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» Since its inception (1987) the problem of finding a “good
notion” of MALL proof nets has remained open.
> Last few years have seen a renaissance of this theme:

(1996, Girard, Monomial Nets)

2003, Hughes-van Glabbeek, Linkings Nets

2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
2005, Curien-Faggian, L-nets

2007, Maieli, Contractible MALL PN

2008, Maieli-Laurent, strong normalization for Monomial PN
2008, Mogbil-de Naurois. Correctness of MALL is PS
NL-Complete

2008, de Falco, Gol for MALL

» 2008, Di Giamberardino, Jump Nets.

» here a comparing of the current technologies for MALL PN,
based on “weights" (dependencies) w.r.t.
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abstraction and efficiency of the representation.
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Standard key ingredients of a Proof Nets (PN) syntax

naively

» PN are parallel presentations of sequential proofs (SP) of LL
» PN quotient classes of equivalent proofs, modulo irrelevant
permutations of derivation rules.
key ingredients:
» a graph syntax (proof structures, PSs)
> a correctness criterion (defining PNs among PSs)
> an interpretation of the sequent calculus proofs (SPs)

» a cut elimination procedure
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Main properties for a “good notion” of PN (1/3)

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be correct (a PN);
Function: SP — PN,

Canonical surjection: SP equal up to (reasonable) commutations
of rules must be identified upon translation to a PN;
Efficient: P-time in the size (of the proofs).
(naively) we should preserve the computational
complexity of the interpreted proofs;
(seriously) we should respect the notion that a
semantics (PN) is a
structure-preserving map or some kind
of homomorphism from proofs.



Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be



Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be

Defined directly on PS;



Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be

Defined directly on PS;

Complete: any cut node of a PS reduces in one step;



Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be
Defined directly on PS;
Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes
(immediately) connected to the reducing cut node;



Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be

Defined directly on PS;
Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes
(immediately) connected to the reducing cut node;

Strong normalising: terminating and (locally) confluent;



Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be

Defined directly on PS;
Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes
(immediately) connected to the reducing cut node;

Strong normalising: terminating and (locally) confluent;

Efficient: P-time in size.



Main properties for a “good notion” of PN (3/3)

Finally, the correctness criterion must be:



Main properties for a “good notion” of PN (3/3)

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those
PS that sequentialise to SP (they are PN);



Main properties for a “good notion” of PN (3/3)

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those
PS that sequentialise to SP (they are PN);

Stable: under cut elimination;



Main properties for a “good notion” of PN (3/3)

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those
PS that sequentialise to SP (they are PN);

Stable: under cut elimination;

Efficient: checking correctness and sequentialization P-time.



MALL Proof Structures: weights

» the problem is to cope with the &-rule

rA T,B
I, A&B

for which a superimposition of two proof nets must be made.
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p slice
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MALL Proof Structures: weights

» then, we can get different notions of PN in which links are
weighted by non-zero:

» monomials (Girard, 1998)

dependence condition:
if L depends on p then w(L) < w(&))

» or (general) polynomials (~ Hughes-Van Glabbeek, 2003).
no dependence at all!

of the Bool-algebra generated by the eigen weights.
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» There is no canonical surjection from SP to Monomial PN.

» There is only a non-surjective mapping allowing a minimal
(only on conclusion links) superimposition of slices



Interpretation: MALL SP +— Monomial PN (2/7)

Example
ax ax ax ax ax ax
L ALA A“A . BB ALA BB ALA
BL, B AL, A&A BL. Bo AL A BLBOALA
BL, B® AL, A&A BLBEANAA

B+&B+ B ® A+, A&A



Interpretation: MALL SP +— Monomial PN (2/7)

ax ax ax ax ax ax
ax AL A AL A B+, B AL A B+, B AL A
B+.B AL ALA BB AL A B+, B@ A+ A
Bt B AL, A&A BL, B® AL, ALA

Bt&Bt B® AL, A&A

axioms map to

1 1 1

— H T I
‘ “AL‘ ‘Bi ‘BAL A

B* B A A A g1 B AL A




Interpretation: MALL SP — Monomial PN (3/7)

AL A AL A BL.B AL A BL.B AL A
B+, B AL ALA BL,Bo AL A BL,Bo AL A
Bt B AL, ALA Bt, B AL, ALA

Bt&BL B® AL, ALA

the topmost & (with eigen-weight p) and ®-rules map to

p Bt

1 1

AL A
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Interpretation: MALL SP +— Monomial PN (4/7)

ALA At A BLB ALA BLB  AlLA
B+,B AL A&LA © B, Bo AL A BL,Bo AL A
B+, B® AL, A&A B+, B® AL, ALA
B+&B - B® AL, ALA

&

the middle ® and &-rules (with eigen-weight g) map to:

q q
1 P ] ]
| | )
B+ B At A A B+ B At / A A
\/ \/ N/ % \/
2 &,

P ®
| | ‘
1 1



Interpretation: MALL SP — Monomial PN (5/7)

AL A AL A BLB AL A BLB  ALA

B*+.B Al ALA B+, B® AL A B, B AL A
B, B® At ALA B+, B® AL A&A
B+&Bt, B AL, A&A

&

finally, the lowest &-rule (with eigen-weight r) maps to:

qr qr

q qr

L
BL
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Interpretation: MALL SP — Monomial PN (6/7)

It is not invariant under the raising of the '®, ®, @, & over the &-rule

Example: if we permute the ® over the &,-rule

BL,B AL A BB AL A B+,B AL A BL,B AL A
BL,B® AL A BL, B AL A 2 BL,B® AL A BL,B® AL A
B+, B® AL, A&A B+, B® AL, AXA

BL&Bt B® AL, ARA
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Interpretation: MALL SP — Monomial PN (8/8)

It is not invariant under the raising of the ', ®, ®, & over the &-rule

Example: if we permute the ® over the &,-rule

BL,B AL A BB AL A B-,B AL A BL,B AL A
B, B AL A B-,Bo A A 2 B+, Bo AL A BL, B AL A
B+, B® AL, A&A B+, B® AL, AXA

BL&Bt B® AL, ARA

then, this SP maps into a different (w.r.t. the previous one) PN:

when we add a &-link, we don’t know if a link L; of 7y is the same as another link L’ of m;

in general, p.wyi(L) + p.wa(L2) is not a monomial, except when Ly, L, are conclusions
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There is a canonical surjection from MALL SP to Polynomial PN

ALA AL A BEB  ALA BL B ALA
B+.B AL ALA B+, Be AL A B+, Be AL A
BL,B® AL A&A B+, B ® AL, A&A

BL&Bt, B® AL, A&A




Interpretation: MALL SP — Polynomial PN (3/8)

There is a canonical surjection from MALL SP to Polynomial PN

AL A AL A BLB Al A BL B  ALA
B+, B AL A& LA B, Be AL A B, B® AL A
BL,B® A*, A& A B, B® AL, A& A

BL1&,B+ B AL, A& A

assign an eigen weight to each & in the sequent conclusion and
(upwards) propagate them



Interpretation: MALL SP — Polynomial PN (4/8)

There is a canonical surjection from MALL SP to Polynomial PN

a q g g q q
AL A AL A 2 BB AL A BB AL A
BL,B AL, A A T TBLBwALA BL.Bo AL A
BL,B® AL, A& A B, B® AL, A&, A I

BL&,Bt, B ® AL, A& A

inductively (top-down) separate each slice with monomials



Interpretation: MALL SP — Polynomial PN (5/8)

There is a canonical surjection from MALL SP to Polynomial PN

Example:
Pg pq pq Pq pq pq
P AL A AL A B+.B AL A @ BB AL A
B+, B AL A& A B+, B® AL A B+, B® A+ A
B+, B® AL, A&A BL,B® At A& A &

BL&,BL, B® AL A& A P
P q



Interpretation: MALL SP — Polynomial PN (6/8)

There is a canonical surjection from MALL SP to Polynomial PN

Example:
Pq Pq Pg Pg Pq Pq
P At A AL A BL.B AL A BL.B AL A
B+, B AL A& A B+, B® AL A B+, B® A+ A 2
B+, B® AL, A& A BL,B® At A& A &

BL&,BL B ® AL, A&,A ?

— a Polynomial PN is a sequent forest with weighted axioms
— replace parallel axioms AXy, AX;, ..AX,, with weights wy, wo, ..., w,, by
a signle AX with weight w = Y7 w;.

P pPq+pg=gq

PG +pq=p pg+pq=4q

B+ B+ B A*—%‘\
R N N
| | |




Interpretation: MALL SP — Polynomial PN (7/8)

It is invariant under the raising of the ', ®, ®, &-rule over &-rule:

Example:
pg Bg Bq Bq Pg Pg Pq Pq
BL-,B AL A BL-,B AL A BtB At A BB ALA
Bt B AL A Bl B AL A 2 B+, B® AL A Bt B AL A

B, B® AL, A& A B, B® AL A& A
BL&,BL, B ® AL, A&yA




Interpretation: MALL SP — Polynomial PN (8/8)

It is invariant under the raising of the ', ®, ®, &-rule over &-rule:

Example:
Bg g pq Bq Pq Pq Pq pq
BL, B A{A@ BL.B At A Bt B At A Bt B AL A
B, B A+ A B, Bo AL A 2 BL,B@ AL A Bt B A+ A

B, B® AL, A&gA BL, B® At A& A
B1&,B*, B ® At A& A

maps to the same (previous) Polynomial PN:

Bq+Ppg=p pg+pg=q

pq+pqg=p pg+pg=q

B+ B+ B Al—/‘ﬁ\
NSNS NS

B'&,B* B® At A& A
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Efficiency of the weight interpretations

» monomial and polynomial mapping are both efficient:
P-time in the size of the SP.

» more efficient than linkings mapping (HvG, 2003):
Exponential in the size of the SP.



Global Cut-elimination with Monomial PS

T | A\ /B L B\ /E T B\ / B
D1 D2 ® &, 9‘1 éLz »
ADA At B B&B B @B+ B&B

reduces



Global Cut-elimination with Monomial PS

via the duplication of the dependency graph of g (Maieli, 2007)

p

q q
q q p
\ |
A T Ai\ /BL B B Bt Bt B /B
@1 @2 ® &g 69‘1 JBZ &
ADA At e Bt B&B Bt @Bt B&B



Global Cut-elimination with Monomial PS

to (we replace g by two news eigen-weights r and s):

pr
pr

’7

A A

A

O —

Al ® B+

ApA

B&B




Local Cut-elimination with Monomial PS

or, via a new dependence condition
if L is a link depends on p then w(L) < 37, w;i(&)

(Laurent-Maieli, 2008)

D1 D2 ®
\\,,,,,/ e
B&B

Al ® B+




Cut-elimination with Monomial PS
finally, ®;/& cuts reduce:

> globally, by erasing of slices 7 and s,

> locally, by erasing of slices g@p and q@p)

P p P
A AL Bt B BL
| N

ADA At B+ B&B




Cut-elimination with Monomial PS

» both global and local cut elimination procedures are
terminating and confluent;

» but with an unknown Complexity (P-time?).



Cut-elimination with Polynomial PS

A A _ A+ B* a B f i B B
NV N NN N
| | NS |

A®A At @ Bt B&B

reduces, to



Cut-elimination with Polynomial PS

p

T

ADA

we replace {

VoV LU N

At Bt

p

p

p
B
B B

B&B

each occurrence of g by Y. wi(Bit) = p
each occurrence of g by > w;(Bju) = P

with w; (resp., wj) any weight belonging to an axiom with a literal

conclusion occurring in the most left (resp., most right) B+



Cut-elimination with Polynomial PS

A /’\P;P;AL B*+ p | p B
\ / \ / B B ) . B\&
7 | N \”

ADA At @Bt B&B
each occurrence of b "wi(Bi,) =
we replace . q by Z;HW"( /ejt) P
each occurrence of g by > 7 w;i(Bj) = P

with w; (resp., w;) any weight belonging to an axiom with a literal
conclusion occurring in the most left (resp., most right) B+

It is strong normalising (P-time) and confluent (~ Hughes, 2007)
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Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing"):
if a link L depends on a variable p then w(L) < w(&,).

(PN): every valuation induces a (unique) slice s.t. for every switching
(obtained by mutilating one premise in each %2 and by adding
a jump from a &,-node to a node depending on p) is ACC.

Example: a non correct PS

q p

q ’pip —qq‘ p
\/ \/ \/ \/ \/
N | \/

®




Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing"):
if a link L depends on a variable p then w(L) < w(&)).

(PN): every valuation induces a (unique) slice s.t. for every switching
(obtained by mutilating one premise in each %2 and by adding
a jump from a &p,-node to a node depending on p) is ACC.

Example: there is a non-ACC switching with the pg-slice

Wﬁ ]
\/ /

\\ ®

\J/ |




Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing”):
if a link L depends on a variable p then w(L) < w(&)).

(PN): every valuation induces a (unique) slice s.t. for every switching
(obtained by mutilating one premise in each *® and by adding
a jump from a &,-node to a node depending on p) is ACC.

Checking Correctness and Sequentialization Complexity (P-time?)
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Correctness Criterion for Polynomial PN (1/2)

(PS) — no dependence condition (weights are more liberal).
+ every valuation induces an unique (by $-resolution) slice.

(PN) - Girard's criterion (by single switched slices) is not sufficient.

Gustave PS correct by single switched slices but non-sequentializable

pqr + pqr = pr

P47 + par = pr

paf+ par = fir

pay + par = ar

par + pqr = pq pgr + par =|pq

par

par

B A+ Bt B At Bt A At Bt

|
VVANY SV / B
\/ / \/
\e
|

\$
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Correctness Criterion for Polynomial PN (2/2)
Definition (HvG'03) : PN
(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and %].

Gustave PS is, by (2), not correct

PqT + pgr = pl
PqT + pgr = pi

! Par + pg !
I L
I
I Par+par = g '
e i '

. 4 .
WL Par+BaF = hq Raf + P47 =|pq__|
T ]  [e==F R T e ————
i I ol 7
i par [ v ' 1 ‘
o ! ! 1
il [ Y |

A BIA' B B A Bh A L Bt
/ /

L L
AN ’

) ; / .

,

&, S ®
\ S
v /o,
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Correctness Criterion for Polynomial PN (2/2)

Definition (HvG'03) : PN
(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and ’].

Checking Correctness and Sequentialization are P-time (Hughes, 07).



conclusions

Representation Cut-elimination

PN syntax | P-time Correctness | P-time Translation | Abstraction | P-time | Confluence
Monomial ? linear No ? Yes
Polynomial Yes linear Yes Yes Yes




