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Linear Logic and Proof Theory

» Since its inception, in 1987, linear logic (LL, Girard) has
changed the proof theoretic way of dealing with cut
elimination.

» This task was traditionally carried out by means of sequent
calculi with the consequence that the most part of these
works were engrossed by tedious commutations of rules.
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Sequent Calculus: MALL

» Formulas A, B, ... are built from literals by the binary
connectives ® (tensor), @ (par), & (with) and & (plus).
> Negation (.)* extends to any formula by de Morgan laws:
(Ao B): = (BLgAl) (AB)*t = (Bt @ At)
(A&B)*+ = (Bt ¢ AY) (A® B)* = (B+&AY)
> Sequents I, A are sets of formula occurrences Ay, ..., Ap>1,
proved using the following rules (we omit I-):

ax rA A AL

» identity: A Al
y A A A cut
» multiplicatives: u(@ A B o
’ ' rAA®B [ AsB
rA r,B
» additives: LA r,B & ) @1 ) @,

r,A&B rA®B rA®B
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A AL A AL 2 A AL -
A&A, A+ A AL @ Bt
ARA AL @ BL cut
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Sequent Calculus: cut elimination is “problematic”
AAL AA A AL
A&A, A+ A At @ B+
ARA, AL @ BL

b1

cut

reduces to:

A AL . A AL o
- W1 I 1
A, A+ A A+ @ Bt A, AL A AL @ BL
AAL@BL cut AAL@BL cut
) ) &

A&A, A+ ¢ B+

or to:
A AL A AL %
A&A, A" A, AL
A&A, AL
A&A, A+ @ B+
This situation has changed with the new geometrical syntax for proofs:
proof nets

cut

1
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Proof Nets: the idea

» PNs are parallel presentations of sequential proofs

» PNs quotient classes of equivalent proofs, modulo
permutations of derivation rules:

A, AL B, B+
D2 D1 n
A Bt @ A+ B,Bt @ At C,C
A&B, B+ & A+ CeCh
A&B, (Bt & AY)® (CeCt)

A AL c, ct B,B* c, ct
— P ) @1
A Bt o At CeCt B,B+ @ AL CeCt
®
A (B @ AY) @ (CsCH) B,(B+ @ AY) ® (CeCH)

A&B, (Bt @ At) @ (CeCH)
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Proof Nets: state of the art

PNs of the Multiplicative fragment of LL are the perfect setting:

1. a proof net is a canonical representative of a proof of the
sequent calculus,

2. the cut elimination procedure is purely local: the reduction of
a cut is given by only modifying the nodes connected to it.
A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:
» without additive boxes (sequentiality)

» allowing super-positions (slices)
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Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs
which de-sequentialize into two possible proof nets with no
way to discriminate them.

This problem has been solved by D. Hughes and R. van
Glabbeek (2003)

2. Girard's cut elimination is:
— not local;
— not confluent;
— lazy one: only cuts not involving additive contractions
(ready cuts) are reducible.
As a consequence, not all proof-nets are normalizable.

Our goal here is:

— to provide an answer to the locality of the cut elimination.

— to allow a new kind of sharing nodes which neither exists in JYG
nor in HvG
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MALL Proof Structures: links

» A (pre-)proof structure 7 is an oriented graph such that
each edge is labelled by a MALL formula and built on the set

of following nodes (A = A1 =..= A,7 in the C node)
Al A,
oy be \f ¥ ¥ o4
A B  A®B A&B A®B A®B A

» fixed a node, an entering edge is called premise while its
(possibly) emergent edges are called conclusions.

» pending edges are called conclusions of 7

» a link is the graph made by a node together with its
premise(s) and its (possibly) conclusion(s).
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v

a set of Boolean variables denoted by p,q, ...,

won

a monomial weight w, v, ... is a product “.
variables or negation of variables.

v

(conjunction) of

€p, for a variable p or its negation p;
1, for the empty product;
0, for a product where both p and p appear;

two weights, v and w, are disjoint when v.w = 0.

vV v.v. v Y

the special notation ¢,0v when we want to focus on the
prefix weight ¢, within a weight e,.v (v is the suffix).

v

a weight w depends on a variable p when ¢, appears in w;
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MALL Proof Structures: basic definition

A MALL proof structure (PS), is a pair (7, E) where:

> E={e,0w =0|¢pis a prefix A wis a weight e,-free};
» 7 is a pre-proof structure s.t.:
1. we associate a Boolean variable p, called eigen weight, to each
& node of 1 (&, notation);
2. to each node we associate a nonzero weight w of the Boolean
algebra generated over the set of variables that are:
> eigen weights occurring in 7 or

> prefix weights of the equations in E

3. all weights are modulo E;
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MALL Proof Structures: weights assignment

5. two nodes have the same weight, if they have a common edge,
except when the edge is the premise of a & or C node:

pw pw

L ©
&) w

€p does not occur in w Vivj,wiw; =0 (1 <i,j<n)

6. every conclusion node has weight 1;
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MALL Proof Structures: technical condition

7. if wis a weight depending on p and s.t.

» it belongs to a node of 7, or
» it occurs in an equation of E

then

w < (zn:Wi-i-iVj) mod E
i=1 j=1

where :
» w;, 1 <7< n, is the weight of a node &,;
» v;, 1 <j < m, is the suffix of an equation €,@v; = 0 of E;
> (3oimywi + 351, vj) is a monomial weight  mod E;

> all weights wy, ..., wp, v, ...v, are pairwise disjoint.

(1)



MALL Proof Structures: example 1

The following pair (7, {(g@p = 0)}) is a proof structure:

(r.{q@p = 0})




MALL Proof Structures: example 2

The following pair (7, ) is not a proof structure

(m, 0)

it violates the technical condition of PS definition: there exists a
(axiom) node whose weight is p but p £ g, where g is the weight
of the unique &, node.
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The Request of a Correctness Criterion

vV v v Vv

we are interested on those proof structures that correspond to
proofs of the sequent calculus;

those proof structures will be called proof nets
there exists a Correction Crietrion that detect these PNs
cut elimination can be defined directly on PSs

then we have to show that the Correction Crietrion is
preserved by the cut elimination
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Cut Elimination: ax-step

If L" (resp., L") is an axiom node of =, then (m, E) ~~ (7, E),
where 7/ is obtained by removing in 7 both formulas A and A (as
well as L) and giving a new conclusion to L” (resp., L), the other

conclusion of L’ (resp., L")

LJW ca-ia ®



Cut Elimination: (®/%)-step

If L is a ® node with premises B and C and L” is a ’® node with
premises B+ and C*, then (7, E) ~ (', E), where 7’ is obtained
by removing in 7 the formulas A and A as well as the cut node L
with L’ and L” and adding two new cut nodes with premises,
respectively, B, B+ and C, C+

B C B+ ct




Cut Elimination: (®,/&)-step

If L is a &, node with weight w and B and C as premises whose
weights are, respectively, pw and pw, and L” is a &1 node with
premise B+ in 7, then (7, E) ~ (', E') as below

> E' = EU{pOw = 0};

» 7’ is what remains still nonzero, mod E’, w.r.t. 7.
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Cut Elimination: (®/C)-step
If L’ is a C node and L” is a ® node

Case (’®/C)-step is analogous (replace ®s with ’9s).

AL
AL

AL



Cut Elimination: (&;/C)-step
If L’ is a C node and L” is a ®; node




Cut Elimination: (&;/C)-step
If L’ is a C node and L” is a ®; node




Cut Elimination: (&/C)-step

If L"is a &, node and L” is a C node




Cut Elimination: (&/C)-step

If L"is a &, node and L” is a C node

wp

B cut, A+

AL

AL




Cut Elimination: (C/C)-step

If both L' and L” are C nodes
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If both L' and L” are C nodes
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Theorem (Stability of PS)

If a PS (m, E) reduces in one step to (n’, E'), then (n' E') is a PS
too.

Theorem (Stability of Correctness Criterion)

If a PS (m, E) is correct and it reduces in one step to (n', E'), then
(n',E") is still a correct PS.
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Strong Cut Elimination

Theorem

We can always strongly reduce a proof net (m, E) into a proof net
(n', E') that is cut-free, by iterating the reduction steps.

Proof.

The proof is by lexicographic induction on the word

f1,...,4n

» n is the number of variables (eigen or prefix weights) of (7, E);

» i, with 1 </ < n, is the sum of the logical complexities of all cuts
whose depth is i.

> the depth §(L) of a node L is max(|wy|, |wal), if

» w; and ws are equivalent (modulo E) weights of L and
» |w;|, for j = 1,2, is the length of w;.
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Confluence

Theorem (local confluence)

Let (7, E) be a proof net with two cut nodes, Ly and Ly, and let
> « be the cut reduction (7, E) ~», (m1, E1) and
» [ be the cut reduction (m, E) ~, (72, E2),

then there exists a proof net (m*, E*) which (m;, E;), for 1 <i <2,
reduces to in at most one step.



conclusions



