S(π) restricted to A,B, i.e.,
(A,B,C ) ∈ S(π) ↓(A,B), for every conclusion C of π that in the
support of the restricted seaweed.

4l

A B

C

O



Example (correct proof structures)
the following CyMLL proof structure π1 is correct

B1

ax

ax

cut

ax

▽ ▽
B⊥

2 B2

π1

B1▽B⊥
2 B3▽B⊥

3

B⊥
3B3B⊥

1

4
B2 4 B⊥

1

both switchings are ACC (cond. 1) and both restricted seaweeds

S1(π1) ↓(B1,B
⊥
2 ) and S2(π1) ↓(B1,B

⊥
2 ) trivially satisfy cond. 2 (of PNs-Def.)

B1

ax

ax

cut

▽
B2

ax

B⊥
3

B3▽B⊥
3

B3B⊥
1B⊥

2

S1(π1) ↓(B1,B⊥
2 )

B2 4 B⊥
1

4
B1

ax

ax

cut

▽
B2

ax

B3B⊥
1B⊥

2 B⊥
3

S2(π1) ↓(B1,B⊥
2 )

B2 4 B⊥
1

4
B3▽B⊥

3



Example (more proof structures with cuts)
also the following (non-planar) proof structure π2 is correct since both
conditions, 1 and 2 (trivially), of the CyMLL PNs Definition are satisfied

B1

cut

ax

▽ ▽

ax
ax

B2B⊥
2 B⊥

1

π2

B3B⊥
3

4
B1▽B⊥

2 B⊥
3 ▽B3B⊥

1 4 B2

By contrast, the following PS (obtained by replacing the cut-link by a
tensor 4-link) is not correct

B1

ax

O O

ax
ax

B2B⊥
2 B⊥

1

π2

B3B⊥
3

4
B1OB⊥

2 B⊥
3 OB3B⊥

1 4 B2

4
C

B1

O

ax
ax

B2B⊥
2 B⊥

1

ax

B3B⊥
3

B⊥
3 OB3

S1(π2) ↓(B1,B⊥
2 )

4
B⊥

1 4 B2

4
C

condition 2 is violated: ∃O-link
B1 B⊥

2

B1OB⊥
2

and a seaweed S1(π2) s.t. ¬∀C

conclusion, (B1,B
⊥
2 ,C ) ∈ S1(π2) ↓(B1,B

⊥
2 ).



Example (Melliès proof structure)
Unlike what happens in the commutative MLL case, the presence of cut
links is ”quite tricky” in the non-commutative case, since cut links are
not equivalent, from a topological point of view, to tensor links: these
make appear new conclusions that may disrupt the original order.

Unlike what happens with previous criteria, like Abrusci-Ruet (2000) or
Pogodalla-Retoré (2004), Melliès PS is not correct according to our
correctness criterion, since ∃A B

AOB link, a seaweed S(π) and a conclusion

C s.t. (A,C ,B) ∈ S(π) ↓(A,B), contradicting Cond. 2 of PN-Def.

4 4

cut

ax ax

▽

ax

ax

ax
ax

▽▽

C

A B
▽ 4

4

▽

4 4

cut

ax ax

▽

ax

ax

ax
ax

▽

▽

▽

C

B
▽ 4

4

A

¬∀C, (A,B,C) ∈ S(π) ↓A.B

∃C, (A,C,B, ) ∈ S(π) ↓A.B

Anyway, Melliès’s proof structure becomes correct after cut reduction.



Definition (cut reduction)
Let L be a cut link in a proof net π whose premises A and A⊥ are, resp.,
conclusions of links L′, L′′. Then we define the result π′ (called
reductum) of reducing this cut in π (called redex), as follows:

I Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by
removing in π both formulas A,A⊥ (as well as L) and giving to L′′

(resp., to L′) the other conclusion of L′ (resp., L′′) as new concl.

cut

ax

AA L′
A

L′′L′′

L A⊥
 

I (4/O)-cut: if L′ is a 4-link with premises B and C and L′′ is a
O-link with premises C⊥ and B⊥, then π′ is obtained by removing
in π the formulas A and A⊥ as well the cut link L with L′ and L′′

and by adding two new cut links with premises B, B⊥, resp., C ,C⊥

cut

B C

cut

C⊥ B⊥

O cut

L

B

π  π′

C B⊥C⊥

4

A⊥A

L′′L′



Theorem (PNs are stable under cut reduction)
If π is a CyMLL PN that reduces to π′ in one step of cut reduction,
π  π′, then π′ is a CyMLL PN.

Facts. Cut reduction is trivially convergent (i.e., terminating and
confluent) and preserves the order conclusions of a PN.

Example : observe that both π1 and π2 (seen before) reduce to the
same normal PS; each reduction step, trivially preserves the property of
being a correct PS.

B1

ax

ax

cut

ax

▽ ▽
B⊥

2 B2

π1

B1▽B⊥
2 B3▽B⊥

3

B⊥
3B3B⊥

1

4
B2 4 B⊥

1

 

B1

ax

ax

cut

ax

▽
B⊥

2 B2

B1▽B⊥
2

B⊥
3B3B⊥

1

cut

π′
1

 
▽

ax

B B⊥

B▽B⊥

π′′
1

B1

cut

ax

▽ ▽

ax
ax

B2B⊥
2 B⊥

1

π2

B3B⊥
3

4
B1▽B⊥

2 B⊥
3 ▽B3B⊥

1 4 B2

 

B1

cut

ax

▽

ax
ax

B2B⊥
2 B⊥

1

B1▽B⊥
2

B3B⊥
3

π′
2

cut

 
▽

ax

B B⊥

B▽B⊥

π′′
1



Proof of “stability of PNs under cut reduction”.
Condition 1. (MLL-PNs) of Def. of CyMLL-PNs follows by the:
[Euler-Poicaré invariance]: in a graph G, (]CC − ]Cy) = (]V − ]E )
Condition 2. Assume π reduces to π′ after the reduction of a cut
between (X 4 Y ) and (Y⊥OX⊥) and assume, by absurdum, there exist a
O-link with conclusion AOB s.t. the triple (A,C ,B) occurs in this wrong
cyclic order in a seaweed S(π′) restricted to A,B for a conclusion C , i.e.:
(A,C ,B) ∈ S(π′) ↓(A,B).
Then, two of the three paths A4, B4 and C4 must go through (i.e.,

they must contain) the two cut-links, cut1
X X⊥

and cut2
Y Y⊥

,
obtained by reduction, otherwise π would already be violating Cond. 2

A B

▽

X Y Y ⊥ X⊥

C

cut2

cut1

π′

4 A B

▽ cut

▽

X Y Y ⊥ X⊥

C

π

4 4

This means ∃ a seaweed S(π), a link Y⊥OX⊥ and a triple Y⊥,C ,X⊥

s.t. (Y⊥,C ,X⊥) ∈ S(π) ↓(Y⊥,X⊥), violating Cond. 2 and so the
correctness of π. Remark: since S(π) is acyclic, deleting the subgraph
“below” Y⊥OX⊥ does not make disappear C .



Cyclic order conclusions of PNs
Lemma (cyclic order conclusions)
Let π be a CyMLL PN with conclusions Γ, then all seaweeds Si (π) ↓Γ

(restricted to Γ) induce the same cyclic order σ on Γ, denoted σ(Γ) and
called (cyclic) order of the conclusions of π.

Proof By induction on the size 〈]V , ]E 〉 of π.

1. π is reduced to an axiom link, then obvious.

2. π contains at least a conclusion AOB, then Γ = Γ′,AOB;

by hypothesis of induction on the sub-proof net π′, each
Si (π

′) ↓(Γ′,A,B) induces the same cyclic order σ on (Γ′,A,B);

in particular, by cond. 2 of Def. of PNS, each S(π′) has this shape:

A B

Γ

4

so, by restriction Si (π
′) ↓(Γ′,A) (resp., Si (π

′) ↓(Γ′,B)) and by
substitution [A/AOB] (resp., [B/AOB]) we conclude that every
seaweed Si (π) ↓(Γ′,AOB) induces the same cyclic order σ(Γ′,AOB).



Proof of “Cyclic order conclusions Lemma” (continues).
Otherwise π must contain a terminal splitting 4-link A B

A4B (or cut-link).
Assume by absurdum that π is such a minimal (w.r.t. the size) PN with
at least two seaweeds, Si (π) and Sj(π), s.t.

(X ,Y ,Z ) ∈ Si (π) but (X ,Y ,Z ) 6∈ Sj(π).

By Splitting Lemma and by Def. of Seaweed, it cannot be the case that
X ∈ πB , Y ∈ πA and Z = A 4 b; thus, assume e.g. both X and Y
belong to πA and Z belongs to πB and for some i , j , we have:

(X ,Y ,Z ) ∈ Si (π) ↓(Γ1,A4B,Γ2) and (X ,Y ,Z ) 6∈ Sj(π) ↓(Γ1,A4B,Γ2)

YX
A B

Z

Si(πA) ↓Γ1,A Si(πB) ↓B,Γ2

A 4 B

4Γ ′
1 Γ ′

2

(X, Y, Z) ∈ Si(π) ↓Γ1,A4B,Γ2

YX
A B

Z

A 4 B

Sj(πB) ↓B,Γ2

4

(X, Y, Z) 6∈ Sj(π) ↓Γ1,A4B,Γ2)

Sj(πA) ↓Γ1,A

Γ ′
2Γ ′

1

so, by restriction, (X ,Y ,A) ∈ Si (πA) ↓Γ1,A and (X ,Y ,A) 6∈ Sj(πA) ↓Γ1,A,
that is absurdum, since by hypothesis of induction πA is correct.



sequentialization of CyMLL PNs
Theorem (sequentialization of CyMLL PNs)
Any CyMLL PN with conclusions σ(Γ) sequentializes into a CyMLL
sequent proof with same cyclic order conclusions σ(Γ) and vice-versa.

Proof.
By induction on the size 〈]Vertexes, ]Edges〉 of π.

1. if π is an axiom link, then trivial case;

2. else, if π contains a terminal O-link, then we reason by induction via
the Order Conclusions Lemma (seen before);

3. else, if π contains a terminal 4-link or a cut-link (π is in splitting
condition), then we reason by induction via the Splitting Lemma.

Lemma (splitting)

Let π be a CyMLL PN with at least a 4-link (resp., a cut-link) and with
conclusions Γ not containing any terminal O-link (so, we say π is in
splitting condition); then, there must exist a 4-link A B

A4B (resp., a cut-link
A A⊥

) that splits π in two CyMLL PNs, πA and πB (resp., πA and πA⊥).



Proof of Splitting Lemma
Assume π is a CyMLL PN in splitting condition, then by the Splitting
Lemma for standard commutative MLL PNs (Girard, 1987) π must split
at A B

A4B in two components πA and πB ; we know that both components
satisfy Cond. 1 (they are MLL PNs).

Assume by absurdum πA is not a CyMLL PN (violating Cond. 2 of
PN-Def.); this means there exists a X Y

XOY and a restricted seaweed

S(πA) ↓(X ,Y ) with the triple X ,A,Y in the wrong order, i.e.,
(X ,A,Y ) ∈ S(πA) ↓(X ,Y )

▽

YX

C

A BπA

πB

π

Case 1

4

4

This means there exists a restricted seaweed S(π) ↓(X ,Y ) containing X ,

Y and C = A 4 B in the wrong cyclic order, i.e.,

(X ,C ,Y ) ∈ S(π) ↓(X ,Y ), contradicting the correctness of π.



CyMLL and Lambek Calculus
CyMLL can be considered as a classical extension of Lambek Calculus
(LC, 1958) one of the ancestors of LL.

Definition (Lambek formulas and sequents )
Assume A and S are, respectively, a formula and a sequent of CyMLL.

1. A is a (pure) Lambek formula (LF) if it is a CyMLL formula
recursively built according to the following grammar

A := positive atoms | A4A | A⊥OA (≡ A−◦A) | AOA⊥ (≡ A◦−A).

2. S is a Lambek sequent of CyMLL iff

S = (Γ)⊥,A

where A is a non void LF and (Γ)⊥ is a possibly empty finite
sequence of negations of LFs (i.e., Γ is a possibly empty sequence
of LFs and (Γ)⊥ is given by the negation of each formula in Γ).

3. A (pure) Lambek proof is any derivation built by means of the
CyMLL inference rules in which premise(s) and the conclusions are
Lambek sequents.



Lambek CyMLL proof nets

I The first (sound) notion of Lambek cut-free proof net, without
sequentialization, was given by Roorda (1992).

I Then, several proposals follow, by Retoré et alii (1996-2004), that
are stable under cut-reduction but only cut-free sequentializable
(only cut-free PNs sequentialize);

I Finally a topological correctness criterion, proposed by Melliès
(2004), that is both stable under cut-reduction and full
sequentializable, ... but it is quite complicate!

Definition (Lambek CyMLL proof net)
A Lambek PN is a CyMLL PN whose edges are labeled by pure LFs or
negation of pure LFs and whose conclusions is a Lambek sequent.

Corollary (stability of cut-reduction)
Cut reduction is both preserving Lambek PNs and convergent.

Theorem (full sequentialization of Lambek CyMLL PNs)
Any Lambek CyMLL proof net of σ(Γ⊥,A) sequentializes into a Lambek
CyMLL proof of the sequent ` σ(Γ⊥,A) and vice-versa.



Parsing with Lambek Calculus

I LC represents the first attempt of parsing as deduction,
i.e., parsing of natural language by means of a logical system.

I In LC parsing is interpreted as type checking in the form of theorem
proving of Gentzen sequents.

I Types (i.e. propositional formulas) are associated to words in the
lexicon; when a string w1...wn is tested for grammaticality, types
t1, ..., tn are associated with these words, then parsing reduces to
proving the derivability of a two-sided sequent t1, ..., tn ` s.

I Remind that proving a two sided Lambek derivation t1, ..., tn ` s is
equivalent to prove the one-sided sequent ` t⊥n , ...t

⊥
1 , s where t⊥i is

the dual (i.e., linear negation) of type ti .

In one-sided sequent calculus, phrases or sentences should be read
“like in a mirror” (following opposite direction to the natural one).

I Forcing some constraints on the Exchange rule (e.g., by allowing
only cyclic permutations over sequents of formulas) gives the
required computational control needed to view theorem proving (or
PN construction) as parsing in Lambek Categorial Grammar style.



main syntactical ambiguity problems with LC parsing

LC parsing presents some syntactical ambiguity problems; there may be:

(non canonical proofs) more than one (cut-free) proof for the same
sequent conclusion;

(lexical polymorphism) more than one type associated with a single word.

I PNs are commonly considered an elegant solution to the first
problem of representing canonical proofs; under this respect:

– we (previously) gave an embedding of pure LC into CyMLL PNs;

– we now show how to parse some linguistic examples by LC PNs.

I Unfortunately, there is not an equally brilliant solution to the second
problem; by the way, we will sketch a possible solution (FG2015).



linguistic parsing examples, via PNs
Assume the following lexicon, where linear implication −◦ (resp., ◦−) is
traditionally used for expressing types in two-sided sequent parsing:

1. Sollozzo, Sam, Vito = np;

2.
trusts = np−◦(s◦−np) = np⊥O(sOnp⊥)

≡ (np−◦s)◦−np = (np⊥Os)Onp⊥;

3. him = (s◦−np)−◦s = (sOnp⊥)⊥Os = (np 4 s⊥)Os;

Cases of lexical ambiguity follow to words with several possible formulas
A and B assigned it. For example, a verb like ”to believe” can express a
relation between two persons (interpreted as np) like in S1, or between a
person and a statement (interpreted as s) like in S2 or S3:

Sollozzo believes Vito. (1)

Sollozzo believes Vito trusts Sam. (2)

Sollozzo believes Vito trusts him. (3)

We can express this verb ambiguity by two lexical assignments as follows:

3. believes = (np−◦s)◦−np = (np⊥Os)Onp⊥;

4. believes = (np−◦s)◦−s = (np⊥Os)Os⊥.



parsing of S1: “Sollozzo believes Vito”

I via derivation in the sequent calculus:

id1
np⊥, np

id2
s⊥, s

id3
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
np⊥, np 4 (s⊥ 4 np), np⊥, s

I via proof net construction: we start with the formula tree of each
conclusion (no matter the order!) including s (type for sentence)

s⊥ np

4

np

np⊥

believesVito

np⊥

Sollozzo

s

4



parsing of S1: “Sollozzo believes Vito” (continues)

I via derivation in the sequent calculus:

id1
np⊥, np

id2
s⊥, s

id3
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
np⊥, np 4 (s⊥ 4 np), np⊥, s

I via proof net construction:
– we start with the formula tree of each conclusions
– then we “incrementally put” the axiom links on the top.

s⊥ np

4

np

np⊥

believesVito

(1)

np⊥

Sollozzo

(3)

s

(2)

4



parsing of S1: “Sollozzo believes Vito” (continues)

I via derivation in the sequent calculus:

id1
np⊥, np

id2
s⊥, s

id3
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
np⊥, np 4 (s⊥ 4 np), np⊥, s

I via proof net construction:
– we start with the formula tree of each conclusions
– then we “incrementally put” the axiom links on the top.

s⊥ np

4

np

np⊥

believesVito

(1)

np⊥

Sollozzo

(3)

s

(2)

4

s⊥ np

4

np

believes

np⊥ s

4

np⊥

Vito Sollozzo

Remarks
there are two ways of linking dual pairs of literals (np, np⊥) both of them
leading to correct PNs; but only one of them corresponds to S1.



parsing of S2: “Sollozzo believes Vito trusts Sam”

id1
np⊥, np

id2
s, s⊥

id3
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
np⊥, np 4 (s⊥ 4 np), np⊥, s

id4
s, s⊥

id5
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
np⊥, np 4 (s⊥ 4 np), np⊥, s 4 (s⊥ 4 np), np⊥, s

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

(5)

(4)

4

4np

nps⊥

(2)

(1)

VitotrustsSam

np⊥ np⊥

(3)

4

Sollozzo
believes

Vito

trusts

Sam

s



parsing of S3: “Sollozzo believes Vito trusts him”

id1
s⊥, s

id2
np⊥, np

id3
s⊥, s

id4
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
s, np⊥, np 4 (s⊥ 4 np), np⊥

O
sOnp⊥, np 4 (s⊥ 4 np), np⊥ 4

s⊥ 4 (sOnp⊥), np 4 (s⊥ 4 np), np⊥, s

id5
s⊥, s

id6
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
s⊥ 4 (sOnp⊥), np 4 (s⊥ 4 np), np⊥, s 4 (s⊥ 4 np), np⊥, s

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

(6)

(5)

Vitotrusts

4

nps⊥

(4)

np

4

him

O

np⊥

(2)

s

s⊥

(3)

(1)

4
np⊥



a wrong solution for “Sollozzo believes Vito trusts him”
a wrong solution with an un-correct axiom linkings for literal pairs s, s⊥

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

a multiplicative OL-switching is enough! believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

cycle

disconnection

OR-switching: believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

erased



an other wrong solution: MLL switchings do not suffice!
a wrong solution with an un-correct axiom linkings for pairs np, np⊥

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

standard multiplicative switchings do not suffice;
we need a seaweed testing violation of cond. 2 on CyMLL PNs:

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

ERASED



alternative parsing for “Sollozzo believes Vito trusts him”

PNs are modular! in a correct PN we can replace/interchange “modules”
with same “behavior” and get still a correct PN.

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

(6)

(5)

Vitotrusts

4

nps⊥

(4)

np

4

him

O

np⊥

(2)

s

s⊥

(3)

(1)

4
np⊥



alternative parsing for “Sollozzo believes Vito trusts him”

PNs are modular! in a correct PN we can replace/interchange “modules”
with same “behavior” and get still a correct PN.

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

np

4

him

O

np⊥s

s⊥

np⊥

4

np s⊥

Here is an alternative parsing solution for sentence 3 with same matching
for the axiom links but different (even though equivalent) type for the
lexical item “trusts”= np−◦(s◦−np) = np⊥O(sOnp⊥) (take the dual!)



Further Works: lexical ambiguity

In order to capture lexical ambiguity we may extend Lambek PNs to the
Multiplicative and Additive fragment of LL (MALL);
Ref.: Girard 1996, Hughes-van Glabbeek 2003, Maieli 2007.

Additive connectives, & and ⊕, allow superpositions of types;
in particular we can collapse the previous assignments 3 and 4

3. believes = (np−◦s)◦−np = (np⊥Os)Onp⊥;

4. believes = (np−◦s)◦−s = (np⊥Os)Os⊥.

into a single additive assignment:

5. believes = ((np−◦s)◦−np)&((np−◦s)◦−s) = ((np⊥Os)Onp⊥)&((np⊥Os)Os⊥).

and get an unique PN parsing the superposition of both sentences:

(S1) Sollozzo believes Vito & Sollozzo believes Vito trusts him (S3)



Further Works: lexical ambiguity

4

4

O

np

trustshim Vito

s

s⊥

4

O

np

4

C

believes

s⊥ np

np

np⊥ np⊥

C

Sollozzo s

s s

C&p

np⊥

(Vito) & (him trusts Vito)

4

4

⊕2⊕1

(1, p)

(2, p)

(3, p)

4

npO

s

s⊥
np

(5, p̄)

(6, p̄)

(4, p̄)

(1, p̄)
(3, p̄)

np⊥

np⊥

(2, p̄) s⊥



Perspective: recognizing power of Lambek Calculus

1. Mati Pentus proved (LICS, 1993) the Chomsky conjecture, that is,
the languages recognized by basic Lambek Categorial Grammars
(CyMLL) are precisely the Context-free ones.

2. Open Question: in contrast, the recognizing power of CyMALL
has not been precisely characterized.

However, there is a lower bound due to Makoto Kanazawa who
proved (JLLI, 1992) that the class of languages recognizable by the
Lambek Calculus with added intersective conjunction (additive &)
properly includes the class of finite intersections of CFLs.

Example

assume two CFLs
(a∗bncn) and (anbnc∗)

then, their intersection is not CFL

(a∗bncn) ∩ (anbnc∗) = (anbncn)



Perspective: recognizing power of LC (continues)
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