Cut Elimination for Proof Nets of the Purely Multiplicative and Additive Fragment of Linear Logic

Roberto Maieli

Università degli Studi "Roma Tre"
maieli@uniroma3.it
joint work with Olivier Laurent
(CNRS, Paris)
AILA, XXIII Incontro di Logica
Genova, 20th February 2008

Linear Logic and Proof Theory

- Since its inception, in 1987, linear logic (LL, Girard) has changed the proof theoretic way of dealing with cut elimination.

Linear Logic and Proof Theory

- Since its inception, in 1987, linear logic (LL, Girard) has changed the proof theoretic way of dealing with cut elimination.
- This task was traditionally carried out by means of sequent calculi with the consequence that the most part of these works were engrossed by tedious commutations of rules.

Sequent Calculus: MALL

Sequent Calculus: MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.

Sequent Calculus: MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

Sequent Calculus: MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):

Sequent Calculus: MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):
- identity: $\frac{{ }^{2}, A^{\perp}}{}$ ax $\frac{\Gamma, A \quad \Delta, A^{\perp}}{\Gamma, \Delta}$ cut

Sequent Calculus: MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p l u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):
- identity: $\frac{\lambda^{\perp}}{A, A^{\perp}} \quad \frac{\Gamma, A \quad \Delta, A^{\perp}}{\Gamma, \Delta}$ cut
- multiplicatives: $\quad \frac{\Gamma, A \Delta, B}{\Gamma, \Delta, A \otimes B} \otimes \frac{\Gamma, A, B}{\Gamma, A \not B B} \ngtr$

Sequent Calculus: MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p l u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \otimes B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):
- identity: $\frac{\lambda^{\perp}}{A, A^{\perp}} \quad \frac{\Gamma, A \quad \Delta, A^{\perp}}{\Gamma, \Delta}$ cut
- multiplicatives: $\quad \frac{\Gamma, A \Delta, B}{\Gamma, \Delta, A \otimes B} \otimes \frac{\Gamma, A, B}{\Gamma, A \not B} \ngtr$
- additives: $\quad \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \& B} \& \frac{\Gamma, A}{\Gamma, A \oplus B} \oplus_{1} \frac{\Gamma, B}{\Gamma, A \oplus B} \oplus_{2}$

Sequent Calculus: cut elimination is "problematic"

$$
\frac{A, A^{\perp} \quad A, A^{\perp}}{\frac{A \& A, A^{\perp}}{A \& A, A^{\perp} \oplus B^{\perp}} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}}} \oplus_{1}
$$

Sequent Calculus: cut elimination is "problematic"

$$
\frac{A, A^{\perp} \quad A, A^{\perp}}{\frac{A \& A, A^{\perp}}{A \& A, A^{\perp} \oplus B^{\perp}} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}} \text { cut }
$$

reduces to:

$$
\frac{A, A^{\perp} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}}{1} c u t \quad \frac{A, A^{\perp} \quad \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}}{A, A^{\perp} \oplus B^{\perp}} \text { cut }
$$

Sequent Calculus: cut elimination is "problematic"

$$
\frac{A, A^{\perp} \quad A, A^{\perp}}{\frac{A \& A, A^{\perp}}{A \& A, A^{\perp} \oplus B^{\perp}} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}} \text { cut }
$$

reduces to:

$$
\frac{A, A^{\perp} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}}{1} c u t \quad \frac{A, A^{\perp} \quad \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}}{A, A^{\perp} \oplus B^{\perp}} \text { cut }
$$

or to:

$$
\frac{A, A^{\perp} A, A^{\perp}}{\frac{A \& A, A^{\perp}}{\frac{A \& A, A^{\perp}}{A \& A, A^{\perp} \oplus B^{\perp}} \oplus_{1}} c u t \text {, } A^{\perp}} \text {. }
$$

Sequent Calculus: cut elimination is "problematic"

$$
\frac{A, A^{\perp} \quad A, A^{\perp}}{\frac{A \& A, A^{\perp}}{A \& A, A^{\perp} \oplus B^{\perp}} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}} \text { cut }
$$

reduces to:

$$
\frac{A, A^{\perp} \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}}{\oplus_{1}} \text { cut } \frac{A, A^{\perp} \quad \frac{A, A^{\perp}}{A, A^{\perp} \oplus B^{\perp}} \oplus_{1}}{A, A^{\perp} \oplus B^{\perp}} \text { cut } \text { A\&A, } A^{\perp} \oplus B^{\perp} \quad
$$

or to:

$$
\frac{A, A^{\perp} A, A^{\perp}}{\frac{A \& A, A^{\perp}}{\frac{A \& A, A^{\perp}}{A \& A, A^{\perp} \oplus B^{\perp}} \oplus_{1}} c u t, A^{\perp}} \text {. }
$$

This situation has changed with the new geometrical syntax for proofs: proof nets

Proof Nets: the idea

Proof Nets: the idea

- PNs are parallel presentations of sequential proofs

Proof Nets: the idea

- PNs are parallel presentations of sequential proofs
- PNs quotient classes of equivalent proofs, modulo permutations of derivation rules:

Proof Nets: the idea

- PNs are parallel presentations of sequential proofs
- PNs quotient classes of equivalent proofs, modulo permutations of derivation rules:

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1}}{\frac{A \& B, B^{\perp} \oplus A^{\perp}}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{C, C^{\perp}}{C 8 C^{\perp}}} \otimes
$$

Proof Nets: the idea

- PNs are parallel presentations of sequential proofs
- PNs quotient classes of equivalent proofs, modulo permutations of derivation rules:

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1}}{\frac{A \& B, B^{\perp} \oplus A^{\perp}}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{C, C^{\perp}}{C 8 C^{\perp}} 8} \otimes
$$

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{C, C^{\perp}}{C 8 C^{\perp}} \otimes}{\frac{A,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1} \quad \frac{C, C^{\perp}}{C 8 C^{\perp}} \otimes} \otimes \otimes
$$

Proof Nets: state of the art

PNs of the Multiplicative fragment of $L L$ are the perfect setting:

Proof Nets: state of the art

PNs of the Multiplicative fragment of LL are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,

Proof Nets: state of the art

PNs of the Multiplicative fragment of LL are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

Proof Nets: state of the art

PNs of the Multiplicative fragment of LL are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.

Proof Nets: state of the art

PNs of the Multiplicative fragment of LL are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:

Proof Nets: state of the art

PNs of the Multiplicative fragment of $L L$ are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:

- without additive boxes (sequentiality)

Proof Nets: state of the art

PNs of the Multiplicative fragment of $L L$ are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:

- without additive boxes (sequentiality)
- allowing super-positions (slices)

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;
- not confluent;

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;
- not confluent;
- lazy one: only cuts not involving additive contractions (ready cuts) are reducible.

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;
- not confluent;
- lazy one: only cuts not involving additive contractions (ready cuts) are reducible.
As a consequence, not all proof-nets are normalizable.

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;
- not confluent;
- lazy one: only cuts not involving additive contractions (ready cuts) are reducible.
As a consequence, not all proof-nets are normalizable.
Our goal here is:

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;
- not confluent;
- lazy one: only cuts not involving additive contractions (ready cuts) are reducible.
As a consequence, not all proof-nets are normalizable.
Our goal here is:
- to provide an answer to the locality of the cut elimination.

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity of the representation: there exist proofs which de-sequentialize into two possible proof nets with no way to discriminate them.
This problem has been solved by D. Hughes and R. van Glabbeek (2003)
2. Girard's cut elimination is:

- not local;
- not confluent;
- lazy one: only cuts not involving additive contractions (ready cuts) are reducible.
As a consequence, not all proof-nets are normalizable.
Our goal here is:
- to provide an answer to the locality of the cut elimination.
- to allow a new kind of sharing nodes which neither exists in JYG nor in HvG

MALL Proof Structures: links

MALL Proof Structures: links

- A (pre-) proof structure π is an oriented graph such that each edge is labelled by a MALL formula and built on the set of following nodes ($A=A_{1}=\ldots=A_{n}$ in the C node).

MALL Proof Structures: links

- A (pre-) proof structure π is an oriented graph such that each edge is labelled by a MALL formula and built on the set of following nodes ($A=A_{1}=\ldots=A_{n}$ in the C node).

- fixed a node, an entering edge is called premise while its (possibly) emergent edges are called conclusions.

MALL Proof Structures: links

- A (pre-) proof structure π is an oriented graph such that each edge is labelled by a MALL formula and built on the set of following nodes ($A=A_{1}=\ldots=A_{n}$ in the C node).

- fixed a node, an entering edge is called premise while its (possibly) emergent edges are called conclusions.
- pending edges are called conclusions of π

MALL Proof Structures: links

- A (pre-)proof structure π is an oriented graph such that each edge is labelled by a MALL formula and built on the set of following nodes ($A=A_{1}=\ldots=A_{n}$ in the C node).

- fixed a node, an entering edge is called premise while its (possibly) emergent edges are called conclusions.
- pending edges are called conclusions of π
- a link is the graph made by a node together with its premise(s) and its (possibly) conclusion(s).

MALL Proof Structures: weights

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0 , for a product where both p and \bar{p} appear;

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0 , for a product where both p and \bar{p} appear;
- two weights, v and w, are disjoint when $v . w=0$.

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0 , for a product where both p and \bar{p} appear;
- two weights, v and w, are disjoint when $v . w=0$.
- the special notation $\epsilon_{p} @ v$ when we want to focus on the prefix weight ϵ_{p} within a weight $\epsilon_{p} . v$ (v is the suffix).

MALL Proof Structures: weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0 , for a product where both p and \bar{p} appear;
- two weights, v and w, are disjoint when $v . w=0$.
- the special notation $\epsilon_{p} @ v$ when we want to focus on the prefix weight ϵ_{p} within a weight $\epsilon_{p} . v$ (v is the suffix).
- a weight w depends on a variable p when ϵ_{p} appears in w;

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each \& node of π (\& ${ }_{p}$ notation);

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each \& node of π (\& ${ }_{p}$ notation); eigen weights are not supposed to be different;

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each \& node of π ($\&_{p}$ notation); eigen weights are not supposed to be different;
2. to each node we associate a nonzero weight w of the Boolean algebra generated over the set of variables that are:

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each \& node of π (\& $\&_{p}$ notation); eigen weights are not supposed to be different;
2. to each node we associate a nonzero weight w of the Boolean algebra generated over the set of variables that are:

- eigen weights occurring in π or

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each \& node of π (\& $\&_{p}$ notation); eigen weights are not supposed to be different;
2. to each node we associate a nonzero weight w of the Boolean algebra generated over the set of variables that are:

- eigen weights occurring in π or
- prefix weights of the equations in E

MALL Proof Structures: basic definition

A MALL proof structure $(P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} @ w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a pre-proof structure s.t.:

1. we associate a Boolean variable p, called eigen weight, to each \& node of π (\& $\&_{p}$ notation); eigen weights are not supposed to be different;
2. to each node we associate a nonzero weight w of the Boolean algebra generated over the set of variables that are:

- eigen weights occurring in π or
- prefix weights of the equations in E

3. all weights are modulo E;

MALL Proof Structures: weights assignment

3. two nodes have the same weight, if they have a common edge, except when the edge is the premise of a \& or C node:

ϵ_{p} does not occur in w
$\forall i \forall j, w_{i} w_{j}=0(1 \leq i, j \leq n)$

MALL Proof Structures: weights assignment

5. two nodes have the same weight, if they have a common edge, except when the edge is the premise of a \& or C node:

ϵ_{p} does not occur in w

$$
\forall i \forall j, w_{i} w_{j}=0(1 \leq i, j \leq n)
$$

6. every conclusion node has weight 1 ;

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or
- it occurs in an equation of E

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or
- it occurs in an equation of E
then

$$
\begin{equation*}
w \leq\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right) \quad \bmod E \tag{1}
\end{equation*}
$$

where :

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or
- it occurs in an equation of E
then

$$
\begin{equation*}
w \leq\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right) \quad \bmod E \tag{1}
\end{equation*}
$$

where :

- $w_{i}, 1 \leq i \leq n$, is the weight of a node $\&_{p}$;

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or
- it occurs in an equation of E
then

$$
\begin{equation*}
w \leq\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right) \quad \bmod E \tag{1}
\end{equation*}
$$

where:

- $w_{i}, 1 \leq i \leq n$, is the weight of a node $\&_{p}$;
- $v_{j}, 1 \leq j \leq m$, is the suffix of an equation $\epsilon_{p} @ v_{j}=0$ of E;

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or
- it occurs in an equation of E
then

$$
\begin{equation*}
w \leq\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right) \quad \bmod E \tag{1}
\end{equation*}
$$

where:

- $w_{i}, 1 \leq i \leq n$, is the weight of a node $\&_{p}$;
- $v_{j}, 1 \leq j \leq m$, is the suffix of an equation $\epsilon_{p} @ v_{j}=0$ of E;
- $\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right)$ is a monomial weight $\bmod E$;

MALL Proof Structures: technical condition

7. if w is a weight depending on p and s.t.

- it belongs to a node of π, or
- it occurs in an equation of E
then

$$
\begin{equation*}
w \leq\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right) \quad \bmod E \tag{1}
\end{equation*}
$$

where:

- $w_{i}, 1 \leq i \leq n$, is the weight of a node $\&_{p}$;
- $v_{j}, 1 \leq j \leq m$, is the suffix of an equation $\epsilon_{p} @ v_{j}=0$ of E;
- $\left(\sum_{i=1}^{n} w_{i}+\sum_{j=1}^{m} v_{j}\right)$ is a monomial weight $\bmod E$;
- all weights $w_{1}, \ldots, w_{n}, v_{1}, \ldots v_{m}$ are pairwise disjoint.

MALL Proof Structures: example 1

The following pair $\langle\pi,\{(\bar{q} @ \bar{p}=0)\}\rangle$ is a proof structure:

MALL Proof Structures: example 2

The following pair $\langle\pi, \emptyset\rangle$ is not a proof structure

it violates the technical condition of PS definition: there exists a (axiom) node whose weight is \bar{p} but $\bar{p} \not \leq q$, where q is the weight of the unique $\&_{p}$ node.

The Request of a Correctness Criterion

The Request of a Correctness Criterion

- we are interested on those proof structures that correspond to proofs of the sequent calculus;

The Request of a Correctness Criterion

- we are interested on those proof structures that correspond to proofs of the sequent calculus;
- those proof structures will be called proof nets

The Request of a Correctness Criterion

- we are interested on those proof structures that correspond to proofs of the sequent calculus;
- those proof structures will be called proof nets
- there exists a Correction Crietrion that detect these PNs

The Request of a Correctness Criterion

- we are interested on those proof structures that correspond to proofs of the sequent calculus;
- those proof structures will be called proof nets
- there exists a Correction Crietrion that detect these PNs
- cut elimination can be defined directly on PSs

The Request of a Correctness Criterion

- we are interested on those proof structures that correspond to proofs of the sequent calculus;
- those proof structures will be called proof nets
- there exists a Correction Crietrion that detect these PNs
- cut elimination can be defined directly on PSs
- then we have to show that the Correction Crietrion is preserved by the cut elimination

Cut Elimination

Cut Elimination: ax-step

If L^{\prime} (resp., $L^{\prime \prime}$) is an axiom node of π, then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$, where π^{\prime} is obtained by removing in π both formulas A and A^{\perp} (as well as L) and giving a new conclusion to $L^{\prime \prime}$ (resp., L^{\prime}), the other conclusion of L^{\prime} (resp., $L^{\prime \prime}$)

Cut Elimination: (\otimes / \diamond)-step

If L^{\prime} is a \otimes node with premises B and C and $L^{\prime \prime}$ is a 8 node with premises B^{\perp} and C^{\perp}, then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$, where π^{\prime} is obtained by removing in π the formulas A and A^{\perp} as well as the cut node L with L^{\prime} and $L^{\prime \prime}$ and adding two new cut nodes with premises, respectively, B, B^{\perp} and C, C^{\perp}

$$
\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle
$$

Cut Elimination: $\left(\oplus_{i} / \&\right)$-step

If L^{\prime} is a $\&_{p}$ node with weight w and B and C as premises whose weights are, respectively, $p w$ and $\bar{p} w$, and $L^{\prime \prime}$ is a \oplus_{1} node with premise B^{\perp} in π, then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ as below

$$
\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle
$$

$$
w=p w \bmod E^{\prime}
$$

- $E^{\prime}=E \cup\{\bar{p} @ w=0\} ;$
- π^{\prime} is what remains still nonzero, $\bmod E^{\prime}$, w.r.t. π.

Cut Elimination: (\otimes / C)-step

If L^{\prime} is a C node and $L^{\prime \prime}$ is a \otimes node

Cut Elimination: (\otimes / C)-step

If L^{\prime} is a C node and $L^{\prime \prime}$ is a \otimes node

then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$ as follows:

Cut Elimination: (\otimes / C)-step

If L^{\prime} is a C node and $L^{\prime \prime}$ is a \otimes node

then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$ as follows:

Case (γ / C)-step is analogous (replace $\otimes s$ with $\gamma s)$.

Cut Elimination: $\left(\oplus_{i} / C\right)$-step

If L^{\prime} is a C node and $L^{\prime \prime}$ is a \oplus_{i} node

Cut Elimination: $\left(\oplus_{i} / C\right)$-step

If L^{\prime} is a C node and $L^{\prime \prime}$ is a \oplus_{i} node

then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$ as follows:

Cut Elimination: $(\& / C)$-step

If L^{\prime} is a $\&_{p}$ node and $L^{\prime \prime}$ is a C node

Cut Elimination: $(\& / C)$-step

If L^{\prime} is a $\&_{p}$ node and $L^{\prime \prime}$ is a C node

then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$ as follows

Cut Elimination: (C / C)-step

If both L^{\prime} and $L^{\prime \prime}$ are C nodes

Cut Elimination: (C / C)-step

If both L^{\prime} and $L^{\prime \prime}$ are C nodes

then $\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E\right\rangle$ as follows:

Stability under the Cut Elimination

Stability under the Cut Elimination

Theorem (Stability of PS)
If a $P S\langle\pi, E\rangle$ reduces in one step to $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$, then $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ is a $P S$ too.

Stability under the Cut Elimination

Theorem (Stability of PS)
If a $P S\langle\pi, E\rangle$ reduces in one step to $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$, then $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ is a $P S$ too.

Theorem (Stability of Correctness Criterion)
If a $P S\langle\pi, E\rangle$ is correct and it reduces in one step to $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$, then $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ is still a correct PS.

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

$$
\sharp 1, \ldots, \sharp n
$$

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

$$
\sharp 1, \ldots, \sharp n
$$

- n is the number of variables (eigen or prefix weights) of $\langle\pi, E\rangle$;

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

$$
\sharp 1, \ldots, \sharp n
$$

- n is the number of variables (eigen or prefix weights) of $\langle\pi, E\rangle$;
- $\sharp i$, with $1 \leq i \leq n$, is the sum of the logical complexities of all cuts whose depth is i.

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

$$
\sharp 1, \ldots, \sharp n
$$

- n is the number of variables (eigen or prefix weights) of $\langle\pi, E\rangle$;
- $\sharp i$, with $1 \leq i \leq n$, is the sum of the logical complexities of all cuts whose depth is i.
- the depth $\delta(L)$ of a node L is $\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)$, if

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

$$
\sharp 1, \ldots, \sharp n
$$

- n is the number of variables (eigen or prefix weights) of $\langle\pi, E\rangle$;
- $\sharp i$, with $1 \leq i \leq n$, is the sum of the logical complexities of all cuts whose depth is i.
- the depth $\delta(L)$ of a node L is $\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)$, if
- w_{1} and w_{2} are equivalent (modulo E) weights of L and

Strong Cut Elimination

Theorem
We can always strongly reduce a proof net $\langle\pi, E\rangle$ into a proof net $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free, by iterating the reduction steps.

Proof.
The proof is by lexicographic induction on the word

$$
\sharp 1, \ldots, \sharp n
$$

- n is the number of variables (eigen or prefix weights) of $\langle\pi, E\rangle$;
- $\sharp i$, with $1 \leq i \leq n$, is the sum of the logical complexities of all cuts whose depth is i.
- the depth $\delta(L)$ of a node L is $\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)$, if
- w_{1} and w_{2} are equivalent (modulo E) weights of L and
- $\left|w_{j}\right|$, for $j=1,2$, is the length of w_{j}.

Confluence

Theorem (local confluence)
Let $\langle\pi, E\rangle$ be a proof net with two cut nodes, L_{1} and L_{2}, and let

Confluence

Theorem (local confluence)
Let $\langle\pi, E\rangle$ be a proof net with two cut nodes, L_{1} and L_{2}, and let

- α be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{1}\left\langle\pi_{1}, E_{1}\right\rangle$ and

Confluence

Theorem (local confluence)
Let $\langle\pi, E\rangle$ be a proof net with two cut nodes, L_{1} and L_{2}, and let

- α be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{1}\left\langle\pi_{1}, E_{1}\right\rangle$ and
- β be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{2}\left\langle\pi_{2}, E_{2}\right\rangle$,

Confluence

Theorem (local confluence)
Let $\langle\pi, E\rangle$ be a proof net with two cut nodes, L_{1} and L_{2}, and let

- α be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{1}\left\langle\pi_{1}, E_{1}\right\rangle$ and
- β be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{2}\left\langle\pi_{2}, E_{2}\right\rangle$,
then there exists a proof net $\left\langle\pi^{*}, E^{*}\right\rangle$ which $\left\langle\pi_{i}, E_{i}\right\rangle$, for $1 \leq i \leq 2$, reduces to in at most one step.

conclusions

