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Abstract

This work presents a computational interpretation of the construction process for cyclic linear logic (CyLL) and non-

commutative logic (NL) sequential proofs. We assume a proof construction paradigm, based on a normalisation procedure known

as focussing, which efficiently manages the non-determinism of the construction.

Similarly to the commutative case, a new formulation of focussing for NL is used to introduce a general constraint-based

technique in order to dealwith partial information during proof construction. In particular, the procedure develops through

construction steps propagating constraints in intermediate objects called abstract proofs.

c� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The proof construction paradigm

We are interested here in the computational paradigm of proof construction in logical sequent calculi. The most

straightforward (and naive) proof construction algorithm starts with a single open node labelled by a given sequent (or

even a single formula), then tries to incrementally construct a proof by repeatedly expanding each open node, selecting

and applying an inference from the sequent calculus, thus possibly introducing new open nodes. This provides an

interesting computational model, particularly adapted to capture non-deterministic processes, since proof construction

itself is intrinsically non-deterministic: in the naive procedure, for example, many choices of different kinds (choice

of the principal formula, choice of the inference) have to be made at each expansion step.

1.2. Focussing strategy and bipolar sequent calculus

However, it is well known that, due to intrinsic permutability properties of the inferences in sequent calculi, some

strategy is needed in order to avoid making sets of choices that lead to the same object (modulo permutation of
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inferences). Such a strategy, called focussing, has been proposed in [2]. It is based on the generic concept of polarity

of formulas, and therefore applies to any logical system where connectives have polarities, such as linear logic or

non-commutative logic (see Section 2 for an introduction to non-commutative logic). Focussing deals with two

important forms of irrelevant non-determinism in proof construction: on the one hand, the instant of the decomposition

of a negative connective is simply irrelevant; on the other hand, the interval between two decompositions of positive

connectives, if one is an immediate successor of the other in a formula, is irrelevant. The strategy to avoid these

forms of irrelevant non-determinism can be expressed in the sequent calculi themselves by modifying the syntax

of the sequents, with the introduction of a distinguished formula called the “focus”. Such focussing sequent calculi

have thus been proposed in various contexts [17]. There is also an alternative presentation that does not rely on

syntactic conventions, while capturing exactly the same content: keep sequents as simple as possible (e.g., they are

made of atoms only), but refine the inferences of the calculus themselves. Such a refined, simplified calculus, called

the (focussing) bipolar calculus, has been presented in [3] for linear logic. It is strictly isomorphic to the focussing

sequent calculus of linear logic, so proof construction can be performed equivalently in both systems. Here we extend

the focussing bipolar calculus to non-commutative logic without problem, given the genericity of the approach.

1.3. Dealing with partial information

Now, the naive proof construction procedure can be directly applied to the focussing bipolar calculus, but this is still

unsatisfactory. Indeed, although focussing eliminates a lot of irrelevant non-determinism, there still remains sources

of non-determinism that are intractable in the naive approach. The most well-known one appears in the first-order case

with the existential quantification rule [18]: a choice of a term to assign to the quantified variable has to be made, but

there are infinitely many possibilities. A random enumeration is clearly unsuitable, essentially because two different

random choices may lead to essentially the same object, differing only by a term which, anyway, is irrelevant to the

proof. For example, here are two proofs of the formula ∀x p(x) � ∃x p(x) which differ by a purely irrelevant choice

(of the term to assign to x):

� p(a), p(a)⊥

∃
� ∃x p(x), p(a)⊥

∃
� ∃x p(x), ∃x p(x)⊥

� p(b), p(b)⊥

∃
� ∃x p(x), p(b)⊥

∃
� ∃x p(x), ∃x p(x)⊥

Again, we need a strategy to avoid such irrelevant non-determinism. In the case of the existential quantification,

the solution is quite familiar: it is based on unification, which performs the choice of the term for an existentially

quantified variable in a lazy way, making actual choices only when they are needed somewhere in the proof. This leads

the construction procedure to manipulate not ground proofs but abstract proofs containing only partial information

about the object being constructed (partiality derives from the presence of uninstantiated variables occurring in the

terms). This also means that, at each step, some constraints on the different variables have to be propagated across the

proof, when variables are shared between multiple nodes: this is the role of the unification process. We thus obtain a

slightly less naive construction process which intertwines the usual naive expansion process and the “dual” unification

process, which works in the reverse direction.

There is another case of irrelevant non-determinism that the naive procedure cannot avoid, namely caused by the

positive multiplicative connectives: to decompose such a connective, a choice of splitting of the context has to be

performed. And again, as before, a random enumeration of all the possible splits is unfeasible. A solution based on

lazy splitting [9], and capable of dealing with partially defined (or even, possibly, completely undefined) sequents,

has been proposed for the focussing bipolar calculus of linear logic in [3]. It couples the naive construction procedure

with a non-deterministic but finite constraint propagation procedure, thus leading to a constraint based construction

mechanism.

1.4. Non-commutative logic

Here we study the extension of this mechanism to non-commutative logic, NL. It is shown that it extends

straightforwardly to cyclic logic, but not directly to non-commutative logic, although NL is an extension of both

linear and cyclic logic. We then propose a new solution, which works on an affine version of NL where weakening
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is allowed for negative formulas. This is a natural modification of NL, less harmful indeed than affine logic obtained

by adding unrestricted weakening, and very similar to the kind of relaxation of the syntax considered in the context

of polarised linear logic [8,13]. We show that our solution is adapted to multiplicative-additive NL (the exponential

connectives are not considered in the present paper) by giving sound and complete constraint resolution algorithms in

Section 4.2.

Interestingly, this work also shows that the mechanism that operates in the constraint resolution relies in no way

on the specificity of the structures of order and order varieties. The characteristic properties of these structures only

imposes additional constraint propagation rules (namedOV* in Section 4.2), enforcing that the generated information

always constitutes an instance of the structure. Other structures have been considered in [11] and [4]. We strongly

believe that the method presented here applies directly to these cases: only the additional rules characterising the

structure have to be changed. For example, in the basic case of ternary cyclic relations, no additional rule at all is

needed.

On the other hand, it might well be that, in the specific case of order varieties, a simpler procedure exists, in the

style of that used for the commutative and cyclic cases.

1.5. Outline of the paper

Section 2 introduces the necessary preliminaries on NL, together with the focussing bipolar sequent calculus for

multiplicative-additive NL. Section 3 presents the abstract inferences derived from this calculus and their associated

constraints. Section 4 recalls the constraint resolution algorithm for commutative LL, presents its adaptation to cyclic

LL, and presents a new algorithm for NL, together with examples.

The overall goal of the line of research pursued by this paper is two-fold: on the one hand, the definition of a

proof construction mechanism capable of dealing with partial information, and on the other hand the optimisation

of this mechanism by elimination of irrelevant non-determinism. Both aspects are important in modelling real

situations, especially in the context of widely distributed applications, such as Internet applications, where there is

no central locus with a vision of the whole execution (hence the importance of dealing with partial information),

and programs are strongly influenced by their environment, which, at any reasonable level of abstraction, behaves

in a highly non-deterministic way. The proof construction paradigm provides an appropriate level of abstraction

to understand coordination issues in such applications, as shown by the CLF system [5], a component-based

middleware infrastructure built around the central notion of resource (linear logic) and coordination viewed as resource

manipulation (proof construction). However, CLF exploits only a very limited fragment of linear logic. The constraint-

based proof construction mechanism, developed here in the non-commutative case, offers perspectives for further

extensions of the CLF platform in particular, and for a better understanding of coordination issues in distributed

applications in general.

2. Non-commutative logic

Non-commutative logic, NL for short, was introduced by Abrusci and the third author in [1,21]. It generalises

Girard’s commutative linear logic and Yetter’s cyclic linear logic [22], a classical conservative extension of the

Lambek calculus [12].

In NL, the usual tensor and par exist in two versions each: one commutative and one non-commutative. This

induces a structure on sequents, which become order varieties of formula occurrences instead of simple sets. An

order variety is essentially a partially ordered set up to cyclic permutations, the partial order imposing a constraint

on possible commutations (between the flat orders, corresponding to the commutative case, and the linear orders that

represent the purely non-commutative cyclic case). This is recalled in Sections 2.1 and 2.2.

A particularly noticeable relation between order varieties is the relation of entropy, which irreversibly weakens the

order; it corresponds to the inclusion of order varieties and implies that the commutative tensor is stronger than the

non-commutative tensor; Section 2.3 recalls some general properties of entropy. A particularly important one, used in

the constraint resolution algorithm presented here, is recalled in Section 2.4. The focussing sequent calculus for non-

commutative logic is recalled in Section 2.5, and its bipolar version in Section 2.6. They are shown to be equivalent

in Section 2.7, but our constraint-based proof construction procedure is defined on the latter.
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2.1. Order varieties

An order variety on a given set D is a ternary relation α which is:

cyclic: ∀x, y, z ∈ D, α(x, y, z) ⇒ α(y, z, x)

anti-reflexive: ∀x, y ∈ D, ¬α(x, x, y)

transitive: ∀x, y, z, t ∈ D, α(x, y, z) and α(z, t, x)⇒ α(y, z, t)

spreading: ∀x, y, z, t ∈ D, α(x, y, z) ⇒ α(t, y, z) or α(x, t, z) or α(x, y, t).

D is called the support set of α, denoted |α|. For instance, any oriented cycle (a1→ · · · → an → a1) induces a total

order variety α on the set of its vertices by: α(x, y, z) if, and only if, y is between x and z in the cycle; this order

variety is denoted by a1.a2. . . . .an = a2. . . . .an.a1, etc. The spreading condition enables us to systematically give

“presentations” of order varieties as orders in a reversible way, whence the name. The correspondence is as follows.

Given an order variety α and x ∈ |α|, we may define a partial order αx on |α| \ {x} by:

αx (y, z) if, and only if, α(x, y, z).

Conversely, given a partial order ω, let ω(x, y|z) denote the following ternary relation on |ω|:

ω(x, y|z) if, and only if, (ω(x, z) ⇔ ω(y, z))

and (ω(z, x) ⇔ ω(z, y))

expressing that z is in the same relation with x and y in ω; then we may define an order variety ω on |ω|, the closure

of ω, by:

ω(x, y) and ω(x, y|z) or

ω(x, y, z) if, and only if, ω(y, z) and ω(y, z|x) or

ω(z, x) and ω(z, x |y).

It is shown in [1] that ω is indeed an order variety. When ω = α, we say that ω presents α. Hence an order variety is

a set of partial orders (the presentations) glued together in a convenient way.

Given two orders ω and τ , we may define the following orders on the disjoint union |ω| + |τ | of their supports:

series sum: ω < τ = ω + τ + |ω| × |τ |

parallel sum: ω � τ = ω + τ.

One proves easily that the closure identifies series and parallel sums:

ω < τ = ω � τ = ω > τ.

The above order variety is denoted ω ∗ τ and called the gluing of ω and τ . It enjoys:

ω ∗ τ = ω + ω.|τ | + |ω|.τ + τ

where, given an order ω and a set D disjoint from its support set, D.ω or ω.D denote the cyclic closure of ω×D. The

two processes of fixing a point in an order variety and gluing orders are related by the following equations:

αx ∗ x = α and (ω ∗ x)x = ω

for α an order variety, x ∈ |α|, and ω an order on |α| \ {x}. These equations state that the species of order varieties in

the sense of Joyal [10] has as derivative the species of partial orders.

2.2. Series–parallel order varieties

Series–parallel orders are those obtained from the unique orders on singletons (the empty relation ∅ with support

{x}) by series and parallel sums. For a more substantial survey, see [19].

Series–parallel order varieties are precisely those order varieties that can be presented by a series–parallel order.

A series–parallel order variety α on a set D can be represented by a rootless planar tree (or seaweed, or alg) with
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leaves labelled by elements of D and ternary nodes labelled by <,> or �: take an arbitrary presentation of α as a

series–parallel order ω, write ω as a – non-unique (associativity, commutativity) – planar binary tree t with leaves

labelled by elements of D, and root and nodes labelled by < or � for series and parallel sum, respectively; then

remove the root of t .

For instance, (x < y < z) � v � (t < u) can be represented by:

to read the seaweed, take three leaves a, b, c and let ◦ be the node at the intersection of the three paths ab, bc and ca;

then (a, b, c) is in the order variety if, and only if,

– the node ◦ is labelled by < (resp.>) and

– the paths a◦, b◦ and c◦ are in this cyclic order while moving clockwise (resp. counter-clockwise) around ◦.

Restrictions to a subset D are denoted ω�D , α�D; restriction clearly preserves the structures of order and order variety,

and preserves series–parallelism. From now on, we consider only series–parallel orders and order varieties.

2.3. Entropy

Entropy � is the relation between series–parallel orders on the same given set defined by

ω � τ if, and only if, ω ⊆ τ and ω ⊆ τ .

Entropy is clearly a partial order, compatible with restriction and with the series and parallel sums of orders. In the

series–parallel case,� is the least reflexive transitive relation between series–parallel orders on the same set such that:

ω[τ1 � τ2] � ω[τ1 < τ2].

Entropy between orders corresponds to inclusion of order varieties: given two order varieties α, β on D and x ∈ D,

we have

α ⊆ β if, and only if, αx � βx .

This is independent from the choice of x . Entropy is performed in the tree representation for series–parallel order

varieties by changing some <-nodes into �-nodes, i.e. by weakening the information on the nodes.

2.4. Splitting

Splitting is the following problem: given a family of pairwise disjoint sets (Di )i=1,...,n , one of which at least is a

singleton, and series–parallel order varieties α, β, respectively, on {1, . . . , n} and on
�

i Di , find for each i = 1, . . . , n

a series–parallel order (ωi ) on Di such that β ⊆ α(ω1, . . . , ωn). This problem has been solved (in a slightly different,

but equivalent form) in [14] for the case of the binary splitting and then generalised in [7] to the case of the n-ary

splitting:
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Theorem 2.1. The splitting problem for (Di )i=1,...,n, α, β has a solution if and only if the following condition (known

as admissibility) holds.

∀a ∈ Di , b ∈ Dj , c ∈ Dk / i �= j �= k �= i β(a, b, c)⇒ α(i, j, k)

∀a, b ∈ Di c ∈ Dj c� ∈ Dk / j, k �= i ¬(β(a, b, c)∧ β(b, a, c�)).

When this condition holds, the set of solutions is given by τi � ωi for all i , where

τi =
�

z∈Dj , j �=i

βz�Di
.

Note that it is essential here that (at least) one of the Di s is a singleton, otherwise the second part of the theorem,

defining the minimal solution, is false, as shown by the following counter-example:

D1 = {a1, b1, c1}

D2 = {a2, b2}
and

β = (a1 � a2) < (b1 � b2) ∗ c1
α = 1 ∗ 2.

In that case, the admissibility condition is satisfied, but τ1 = {(b1, c1), (c1, a1)}, which is not an order.

2.5. Focussing sequent calculus for multiplicative additive NL with constants

Formulas of multiplicative additive non-commutative logic (MANL) are built from (negative) atoms a, b, . . . and

their (positive) duals a⊥, b⊥, . . ., and the following connectives:

Positive Negative

Multiplicatives 1 one ⊥ bot

⊗ times � par

� next � sequential

Additives 0 zero � top

⊕ plus � with

∃ exists ∀ forall

Duality is defined by usual De Morgan rules. For instance, (A � B)⊥ = B⊥ � A⊥. A sequent is:

– either a finite series–parallel order variety α of occurrences of formulas,

– or a pair, denoted by ω � F , consisting of a finite series–parallel order ω of occurrences of positive formulas and

atoms, and a single formula F called the focus.

The symbol � corresponds to the gluing of orders, so ω � F stands for ω ∗ F , but the occurrence F has been

syntactically distinguished. Since we can focus on any formula of an order variety, the symbol � marks a fixed

(positive) focus and keeps track of its subformulas along the positive steps of the proof.

Observe that a sequent actually consists of two data: an order variety (possibly with a distinguished point) and

a map from its support set to the set of formulas. In the sequent calculus, we omit, as is usual, the reference to the

support set. Later, from Section 3.2 onwards, we shall need to explicitly manipulate the elements of the support set,

which we shall call places.

The inferences of the focussing sequent calculus are presented in Table 1. The present calculus differs slightly

from that given in [14], where the entropy rule is implicitly combined with the rules for the tensor connectives, and

optimised so as to introduce only the minimal entropy needed by the tensor. We find it simpler here to allow explicit

unconstrained entropy, since, anyway, the constraint-based approach that we take here will turn out to perform the

same optimisation. However, since entropy can always be permuted so as to occur only immediately after instances of

the focussing rule, we chose to combine the entropy with the focussing rule. This simplifies the shape of the constraints

that we manipulate.

In Section 4.2, we also consider an affine version of this sequent calculus, where a restricted form of weakening is

allowed (when the formula introduced is negative).
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Table 1

Focussing sequent calculus for MANL with constants

Identity: A⊥ is a positive atom.

A � A⊥

Positive rules: ω, τ are orders on positive formulas and atoms.

ω � A τ � B
�

(τ < ω) � A� B

ω ∗ A τ ∗ B
⊗

(τ � ω) � A ⊗ B
1

�1

ω � A
⊕

ω � A⊕ B

ω � B
⊕

ω � A ⊕ B
(no rule for 0)

Negative rules

ω ∗ (A < B)
�

ω ∗ A � B

ω ∗ (A � B)
�

ω ∗ A � B

ω
⊥

ω ∗ ⊥

ω ∗ A ω ∗ B
�

ω ∗ A � B
�

ω ∗ �

Focussing rule (with entropy): A positive and |ω| contains no compound negative formulas and α ⊆ ω ∗ A.

ω � A
�

α
Unfocussing rule: A is not positive.

ω ∗ A
��

ω � A

2.6. The focussing bipolar sequent calculus

We define here a variant of the focussing sequent calculus which is better adapted to the construction process.

Essentially, this bipolar sequent calculus is obtained by:

(i) grouping together all the inferences in the topmost positive–negative layer of connectives in any principal formula;

(ii) naming positive subformulas at the border of such layers by fresh negative atoms.

The following definitions are trivial extensions to the non-commutative case of the corresponding definitions given

for linear logic in [3].

Definition 2.2 (Monopole, Bipole, Flat Sequent).

– A monopole is a formula built from negative atoms using the negative connectives.

– A bipole is a formula built from the monopoles and the positive atoms, using the positive connectives. Furthermore,

it is assumed that each bipole contains at least one positive atom (thus, bipoles and monopoles are disjoint).

– A flat sequent is an order variety over negative atoms only.

Definition 2.3 (Focussing Bipolar Sequent Calculus). Given a set F of bipoles, the focussing bipolar sequent

calculus Σ [F ] is the set of inferences of the form

α1 · · · αn
Fα

where

– F is a bipole of F ,

– α, α1, . . . , αn are flat sequents,

– there exist an order ω over |α| satisfying α ⊆ ω and a proof of ω � F in the focussing sequent system of non-

commutative logic with proper axioms α1, . . . , αn .

The proof of ω � F advocated in the above definition is necessarily maximal because its proper axioms contain only

negative atoms, and hence cannot be further expanded: it is a “full decomposition” of F in the context ω.
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Observe that, by labelling inferences simply by bipoles, we lose the information about the choices made in the

⊕-inferences (between⊕1 and⊕2) in the proof of ω� F . This is done for the sake of simplicity. We could have added

another piece of information into the label to keep track of these choices. Actually, that is what we do for abstract

proofs in Section 3.2 (see Definition 3.2).

Example 2.4. Consider the bipole

F = (p⊥ � q⊥)⊗ ((a � (b � (b� � c))
� �� �

F1

)� (d � e� �� �
F2

))⊗ r⊥

built from the monopoles F1, F2 and the positive atoms p⊥, q⊥, r⊥. If F ∈ F , then the inferences of Σ [F ] labelled

by F are exactly those of the form

ω1 ∗ (a � b) ω1 ∗ (a � (b� < c)) ω2 ∗ (d < e)
Fα

where α ⊆ r � (ω2 < ω1) � (q < p), and ω1, ω2 are orders over occurrences of negative atoms. Indeed, any full

decomposition of F in the focussing sequent calculus is necessarily of the form:

p � p⊥ q � q⊥
�

q < p � p⊥ � q⊥

ω1 ∗ (a � b) ω1 ∗ (a � (b� < c))
� � � ��

ω1 � a � (b � (b� � c))

ω2 ∗ (d < e)
� ��

ω2 � d � e
�

ω2 < ω1 � (a � (b � (b� � c)))� (d � e) r � r⊥
⊗⊗

r � (ω2 < ω1) � (q < p) � F

2.7. Equivalence with the focussing sequent calculus

We claim that the focussing bipolar sequent calculus is isomorphic to the focussing sequent calculus of NL, so that

proof construction can be performed indifferently in the two systems. This is a straightforward extension of the result

shown in [3] for linear logic.

Given a setA of negative atoms, anA-formula (resp.A-monopole,A-bipole) is a formula (resp. monopole, bipole)

whose atomic subfomulas (leaves) are elements of A or their duals.

Let A,A� be sets of negative atoms such that A ⊂ A�, and η be a bijection from the set of A-formulas onto A�

such that ηa = a for all a ∈ A. Thus, if F is anA-formula that is not a negative atom, then ηF is just an unambiguous

“flat” name for F . The universal program (for η) is the set of formulas of the form η⊥F ⊗ ν(F), where F ranges over

A-formulas other than negative atoms, and ν(F) denotes the A�-formula obtained by replacing in F each positive

subformula G occurring in the scope of a negative connective by ηG . It is easy to show that the universal program

contains onlyA�-bipoles.

Note that we could just as well have chosen η⊥F � ν(F) for the bipoles of the universal program. Actually, such

formulas lead to exactly the same inferences in the bipolar focussing sequent calculus as η⊥F ⊗ ν(F). Actually, when

considering (below) the purely cyclic fragment of non-commutative logic, we make use of η⊥F � ν(F), so as to

manipulate bipoles from this fragment only.

Example 2.5 (Universal Program). Consider the formula F in Fig. 1. The successive layers of connectives of

identical polarities have been drawn on the figure. Starting from the root, each dashed line shows the border of a

positive layer and each dotted line the border of a negative layer. In this case, the formula ν(F) is obtained by replacing

in F each subformula located on the dotted line by its image by η, which is a negative atom in A�. In the example,

there are four such subformulas F1, F2, F3 (with topmost connectives �1, ⊕2 and ⊕3) and e⊥. (The indices are only

mentioned for reference purpose.) It is easy to see that, by construction, the formula η⊥F ⊗ ν(F) is an A�-bipole.

Theorem 2.6. Let U be the universal program for η. For any A-formula F, there is an isomorphism between the set

of proofs of F in the focussing sequent calculus and the set of proofs of ηF in the focussing bipolar sequent calculus

Σ [U].

Demonstration: Given a proof π of F in the focussing sequent calculus, the isomorphism proceeds in three steps:
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Fig. 1. The multiple layers of a formula, and the resulting bipoles.

(i) Remove from π all the sequents (except the root) that are not conclusions of an instance of the entropy-focussing

rule.

(ii) Relabel each instance of the entropy-focussing rule by the bipole η⊥G ⊗ ν(G) computed from its focus G.

(iii) In each sequent (order variety) α of the resulting tree, replace any formula H by an occurrence of ηH .

Hence, part of the proof in the focussing sequent calculus of the form

· · · pos. axioms · · ·

· · · neg. axioms · · ·

...
�

α
j
i · · ·

−
ω ∗ Ni ��
ω � Ni · · ·

+
ω � G

�
α

is replaced by

· · ·

...
η

α
j
i

· · ·

η⊥G ⊗ ν(G)
ηα

where:

– the double lines labelled by + and −, respectively, stand for groups of positive and negative rules;

– a positive axiom is either a logical axiom (identity) or a 1-axiom, a negative axiom is a �-axiom;

– the variable i (indexing the premises of the group of positive rules that are not axioms) ranges over a finite set I ,

and for each i ∈ I , the variable j (indexing the premises of the i -th group of negative rules) ranges over a finite set

Ji ; hence, the indices (i, j) (labelling the order varieties α
j
i ) range over the disjoint union

�
i∈I Ji ;

– ηα is the order variety obtained by replacing in α any occurrence of a formula H by an occurrence of ηH .

Also, if the conclusion sequent F of π is not the conclusion of an entropy-focussing rule, the part of the proof below

the lowermost occurrences of the entropy-focussing rule

· · · neg. axioms · · ·

...
�

αi · · ·
−

F

is replaced by

· · ·

...
ηαi · · ·

η⊥F ⊗ ν(F)
ηF
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Conversely, given a proof � of ηF in the focussing bipolar sequent calculus Σ [U], a proof of F in the focussing

sequent calculus is defined as follows:

(i) Take any inference in � :

ηα1 · · · ηαn
η⊥G ⊗ ν(G)

ηα

(ii) Definition 2.3 provides a “full decomposition” of η⊥G ⊗ ν(G), i.e., a proof of (ηω � ηG) � η⊥G ⊗ ν(G) in the

focussing sequent calculus with proper axioms ηα1 · · · ηαn and α ⊆ ω ∗ G. This full decomposition can only end

by an occurrence of the ⊗-rule:

ηG � η⊥G

· · · axioms · · · ηα1 · · · ηαn
+/−

ηω � ν(G)
⊗

(ηω � ηG ) � η⊥G ⊗ ν(G)

(iii) By removing the last rule and replacing each formula ηH by H , one gets a proof of ω � G:

· · · axioms · · · α1 · · · αn
+/−

ω � G

which can be completed into a proof of α by adding an occurrence of the entropy-focussing rule.

The two mappings are clearly inverses of each other. �

Example 2.7 (Isomorphism). Here is a proof in the focussing sequent calculus of non-commutative logic and its

corresponding proof in the focussing bipolar sequent calculus. Note that, for clarity purpose, in the former proof, we

make explicit the entropy step (⊆) which is in fact incorporated in the focussing inference above it.

a � a⊥
���

a⊥ � a

d � d⊥
�⊕

d ∗ d⊥ ⊕ e⊥

e � e⊥
�⊕

e ∗ d⊥ ⊕ e⊥
���

d⊥ ⊕ e⊥ � d � e
��

d⊥ ⊕ e⊥ < a⊥ ∗ a � (d � e)
⊆

a � (d � e) ∗ d⊥ ⊕ e⊥ � a⊥
���

a � (d � e) � (d⊥ ⊕ e⊥) � a⊥
�⊕

a � (d � e) ∗ c⊥ ⊕ ((d⊥ ⊕ e⊥) � a⊥)

�→

B3
a ∗ η3

B4
d ∗ η4

B4
e ∗ η4

B1
η1 ∗ (η3 � η4)

B2
η1 ∗ η2

where the bipoles used in the resulting proof are given by

B1 = η⊥1 ⊗ (a � (d � e))

B2 = η⊥2 ⊗ (c⊥ ⊕ (η3 � η4))

B3 = η⊥3 ⊗ a⊥

B4 = η⊥4 ⊗ (d⊥ ⊕ e⊥).

3. Constraint-based proof construction

A generic, constraint-based proof construction procedure has been proposed for Linear Logic in [3]. Its principles

are recalled here and presented in a way that facilitates their application to the cyclic and non-commutative cases,

presented in the next sections.
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3.1. Outline of the generic approach

One of the objectives of the constraint-based approach to proof construction is to be able to deal with partial

information about the object being constructed. This object is therefore not a ground proof, but an “abstract proof”

describing a non-empty set of ground proofs derived from a common pattern. Typically, an abstract proof consists

of a tree structure, labelled by pairwise distinct variable identifiers, called its main variables, together with a set of

constraints linking these variables. The constraints are collected during the proof construction process. They may

involve side variables that do not explicitly appear as labels of the tree. The main variables range over the set of

ground sequents, so that each solution of the equation system corresponds exactly to one ground proof, obtained by

replacing in the tree each main variable by the sequent assigned to it in the solution. The set of ground (or “concrete”)

proofs attached to an abstract proof can therefore be identified to the set of solutions of its equation system.

3.1.1. An elementary case: Equations on first-order terms

Consider, in a traditional logic programming setting, a fixed set of Horn clausesP (the program). Proof construction

in that case can be performed in a simplified sequent system Σh [P], similar to the bipolar sequent calculus, which

makes apparent the only relevant choices made during the construction (that of a clause from P at each step).

Essentially, the sequents inΣh [P] are ground atoms, and the inference rules are labelled by clauses ofP . For example,

the clause D = ∀x, y, q(x, y)∧ r(g(y)) ⊃ p( f (x)) yields the inference figures

q(u, v) r(g(v))
D

p( f (u))

for any pair of ground terms u, v.

But the construction procedure never manipulates ground proofs built from these inferences, because that would

require choices for ground terms u, v to instantiate x, y which may be irrelevant. Instead, it manipulates abstract

proofs, built from abstract inferences encoding only the relevant information needed to perform the inference. Abstract

inferences are also labelled by the clauses of P , but their sequents are now variables, constrained by the inference.

Thus clause D yields the abstract inference

X1 X2
D

X

where X, X1, X2 are variables, called the main variables, ranging over sequents (here ground atoms), and constrained

by the following equations:

X = p( f (x �))

X1 = q(x �, y �)

X2 = r(g(y �)).

The side variables x �, y � are renamings of the logical variables x, y of the clause. They must be fresh (i.e., not used

elsewhere in the equation system) and range over ground first-order terms. It is easy to see in that case that:

– each abstract proof defines a set of concrete proofs obtained by solving its equation system;

– each concrete proof can be obtained as a solution of the equation system of an abstract proof.

This means that proof construction can be performed in the abstract system rather than the concrete one, the only

condition being that, at any stage in the construction, one must be able to compute all the solutions of the equations

of the abstract proof constructed so far, and there must be at least one such solution. In the case of the abstract version

of system Σh [P] above, at any point in the construction, the overall system will contain, for each main variable X ,

exactly one equation X = a, where X occurs as conclusion (except if X is a leaf) and exactly one equation X = b,

where X occurs as premise (except if X is the root). Such pairs of equations reduce to a = b. We therefore have to

solve sets of equations on first-order terms.

The purpose of a resolution procedure is to enumerate the set of solutions of a given equation system. In most cases,

we cannot expect this set to be finite: for example, the equation x = f (y) obviously has infinitely many solutions

on ground first-order terms. Now, if infinite enumerations are allowed, however complex the equations are, so long

as their variables range over countable domains, there is always a trivial procedure, also known as “generate and
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test”, to enumerate all the solutions: it consists of enumerating all the possible assignments of the variables (e.g., all

the ground first-order terms for each variable), testing each time if they satisfy the equations. It is clear that such a

procedure would not qualify as a resolution procedure. In the case of equations on first-order terms, there exists a

“true” resolution procedure, which shifts paradigm from “generate and test” to “simplify and generate”, as is usual in

constraint programming. It proceeds in two phases, called Simplification and Generation, described below.

Notation: in the sequel, E denotes a multiset of equations; the semi-colon simply denotes multiset union on

equations systems; the equation system obtained from E by substituting a variable x by a term t is denoted (x := t)E .

– With equations on first-order terms, the Simplification phase is also known as Unification. It aims to simplify

the equation system into a so-called solved form. A system is in solved form if it contains only equations of the

form x = t , where x is a variable and t is a term possibly containing variables, with no two equations having the

same left-hand side. Intuitively, it is obvious that a system of this kind has a solution, and also that its solutions

could be enumerated. Simplification proceeds by rewriting the equation system, according to the usual rules of

Unification [15]:

[ f (t1, . . . , tn) = g(u1, . . . , um)]; E −→ DEADEND if f and g are distinct function symbols

[ f (t1, . . . , tn) = f (u1, . . . , un)]; E −→ [t1 = u1]; . . . ; [tn = un]; E

[x = t]; E −→ DEADEND if x occurs inside t

[x = t]; E −→ [x = t]; (x := t)E if x does not occur inside t and occurs in E

where f and g are any function symbols of respective arities n and m.

– Generation proceeds from systems in solved form as obtained at the end of the Simplification procedure (when

it does not fail) and aims to produce complete solutions, i.e., systems in which the equations are all of the form

x = u, where x is a variable and u a ground term, with, of course, no two equations with the same left-hand side.

Generation also proceed by rewriting the equation systems, but its rewriting steps may be non-deterministic (unlike

the Simplification steps), which means that they may transform an equation system into a (possibly infinite) set of

new, alternative equation systems. Thus, an equation system E in solved form, containing a first-order variable x

not occurring in any left-hand side, rewrites into a set of alternative equation systems, with one alternative for each

arbitrary choice of ground term t , yielding the equation system (x := t)E . This is denoted as follows:

E −→

�
�
�
�
�
�

→ · · ·

→ (x := t)E

→ · · · .





one alternative for each ground term t

By combining Simplification (here, unification) and Generation (here, simple arbitrary instantiation of the variables

that were not assigned during the unification), we obtain a complete procedure for the resolution of equations over

first-order terms. In what sense is it “better” than the trivial resolution procedure based on a “generate and test”

approach? We address this question in the next section, in the wider context of arbitrary constraint systems, beyond

equations on first-order terms, since, in our context of proof construction, the constraints attached to abstract proofs

can be of any type. This is non-trivial, as the notion of a system in “solved form”, which constitutes the articulation

between Simplification and Generation in the case of equations on first-order terms, does not generalise easily to

arbitrary constraints.

3.1.2. Constraint solving: General properties

In the sequel, we are going to manipulate constraint systems, in exactly the same way as in the example above,

except that we are going to deal with more complex constraints than equations between first-order terms. As above,

the constraints will be collected from the abstract proof built by the proof construction process, and will involve main

variables ranging over sequents and, possibly, other side variables. The resolution procedure will also consist of two

phases, both described by possibly non-deterministic rewriting steps on constraint systems, and designed in such a

way as to never mimic the “generate and test” approach to constraint resolution. Since the rewriting steps can be

non-deterministic in both phases, resolution builds a tree (or “tableau”) of constraint systems. The nodes of such a

tableau, labelled by the constraint systems, are called states. A state is said to be open if it has not been expanded yet.

The output of the resolution procedure is a tableau T which must satisfy the following requirements:

– The root state of T is labelled with the input constraint system.
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Fig. 2. The two phases in the resolution procedure.

– Preservation: Each expansion of a state in T must preserve the set of solutions. In other words, restricted to the

main variables, the set of solutions of the constraint system at one non-open state of T must be equal to the union

of the sets of solutions of the constraint systems at each of its successors.

– Resolution: The open states (leaves) of T must be labelled with constraint systems in fully solved form, i.e.,

containing only constraints of the form X = c, where X is a main variable and c is a ground sequent, which thus

define a complete solution.

– Termination: T must have a finite depth, meaning that the resolution procedure performs only bounded sequences

of rewriting steps to reach any of the solutions. However, T may be of infinite width, meaning that some of the

choices at the non-deterministic steps may involve infinitely many alternatives.

The two phases of the procedure have different properties:

– The “Simplification” phase starts from the root state and must yield a finite tableau, the open states of which are

all consistent. Given the Termination property (bounded depth), being finite means that all the choices performed

during that phase involve only finite alternatives (bounded width).

– The “Generation” phase continues the expansion of the tableau after the Simplification phase, but all the states

created during this phase must be consistent. Since the Simplification phase produces only consistent open states,

this means that the Generation never explores alternatives that lead to an inconsistency (no dead-end).

These two phases are illustrated in Fig. 2. The main advantage of this approach, compared to the “generate and test”

approach, is that it provides a decision procedure for the consistency of the input constraint system. Indeed, the

consistency of the root state is decided by the existence of an open state at the outcome of the Simplification phase,

and this phase explores only finitely many alternatives. Conversely, in the “generate and test” approach, decision can

only be made after all the alternatives have been explored, and there are typically infinitely many alternatives. In other

words, the Simplification phase retains only the minimal choice points that are needed for the decision and postpones,

to the Generation phase, all the non-essential choices. Observe here, again, the lazy construction principle at work,

which motivates our whole approach.

Another advantage of the “simplify and generate” approach, which will appear below, is that it is fully incremental.

Indeed, suppose that we have built the tableau for a given constraint system at the root (in practice, we only build the

Simplification tableau — which is finite), and that we add new constraints at the root. The new tableau need not be re-

computed from scratch, but can be derived from the old one by adding new branches and propagating new constraints

at each node. In the perspective of a proof construction process, which continuously feeds new constraints, this is
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essential. Conversely, with a “generate and test” approach, incrementality is impossible, since each test is performed

on completely defined objects and needs to be re-done for each new object.

It is easy to check that the Simplification and Generation procedures described in Section 3.1.1 in the case of

equations on first-order terms satisfy the required properties. Note however that, unlike unification, which involves

rewriting steps with only one or zero alternatives (zero in case of failure), Simplification steps in general can involve

an arbitrary (but finite) number of alternatives. The Generation phase, on the other hand, may explore an arbitrary

(possibly infinite) but non-null number of alternatives at each step, as in the case of equations on first-order terms.

3.2. Abstract proofs in the focussing bipolar sequent calculus

We now apply the generic constraint-based approach outlined in Section 3.1 to the focussing bipolar sequent

calculus Σ [F ] defined in Section 2.6, for some given set F of bipoles. Obviously, the intention is that F is the

Universal program of Theorem 2.6, but we do not need this assumption here, as it appears that the specific form of the

bipoles is irrelevant to the procedure. In the sequel, we take bipole to mean a bipole of F and the inferences of Σ [F ]

are called concrete inferences.

Places and sort conventions for variables

We first need to make the support sets in the concrete inferences explicit. For this, we choose a countably infinite

set of places, and we assume that the support set of any order and order variety in concrete proofs is a (finite) set of

places. Thus, places stand for formula occurrences, and we assume that each place u has a type, which is the formula

that it holds. We write u : F to mean that place u is of type F , i.e., u is an occurrence of formula F . As usual, it is

assumed that, for any formula F , there are infinitely many places of type F .

In order to define abstract inferences, we make use of sorted variables, taken from a countably infinite set of

variables. The sort of a variable is either: place, order or order variety. For simplification purpose, we choose variable

names so that their sort is implicit: except when stated otherwise, z (possibly subscripted as in z1, z2, z3, z
�, z��. . . )

denotes a variable ranging over places, Y (possibly subscripted) denotes a variable ranging over orders, and X

(possibly subscripted) denotes a variable ranging over order varieties. A solution of a constraint system is an

assignment of all the variables to entities of the corresponding sort (i.e., places for place variables, orders for order

variable, etc.). We use the letter σ (possibly subscripted) to denote such variable assignments.

We first define, for each formula F , a set ||F || of orders on occurrences of subformulas of F obtained by replacing

in the topmost negative layer of F each connective� by �, each connective� by <, and by replacing each connective

� by one of its arguments. Formally:

Definition 3.1 (Orders Associated to a Formula). The set of orders associated with a formula F is the set ||F || of

orders on occurrences of formulas defined inductively as follows:

||F1 � F2|| = {ω1 � ω2 such that ω1 ∈ ||F1|| and ω2 ∈ ||F2||}

||F1 � F2|| = {ω1 < ω2 such that ω1 ∈ ||F1|| and ω2 ∈ ||F2||}

||F1 � F2|| = ||F1|| ∪ ||F2||

||⊥|| = {�}

||�|| = ∅

||F || = the singleton consisting in the unique order on {F} in all the other cases.

Note that, by definition of monopoles and bipoles, we have:

– if F is a monopole, then the orders in ||F || involve only occurrences of negative atoms;

– if F is a bipole, then the orders in ||F⊥|| involve only occurrences of duals of either positive atoms or monopoles.

Definition 3.2 (Abstract Inference). An abstract inference is of the form

· · · Xi,τ · · ·
F, ω

X
(1)
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where X and the Xi,τ are the main variables (which range over order varieties and are assumed to be distinct), F is a

bipole, ω ∈ ||F⊥||, and the premises Xi,τ form a family indexed by:

– i ∈ |ω| such that i : G⊥ and G is a monopole,

– τ ∈ ||G||.

The constraint system attached to such an abstract inference expresses that the variables X, Xi,τ can only be

assigned order varieties which, when substituted in the abstract inference, yield a concrete inference labelled by

F and ω.

Definition 3.3 (Constraint System Attached to an Abstract Inference). The constraint system attached to the abstract

inference (1) is built as follows.

– Introduce one side variable Yi ranging over orders for each place i in |ω|, and add the conclusion constraint1:

X ⊆ ω((Yi )i∈|ω|)

The variables Yi are assumed to be distinct.

– For each place i in |ω|, we know that the type of i is the dual of either a positive atom or a monopole.

. If the type of i is the dual of a positive atom a⊥, then introduce a fresh variable zi ranging over places and add

the terminal premise constraint:

Yi = zi , zi : a

. If the type of i is the dual of a monopole G, then, for each order τ in ||G||, add the non-terminal premise

constraint:

Xi,τ = τ ∗ Yi

In the case of a terminal premise constraint, the notation Y = z is a slight abuse, since the two variables do not have

the same sort and hence do not range over the same objects; what is meant is in fact that Y is the (unique) order on

the singleton support set {z}. It is often convenient to even omit the place variable z and the type constraint z : a, and

write directly Y = a.

Observe the different treatments between positive and negative atoms in the bipoles: positive atoms are assigned

place variables, while negative atoms are directly assigned places (because their places can be arbitrarily chosen). The

resolution procedure matches positive atoms with negative ones, thus instantiating the corresponding place variables.

Definition 3.4 (Abstract Proof ). An abstract proof is a tree built in the usual way by assembling abstract inferences.

The constraint system attached to an abstract proof is the conjunction of the constraint systems attached to its

inferences, in which the side variables are renamed apart so as to be all distinct. Furthermore, the orders τ occurring in

the non-terminal premise constraints Xi,τ = τ ∗Yi are assumed to have pairwise disjoint support sets; this is harmless,

as places can be renamed.

Note that all the main variables range over order varieties, while all the side variables range over orders.

Example 3.5. Consider the bipole

F = p⊥
����
1

⊗

�

(a � ((b � c) � (b� � c�))
� �� �

2

)� q⊥
����
3

�( r⊥����
4

⊗(d � e� �� �
5

))

�

.

Then ||F⊥|| consists of a single order:
�

((d � e� �� �
5

)⊥ � ( r⊥����
4

)⊥) < ( q⊥
����
3

)⊥ < (a � ((b � c) � (b� � c�))
� �� �

2

)⊥
�

� ( p⊥
����
1

)⊥.

1 Here, we slightly abuse notation, by identifying any order variety α (here ω) with the function that maps any family indexed by |α| of orders
into the order variety obtained by substituting in α each place by the corresponding order in the family.
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Hence we introduce five distinct side variables Y1,Y2,Y3,Y4,Y5, and the constraints become:

X21 X22 X5

X






X ⊆ ((Y5 � Y4) < Y3 < Y2) � Y1
Y1 = p

X21 = Y2 ∗ a � (b < c)

X22 = Y2 ∗ a � b� � c�

Y3 = q, Y4 = r

X5 = Y5 ∗ (d < e).

Variables X21 and X22 are the two premises indexed by the subformula numbered 2 in F and the two orders computed

from it:

||a � ((b � c) � (b� � c�))|| = {a � (b < c), a � b� � c�}.

The following theorem, which may be shown by a straightforward induction on F , states that abstract proofs are

indeed abstract representations of the concrete proofs.

Theorem 3.6. Let F be a bipole and α1, . . . , αn , α be order varieties. The concrete inference

α1 · · · αn
Fα

is in the focussing bipolar sequent calculus if, and only if, for some ω ∈ ||F⊥||, the assignment X = α; (Xi = αi )
n
i=1

is a solution (in the main variables) of the constraint system attached to the abstract inference

X1 · · · Xn
F, ω.

X

4. Constraint resolution algorithms for non-commutative logic

We now come to the problem of defining a resolution algorithm for the constraint systems generated by proof

construction in the focussing bipolar sequent calculus (and hence, indirectly, in non-commutative logic). Such an

algorithm can be used to ensure that the constraint system at any stage in the construction is consistent. This algorithm

is an instance of the generic method presented in Section 3.1.2. It therefore consists of a non-deterministic rewriting

procedure building a tableau of constraint systems, with two distinct phases of Simplification and Generation, and

satisfying the properties of Preservation, Resolution and Termination. For presentation purpose, we first recall the

algorithm in the commutative case viewed here as a fragment of non-commutative logic. We then show that a similar

approach applies to the other important fragment: cyclic logic. Unfortunately, the method does not extend easily to

the whole system, and we propose a different algorithm capable of dealing with the whole system.

Although we have presented here the sequent calculus in the propositional case only, the algorithms presented

below work just as well in the first-order case. A complete treatment of the first-order commutative case is given

in [3]. It extends directly to the algorithms presented below, both in the cyclic and full non-commutative cases.

Indeed, all these algorithms essentially work by matching positive occurrences with negative occurrences of atoms,

producing equations of the form [a = b] between atoms. In the propositional case, such equations either disappear

immediately, if a and b are actually the same atom, or generate a failure (DEADEND) otherwise. In the first-order

case, the atoms may contain variables ranging over first-order ground terms, introduced by existential quantification,

and these equations are treated by the unification procedure recalled in the Section 3.1.1. The treatment of universal

quantification is based on the ideas of [16,6,20] and slightly alters the unification procedure to account for so-called

eigen-variables. The interested reader is referred to [3] for a complete description which, again, applies just as well

here. Note that the easiness with which the first-order case is accounted for should not come as a surprise: the whole

method presented here elaborates on the notion of unification (more generally constraint solving), which is an intrinsic

first-order mechanism.

4.1. The degenerated cases: Commutative and cyclic logic

In both the commutative and cyclic fragments, the resolution algorithm is particularly simple, because it is possible

to actually reduce the constraints when matching positive and negative occurrences of atoms, by simply removing
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these occurrences. In both cases, the Simplification procedure propagates information downwards in the abstract

proof, while the Generation procedure propagates information upwards. The finiteness of the proof ensures that both

procedures are bounded (in steps, but of course the Generation procedure makes unbounded choices).

4.1.1. The commutative case

We first consider the commutative fragment of non-commutative logic, where formulas use no multiplicative

connectives other than the commutative ones:⊗,�. When F is a formula in this fragment, ||F || contains orders of the

form F1 � · · · � Fn , which we write, to simplify, F1 · · · Fn (omitting the symbol �, implicitly associative commutative).

Here, both order varieties and orders simplify to multisets.

For a given bipole F , the conclusion constraint X ⊆ ω(Y1, . . . ,Ym) becomes in fact a multiset equality

X = Y1 · · · Ym (indeed, remember that the inclusion concerns the structure, which is here void, not the support

sets, which must be equal). Using commutativity, it is always possible to assume that the terminal premise constraints

concern the last p side variables Yn+1, . . . ,Yn+p (where n+ p = m). They are of the form Yn+1 = a1, . . . ,Yn+p = ap

and can be directly reported in the conclusion constraint. It becomes X = ∆Y1 · · · Yn , where ∆ is the multiset

a1, . . . , ap . The side variables Y1, . . . ,Yn on the other hand correspond to monopoles of F . For each such monopole

G and each order τ in ||G||, there is a main variable X � together with the non-terminal premise constraint X � = τ ∗Y ,

which, again, becomes the multiset constraint X � = ΓY (where Γ is the multiset τ ).

Each main variable X which is both the conclusion of an abstract inference and the premise of another

· · ·

· · ·
� [X = ∆Y1 · · · Yn]

X · · ·
� [X = ΓY ]

· · ·

thus leads to two constraints X = ΓY = ∆Y1 · · · Yn . The system can first be solved in the side variables only, using

the constraints of the form ΓY = ∆Y1 · · · Yn . The solutions in the main variables are then straightforwardly derived

using the constraints of the form X = ΓY .

The resolution algorithm for such constraint systems has been completely described in [3]. It deals with (oriented)

constraints of the following general form2:

Γ Z1 · · · Zm = ∆Y1 · · · Yn

where Y1, . . . ,Yn, Z1, . . . , Zm are side variables ranging over multisets of atoms and Γ ,∆ are multisets of atoms.

The orientation follows that of the proof: the variables in the left-hand side of a constraint are attached to an inference

that is just below the inference to which the variables in the right-hand side are attached. The Simplification phase

aims to reduce the system to a system of “generators”, which are constraints of this form in which ∆ is empty and

n ≥ 1. The Generation phase then uses these generators to produce all the solutions of the system.

– Simplification procedure: main rule

[Γ Z1 · · · Zm = ∆aY1 · · · Yn]; E

−→

�
�
�
�
�
�
�
�
�
�
�

→ · · ·

→ [Γ �Z1 · · · Zm = ∆Y1 · · · Yn]; [a = b]; E

→ · · ·





(i)

→ · · ·

→ [Γ Z1 · · · Z
�
j · · · Zm = ∆Y1 · · · Yn]; (Z j := aZ �j )E

→ · · ·





(ii)

with (i) one output state for each b such that Γ = b,Γ � and (ii) one output state for each j = 1, . . . ,m, introducing

a fresh side variable Z �j .

Thus, each element a of∆ is sent either onto an element b of Γ (triggering the unification a = b with potential

failure) or into Z j for some j = 1, . . . ,m, in which case Z j must be of the form aZ �j . Obviously, there are finitely

many alternatives for that choice.

2 It is easier to formulate the algorithm in the general case, although, in the case that we are dealing with, we always have m = 0, 1.
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– Simplification procedure: other rules

[Γ Z1 · · · Zm = �]; E −→ DEADEND if Γ is non-empty

[�Z1 · · · Zm = �]; E −→ (Z1 := �) · · · (Zm := �)E

– Generation procedure: if n ≥ 1 and Z1, . . . , Zm do not occur in E on a right-hand side

[Γ Z1 · · · Zm = �Y1 · · ·Yn]; E −→

�
�
�
�
�
�

→ · · ·

→ (Yi := ∆i )
n
i=1(Z j := Γ j )

m
j=1E

→ · · ·





(i)

with (i) one output state for each arbitrary choice of multisets Γ1, . . . ,Γm and each multiset partition∆1, . . . ,∆n

of ΓΓ1 · · ·Γm . Thus, Generation works just as Simplification, but in a reverse direction: each element of ΓΓ1 · · ·Γm

is sent into Yi for some i = 1, . . . , n. Note that, assuming n ≥ 1, there is always a finite but non-null number of

ways to partition any given multiset into n pieces. The case n = 0 would make the partition impossible, but has

already been treated in the Simplification and hence cannot occur here. Note also that, if m ≥ 1, there are infinitely

many alternatives for the choice of am-uple of multisets, and a single one if m = 0 (in fact, with constraint systems

coming from abstract proofs, m is always either 0 or 1).

It is shown in [3] that the Simplification phase produces a finite tableau with no inconsistent open states, that the

Generation phases produces only consistent states, and that the overall resolution procedure satisfies the expected

properties (Preservation, Termination, Resolution). All these properties hold only if the initial constraint system is

obtained from an abstract proof, ensuring a certain regularity in the shape of the system (see [3] for a precise definition

of “regularity”): the resolution algorithm defined here is not a general multiset constraint resolution procedure. In

particular, with regularity, the Simplification procedure propagates information downwards in the (finite) abstract

proof, so that the output tableau is always bounded by the size of the abstract proof.

4.1.2. The cyclic case

We now consider the cyclic fragment of non-commutative logic, where the bipoles involve no multiplicative

connectives other than the non-commutative ones: �, �. When F is a formula in this fragment, ||F || contains orders

of the form F1 < · · · < Fn , which we write, to simplify, F1 · · · Fn (omitting the symbol < implicitly associative

non-commutative). Here, orders are simple lists, while order varieties are cycles. If ω is a list, ω is the corresponding

cycle (obtained by joining the two ends of the list).

For a given bipole F , the conclusion constraint X ⊆ ω(Y1, . . . ,Ym) becomes in fact a cycle equality X = Y1 · · ·Ym .

However, unlike the commutative case, it is not possible here to group together the side variables corresponding to

terminal premise constraints. Instead, one obtains constraints of the form:

X = ΓY = ∆1Y1 · · ·∆nYn

where Γ ,∆1, . . . ,∆n are lists of atoms (each ∆i , possibly empty, accounting for the possible presence of side

variables corresponding to terminal premise constraints before each side variable corresponding to a non-terminal

premise constraint). The first step in the Simplification procedure reduces equalities on cycles to equalities on lists:

[ΓY = ∆1Y1 · · · a∆iYi · · ·∆nYn]; E

−→

�
�
�
�
�
�
�
�

→ · · ·

→ [Γ ��YΓ
� = ∆iYi · · ·∆nYn∆1Y1 · · ·∆i−1Yi−1]; [a = b]; E

→ · · ·





(i)

→ [Y ��ΓY � = ∆iYi · · ·∆nYn∆1Y1 · · ·∆i−1Yi−1]; (Y := Y �aY ��)E
�
(ii)

with (i) one output state for each b such that Γ = Γ
�bΓ �� and (ii) one output state introducing fresh side variables

Y �,Y ��.

Thus, an arbitrary element a of∆1, . . . ,∆n is sent either onto an element b of Γ producing the constraint [a = b]

or into Y , which must in that case be of the form Y �aY ��. Note that the choice of a, although arbitrary, is always

possible, since ∆1, . . . ,∆n cannot be empty. This is due to the fact that bipoles always contain at least one positive

atom.
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After the initial step, the resolution algorithm manipulates (oriented) constraints of the form

Γ1Z1 · · ·Γm ZmΓ = ∆1Y1 · · ·∆nYn

where Z1, . . . , Zm,Y1, . . . ,Yn are side variables ranging over lists of atoms, and Γ1, . . . ,Γm ,∆1, . . . ,∆n are

lists of atoms. The resolution algorithm for such constraint systems is similar to that in the commutative

case.

– Simplification procedure: main rule

[Γ1Z1 · · ·ΓmZmΓ = �Y1 · · · �Yi−1a∆iYi · · ·∆nYn]; E

−→

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

→ · · ·

→ [Γ1Z1 · · ·Γ j−1Z j−1Γ
�
j = �Y1 · · · �Yi−1]; [Γ

��
j Z j · · ·Γm ZmΓ = ∆iYi · · ·∆nYn];

[a = b]; E

→ · · ·





(i)

→ · · ·

→ [Γ1Z1 · · ·Γ j Z
�
j� = �Y1 · · · �Yi−1]; [�Z

��
jΓ j+1Z j+1 · · ·ΓmZmΓ = ∆iYi · · ·∆nYn];

(Z j := Z �j aZ ��j )E

→ · · ·






(ii)

with (i) one output state for each j = 1, . . . ,m and each b such that Γ j = Γ
�
j bΓ

��
j , and (ii) one output state for

each j = 1, . . . ,m, introducing fresh side variables Z �j , Z
��
j .

Thus, again, each element a of ∆1 · · ·∆n is sent either onto an element b of Γ j (for some j = 1, . . . ,m,

triggering the unification a = b with potential failure) or into Z j (for some j = 1, . . . ,m), in which case Z j must

be of the form Z �j aZ ��j .

– Simplification procedure: other rules

[Γ1Z1 · · ·ΓmZmΓ = �]; E −→ DEADEND if Γ1 · · ·ΓmΓ is non-empty

[�Z1 · · · �Zm� = �]; E −→ (Z1 := �) · · · (Zm := �)E

– Generation procedure: if n ≥ 1 and Z1, . . . , Zm do not occur in E on a right-hand side

[Γ1Z1 · · ·ΓmZmΓ = �Y1 · · · �Yn]; E −→

�
�
�
�
�
�

→ · · ·

→ (Yi := ∆i )
n
i=1(Z j := Γ

�
j )

m
j=1E

→ · · ·





(i)

with (i) one output state for each arbitrary choice of lists Γ
�
1, . . . ,Γ

�
m and each list partition∆1, . . . ,∆n of

Γ1Γ
�
1 · · ·ΓmΓ

�
mΓ .

Following exactly the same kind of argument as in [3], it can be shown that the Simplification phase produces a

finite tableau with consistent open states (if any), that the Generation phases produces only consistent states, and

that the overall resolution procedure satisfies the expected properties (Preservation, Termination, Resolution). Again,

this assumes that the initial constraint system is obtained from an abstract proof, not just any constraint system on

lists.

4.2. The general case

4.2.1. The problem

In the general case, the situation is much more complex than in the previous cases, for two reasons:

– The general position of a point in a series–parallel order structure is more difficult to capture than in the case of

multiset and list structures. Indeed, in the multiset case, a ∈ Γ iff there exists a multiset Γ1 such that Γ = aΓ1;

and in the list case, a ∈ Γ iff there exist lists Γ1,Γ2 such that Γ = Γ1aΓ2. This property is essential to the proper

execution of the Simplification procedure. In the case of order structures, we would like to have, similarly, a fixed

order τ such that a ∈ |ω| iff there exist a family of orders (ωi )i=1,...,n and ω = τ (a, ω1, . . . , ωn). Unfortunately,

there is no such fixed τ .
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– Furthermore, in the multiset case, the resolution of the constraint systems has a monotonicity property, in the sense

that, if a constraint ΓY = ∆Y1 · · · Yn has a solution σ , i.e., Γσ(Y ) = ∆σ(Y1) · · · σ(Yn), then any constraint

Γ
�Y = ∆Y1 · · · Yn , where Γ ⊆ Γ

� also has solutions that coincide with σ on Γ , obtained by arbitrarily distributing

the elements of Γ
� that are not in Γ among σ(Y1) · · · σ(Yn). This is exactly how the Generation procedure

works, to build complete solutions from the partial ones obtained at the outcome of the Simplification procedure.

Monotonicity also holds in the case of lists. In the case of arbitrary orders, we would need to infer solutions of

ω� ∗ Y ⊆ α(Y1, . . . ,Yn) from any solution of ω ∗ Y ⊆ α(Y1, . . . ,Yn) whenever ω
��|ω| = ω. This is unfortunately

impossible, as shown by the following example. Consider the system

a � (b < c) ∗ Z = X ⊆ (c < a) � b � Y .

After matching the atoms, we obtain a solution where Z = Y = �. However, if we modify the constraint by

expanding its left-hand side with a single atom, preserving the existing order, we obtain

(d < a) � (b < c) ∗ Z = X ⊆ (c < a) � b � Y

which has no solution, since the triple (d, b, c) is in the left-hand side, but d must be in |Y | and the triple (d, b, c)

is not in the right-hand side. The importance of this problem in the Generation procedure is illustrated in Example

(iv) of Section 4.5.

4.2.2. Weakening of negative formulas

In the multiset and list cases, the monotonicity property ensures that Simplification only needs to deal with atoms

that appear as a focus in the abstract proof: the other atoms cannot cause problems, once in the Generation procedure.

Although, as shown above, this monotonicity property does not hold in NL, it holds in an “affine” version of NL in

which the weakening rule is allowed when the introduced formula is negative:

ω W, if A negative
ω ∗ A

It is a structural rule, just as entropy, and, like entropy, it can always (by permutation) be incorporated into the

focussing inference rule. Observe that the weakening rule applies only to negative formulas, very much as in polarised

LL [13]. This means that it is not allowed to cancel focalised formulas (which are positive). In a proof construction

perspective, this is essential, otherwise any bipole would be applicable in any sequent.

This slightly alters the side condition on the focussing inference rule in the focussing sequent calculus: instead of

requiring α ⊆ ω ∗ A, we now have α � ω ∗ A, where the � relation is defined as follows.

Definition 4.1. Let α, β be order varieties: α � β if and only if |β| ⊆ |α| and α�|β| ⊆ β.

The condition |β| ⊆ |α| characterises weakening, while α�|β| ⊆ β characterises entropy.

The bipolar sequent calculus is similarly modified: in Definition 2.3, the condition α ⊆ ω (third bullet) is simply

replaced by α � ω. Finally, the constraint system attached to an abstract inference is modified only for the conclusion

constraint, which becomes:

X � ω((Yi )i∈|ω|)

It is now obvious that monotonicity holds with constraint systems of this form, since the extended constraint can

always be solved by cancelling the added points.

4.2.3. Decomposition of the constraints

In order to solve the first problem mentioned above, each constraint on order varieties is first decomposed into

two constraints: one in terms of support set information (elements of the support set) and one in terms of ordering

information (pairs or cyclic triples of the graph).

– Non-terminal premise constraints of the form X = ω ∗ Y become:

|X | = |ω| + |Y | (2)

X = ω + ω|Y | + |ω|Y + Y . (3)
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– Conclusion constraints of the form X � α(Y1, . . . ,Yn) where α is a variety (say over {1, . . . , n}: here, the specific

places used by α are irrelevant) become

|X | ⊇
�

i

|Yi | (4)

X��
i |Yi | ⊆

�

i

Yi +
�

i �= j

|Yi |Y j +
�

α(i, j,k)

|Yi ||Y j ||Yk |. (5)

In the case of non-commutative logic, it is not possible, as in commutative and cyclic logic, to express the Resolution

procedure as rewrite rules directly on constraint systems of the initial form above. Instead, the rewrite rules describe

transformations on multisets of “infons” which are constraints of a more general form. Apart from constraints of the

initial form, there are three types of infons, expressing constraints on, respectively, places, support sets and ordering.

The place infons allow us to instantiate place variables with corresponding places. They are the exact counterpart of

the matching of a right-hand side atom into the left-hand side in the commutative and cyclic case. They trigger the

unification of the corresponding type formulas. The resolution procedure propagates the support set infons exactly as

in the commutative and cyclic cases, i.e., downwards in the Simplification procedure and upwards in the Generation

procedure. The ordering infons are also propagated, but in the opposite directions.

In fact, the rewriting steps in the resolution algorithm act on states consisting of two multisets �C,H� of infons:

the idea is that H acts as a journal logging the infons obtained so far, i.e., the initial constraints plus all the infons

produced by rewriting steps before the current state on the same branch of the tableau, while C contains those infons

of H that are available for consumption by the further rewrite rules. Thus, although the multiset H always grows, its

submultiset C is modified destructively, so that the rewriting procedure eventually terminates. A solution at a state

�C,H� will be an assignment of the variables satisfying all the infons inH (and hence in C).

We use the following notation to denote the rewrite rules:

C when C0 −→

�
�
�
�
�
�

→ · · ·

→ Ci with θi
→ · · ·

where C,C0,Ci are multisets of infons and θi is a renaming of the place variables. Each of the clauseswhen andwith

can be omitted. The corresponding rewrite rule is

�C + C,H� −→

�
�
�
�
�
�

→ · · ·

→ θi�C + Ci ,H+ Ci �

→ · · ·

for any multisets C and H such that H contains each of the infons of C0, and, if C is empty, H does not contain any

of the Ci (this prevents the rules in that case from applying indefinitely). The operator+ stands for multiset union.

4.3. The Simplification procedure

Definition 4.2 (Infon). The infons manipulated by the Simplification procedure are of the following form:

Place infons: [z = u]

Support set infons: [z ∈ |X |]; [z ∈ |Y |]

Ordering infons: [X (z1, z2, z3)]; [Y (z1, z2, z3)]; [Y (z1, z2)]

where z, z1, z2, z3 are variables ranging over places, u is a place, X is a main variable (ranging over order varieties)

and Y is a side variable (ranging over orders).

Note that, since all the ternary relations that we consider are cyclic, we do not distinguish between the infons

[X (z1, z2, z3)] and [X (z2, z3, z1)] (and similarly for Y ). Let E be the constraint system obtained from an abstract

proof, the Simplification procedure starts with a single state labelled by the pair �∅, E�. It then proceeds by applying

the rewrite rules of Fig. 3.

Rules SP and SC propagate support set infons, in essentially the same way as in the commutative or cyclic case,

i.e., downwards in the abstract proof tree. Rule SP is the only one that has multiple output states. It sends each place
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� For each premise constraint X = ω ∗ Y

SP: [z ∈ |X |] −→

�
�
�
�
�
�
�
�
�
�
�
�
�

→ · · ·

→ [a = b], [z = u]

→ · · ·






one output state for each u ∈ |ω|

with typing constraints z : a u : b

such that ∀z� [z� = u] �∈ H

→ [z ∈ |Y |]

→ · · ·

→ [a = b] with z := z�

→ · · ·






one output state for each [z� ∈ |Y |] ∈ H

with typing constraints z : a z� : b

such that [z� ∈ |X |] �∈ H

OP1: when [z1 = u1][z2 = u2][z3 = u3] where (u1, u2, u3) ∈ ω −→ [X (z1, z2, z3)]

OP2: when [z1 = u1][z2 = u2][z3 ∈ |X |][z3 ∈ |Y |] where (u1, u2) ∈ ω −→ [X (z1, z2, z3)]

OP3: when [z1 = u1][z2 ∈ |X |][z3 ∈ |X |][Y (z2, z3)] where u1 ∈ |ω| −→ [X (z1, z2, z3)]

OP4: when [z1 ∈ |X |][z2 ∈ |X |][z3 ∈ |X |][Y (z1, z2, z3)] −→ [X (z1, z2, z3)]

� For each conclusion constraint X � α(Y1, . . . ,Yn)

SC: [z ∈ |Yi |] −→ [z ∈ |X |]

OC1: [X (z1, z2, z3)] when [z1 ∈ |Yi |][z2 ∈ |Yi |][z3 ∈ |Yi |] −→ [Yi (z1, z2, z3)]

OC2: [X (z1, z2, z3)] when [z1 ∈ |Yi |][z2 ∈ |Yi |][z3 ∈ |Y j |] where i �= j −→ [Yi (z1, z2)]

OC3: [X (z1, z2, z3)] when [z1 ∈ |Yi |][z2 ∈ |Y j |][z3 ∈ |Yk |] where i �= j �= k �= i and ¬α(i, j, k)

−→ DEADEND

� Structural rules

OV1: when [Y (z1, z2)][Y (z2, z1)] −→ DEADEND

OV2: when [Y (z1, z2)][Y (z2, z3)] −→ [Y (z1, z2, z3)]

� Initialisation: let C be the multiset of infons of the form [z ∈ |Y |] for each terminal premise constraint Y = z.

INIT: −→ C

Fig. 3. Simplification rules.

z of X either into ω or into Y (it is the essential step that is also present in the commutative and cyclic case). When z

is matched with a place u of ω yielding infon [z = u], it is explicitly required that no other place variable is already

matched with u. This ensures linearity. When z is send into Y , there are two possibilities:

– Either the infon [z ∈ |Y |] is generated.
– Or z is identified with another place z� already sent into Y ; in that case, to preserve linearity, it is explicitly required

that z� do not come from the same X as z, i.e., [z� ∈ |X |] does not hold. This is only possible if the bipole

originating the premise constraint X = ω ∗ Y contained an additive connective �, yielding another premise

constraints X � = ω� ∗ Y sharing the same side variable Y . In that case, z� may come from X � by a previous

application of rule SP having produced infon [z� ∈ |Y |].

The same phenomenon occurs in the commutative (and cyclic) case when two constraints

ΓY = ∆aY1 . . .Yn Γ
�Y = ∆

�a�Y �1 . . .Y �m

share the same side variable Y . First, in the second constraint, a� can be sent either into Γ
� or into Y . In the latter case,

Y is identified with a�Y � so that the first constraint becomes Γa�Y � = ∆aY1 . . .Ym . From that, a can either be sent

into Γ or into Y � or matched with a�. These correspond to the three kinds of output states of rule SP, except that, in

the commutative case, the first and third cases do not need to be explicitly distinguished.
Rule INIT starts the propagation of support set infons downwards by turning each terminal premise constraint

Y = z into an infon [z ∈ |Y |] ready for propagation. Rules OP* and OC* deal with ordering infons and propagate
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them upwards, but only when sufficient support set information has been propagated downwards. Finally, rules OV*

ensure that all the orderings respect the axioms of orders and order varieties (in fact, only two of them, since the others

are obtained for free, as shown below).

As the astute reader may have guessed, the names of the rules have not been chosen arbitrarily: the first letter S

or O indicates whether the rule deals with support set infons or ordering infons; the second letter P or C indicates

whether the rule pertains to premise or conclusion constraints.
We now have to show that Simplification satisfies all the “good” properties listed in Section 3.1.2.

Theorem 4.3. Simplification satisfies Termination, Preservation, and produces a finite tableau.

Demonstration:

– Simplification satisfies Preservation: for example, rule SP satisfies Preservation as a direct consequence of (2).

All the other cases are treated similarly: rule SC is justified by (4), rules OP* by (3) and rules OC* by (5). The

structural rules are trivial.
– Simplification satisfies Termination: the argument is very similar to the commutative case; the rewrite rules

propagate information in a uniform direction through the abstract proof tree (towards the root for support set

infons, towards the leaves for ordering infons), and hence all propagations must terminate. Note that the rules

which produce without consuming infons do not threaten Termination, since they cannot apply if their conclusion

has already been produced.
– Simplification produces a finite tableau: obvious, since all the rewrite rules involve only finite choices, and we have

already shown Termination. �

The main difficulty is therefore to show that the open states at the end of the Simplification procedure are consistent.

This is the purpose of the rest of this section, where we assume we are given an open state �.,Ho� obtained at the end

of Simplification. Hence, no further Simplification rule applies to it. In the sequel, we simply write [. . .] to mean that

the infon [. . .] belongs toHo, i.e., has been produced in the sequence of rewriting steps that led to �.,Ho�.

Lemma 4.4. Let P = {u | ∃z [z = u]}. There exists a unique bijection u �→ u̇ from P into a subset of place variables

such that, for all places u and place variables z:

z = u̇ ⇔ [z = u].

Demonstration: This lemma essentially states that the graph of the relation [z = u] is a bijection (from its domain

into its codomain). In other words, we have to show that:

– If [z = u] and [z� = u], then z = z�: this results from the fact that, when a place variable is matched to a place, it

is explicitly required in rule SP that the latter is not already matched by another place variable.
– If [z = u] and [z = u�], then u = u�: this results from the fact that, by construction of the Simplification procedure,

a place variable is never matched more than once since, once it is matched, the propagation of its support set

information is stopped. Special care has to be taken, since distinct place variables can be identified during the

Simplification procedure (3rd group of output states in rule SP), so it may a priori happen that [z = u] and

[z� = u�] are produced and then later z and z� are identified. But that never happens, because it would require that

support set information about z and z� are propagated further down until the identification step, whereas no support

set infon concerning z or z� is propagated after they are matched to u and u�. �

Any structure R on a subset of P (places) can be transported into a structure (abusively written) Ṙ on place variables

via the bijection u �→ u̇. Note that, if ω is any order on places, we have (by simple transport of structure):

˙ω�P = ˙ω�P .

Definition 4.5. Let X be a main variable and Y a side variable. We define the sets of places DX ,DY as well as the

relations Ẋ , Ẏ and Ÿ of arity, respectively, 3, 2 and 3, on place variables as follows:

DX = {z | [z ∈ |X |]} |Ẋ | = DX Ẋ(z1, z2, z3) ⇔ [X (z1, z2, z3)]

DY = {z | [z ∈ |Y |]} |Ẏ | = DY Ẏ (z1, z2) ⇔ [Y (z1, z2)]

|Ÿ | = DY Ÿ (z1, z2, z3) ⇔ [Y (z1, z2, z3)].
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Lemma 4.6. For any main (resp. side) variable X (resp. Y ), the relation Ẋ (resp. Ẏ ) is a series–parallel order variety

(resp. order). Furthermore:

– For any conclusion constraint X � α(Y1, . . . ,Yn), we have Ẋ ⊆ α(Ẏ1, . . . , Ẏn).

– For any premise constraint X = ω ∗ Y , we have Ẋ = ˙ω�P ∗ Ẏ �DX
.

– For any side variable Y , we have Ẏ = Ÿ .

Demonstration: In fact, the rewrite rules of the Simplification phase have been designed exactly to obtain this lemma.

Let X (resp. Y) be the set of main (resp. side) variables X (resp. Y ) such that Ẋ is a series–parallel order variety (resp.

Ẏ is a series–parallel order and Ẏ = Ÿ ). All we need to show is that:

P0: Xo ∈ X , where Xo is the main variable at the root of the abstract proof.

P+: If X ∈ X , then, for any conclusion constraint X � α(Y1, . . . ,Yn), we have Yi ∈ Y and Ẋ ⊆ α(Ẏ1, . . . , Ẏn).

P−: If Y ∈ Y , then, for any premise constraint X = ω ∗ Y , we have X ∈ X and Ẋ = ˙ω�P ∗ Ẏ �DX
.

Indeed, by repeatedly applying these properties upwards in the proof, we obtain that X ∈ X (resp. Y ∈ Y) for all of

the main (resp. side) variables X (resp. Y ), and hence Lemma 4.6.

P0: Observe that, since Simplification propagates ordering infons upwards, no such infon can be obtained for the

main variable Xo at the root of the abstract tree, and hence Ẋo is the empty order variety on DXo , which is

series–parallel. Hence Xo ∈ X .

P+: Now, let X � α(Y1, . . . ,Yn) be a conclusion constraint and assume X ∈ X , i.e., Ẋ is a series–parallel order

variety. We must show that Yi ∈ Y and Ẋ ⊆ α(Ẏ1, . . . , Ẏn).

(i) Let’s first show that DYi ∩ DY j = ∅ for i �= j . Reason by contradiction, and assume that z ∈ DYi ∩ DY j .

Hence [z ∈ |Yi |] and [z ∈ |Y j |], which is only possible if [z ∈ |Yi |] and [z
� ∈ |Y j |] were obtained at some

point and z� was identified with z by application of rule SP at some node X � further down in the proof with

constraint X � = ω� ∗ Y �. Hence, just before the identification, we must be in the following situation:

[z ∈ |Yi |]

SC�

[z ∈ |X |]
... ↓

[z ∈ |X �|]

SP ↓

[z ∈ |Y �|]

[z� ∈ |Y j |]

� SC

[z� ∈ |X |]

↓
...

[z� ∈ |X �|]

↓ SP

{z� := z}
?

Now, the identification {z� := z} (framed on the figure) applies rule SP from [z� ∈ |X �|] when [z ∈ |Y �|],

but explicitly requires that [z ∈ |X �|] is not produced, which is impossible since it is needed to produce

[z ∈ |Y �|]. Contradiction.

(ii) The set DYi is a singleton for at least one i . Indeed, recall that the conclusion constraint X � α(Y1, . . . ,Yn)

was obtained from the positive layer of a bipole, which contains at least one positive atom, which in turns

yields a terminal premise constraint Yi = z for some i = 1, . . . , n. By rule INIT, we get [z ∈ |Yi |], hence

z ∈ DYi . Since propagation of a support set goes downwards, no other infon [. ∈ |Yi |] can be produced, so

that DYi = {z}.

(iii) Let z ∈ |Ẋ |. Hence we have [z ∈ |X |], which must have been obtained by rule SC from [z ∈ |Yi |] for some

i , hence z ∈ DYi . Thus, |Ẋ | ⊆
�

i DYi . The converse inclusion is shown in a similar way.

(iv) Consequently, (DYi )i=1,...,n, Ẋ , α forms a splitting problem as defined in Section 2.4. Let’s show that

admissibility holds for that problem.

. Let z1 ∈ DYi , z2 ∈ DY j and z3 ∈ DYk with i �= j �= k �= i and assume Ẋ(z1, z2, z3). Hence [X (z1, z2, z3)].

Hence necessarily α(i, j, k), otherwise rule OC3 would have led to a deadend.

. Let z1, z2 ∈ DYi , z ∈ DY j and z� ∈ DYk with i �= j, k and assume Ẋ(z1, z2, z) and Ẋ(z2, z1, z
�).

Hence [X (z1, z2, z)] and [X (z2, z1, z
�)]. Hence, by ruleOC2 we have [Yi (z1, z2)] and [Yi (z2, z1)]. This is

impossible, because rule OV1 would have led to a deadend.



236 J.-M. Andreoli et al. / Annals of Pure and Applied Logic 142 (2006) 212–244

(v) Hence, by Theorem 2.1, we know that τi , defined by,

τi =
�

j �=i,z∈DY j

Ẋ z�DYi

is a series–parallel order for each i = 1, . . . , n, and that, furthermore,

Ẋ ⊆ α(τ1, . . . , τn).

It is easy to show, using rule OC2 and the definition of τi above, that τi is exactly Ẏi for all i . Hence Ẏi is a

series–parallel order for all i and

Ẋ ⊆ α(Ẏ1, . . . , Ẏn).

(vi) Let’s show that Ÿi ⊆ Ẏi . Assume Ÿi (z1, z2, z3). Hence [Yi (z1, z2, z3)], which must have been obtained in

either of two ways:

. By application of ruleOV2, we have [Yi (z1, z2)] and [Yi (z2, z3)]. Hence Ẏi (z1, z2) and Ẏi (z2, z3). Hence,

Ẏi (z1, z2, z3).

. By application of rule OC1, we have [X (z1, z2, z3)]. Hence Ẋ(z1, z2, z3). Hence Ẏi (z1, z2, z3), since

Ẋ ⊆ α(Ẏ1, . . . , Ẏn).

Hence, in both cases we have proved Ẏi (z1, z2, z3).

(vii) Conversely, let us show that Ẏi ⊆ Ÿi . Assume Ẏi (z1, z2, z3). We can assume, without loss of generality,

that we are in the case where A : Ẏi (z1, z2) and B : Ẏi (z1, z2|z3). From A, we get [Yi (z1, z2)], which must

have been obtained by rule OC2 from some [X (z1, z2, z)], where [z ∈ |Y j |] for j �= i . Hence z ∈ DX

and Ẋ(z1, z2, z). Let us apply the spreading property of order varieties to this cycle with z3. There are three

possibilities:

. Ẋ(z3, z2, z), hence [X (z3, z2, z)] and by ruleOC2, we have [Yi (z3, z2)], hence Ẏi (z3, z2). Hence, by B we

get that Ẏi (z3, z1) and [Yi (z3, z1)]. By application of ruleOV2 to this and A, we get that [Yi (z1, z2, z3)].

. Ẋ(z1, z3, z), hence [X (z1, z3, z)] and by ruleOC2, we have [Yi (z1, z3)], hence Ẏi (z1, z3). Hence, by B we

get that Ẏi (z2, z3) and [Yi (z2, z3)]. By application of ruleOV2 to this and A, we get that [Yi (z1, z2, z3)].

. Ẋ(z1, z2, z3), hence [X (z1, z2, z3)] and by rule OC1, we have [Yi (z1, z2, z3)].

Hence, in all cases we have proved [Yi (z1, z2, z3)], hence Ÿi (z1, z2, z3).

Therefore, we have shown that Ẏi is a series–parallel order satisfying Ẏi = Ÿi for each i , and that

Ẋ ⊆ α(Ẏ1, . . . , Ẏn).

P−: Finally, let X = ω ∗ Y be a premise constraint and assume Y ∈ Y , i.e., Ẏ is a series–parallel order satisfying

Ẏ = Ÿ . We have to show that X ∈ X and Ẋ = ˙ω�P ∗ Ẏ �DX
.

(i) Let us first show that | ˙ω�P | ∩ |Ẏ �DX
| = ∅. Reason by contradiction and assume z ∈ | ˙ω�P | ∩ |Ẏ �DX

|. From

z ∈ | ˙ω�P |, we get z = u̇ for some u ∈ |ω�P |, hence [z = u] for u ∈ |ω|. From z ∈ |Ẏ �DX
|, we have

[z ∈ |Y |] and [z ∈ |X |], which means that [z ∈ |X |] has been propagated by rule SP at X into [z ∈ |X |]. But

in that case, [z = u] cannot have been produced: it can only be produced in the other alternatives of rule SP.

Contradiction.

(ii) Let z ∈ DX , hence [z ∈ |X |]. By application of rule SP, we get either [z = u] with u ∈ |ω|, in which case

z = u̇ ∈ | ˙ω�P |, or [z ∈ |Y |] hence z ∈ |Ẏ | and hence z ∈ |Ẏ �DX
|. Thus, DX ⊆ | ˙ω�P | ∪ |Ẏ �DX

|. The

converse inclusion is shown in a similar way.

(iii) Let z1, z2, z3 ∈ DX such that ( ˙ω�P ∗ Ẏ )(z1, z2, z3). Hence, we have one of the following cases:

. [z1 = u1] and [z2 = u2] and [z3 = u3]with u1, u2, u3 ∈ |ω| and ω(u1, u2, u3) and we are in the conditions

of application of rule OP1.

. [z1 = u1] and [z2 = u2] and [z3 ∈ |Y |] with u1, u2 ∈ |ω| and ω(u1, u2) and we are in the conditions of

application of rule OP2.

. [z1 = u1] and [z2 ∈ |Y |] and [z3 ∈ |Y |] with u1 ∈ |ω| and Ẏ (z2, z3). Hence [Y (z1, z2)] and we are in the

conditions of application of rule OP3.

. [z1 ∈ |Y |] and [z2 ∈ |Y |] and [z3 ∈ |Y |] with Ẏ (z1, z2, z3). Hence Ÿ (z1, z2, z3)— this is the essential step

— hence [Y (z1, z2, z3)] and we are in the conditions of application of rule OP4.
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Thus, in all cases, by application of one of the rules OP, we get [X (z1, z2, z3)], hence Ẋ(z1, z2, z3). Thus,

we have shown that ˙ω�P ∗ Ẏ �DX
⊆ Ẋ . The converse inclusion is shown in a similar way.

Therefore, we have shown that

Ẋ = ˙ω�P ∗ Ẏ �DX

and hence, since Ẏ and ω are series–parallel orders, Ẋ is a series–parallel order variety. �

Definition 4.7. A safe place assignment is an injective mapping φ from place variables into places such that

∀u ∈ P φ(u̇) = u.

Any structure R on place variables can be transported into a structure (abusively written) Rφ on places via the injection

φ. We can now complete the study of Simplification.

Theorem 4.8. The open nodes obtained at the end of the Simplification procedure are consistent.

Demonstration: First let φ be a safe place assignment. Now consider the following assignment φ̂ for all the variables:

– For each place variable z, let φ̂(z) = zφ .

– For each side variable Y , let φ̂(Y ) = Ẏ φ .

– For the main variable Xo at the root, let φ̂(Xo) be the empty order variety with support set D
φ

Xo
.

– For each main variable other than Xo, hence attached to a unique premise constraint X = ω∗Y , let φ̂(X) = ω∗ Ẏ φ .

By Lemma 4.6, it is easy to show that φ̂(X) is an order variety and φ̂(Y ) is an order, both series–parallel.

– For the main variable Xo at the root, we have that φ̂(Xo)�Dφ

Xo

is the empty order variety on support set D
φ

Xo
, which

is equal to the order variety Ẋo
φ
, with the same support set and also empty. Hence φ̂(Xo)�Dφ

Xo

= Ẋo
φ
.

– For each premise constraint X = ω ∗ Y , we have, trivially,

φ̂(X) = ω ∗ Ẏ φ = ω ∗ φ̂(Y )

but also (using Lemma 4.6):

φ̂(X)�
D

φ

X

= ω�
D

φ

X

∗Ẏ φ
�
D

φ

X

= ω�P ∗(Ẏ �DX
)φ = ˙ω�P

φ
∗ (Ẏ �DX

)φ = ( ˙ω�P ∗ Ẏ �DX
)φ = Ẋφ

because, since φ is safe, D
φ
X coincides with P on |ω|, and for any structure R on a subset of P , we obviously have

R = Ṙφ (transportation of structure forward and backward).

– For each conclusion constraint X � α(Y1, . . . ,Yn), we have (using Lemma 4.6):

φ̂(X) � φ̂(X)�
D

φ

X

= Ẋφ ⊆ α(Ẏ1, . . . , Ẏn)
φ = α(Ẏ1

φ
, . . . , Ẏn

φ
) = α(φ̂(Y1), . . . , φ̂(Yn)).

Here, note the first step, which discards, by Weakening, all the places of φ̂(X) that are not in D
φ

X . It would have

been very difficult to account for these places in the Simplification procedure, because checking that they can be

consistently ordered would have required uncontrolled non-deterministic choices to simply assign them among

|φ̂(Y1)|, . . . , |φ̂(Yn)|, and recursively upwards (while the places of D
φ

X are assigned by rules SP and SC). Even

if we allow these non-deterministic choices, the same problem will re-appear in the Generation procedure, with

places that are not even known in the Simplification procedure.

Therefore, φ̂ satisfies all the initial constraints in Ho. It also trivially satisfies all the other infons in that state. For

example, let [z ∈ |Y |] belong to Ho. Hence z ∈ DY , hence φ̂(z) = zφ ∈ D
φ

Y = |φ̂(Y )|. Hence φ̂ satisfies the infon

[z ∈ |Y |]. �

Theorem 4.3 and 4.8 thus show all the expected properties of Simplification stated in Section 3.1.2.

We have shown that φ̂ is a solution at open state �.,Ho�, but we can be more precise. Simplification computes, at

its open states, the minimal solution:
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� For each side variable Y , let {X j = ω j ∗ Y }mj=1 be all the premise constraints involving Y ,

PP: [X j �DX j
⊆ β j ]

m
j=1 −→

�
�
�
�
�
�

→ · · ·

→ [Y �DY
� τ ]

→ · · ·






one output state for each τ

such that Ẏ φ � τ

and (ω j ∗ τ )�
D

φ
X j

⊆ β j for all j = 1, . . . ,m

TP: [Y = τ �] −→ [X j = ω j ∗ τ �]mj=1

� For each conclusion constraint X � α(Y1, . . . ,Yn),

PC: [Yi�DYi
� τi ]

n
i=1 −→ [X�DX

⊆ α(τ1, . . . , τn)]

TC: [X = β] when [Yi�DYi
� τi ]

n
i=1 −→

�
�
�
�
�
�

→ · · ·

→ [Yi = τ �i ]
n
i=1

→ · · ·






one output state for each n-uple τ �1, . . . , τ
�
n

such that β � α(τ �1, . . . , τ
�
n) and ∀i

τ �i = zφ if Yi = z is a terminal constraint

Ẏi
φ

� τ �i �Dφ

Yi

� τi otherwise

� Initialisations: let C be the multiset of infons of the form [Y �DY
� zφ] for each terminal premise constraint Y = z

and [X�DX
⊆ D

φ

X ×D
φ

X ×D
φ

X ] for each main variable X that occurs in no conclusion constraint; let Xo be the main

variable at the root.

P-INIT: −→ C

T-INIT: [Xo�DXo
⊆ β] −→

�
�
�
�
�
�

→ · · ·

→ [Xo = β �]

→ · · ·






one output state for each β �

such that β ��
D

φ

Xo

⊆ β

Fig. 4. Generation rules.

Corollary 4.9. Let �.,Ho� be an open state at the end of the Simplification procedure and σ be a solution ofHo, then

σ = φ̂ on the place variables of Ṗ , and can be made equal on the others. Furthermore, for all variables X,Y we have

|φ̂(Y )| = D
φ
Y ⊆ |σ(Y )| |φ̂(X)| = D

φ
X ⊆ |σ(X)|

φ̂(Y ) � σ(Y )�
D

φ

Y

φ̂(X) ⊆ σ(X)�
D

φ

X

.

Demonstration: Let σ be a solution ofHo. For each place variable z ∈ Ṗ , we have in Ho an infon [z = u] for some

u ∈ P , which is satisfied by σ , so that σ(z) = u = φ̂(z). The other place variables are assigned places which do not

occur inHo, and which can be renamed so that φ̂, σ coincide on all place variables. Now, let Y be a side variable and

u ∈ |φ̂(Y )| = D
φ

Y . Hence u = zφ for some z ∈ DY . Since φ is safe, we have u̇φ = u = zφ , hence z = u̇, hence

[z = u] ∈ Ho. Since σ is a solution of Ho, we have σ(z) = u. Now, from z ∈ DY , we get [z ∈ |Y |] ∈ Ho. Again,

since σ is a solution ofHo, we have σ(z) ∈ |σ(Y )|. Hence, u ∈ |σ(Y )|. Therefore, we have proved |φ̂(Y )| ⊆ |σ(Y )|.

The other statements (on the main variables, and on ordering) are proved similarly. �

4.4. The Generation procedure

The Generation procedure produces all the solutions by extending the minimal solutions computed by the

Simplification procedure. Let �.,Ho� be a given open (hence consistent) node at the end of the Simplification

procedure. The Generation procedure first chooses an arbitrary safe assignment φ for the place variables. It then

generates all the solutions that coincide with φ on place variables. In the sequel, recall that φ is therefore fixed.

Note that there is no need to consider non-deterministic alternatives for the choice of φ: they would lead to the same

solutions, modulo renaming of places.
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The Generation procedure starts from the state �∅,Ho�, then proceeds by applying the rewrite rules of Fig. 4. These

rules manipulate infons of the following forms:

Definition 4.10 (Infon). The infons manipulated by the Generation procedure are of the following forms:

Partial infons [X�DX
⊆ β]; [Y �DY

� τ ]

Total infons [X = β]; [Y = τ ]

where τ is an order and β is a ternary relation on places (always an order variety, except in Rule P-INIT).

Rules PP and PC propagate partial infons initially produced by P-INIT downwards in the abstract proof tree, while

rules TP and TC propagate total infons initially produced by T-INIT upwards, i.e., in both cases, in the opposite

direction of the Simplification procedure (just as in the commutative or cyclic case). More precisely, Generation

proceeds in two phases:

– First, rule P-INIT is applied and all the propagations by rules PP and PC are performed. At the end of this phase,

a partial infon [Xo�DXo
⊆ β] is produced at the root.

– Then, this infon triggers rule T-INIT followed by all the propagations by rules TP and TC. At the end of this

phase, there is an infon [X = β] and an infon [Y = τ ] for each main (resp. side) variable X (resp. Y ). These total

infons entirely define the generated solution.

Theorem 4.11. Generation satisfies Resolution, Termination and Preservation.

Demonstration:

– Termination and Resolution are straightforward: the propagations are always performed in a uniform direction in

the abstract proof tree, which is finite, so they must terminate. Furthermore, at the end (of the Generation), there is

a total infon [X = β] for each main variable X , with no two such constraints sharing their left-hand side, so the

state is in fully solved form.

– Preservation: let us show it here for rule PP. The other rules are treated in the same way. Since the application of a

rule does not decrease the set of infons, it is obvious that a solution of the right-hand side of a rule is also a solution

of its left-hand side, hence we only need to prove the converse. Let σ be a solution of the input state of rule PP

which coincides with φ on place variables, and let τ = σ(Y )�
D

φ
Y

. Then, by construction, σ is a solution for the

infon [Y �DY
� τ ], hence of the output state of the rule corresponding to that choice of τ . We just have to show

that this choice is possible, i.e., that Ẏ φ � τ and (ω j ∗ τ )�
D

φ
X j

⊆ β j for all j = 1, . . . ,m. The former is a direct

consequence of Lemma 4.9. For the latter, observe that σ satisfies the constraint X j = ω j ∗ Y , hence

σ(X j )�Dφ
X j

= (ω j ∗ σ(Y ))�
D

φ
X j

= (ω j ∗ τ )�
D

φ
X j

since D
φ

X j
and D

φ

Y coincide outside |ω j |. But σ also satisfies the infon [X j �Dφ

X j

⊆ β j ], hence (ω j ∗ τ )�
D

φ

X j

⊆

β j . �

The main difficulty is therefore to show that all the states produced by the Generation procedure are consistent.

This is the purpose of the rest of this section. Recall that Generation consists of two phases performed sequentially:

propagations downwards by P-INIT, PP and PC; propagations upwards by T-INIT, TP and TC.

The first phase is trivially consistent, since, in any state, it is possible to choose the minimal solution given by

φ̂. From now on, consider a state �.,H1� at the end of the first phase, having produced infon [Xo�DXo
⊆ βo] at the

root. We know that φ̂ is a solution at that state. We are going to build another solution, which is the entropy-maximal

solution consistent with the choices made to obtain that state. Consider the variable assignment σ1 defined as follows:

– For each place variable z, let σ1(z) = zφ .

– For each side variable Y , it is easy to see that, in the first phase of Generation, rule PP fired exactly once for Y ,

producing exactly one infon [Y �DY
� τ ]. Let σ1(Y ) = τ .

– For the root Xo, let σ1(Xo) = βo.

– For each main variable X occurring in a premise constraint X = ω ∗ Y , let σ1(X) = ω ∗ σ1(Y ).
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Lemma 4.12. σ1 is the entropy-maximal solution at state �.,H1�, i.e., it is a solution and for any solution σ ,

σ(Y )�
D

φ

Y

� σ1(Y ).

Demonstration:

– By construction, σ1 satisfies all the infons of the form [Y �DY
� τ ], where Y is a side variable (in fact, the two terms

are even equal rather than in the entropy relation).
– Also by construction, σ1 satisfies all the premise constraints of the form X = ω ∗ Y . In that case, we know that

an infon [Y �DY
� τ ] has been produced by rule PP, hence σ1(Y ) = τ and σ1(X) = ω ∗ τ . We also know that

(ω ∗ τ )�
D

φ

X

⊆ β for some β such that the infon [X�DX
⊆ β] has also been produced. Hence σ1(X)�

D
φ

X

⊆ β, and

σ1 satisfies the infon [X�DX
⊆ β].

– Finally, if X is also involved in a conclusion constraint X � α(Y1, . . . ,Yn), then the infon [X�DX
⊆ β] has been

produced by rule PC, hence we know that β = α(τ1, . . . , τn) for some τ1, . . . , τn such that the infons [Yi�DYi
� τi ]

have also been produced. Hence σ1(Yi ) = τi and

σ1(X) � σ1(X)�
D

φ
X

⊆ β = α(τ1, . . . , τn) = α(σ1(Y1), . . . , σ1(Yn)).

Hence, σ1 also satisfies the conclusion constraint X � α(Y1, . . . ,Yn).
– Note that σ1 also satisfies all the infons produced in the Simplification procedure, because of the condition Ẏ � τ

in rule PP.
– σ1 is by construction entropy-maximal, since σ1(Y ) = τ implies that the infon [Y �DY

� τ ] has been produced,

hence any solution σ must satisfy it, hence σ(Y )�
D

φ
Y

� τ = σ1(Y ). �

Theorem 4.13. The Generation procedure produces no inconsistent state.

Demonstration: We have already seen that the first phase of the procedure does not produce any inconsistencies.

Now consider the second phase of the Generation procedure, and let us show that it produces no inconsistent state

either. The only difficulty is with rule TC in the case of a conclusion constraint X � α(Y1, . . . ,Yn). Assume that

we have a solution σ for the input state of that rewrite rule. In particular, σ satisfies [X = β] and [Yi �DYi
� τi ]

n
i=1.

Choose arbitrarily one of its output states, corresponding to a choice of τ �1, . . . , τ
�
n such that β � α(τ �1, . . . , τ

�
n) and

Ẏi
φ

� τ �i �Dφ
Yi

� τi . Consider the variable assignment σ
� defined on side variables as follows (and extended to the main

variables using the premise constraints):

– σ �(Y ) = σ(Y ) for any side variable Y attached to an inference below the conclusion X .
– σ �(Yi ) = τ �i for i = 1, . . . , n.
– σ �(Y ) = σ1(Y ) in all the other cases.

By considering each case, we show that σ � is a solution of the constraint system of the selected output state of the

rewrite rule.

– Below X , we use the fact that σ is a solution of the input state.
– At the conclusion constraint X , we use the hypothesis on τ �i :

σ �(X) = ω ∗ σ �(Y ) = ω ∗ σ(Y ) = σ(X)

= β � α(τ �1, . . . , τ
�
n) = α(σ �(Y1), . . . , σ

�(Yn)).

– In all the other cases, we use Lemma 4.12 and the fact that σ1 is an entropy-maximal solution, and the only

non-trivial cases are the conclusion constraints X � = ω� ∗ Yi � α�(Y �1, . . . ,Y
�
m) involving some Yi . Then

σ �(X �) = ω� ∗ σ �(Yi ) = ω� ∗ τ �i � ω� ∗ τi = ω� ∗ σ1(Yi )

= σ1(X
�) � α�(σ1(Y

�
1), . . . , σ1(Y

�
m)) = α�(σ �(Y �1), . . . , σ

�(Y �m)).

Note that the support set of σ �(Yi ) = τ �i may be larger than that of σ1(Yi ), i.e., D
φ

Yi
, and here again the “affine”

hypothesis is used, to cancel the places which are not inD
φ

Yi
. It would be absolutely impossible to account for these

places and their ordering constraints in the Simplification procedure, which may not even be aware of them. �

Theorems 4.11 and 4.13 thus show all the expected properties of Generation stated in Section 3.1.2.
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4.5. Examples

In the following examples, atoms sharing the same letter (e.g., p, p�, . . .) are assumed to be unifiable. To simplify

notations, negative atoms in bipoles are “primed” (as in p�, p��, . . .) and are also used to denote their corresponding

places; positive atoms p⊥ are also used to denote their corresponding place variable. This introduces an ambiguity,

since the notation [p = p�] may mean either the unification of two first-order terms (the atoms p, p�), or the place

infon produced by matching the place variable attached to the positive atom p⊥ with the place attached to the negative

atom p�. Unifications will simply be ignored here (i.e., we only match unifiable atoms, otherwise a deadend would be

immediately produced), hence we adopt the second meaning.

(i) Consider the following abstract proof

X2
[q⊥ ⊗ a⊥ ⊗ b⊥ ⊗ r �]

X1
[p⊥ ⊗ (a� � b�)]

X

We want to show that it is not possible to obtain a concrete proof by matching the occurrences of a, b in the upper

bipole with the occurrences of a�, b� in the lower bipole. The constraint system is

r � ∗ Y2 = X2

(a� < b�) ∗ Y1 = X1 � Y2 ∗ (Yb � Ya � Yq)

X � Y1 ∗ Yp

together with the terminal premise constraints Yp = p; Yq = q; Ya = a; Yb = b. The following transitions (at

node X1) are then possible. They constitute the branch of the tableau that leads to the deadend that we want to

show; of course, other branches may succeed (e.g., leaving a, b unmatched at step 3).

Rule Result

1 INIT [q ∈ |Yq |]; [a ∈ |Ya|]; [b ∈ |Yb|]

2 SC [q, a, b ∈ |X1|]

3 SP [a = a�]; [b = b�]; [q ∈ |Y1|]

4 OP2 [X1(a, b, q)]

5 OC3 DEADEND

Step 3 corresponds to the choice of matching a with a�, and b with b�, and of not matching q at this level. The

failure at Step 5 is caused by the cycle X1(a, b, q) obtained at Step 4 and contradicted by X1 � Y2∗(Yb �Ya �Yq),

which requires X1�a,b,q ⊆ b � a � q.

(ii) Another interesting case leading to a deadend is when two branches created by � induce contradictory ordering

information:

X3
[q⊥ ⊗ (a⊥1 � b⊥1 )⊗ q ��]

X1

X4
[r⊥ ⊗ (b⊥2 � a⊥2 )⊗ r ��]

X2
[p⊥ ⊗ (q � � r �)]

X0
[m⊥ ⊗ (b� � a�)]

X

The constraint system (in addition to the terminal premise constraints Yx = x for each atom x) is:

q �� ∗ Y1 = X3

q � ∗ Y0 = X1 � Y1 ∗ (Yb1 < Ya1) � Yq

r �� ∗ Y2 = X4

r � ∗ Y0 = X2 � Y2 ∗ (Ya2 < Yb2) � Yr

(b� < a�) ∗ Y = X0 � Y0 ∗ Yp

X � Y ∗ Ym

Failure is obtained by the following sequence of transitions:
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Rule Result

1 INIT [q ∈ |Yq |]; [r ∈ |Yr |]; [ai ∈ |Yai |]; [bi ∈ |Ybi |]

2 SC at X1 [q, a1, b1 ∈ |X1|]

3 SC at X2 [r, a2, b2 ∈ |X2|]

4 SP at X1 [a1, b1 ∈ |Y0|]; [q = q �]

5 SP at X2 a2 := a1; b2 := b1 and [r = r �]

6 SC at X0 [p, a1, b1 ∈ |X0|]

7 SP at X0 [a1 = a�]; [b1 = b�]; [p ∈ |Y |]

8 OP2 at X0 [X0(b1, a1, p)]

9 OC2 at X0 [Y0(b1, a1)]

10 OP1 at X2 [X2(r, b1, a1)]

11 OC3 at X2 DEADEND

Step 4 chooses to match q with q �, leaving a1, b1 unmatched at this level. Step 5 chooses to match r with r � and

to substitute a2, b2 with a1, b1. This is different frommatching, say, a2 with a1, which does not make sense, since

matching can only occur between a place and a place variable, not between two place variables. Substitution is a

global operation which replaces a2 by a1 everywhere in the constraint system. Step 7 chooses to match a1 with

a� and b1 with b� and to leave p unmatched at this level. ApplyingOP1 at X1 instead of X2 after step 9 would be

useless, as no contradiction would be detected on that side. Note that the order of application of the rewrite rules

is, to a great extent, arbitrary; but any other order would lead to the same failure.

(iii) The following example illustrates the importance of the “admissibility” condition in Theorem 2.1:

X3
[q⊥ ⊗ (a⊥ � c⊥)⊗ q ��]

X1

X4
[r⊥ ⊗ (b⊥ ⊗ d⊥)⊗ r ��]

X2
[p⊥ ⊗ q � ⊗ r �]

X0
[m⊥ ⊗ ((a� � b�) � (c� � d �))]

X

Its constraint system is

q �� ∗ Y3 = X3

q � ∗ Y1 = X1 � Y3 ∗ (Yc < Ya) � Yq

r �� ∗ Y4 = X4

r � ∗ Y2 = X2 � Y4 ∗ (Yd � Yb) � Yr

((a� < b�) � (c� < d �)) ∗ Y0 = X0 � Y2 � Y1 ∗ Yp

X � Y0 ∗ Ym

Trying to match a, b, c, d with a�, b�, c�, d � fails. Indeed, this matching induces the order (a < b) � (c < d) on

a, b, c, d , for which the split {a, c}{b, d} is not admissible. The following sequence of transitions (not detailed

here) shows this:

START→

�
[q, a, c ∈ |X1|] → [q = q �]; [a, c ∈ |Y1|] → [a, c ∈ |X0|] → [a = a�]; [c = c�]

[r, b, d ∈ |X2|] → [r = r �]; [b, d ∈ |Y2|] → [b, d ∈ |X0|] → [b = b�]; [d = d �]

�

→

[X0(a, c, d)]; [X0(a, b, c)] → [Y1(a, c)]; [Y1(c, a)] → DEADEND

Note that the failure would not have been avoided had the connective between a⊥ and c⊥ (here�) been reversed

or replaced by ⊗ (and likewise for the connective between b⊥ and d⊥). It is the split {a, c}{b, d} itself which is

not admissible, not the way that a, c and b, d are ordered on each side. Rule OV1 here detects the violation of

the admissibility condition.

(iv) Finally, we give an example of Generation, illustrating the importance of the “affine” assumption:

X3
[b⊥ ⊗ (d⊥ � r⊥)⊗ g�]

X2
[(a⊥ � c⊥ � q⊥)⊗ (e� � d �)]

X1
[p⊥ ⊗ (c� � (a� � b�))]

X



J.-M. Andreoli et al. / Annals of Pure and Applied Logic 142 (2006) 212–244 243

The constraint system is:

g� ∗ Y3 = X3

(e� < d �) ∗ Y2 = X2 � Y3 ∗ (Yr < Yd) � Yb

c� < (a� � b�) ∗ Y1 = X1 � Y2 ∗ (Yq < Yc < Ya)

X � Y1 ∗ Yp

Matching a, b, c, d with a�, b�, c�, d �, we get the following open state at the end of the Simplification procedure:

[b, d, r ∈ |X2|]; [b, r ∈ |Y2|]; [a, b, c, q, r ∈ |X1|]; [q, r ∈ |Y1|]; [p, q, r ∈ |X |];

[a = a�]; [b = b�]; [c = c�]; [d = d �];�

X1

�

c,
a

b
,
q

r

��

; [Y2(b, r)]; [X2(d, b, r)].

From this state, the Generation procedure leads to:

Rule Result

1 P-INIT [Ya�a � a]; . . .

2 PP [Y3�∅� �]

3 PC [X2�b,d,r ⊆ � ∗ (r < d) � b]

4 PP [Y2�b,r � b < r ]

5 PC [X1�a,b,c,q,r ⊆ b < r ∗ q < c < a]

6 PP [Y1�q,r � q � r ]

7 PC [X�p,q,r ⊆ (q � r) ∗ p]

↓ ↑

Rule Result

14 TP [X3 = g]

13 TC [Y3 = �]

12 TP [X2 = e < d ∗ b < r ]

11 TC [Y2 = b < r ]

10 TP [X1 = c < (a � b) ∗ q � r ]

9 TC [Y1 = q � r ]

8 T-INIT [X = (q � r) ∗ p]

Here, steps 2 and 4 are deterministic. In particular, there is no alternative at step 4, because Y2�b,r must contain

Ẏ2 = b < r . At step 6, Y1�q,r must be an order τ satisfying the condition c < (a � b) ∗ τ ⊆ (q < c < a) ∗ (b < r).

The choice made at Step 6 is τ = q � r , which works, but τ = r < q would also have been possible. Steps 9

to 13 choose the smallest solutions authorised by steps 6 to 2. The Generation procedure guarantees at least that

solution works, but there may be other solutions. In the end, the following concrete proof has been generated:

g ∗ �
[b⊥ ⊗ (d⊥ � r⊥)⊗ g]

e < d ∗ b < r
[(a⊥ � c⊥ � q⊥)⊗ (e � d)]

c < (a � b) ∗ q � r
[p⊥ ⊗ (c � (a � b))]

(q � r) ∗ p

The middle inference implicitly uses the entropy c < (a � b) ∗ q � r ⊆ q < c < a ∗ b < r . The top inference

implicitly uses the Weakening of e from e<d ∗b<r to d ∗b<r and then the equality d ∗b<r = (r <d)�b ∗�.

Note that the Weakening step is essential. It is not possible to perform the top inference if e is not discarded. In

fact, the Simplification procedure propagates information only on places that have been matched. Here, e� has

not been matched, and therefore its capacity to fail the top inference could not be detected by the Simplification

procedure. The capacity at all time to get rid of unmatched places by Weakening solves the problem. Note that

the problem did not occur in the fragments considered in the previous sections (linear logic and cyclic logic): in

both cases, the Simplification procedure deals only with matched places, but the unmatched ones happen not to

create undetected failure.
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5. Conclusion

In this paper, we have investigated proof construction in the framework of non-commutative logic. We have

extended the constraint-based approach to proof construction proposed for linear logic in [3], first to the cyclic

fragment of NL, then to an affine variant of full multiplicative, additive, first-order NL.

NL is a particular case of “coloured” linear logic [4], which is linear logic with structure. One problem with such

logic is that the choice of structure is somehow arbitrary, and that is not satisfactory: logical rules should express

necessity, not some a priori choice of structure. It is therefore important to characterise the different structures by the

global properties that they confer on the logic, in particular in terms of proof construction.

The present paper describes a constraint-based proof construction algorithm for the structures of orders and order

varieties. It identifies the splitting property (Theorem 2.1) of these structures as conferring on the associated logic

a global property of effectiveness in the proof construction. It can quite straightforwardly be generalised to other

structures which, like order varieties, are fully defined by their restrictions to triples. Arbitrary ternary cyclic relations

or pre-order varieties are examples of such structures. Future work includes the investigation of other classes of

structures for which this assumption does not hold.
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