MALL Proof Nets:
 weights vs abstraction and efficiency

> (a summary of the state of the art)

Roberto Maieli

Università degli Studi "Roma Tre" maieli@uniroma3.it

CONCERTO - Bologna, February 17th, 2009

The MALL proof nets renaissance

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
- (1996, Girard, Monomial Nets)
- 2003, Hughes-van Glabbeek, Linkings Nets
- 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
- 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
- 2005, Curien-Faggian, L-nets
- 2007, Maieli, Contractible MALL PN
- 2008, Maieli-Laurent, strong normalization for Monomial PN
- 2008, Mogbil-de Naurois. Correctness of MALL is PS

NL-Complete

- 2008, de Falco, Gol for MALL
- 2008, Di Giamberardino, Jump Nets.
\Rightarrow here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.
ahstraction and efficiency of the representation.

The MALL proof nets renaissance

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.

```
> Last few years have seen a renaissance of this theme:
* (1996, Girard, Monomial Nets)
- 2003, Hughes-van Glabbeek, Linkings Nets
- 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
- 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
- 2005, Curien-Faggian, L-nets
- 2007, Maieli, Contractible MALL PN
- 2008, Maieli-Laurent, strong normalization for Monomial PN
* 2008, Mogbil-de Naurois. Correctness of MALL is PS
    NL-Complete
- 2008, de Falco, Gol for MALL
- 2008, Di Giamberardino, Jump Nets.
```

- here a comparing of the current technologies for MALL PN,
based on "weights" (dependencies) w.r.t.
abstraction and efficiency of the representation.

The MALL proof nets renaissance

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
- (1996, Girard, Monomial Nets)
- 2003, Hughes-van Glabbeek, Linkings Nets
- 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
- 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
- 2005, Curien-Faggian, L-nets
- 2007, Maieli, Contractible MALL PN
- 2008, Maieli-Laurent, strong normalization for Monomial PN
- 2008, Mogbil-de Naurois. Correctness of MALL is PS NL-Complete
- 2008, de Falco, Gol for MALL
- 2008, Di Giamberardino, Jump Nets.
- here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.
abstraction and efficiency of the representation.

The MALL proof nets renaissance

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
- (1996, Girard, Monomial Nets)
- 2003, Hughes-van Glabbeek, Linkings Nets
- 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
- 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
- 2005, Curien-Faggian, L-nets
- 2007, Maieli, Contractible MALL PN
- 2008, Maieli-Laurent, strong normalization for Monomial PN
- 2008, Mogbil-de Naurois. Correctness of MALL is PS NL-Complete
- 2008, de Falco, Gol for MALL
- 2008, Di Giamberardino, Jump Nets.
- here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.
abstraction and efficiency of the representation.

Standard key ingredients of a Proof Nets (PN) syntax

```
naively
    > PN' are parallel presentations of sequential proofs (SP) of LL
    > PN quotient classes of equivalent proofs, modulo irrelevant
        permutations of derivation rules.
key ingredients:
    - a graph syntax (proof structures, PSs)
    - a correctness criterion (defining PN/s among PSs)
    > an interpretation of the sequent calculus proofs (SPs)
    * a cut elimination procedure
```


Standard key ingredients of a Proof Nets (PN) syntax

naively

- PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.
key ingredients:
- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)
- a cut elimination procedure

Standard key ingredients of a Proof Nets (PN) syntax

naively

- PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.
key ingredients:
- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)
- a cut elimination procedure

Standard key ingredients of a Proof Nets (PN) syntax

naively

- PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.
key ingredients:
- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)
- a cut elimination procedure

Standard key ingredients of a Proof Nets (PN) syntax

naively

- PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.
key ingredients:
- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)
- a cut elimination procedure

Standard key ingredients of a Proof Nets (PN) syntax

naively

- PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.
key ingredients:
- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)
- a cut elimination procedure

Standard key ingredients of a Proof Nets (PN) syntax

naively

- PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.
key ingredients:
- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)
- a cut elimination procedure

Main properties for a "good notion" of PN (1/3)

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN);
Function: $S P \mapsto P N$;
Canonical suriection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).
(naively) we should preserve the computational
complexity of the interpreted proofs;
(seriously) we should respect the notion that a
semantics (PN) is a
structure-preserving map or some kind
of homomorphism from proofs.

Main properties for a "good notion" of PN (1/3)

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN);
Function: $S P \mapsto P N$;
Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).
(naively) we should preserve the computational
complexity of the interpreted proofs;
(seriously) we should respect the notion that a
semantics (PN) is a
structure-preserving map or some kind
of homomorphism from proofs.

Main properties for a "good notion" of PN (1/3)

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN); Function: $S P \mapsto P N$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).

Main properties for a "good notion" of PN $(1 / 3)$

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN); Function: $S P \mapsto P N$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;

Efficient: P-time in the size (of the proofs).

Main properties for a "good notion" of PN $(1 / 3)$

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN); Function: $S P \mapsto P N$;
Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).

Main properties for a "good notion" of PN (1/3)

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN); Function: $S P \mapsto P N$;
Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).
(naively) we should preserve the computational complexity of the interpreted proofs;
(seriously) we should respect the notion that a
semantics (PN) is a
structure-preserving map or some kind
of homomorphism from proofs.

Main properties for a "good notion" of PN (1/3)

The interpretation (translation) of SP into PS must be:
Sound: the PS associated to a SP, must be correct (a PN); Function: $S P \mapsto P N$;
Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).
(naively) we should preserve the computational complexity of the interpreted proofs;
(seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

Main properties for a "good notion" of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;
Complete: any cut node of a PS reduces in one step;
Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;
Strong normalising: terminating and (locally) confluent;
Efficient: P-time in size.

Main properties for a "good notion" of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;

$$
\begin{aligned}
& \text { Complete: any cut node of a PS reduces in one step; } \\
& \text { Local: a cut elimination step only affects the nodes } \\
& \text { (immediately) connected to the reducing cut node; } \\
& \text { Strong normalising: terminating and (locally) confluent; } \\
& \text { Efficient: P-time in size. }
\end{aligned}
$$

Main properties for a "good notion" of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;
Complete: any cut node of a PS reduces in one step;
Local: a cut elimination step only affects the nodes
(immediately) connected to the reducing cut node;
Strong normalising: terminating and (locally) confluent;
Efficient: P-time in size.

Main properties for a "good notion" of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;
Complete: any cut node of a PS reduces in one step;
Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;
Strong normalising: terminating and (locally) confluent; Efficient: P-time in size.

Main properties for a "good notion" of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;
Complete: any cut node of a PS reduces in one step;
Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node; Strong normalising: terminating and (locally) confluent;

Main properties for a "good notion" of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;
Complete: any cut node of a PS reduces in one step;
Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node; Strong normalising: terminating and (locally) confluent;

Efficient: P-time in size.

Main properties for a "good notion" of PN (3/3)

Finally, the correctness criterion must be:

> Geometrical: an intrinsic (not inductive) characterisation of those PS that sequentialise to SP (they are PN); Stable: under cut elimination:

> Efficient: checking correctness and sequentialization P-time.

Main properties for a "good notion" of PN (3/3)

Finally, the correctness criterion must be:
Geometrical: an intrinsic (not inductive) characterisation of those PS that sequentialise to SP (they are PN);

Stable: under cut elimination;
Efficient: checking correctness and sequentialization P-time.

Main properties for a "good notion" of PN (3/3)

Finally, the correctness criterion must be:
Geometrical: an intrinsic (not inductive) characterisation of those PS that sequentialise to SP (they are PN);
Stable: under cut elimination;
Efficient: checking correctness and sequentialization P-time.

Main properties for a "good notion" of PN (3/3)

Finally, the correctness criterion must be:
Geometrical: an intrinsic (not inductive) characterisation of those PS that sequentialise to SP (they are PN);
Stable: under cut elimination;
Efficient: checking correctness and sequentialization P-time.

MALL Proof Structures: weights

- the problem is to cope with the \&-rule

$$
\frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \& B} \&
$$

for which a superimposition of two proof nets must be made.

MALL Proof Structures: weights

- A solution: a boolean variable (eigen-wight) for each \&-link:

$$
\frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \& B} \&_{p}
$$

MALL Proof Structures: weights

- which separates the two slices of the superimposition:

$$
\begin{gathered}
p \text { slice } \\
\frac{\Gamma, A}{\Gamma, A \& B} \&_{p}
\end{gathered}
$$

MALL Proof Structures: weights

- which separates the two slices of the superimposition:

$$
\begin{aligned}
& \bar{p} \text { slice } \\
& \frac{\Gamma, B}{\Gamma, A \& B} \&_{p}
\end{aligned}
$$

MALL Proof Structures: weights

- then, we can get different notions of PN in which links are weighted by non-zero:
- monomials (Girard, 1998)
dependence condition:
if L depends on p then $w(L) \leq w\left(\&_{p}\right)$
- or (general) polynomials (\sim Hughes-Van Glabbeek, 2003). no dependence at all!
of the Bool-algebra generated by the eigen weights.

Interpretation: MALL SP \mapsto Monomial PN (1/7)

- There is no canonical surjection from SP to Monomial PN.
- There is only a non-surjective mapping allowing a minimal (only on conclusion links) superimposition of slices

Interpretation: MALL SP \mapsto Monomial PN (1/7)

- There is no canonical surjection from SP to Monomial PN.
- There is only a non-surjective mapping allowing a minimal (only on conclusion links) superimposition of slices

Interpretation: MALL SP \mapsto Monomial PN $(1 / 7)$

- There is no canonical surjection from SP to Monomial PN.
- There is only a non-surjective mapping allowing a minimal (only on conclusion links) superimposition of slices

Interpretation: MALL SP \mapsto Monomial PN (2/7)

Example

Interpretation: MALL SP \mapsto Monomial PN (2/7)

axioms map to

Interpretation: MALL SP \mapsto Monomial PN (3/7)

the topmost \& (with eigen-weight p) and \otimes-rules map to

Interpretation: MALL SP \mapsto Monomial PN (4/7)

the middle \otimes and $\&$-rules (with eigen-weight q) map to:

Interpretation: MALL SP \mapsto Monomial PN (5/7)

finally, the lowest \&-rule (with eigen-weight r) maps to:

Interpretation: MALL SP \mapsto Monomial PN (6/7)

It is not invariant under the raising of the $૪, \otimes, \oplus, \&$ over the $\&$-rule
Example: if we permute the \otimes over the $\&_{p}$-rule

Interpretation: MALL SP \mapsto Monomial PN (7/8)

It is not invariant under the raising of the $\varnothing, \otimes, \oplus, \&$ over the $\&$-rule
Example: if we permute the \otimes over the $\&_{p}$-rule

$$
\left.\begin{array}{c}
\frac{\overline{B^{\perp}, B}}{\frac{B^{\perp}, B \otimes A^{\perp}, A}{A^{\perp}, A}} \otimes \frac{\overline{B^{\perp}, B}}{\frac{B^{\perp}, B \otimes A^{\perp}, A}{A^{\perp}, A}}
\end{array} \frac{\frac{\overline{B^{\perp}, B}}{B^{\perp}, B \otimes A^{\perp}, A}}{B^{\perp} \& B^{\perp}, B \otimes A^{\perp}, A \& A} \frac{B^{\perp}, B \otimes A^{\perp}, A \& A}{B^{\perp}, B \otimes A^{\perp}, A} \overline{A^{\perp}, A}\right)
$$

then, this SP maps into a different (w.r.t. the previous one) PN:

Interpretation: MALL SP \mapsto Monomial PN (8/8)

It is not invariant under the raising of the $\varnothing, \otimes, \oplus, \&$ over the $\&$-rule
Example: if we permute the \otimes over the $\&_{p}$-rule

$$
\begin{aligned}
& \frac{\overline{B^{\perp}, B}}{\frac{B^{\perp}, B \otimes A^{\perp}, A}{A^{\perp}, A}} \otimes \frac{\overline{B^{\perp}, B}}{\frac{B^{\perp}, B}{A^{\perp}, A}} \frac{\overline{B^{\perp}, B}}{A^{\perp}, A} \overline{A^{\perp}, A} \\
& B^{\perp} \& B^{\perp}, B \otimes A^{\perp}, A \& A \frac{B^{\perp}, B}{B^{\perp}, B \otimes A^{\perp}, A} \overline{A^{\perp}, A} \\
& B^{\perp}, B \otimes A^{\perp}, A \& A
\end{aligned}
$$

then, this SP maps into a different (w.r.t. the previous one) PN:

when we add a \&-link, we don't know if a link L_{1} of π_{1} is the same as another link L^{\prime} of π_{2}; in general, $p \cdot w_{1}(L)+\bar{p} \cdot w_{2}\left(L_{2}\right)$ is not a monomial, except when L_{1}, L_{2} are conclusions

Interpretation: MALL SP \mapsto Polynomial PN (1/8)

There is a canonical surjection from MALL SP to Polynomial PN

Interpretation: MALL SP \mapsto Polynomial PN (2/8)

There is a canonical surjection from MALL SP to Polynomial PN Example:

$$
\frac{\frac{B^{\perp}, B}{} \frac{\overline{A^{\perp}, A}}{\frac{A^{\perp}, A \& A}{A^{\perp}, A}}}{\frac{B^{\perp}, B \otimes A^{\perp}, A \& A}{\frac{B^{\perp}, B}{B^{\perp}, B \otimes A^{\perp}, A}} \overline{\frac{A^{\perp}, A}{}}} \frac{\overline{B^{\perp}, B}}{\frac{B^{\perp}, B \otimes A^{\perp}, A}{A^{\perp}, A}}
$$

Interpretation: MALL SP \mapsto Polynomial PN (3/8)

There is a canonical surjection from MALL SP to Polynomial PN Example:

$$
\left.\left.\frac{\overline{B^{\perp}, B}}{\frac{A^{\perp}, A}{A^{\perp}, A \&_{q} A}} \overline{A^{\perp}, A}\right) \frac{\overline{B^{\perp}, B}}{\frac{B^{\perp}, B \otimes A^{\perp}, A \&_{q} A}{B^{\perp}, B \otimes A^{\perp}, A}} \frac{\overline{A^{\perp}, A}}{\frac{B^{\perp}, B}{B^{\perp}, B \otimes A^{\perp}, A}} \overline{A^{\perp}, B}\right)
$$

assign an eigen weight to each \& in the sequent conclusion and (upwards) propagate them

Interpretation: MALL SP \mapsto Polynomial PN (4/8)

There is a canonical surjection from MALL SP to Polynomial PN Example:
inductively (top-down) separate each slice with monomials

Interpretation: MALL SP \mapsto Polynomial PN (5/8)

There is a canonical surjection from MALL SP to Polynomial PN Example:

Interpretation: MALL SP \mapsto Polynomial PN (6/8)

There is a canonical surjection from MALL SP to Polynomial PN
Example:

- a Polynomial PN is a sequent forest with weighted axioms
- replace parallel axioms $A X_{1}, A X_{2}, . . A X_{n}$ with weights $w_{1}, w_{2}, \ldots, w_{n}$, by a signle $A X$ with weight $w=\sum_{i}^{n} w_{i}$.

Interpretation: MALL SP \mapsto Polynomial PN (7/8)

It is invariant under the raising of the $\varnothing, \otimes, \oplus, \&$-rule over $\&$-rule:
Example:

$$
\left.\begin{array}{c}
\frac{\frac{\bar{p} \bar{q}}{B^{\perp}, B}}{\frac{B^{\perp}, B \otimes A^{\perp}, A}{A^{\perp}, A}} \otimes \frac{\frac{\bar{p} q}{B^{\perp}, B}}{B^{\perp}, B \otimes A^{\perp}, A} \frac{\bar{p} q}{A^{\perp}, A} \\
B^{\perp}, B \otimes A^{\perp}, A \&_{q} A
\end{array} \frac{\frac{p \bar{q}}{B^{\perp}, B}}{B^{\perp} \&_{p} B^{\perp}, B \otimes A^{\perp}, A \&_{q} A} \frac{p \bar{q}}{A^{\perp}, A} \frac{\frac{p q}{B^{\perp}, B \otimes A^{\perp}, A}}{\frac{B^{\perp}, B \otimes A^{\perp}, A \&_{q} A}{B^{\perp}, B \otimes A^{\perp}, A}} \frac{p q}{A^{\perp}, A}\right)
$$

Interpretation: MALL SP \mapsto Polynomial PN (8/8)

It is invariant under the raising of the $\varnothing, \otimes, \oplus, \&$-rule over $\&$-rule:
Example:
maps to the same (previous) Polynomial PN:

Efficiency of the weight interpretations

- monomial and polynomial mapping are both efficient: P-time in the size of the SP.
- more efficient than linkings mapping (HvG, 2003): Exponential in the size of the SP.

Efficiency of the weight interpretations

- monomial and polynomial mapping are both efficient: P-time in the size of the SP.
- more efficient than linkings mapping (HvG, 2003): Exponential in the size of the SP.

Global Cut-elimination with Monomial PS

reduces

Global Cut-elimination with Monomial PS

via the duplication of the dependency graph of q (Maieli, 2007)

Global Cut-elimination with Monomial PS

to (we replace q by two news eigen-weights r and s):

Local Cut-elimination with Monomial PS

or, via a new dependence condition if L is a link depends on p then $w(L) \leq \sum_{i=1}^{n} w_{i}\left(\&_{p}\right)$
(Laurent-Maieli, 2008)

Cut-elimination with Monomial PS

finally, $\oplus_{i} / \&$ cuts reduce:

- globally, by erasing of slices \bar{r} and s,
- locally, by erasing of slices $\bar{q} @ p$ and $q @ \bar{p})$

Cut-elimination with Monomial PS

- both global and local cut elimination procedures are terminating and confluent;
- but with an unknown Complexity (P-time?).

Cut-elimination with Polynomial PS

reduces, to

Cut-elimination with Polynomial PS

we replace $\left\{\begin{array}{llll}\text { each occurrence of } & q & \text { by } & \sum_{i}^{n} w_{i}\left(B_{\text {left }}^{\perp}\right)=p \\ \text { each occurrence of } & \bar{q} & \text { by } & \sum_{j}^{m} w_{j}\left(B_{\text {right }}^{\perp}\right)=\bar{p}\end{array}\right.$
with w_{i} (resp., w_{j}) any weight belonging to an axiom with a literal conclusion occurring in the most left (resp., most right) B^{\perp}

Cut-elimination with Polynomial PS

we replace $\left\{\begin{array}{llll}\text { each occurrence of } & q & \text { by } & \sum_{i}^{n} w_{i}\left(B_{\text {eft }}^{\perp}\right)=p \\ \text { each occurrence of } & \bar{q} & \text { by } & \sum_{j}^{m} w_{j}\left(B_{\text {right }}^{\perp}\right)=\bar{p}\end{array}\right.$
with w_{i} (resp., w_{j}) any weight belonging to an axiom with a literal conclusion occurring in the most left (resp., most right) B^{\perp}

It is strong normalising (P-time) and confluent (\sim Hughes, 2007)

Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition ("\&-boxing"): if a link L depends on a variable p then $w(L) \leq w\left(\&_{p}\right)$.
(PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ৪ and by adding a jump from a $\&_{p}$-node to a node depending on p) is ACC.

Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition ("\&-boxing"): if a link L depends on a variable p then $w(L) \leq w\left(\&_{p}\right)$. every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each $>$ and by adding a jump from a $\&_{p}$-node to a node depending on p) is ACC.

Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition ("\&-boxing"): if a link L depends on a variable p then $w(L) \leq w\left(\&_{p}\right)$.
(PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each $>$ and by adding a jump from a $\&_{p}$-node to a node depending on p) is ACC.

Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition ("\&-boxing"): if a link L depends on a variable p then $w(L) \leq w\left(\&_{p}\right)$.
(PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each $>$ and by adding a jump from a $\&_{p}$-node to a node depending on p) is ACC.

Example: a non correct PS

Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition ("\&-boxing"): if a link L depends on a variable p then $w(L) \leq w\left(\&_{p}\right)$.
(PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ૪ and by adding a jump from a $\&_{p}$-node to a node depending on p) is ACC.

Example: there is a non-ACC switching with the $p q$-slice

Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition ("\&-boxing"): if a link L depends on a variable p then $w(L) \leq w\left(\&_{p}\right)$.
(PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each $>$ and by adding a jump from a $\&_{p}$-node to a node depending on p) is ACC.

Checking Correctness and Sequentialization Complexity (P-time?)

Correctness Criterion for Polynomial PN (1/2)

(PS) - no dependence condition (weights are more liberal). + every valuation induces an unique (by \oplus-resolution) slice.
(PN) - Girard's criterion (by single switched slices) is not sufficient.

Correctness Criterion for Polynomial PN (1/2)

(PS) - no dependence condition (weights are more liberal). + every valuation induces an unique (by \oplus-resolution) slice.
(PN) - Girard's criterion (by single switched slices) is not sufficient.

Correctness Criterion for Polynomial PN (1/2)

(PS) - no dependence condition (weights are more liberal).

+ every valuation induces an unique (by \oplus-resolution) slice.
(PN) - Girard's criterion (by single switched slices) is not sufficient.

Correctness Criterion for Polynomial PN (1/2)

(PS) - no dependence condition (weights are more liberal).

+ every valuation induces an unique (by \oplus-resolution) slice.
(PN) - Girard's criterion (by single switched slices) is not sufficient.
Gustave PS correct by single switched slices but non-sequentializable

Correctness Criterion for Polynomial PN (2/2)

Definition (HvG'03) : PN
(1) each slice is a MLL PN.
(2) every set of at least 2 slices separates (toggles) a \& not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each \& and 8]

Checking Correctness and Sequentialization are P-time (Hughes,'07).

Correctness Criterion for Polynomial PN (2/2)

Definition (HvG'03) : PN
(1) each slice is a MLL PN.
(2) every set of at least 2 slices separates (toggles) a \& not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each \& and \wp].

Checking Correctness and Sequentialization are P-time (Hughes, '07).

Correctness Criterion for Polynomial PN (2/2)

Definition (HvG'03) : PN
(1) each slice is a MLL PN.
(2) every set of at least 2 slices separates (toggles) a \& not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each \& and 8].

Checking Correctness and Sequentialization are P-time (Hughes, '07).

Correctness Criterion for Polynomial PN (2/2)

Definition (HvG'03) : PN
(1) each slice is a MLL PN.
(2) every set of at least 2 slices separates (toggles) a \& not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each \& and \gtrdot].
Gustave PS is, by (2), not correct

Correctness Criterion for Polynomial PN (2/2)

Definition (HvG'03) : PN
(1) each slice is a MLL PN.
(2) every set of at least 2 slices separates (toggles) a \& not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each \& and 8].

Checking Correctness and Sequentialization are P-time (Hughes,'07).

conclusions

	Representation			Cut-elimination	
PN syntax	P-time Correctness	P-time Translation	Abstraction	P-time	Confluence
Monomial	$?$	linear	No	$?$	Yes
Polynomial	Yes	linear	Yes	Yes	Yes

