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◮ Since its inception, in 1987, linear logic (LL, Girard) has
changed the proof theoretic way of dealing with cut
elimination.

◮ This task was traditionally carried out by means of sequent
calculi with the consequence that the most part of these
works were engrossed by tedious commutations of rules.
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◮ Formulas A,B , ... are built from literals by the binary
connectives ⊗ (tensor), O (par), & (with) and ⊕ (plus).

◮ Negation (.)⊥ extends to any formula by de Morgan laws:

(A ⊗ B)⊥ = (B⊥
OA⊥) (AOB)⊥ = (B⊥ ⊗ A⊥)

(A&B)⊥ = (B⊥ ⊕ A⊥) (A ⊕ B)⊥ = (B⊥&A⊥)

◮ Sequents Γ,∆ are sets of formula occurrences A1, ...,An≥1,
proved using the following rules (we omit ⊢):

◮ identity: ax
A, A⊥

Γ, A ∆, A⊥

cut
Γ, ∆

◮ multiplicatives:
Γ, A ∆, B

⊗
Γ, ∆, A ⊗ B

Γ, A, B
O

Γ, AOB

◮ additives:
Γ, A Γ, B

&
Γ, A&B

Γ, A
⊕1

Γ, A ⊕ B

Γ, B
⊕2

Γ, A ⊕ B
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This situation has changed with the new geometrical syntax for proofs:

proof nets
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◮ PNs quotient classes of equivalent proofs, modulo
permutations of derivation rules:

A, A⊥

⊕2
A, B⊥ ⊕ A⊥

B, B⊥

⊕1
B, B⊥ ⊕ A⊥

&
A&B , B⊥ ⊕ A⊥

C , C⊥

O
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O
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B, B⊥

⊕1
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O
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⊗
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PNs of the Multiplicative fragment of LL are the perfect setting:

1. a proof net is a canonical representative of a proof of the
sequent calculus,

2. the cut elimination procedure is purely local: the reduction of
a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.

In 1996, Girard proposed a new syntax for MALL PNs:

◮ without additive boxes (sequentiality)

◮ allowing super-positions (slices)
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Proof Nets: state of the art (continues)

... but Girard’s proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs
which de-sequentialize into two possible proof nets with no
way to discriminate them.
This problem has been solved by D. Hughes and R. van
Glabbeek (2003)

2. Girard’s cut elimination is:
– not local;
– not confluent;
– lazy one: only cuts not involving additive contractions
(ready cuts) are reducible.
As a consequence, not all proof-nets are normalizable.

Our goal here is:
– to provide an answer to the locality of the cut elimination.
– to allow a new kind of sharing nodes which neither exists in JYG
nor in HvG
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MALL Proof Structures: links

◮ A (pre-)proof structure π is an oriented graph such that
each edge is labelled by a MALL formula and built on the set
of following nodes (A = A1 = ... = An in the C node).

⊗ O & C

A ⊗ B AOB A&B A

A B AA⊥

cut

A

ax

A

A BB A B

A ⊕ BA ⊕ B

⊕1 ⊕2

A⊥

...A1 An

◮ fixed a node, an entering edge is called premise while its
(possibly) emergent edges are called conclusions.

◮ pending edges are called conclusions of π

◮ a link is the graph made by a node together with its
premise(s) and its (possibly) conclusion(s).
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◮ a set of Boolean variables denoted by p, q, ...,

◮ a monomial weight w , v , ... is a product “.” (conjunction) of
variables or negation of variables.

◮ ǫp, for a variable p or its negation p;

◮ 1, for the empty product;

◮ 0, for a product where both p and p̄ appear;

◮ two weights, v and w , are disjoint when v .w = 0.

◮ the special notation ǫp@v when we want to focus on the
prefix weight ǫp within a weight ǫp.v (v is the suffix).

◮ a weight w depends on a variable p when ǫp appears in w ;
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MALL Proof Structures: basic definition

A MALL proof structure (PS), is a pair 〈π,E 〉 where:

◮ E = {ǫp@w = 0 | ǫp is a prefix ∧ w is a weight ǫp-free};

◮ π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each
& node of π (&p notation);
eigen weights are not supposed to be different;

2. to each node we associate a nonzero weight w of the Boolean
algebra generated over the set of variables that are:

◮ eigen weights occurring in π or

◮ prefix weights of the equations in E

3. all weights are modulo E ;
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C&p

...
wn
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L1 L2 L1 Ln
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ǫp does not occur in w
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5. two nodes have the same weight, if they have a common edge,
except when the edge is the premise of a & or C node:

w1

C&p

...
wn

w w =
∑n

i=1 wi

∀i∀j , wiwj = 0 (1 ≤ i , j ≤ n)

L1 L2 L1 Ln

pw p̄w

ǫp does not occur in w

6. every conclusion node has weight 1;
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MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.
◮ it belongs to a node of π, or
◮ it occurs in an equation of E

then

w ≤ (
n∑

i=1

wi +
m∑

j=1

vj) mod E (1)

where :

◮ wi , 1 ≤ i ≤ n, is the weight of a node &p ;

◮ vj , 1 ≤ j ≤ m, is the suffix of an equation ǫp@vj = 0 of E ;

◮ (
∑n

i=1 wi +
∑m

j=1 vj) is a monomial weight mod E ;

◮ all weights w1, ..., wn, v1, ...vm are pairwise disjoint.



MALL Proof Structures: example 1

The following pair 〈π, {(q̄@p̄ = 0)}〉 is a proof structure:

&p

&q

C

C C CcutC

C

p

pq

q̄

q

1

p̄

pq̄

p̄q

q̄

q

〈π, {q̄@p̄ = 0}〉



MALL Proof Structures: example 2

The following pair 〈π, ∅〉 is not a proof structure

C

C

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

p

cut

q

p

〈π, ∅〉

it violates the technical condition of PS definition: there exists a
(axiom) node whose weight is p̄ but p 6≤ q, where q is the weight
of the unique &p node.
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The Request of a Correctness Criterion

◮ we are interested on those proof structures that correspond to
proofs of the sequent calculus;

◮ those proof structures will be called proof nets

◮ there exists a Correction Crietrion that detect these PNs

◮ cut elimination can be defined directly on PSs

◮ then we have to show that the Correction Crietrion is
preserved by the cut elimination



Cut Elimination



Cut Elimination: ax-step

If L′ (resp., L′′) is an axiom node of π, then 〈π,E 〉 〈π′,E 〉,
where π′ is obtained by removing in π both formulas A and A⊥ (as
well as L) and giving a new conclusion to L′′ (resp., L′), the other
conclusion of L′ (resp., L′′)

cut

ax

wA L′

L′′

A

L′′

A

〈π, E 〉 〈π′, E 〉



Cut Elimination: (⊗/O)-step

If L′ is a ⊗ node with premises B and C and L′′ is a O node with
premises B⊥ and C⊥, then 〈π,E 〉 〈π′,E 〉, where π′ is obtained
by removing in π the formulas A and A⊥ as well as the cut node L

with L′ and L′′ and adding two new cut nodes with premises,
respectively, B ,B⊥ and C ,C⊥

cut

cut

B C BB⊥

⊗ O

CC⊥

cut

C⊥B⊥

w

w

w〈π, E 〉 〈π′, E 〉



Cut Elimination: (⊕i/&)-step

If L′ is a &p node with weight w and B and C as premises whose
weights are, respectively, pw and p̄w , and L′′ is a ⊕1 node with
premise B⊥ in π, then 〈π,E 〉 〈π′,E ′〉 as below

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

〈π, E 〉 〈π′, E ′〉

w = pw mod E ′

◮ E ′ = E ∪ {p̄@w = 0};

◮ π′ is what remains still nonzero, mod E ′, w.r.t. π.



Cut Elimination: (⊗/C )-step

If L′ is a C node and L′′ is a ⊗ node

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

⊗

ww w1 wi wn

w

〈π, E 〉

A⊥



Cut Elimination: (⊗/C )-step

If L′ is a C node and L′′ is a ⊗ node

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

⊗

ww w1 wi wn

w

〈π, E 〉

A⊥

then 〈π,E 〉 〈π′,E 〉 as follows:

cut C ⊗ cutB

w w1

cut

cut A⊥

A⊥

A⊥

wi

wn

⊗

⊗CcutC

w

...

...

...

... ...

...

〈π′, E 〉

w1

wi

wi

wn

w1

wn



Cut Elimination: (⊗/C )-step

If L′ is a C node and L′′ is a ⊗ node

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

⊗

ww w1 wi wn

w

〈π, E 〉

A⊥

then 〈π,E 〉 〈π′,E 〉 as follows:

cut C ⊗ cutB

w w1

cut

cut A⊥

A⊥

A⊥

wi

wn

⊗

⊗CcutC

w

...

...

...

... ...

...

〈π′, E 〉

w1

wi

wi

wn

w1

wn

Case (O/C )-step is analogous (replace ⊗s with Os).



Cut Elimination: (⊕i/C )-step
If L′ is a C node and L′′ is a ⊕i node

A⊥A⊥

C

cut

A⊥ ... ...

A

w

B

⊕i
w

〈π, E 〉

A⊥

w1 wi wn



Cut Elimination: (⊕i/C )-step
If L′ is a C node and L′′ is a ⊕i node

A⊥A⊥

C

cut

A⊥ ... ...

A

w

B

⊕i
w

〈π, E 〉

A⊥

w1 wi wn

then 〈π,E 〉 〈π′,E 〉 as follows:

cut

ax

cut

⊕i ⊕i

ax

C

A⊥ A⊥

cut

w

B B

B⊥B⊥

〈π′, E ′〉

A A

w1 wn...

...

...

...

B



Cut Elimination: (&/C )-step

If L′ is a &p node and L′′ is a C node

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn

w

〈π, E 〉

A⊥

&p

wp wp̄



Cut Elimination: (&/C )-step

If L′ is a &p node and L′′ is a C node

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn

w

〈π, E 〉

A⊥

&p

wp wp̄

then 〈π,E 〉 〈π′,E 〉 as follows

cut cutB

w1

cut

cut A⊥

A⊥

A⊥

wi

wn

cutC

...

...

...

... ...

...

〈π′, E 〉

C

C

&p

wp

wp̄

pw1

pwi

p̄w1
p̄wi

p̄wn

pwn

&p

&p



Cut Elimination: (C/C )-step

If both L′ and L′′ are C nodes

C

A A A A⊥A⊥

C

cut

w

... ... A⊥ ... ...

w1 wi wn v1 vj vm



Cut Elimination: (C/C )-step

If both L′ and L′′ are C nodes

C

A A A A⊥A⊥

C

cut

w

... ... A⊥ ... ...

w1 wi wn v1 vj vm

then 〈π,E 〉 〈π′,E 〉 as follows:

cut C

cut

cut

cut

C

CCcutA

A

A cut C

...

...

...

...
...

C

...

...

A⊥

...

A⊥

...

A⊥

...

...

w1

wi

wn

w1vj

v1

vj

vm

wivj

wnvj

w1v1

wiv1

wnvm

w1vm

...
wnv1

wivm
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Stability under the Cut Elimination

Theorem (Stability of PS)

If a PS 〈π,E 〉 reduces in one step to 〈π′,E ′〉, then 〈π′,E ′〉 is a PS

too.

Theorem (Stability of Correctness Criterion)

If a PS 〈π,E 〉 is correct and it reduces in one step to 〈π′,E ′〉, then

〈π′,E ′〉 is still a correct PS.
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Strong Cut Elimination

Theorem
We can always strongly reduce a proof net 〈π,E 〉 into a proof net

〈π′,E ′〉 that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

♯1, ..., ♯n

◮ n is the number of variables (eigen or prefix weights) of 〈π, E 〉;

◮ ♯i , with 1 ≤ i ≤ n, is the sum of the logical complexities of all cuts
whose depth is i .

◮ the depth δ(L) of a node L is max(|w1|, |w2|), if

◮ w1 and w2 are equivalent (modulo E ) weights of L and
◮ |wj |, for j = 1, 2, is the length of wj .
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Confluence

Theorem (local confluence)

Let 〈π,E 〉 be a proof net with two cut nodes, L1 and L2, and let

◮ α be the cut reduction 〈π,E 〉 L1
〈π1,E1〉 and

◮ β be the cut reduction 〈π,E 〉 L2
〈π2,E2〉,

then there exists a proof net 〈π∗,E ∗〉 which 〈πi ,Ei 〉, for 1 ≤ i ≤ 2,
reduces to in at most one step.



conclusions


