MALL Proof Nets: weights vs abstraction and efficiency

(a summary of the state of the art)

Roberto Maieli

Università degli Studi "Roma Tre" maieli@uniroma3.it

CONCERTO – Bologna, February 17th, 2009

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
 - ▶ (1996, Girard, Monomial Nets)
 - 2003, Hughes-van Glabbeek, Linkings Nets
 - 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
 - 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
 - 2005, Curien-Faggian, L-nets
 - > 2007, Maieli, Contractible MALL PN
 - > 2008, Maieli-Laurent, strong normalization for Monomial PN
 - 2008, Mogbil-de Naurois. Correctness of MALL is PS NL-Complete
 - ▶ 2008, de Falco, Gol for MALL
 - 2008, Di Giamberardino, Jump Nets.
- here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.

abstraction and efficiency of the representation.

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
 - ▶ (1996, Girard, Monomial Nets)
 - 2003, Hughes-van Glabbeek, Linkings Nets
 - 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
 - 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
 - 2005, Curien-Faggian, L-nets
 - 2007, Maieli, Contractible MALL PN
 - > 2008, Maieli-Laurent, strong normalization for Monomial PN
 - 2008, Mogbil-de Naurois. Correctness of MALL is PS NL-Complete
 - ▶ 2008, de Falco, Gol for MALL
 - ▶ 2008, Di Giamberardino, Jump Nets.
- here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.

abstraction and efficiency of the representation.

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
 - (1996, Girard, Monomial Nets)
 - > 2003, Hughes-van Glabbeek, Linkings Nets
 - > 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
 - 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
 - 2005, Curien-Faggian, L-nets
 - 2007, Maieli, Contractible MALL PN
 - > 2008, Maieli-Laurent, strong normalization for Monomial PN
 - 2008, Mogbil-de Naurois. Correctness of MALL is PS NL-Complete
 - 2008, de Falco, Gol for MALL
 - > 2008, Di Giamberardino, Jump Nets.
- here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.

abstraction and efficiency of the representation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Since its inception (1987) the problem of finding a "good notion" of MALL proof nets has remained open.
- Last few years have seen a renaissance of this theme:
 - (1996, Girard, Monomial Nets)
 - > 2003, Hughes-van Glabbeek, Linkings Nets
 - > 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
 - > 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
 - 2005, Curien-Faggian, L-nets
 - 2007, Maieli, Contractible MALL PN
 - > 2008, Maieli-Laurent, strong normalization for Monomial PN
 - 2008, Mogbil-de Naurois. Correctness of MALL is PS NL-Complete
 - > 2008, de Falco, Gol for MALL
 - > 2008, Di Giamberardino, Jump Nets.
- here a comparing of the current technologies for MALL PN, based on "weights" (dependencies) w.r.t.

abstraction and efficiency of the representation.

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- ► a correctness criterion (defining *PNs* among PSs)
- an interpretation of the sequent calculus proofs (SPs)

▲日▼▲□▼▲□▼▲□▼ □ ののの

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- ► a correctness criterion (defining *PNs* among PSs)
- an interpretation of the sequent calculus proofs (SPs)

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- ► a correctness criterion (defining *PNs* among PSs)
- an interpretation of the sequent calculus proofs (SPs)

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)

▲日▼▲□▼▲□▼▲□▼ □ ののの

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- a correctness criterion (defining PNs among PSs)
- an interpretation of the sequent calculus proofs (SPs)

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- ► a correctness criterion (defining *PNs* among PSs)
- an interpretation of the sequent calculus proofs (SPs)

naively

- ▶ PN are parallel presentations of sequential proofs (SP) of LL
- PN quotient classes of equivalent proofs, modulo irrelevant permutations of derivation rules.

key ingredients:

- a graph syntax (proof structures, PSs)
- ► a correctness criterion (defining *PNs* among PSs)
- an interpretation of the sequent calculus proofs (SPs)

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;

Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational complexity of the interpreted proofs;
seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN; Efficient: P time in the size (of the preofe)

(naively) we should preserve the computational complexity of the interpreted proofs;
(seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN; Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational complexity of the interpreted proofs;
seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;

Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational complexity of the interpreted proofs; seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN; Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational complexity of the interpreted proofs;
(seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;

Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational complexity of the interpreted proofs; seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be *correct* (a PN); Function: $SP \mapsto PN$;

Canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation to a PN;

Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational complexity of the interpreted proofs;
(seriously) we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of homomorphism from proofs.

The cut elimination procedure must be

Defined directly on PS; Complete: any cut node of a PS reduces in one step; Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node; Strong normalising: terminating and (locally) confluent; Efficient: P-time in size.

▲日▼▲□▼▲□▼▲□▼ □ ののの

The cut elimination procedure must be

Defined directly on PS;

- Complete: any cut node of a PS reduces in one step;
 - Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;

▲日▼▲□▼▲□▼▲□▼ □ ののの

Strong normalising: terminating and (locally) confluent; Efficient: P-time in size.

The **cut elimination** procedure must be

Defined directly on PS; Complete: any cut node of a PS reduces in one step; Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node; Strong normalising: terminating and (locally) confluent; Efficient: P-time in size.

▲日▼▲□▼▲□▼▲□▼ □ ののの

The cut elimination procedure must be

Defined directly on PS;

Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;

Strong normalising: terminating and (locally) confluent; Efficient: P-time in size.

The cut elimination procedure must be

Defined directly on PS;

Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;

Strong normalising: terminating and (locally) confluent;

Efficient: P-time in size.

The cut elimination procedure must be

Defined directly on PS;

Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;

▲日▼▲□▼▲□▼▲□▼ □ ののの

Strong normalising: terminating and (locally) confluent; Efficient: P-time in size.

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those PS that *sequentialise* to SP (they are PN); Stable: under cut elimination; Efficient: *checking correctness* and *sequentialization* P-time.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those PS that *sequentialise* to SP (they are PN);

Stable: under cut elimination;

Efficient: checking correctness and sequentialization P-time.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those PS that *sequentialise* to SP (they are PN); Stable: under cut elimination;

Efficient: checking correctness and sequentialization P-time.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those PS that *sequentialise* to SP (they are PN);

Stable: under cut elimination;

Efficient: checking correctness and sequentialization P-time.

the problem is to cope with the &-rule

for which a superimposition of two proof nets must be made.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

► A solution: a boolean variable (eigen-wight) for each &-link:

$$\frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A\&B}\&_{p}$$

which separates the two slices of the superimposition:

(ロ)、(型)、(E)、(E)、 E、 の(の)

which separates the two slices of the superimposition:

$$\frac{\overline{\rho} \text{ slice}}{\Gamma, B} \&_{\rho}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

then, we can get different notions of PN in which links are weighted by non-zero:

► monomials (Girard, 1998) dependence condition: if L depends on p then w(L) ≤ w(&_p)

or (general) polynomials (~ Hughes-Van Glabbeek, 2003).
no dependence at all!

of the Bool-algebra generated by the eigen weights.

Interpretation: MALL SP \mapsto Monomial PN (1/7)

► There is **no canonical surjection** from SP to Monomial PN.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

 There is only a non-surjective mapping allowing a *minimal* (only on conclusion links) superimposition of slices

Interpretation: MALL SP \mapsto Monomial PN (1/7)

There is no canonical surjection from SP to Monomial PN.

 There is only a non-surjective mapping allowing a *minimal* (only on conclusion links) superimposition of slices
Interpretation: MALL SP \mapsto Monomial PN (1/7)

▶ There is **no canonical surjection** from SP to Monomial PN.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 There is only a non-surjective mapping allowing a *minimal* (only on conclusion links) superimposition of slices Interpretation: MALL SP \mapsto Monomial PN (2/7)

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Interpretation: MALL SP \mapsto Monomial PN (2/7)

axioms map to

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

₹ 9Q@

Interpretation: MALL SP \mapsto Monomial PN (3/7)

the topmost & (with eigen-weight p) and \otimes -rules map to

Interpretation: MALL SP \mapsto Monomial PN (4/7)

the middle \otimes and &-rules (with eigen-weight q) map to:

(日) (同) (日) (日)

Interpretation: MALL SP \mapsto Monomial PN (5/7)

finally, the lowest &-rule (with eigen-weight r) maps to:

◆□> ◆□> ◆三> ◆三> ・三 のへで

Interpretation: MALL SP \mapsto Monomial PN (6/7)

It is **not invariant** under the raising of the $\otimes, \otimes, \oplus, \&$ over the &-rule **Example:** if we permute the \otimes over the $\&_p$ -rule

B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A
B^{\perp}, B	$\otimes A^{\perp}, A$	B^{\perp}, B ($\otimes A^{\perp}, A$	B^{\perp}, B	$\otimes A^{\perp}, A$	$B^{\perp}, B \otimes$	A^{\perp}, A
$B^{\perp}, B \otimes A^{\perp}, A\&A$				$B^{\perp}, B \otimes$	$A^{\perp}, A\&A$		
$B^{\perp} \& B^{\perp} B \otimes A^{\perp} A \& A$							

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Interpretation: MALL SP \mapsto Monomial PN (7/8)

It is not invariant under the raising of the $\heartsuit, \otimes, \oplus, \&$ over the &-rule

Example: if we permute the \otimes over the $\&_p$ -rule

B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	
$B^{\perp}, B \otimes A^{\perp}, A$		$B^{\perp}, B \otimes A^{\perp}, A$		B^{\perp}, B	$B^{\perp}, B \otimes A^{\perp}, A$		$B^{\perp}, B\otimes A^{\perp}, A$	
$B^{\perp}, B \otimes A^{\perp}, A\&A$				$B^{\perp}, B \otimes$	$A^{\perp}, A\&A$			
$B^{\perp}\&B^{\perp},B\otimes A^{\perp},A\&A$								

then, this SP maps into a different (w.r.t. the previous one) PN:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Interpretation: MALL SP \mapsto Monomial PN (8/8)

It is **not invariant** under the raising of the $\otimes, \otimes, \oplus, \&$ over the &-rule

Example: if we permute the \otimes over the $\&_{p}$ -rule

then, this SP maps into a different (w.r.t. the previous one) PN:

when we add a &-link, we don't know if a link L_1 of π_1 is the same as another link L' of π_2 ; in general, $p.w_1(L) + \bar{p}.w_2(L_2)$ is not a monomial, except when L_1, L_2 are conclusions Interpretation: MALL SP \mapsto Polynomial PN (1/8)

There is a canonical surjection from MALL SP to Polynomial PN

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Interpretation: MALL SP \mapsto Polynomial PN (2/8)

There is a canonical surjection from MALL SP to Polynomial PN **Example:**

	A^{\perp}, A	A^{\perp}, A	-	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A
B^{\perp}, B	A^{\perp}, λ	A&A		B^{\perp}, B ($\otimes A^{\perp}, A$	B^{\perp}, E	$B\otimes A^{\perp}, A$
B^{\perp}, B	\otimes A^{\perp}, A &	A			$B^{\perp}, B \otimes$	$A^{\perp}, A\&A$	
$B^{\perp}\&B^{\perp},B\otimes A^{\perp},A\&A$							

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Interpretation: MALL SP \mapsto Polynomial PN (3/8)

There is a canonical surjection from MALL SP to Polynomial PN **Example:**

assign an eigen weight to each & in the sequent conclusion and (upwards) propagate them

Interpretation: MALL SP \mapsto Polynomial PN (4/8)

There is a canonical surjection from MALL SP to Polynomial PN **Example:**

$$\frac{\overline{q}}{A^{\perp},A} \frac{\overline{q}}{A^{\perp},A} \underbrace{\frac{\overline{q}}{A^{\perp},A}}_{B^{\perp},B \otimes A^{\perp},A} \underbrace{\frac{\overline{q}}{B^{\perp},B}}_{B^{\perp},B \otimes A^{\perp},A} \underbrace{\frac{\overline{q}}{A^{\perp},A}}_{B^{\perp},B \otimes A^{\perp},A} \underbrace{\frac{\overline{q}}{B^{\perp},B}}_{B^{\perp},B \otimes A^{\perp},A} \underbrace{\frac{\overline{q}}{B^{\perp},B \otimes A^{\perp},A}}_{B^{\perp},B \otimes A^{\perp},A \otimes qA} \underbrace{\frac{\overline{q}}{B^{\perp},B \otimes A^{\perp},A \otimes qA}}_{B^{\perp},B \otimes A^{\perp},A \otimes qA}$$

inductively (top-down) separate each slice with monomials

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Interpretation: MALL SP \mapsto Polynomial PN (5/8)

There is a canonical surjection from MALL SP to Polynomial PN **Example:**

	₽ <mark>₫</mark>	<u> pq</u>	pq	pą	pq	pq	
p	A^{\perp}, A	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	
B^{\perp}, B	$A^{\perp}, A\&_q A$		B^{\perp}, B ($B^{\perp}, B \otimes A^{\perp}, A \otimes$		$B^{\perp}, B \otimes A^{\perp}, A$	
B^{\perp}, B	$\otimes A^{\perp}, A\&$	a _q A		$B^{\perp}, B\otimes A$	I [⊥] , A& _q A	&	
$B^{\perp} \&_{p} B^{\perp}, B \otimes A^{\perp}, A \&_{q} A$							

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Interpretation: MALL SP \mapsto Polynomial PN (6/8) There is a canonical surjection from MALL SP to Polynomial PN

Example:

- a Polynomial PN is a sequent forest with weighted axioms

- replace parallel axioms $AX_1, AX_2, ...AX_n$ with weights $w_1, w_2, ..., w_n$, by a signle AX with weight $w = \sum_{i=1}^{n} w_i$.

Interpretation: MALL SP \mapsto Polynomial PN (7/8)

It is **invariant** under the raising of the $\otimes, \otimes, \oplus, \&$ -rule over &-rule: **Example:**

Ρą	Ρą	рq	Ρq	рą	pq	pq	pq
B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A	B^{\perp}, B	A^{\perp}, A
			$\otimes A^{\perp}, A$	$B^{\perp}, B \otimes A^{\perp}, A \qquad B^{\perp}, B \otimes A^{\perp}, A$			
	$B^{\perp}, B\otimes A^{\perp}$		$B^{\perp}, B\otimes A$	$A^{\perp}, A\&_q A$			
$B^{\perp}\&_{p}B^{\perp}, B\otimes A^{\perp}, A\&_{q}A$							

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Interpretation: MALL SP \mapsto Polynomial PN (8/8)

It is **invariant** under the raising of the $\mathcal{P}, \otimes, \oplus, \&$ -rule over &-rule: **Example:**

maps to the same (previous) Polynomial PN:

Efficiency of the weight interpretations

monomial and polynomial mapping are both efficient:
 P-time in the size of the SP.

 more efficient than linkings mapping (HvG, 2003): Exponential in the size of the SP.

Efficiency of the weight interpretations

monomial and polynomial mapping are both efficient:
 P-time in the size of the SP.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

 more efficient than linkings mapping (HvG, 2003): Exponential in the size of the SP.

Global Cut-elimination with Monomial PS

reduces

Global Cut-elimination with Monomial PS

via the **duplication** of the **dependency graph** of *q* (Maieli, 2007)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Global Cut-elimination with Monomial PS

to (we replace q by two news eigen-weights r and s):

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Local Cut-elimination with Monomial PS

or, via a **new dependence condition** if L is a link depends on p then $w(L) \leq \sum_{i=1}^{n} w_i(\&_p)$ (Laurent-Maieli, 2008)

▲ロ ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ の Q @

Cut-elimination with Monomial PS

finally, $\oplus_i/\&$ cuts reduce:

- globally, by erasing of slices \overline{r} and s,
- ▶ locally, by erasing of slices $\bar{q}@p$ and $q@\bar{p}$)

Cut-elimination with Monomial PS

 both global and local cut elimination procedures are terminating and confluent;

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

but with an unknown Complexity (P-time?).

Cut-elimination with Polynomial PS

<ロ> <同> <同> <同> < 同> < 同> < □> <

æ

reduces, to

Cut-elimination with Polynomial PS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Cut-elimination with Polynomial PS

It is strong normalising (P-time) and confluent (\sim Hughes, 2007)

- (PS): the crucial point is the **dependence condition** ("&-boxing"): if a link *L* depends on a variable *p* then $w(L) \le w(\&_p)$.
- (PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ⊗ and by adding a jump from a &_p-node to a node depending on p) is ACC.

▲日▼▲□▼▲□▼▲□▼ □ のので

- (PS): the crucial point is the dependence condition ("&-boxing"): if a link L depends on a variable p then $w(L) \le w(\&_p)$.
- (PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ⊗ and by adding a jump from a &_p-node to a node depending on p) is ACC.

- (PS): the crucial point is the dependence condition ("&-boxing"): if a link L depends on a variable p then $w(L) \le w(\&_p)$.
- (PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ⊗ and by adding a jump from a &_p-node to a node depending on p) is ACC.

- (PS): the crucial point is the **dependence condition** ("&-boxing"): if a link *L* depends on a variable *p* then $w(L) \le w(\&_p)$.
- (PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ⊗ and by adding a jump from a &_p-node to a node depending on p) is ACC.

Example: a non correct PS

◆□> ◆□> ◆三> ◆三> ・三 のへで

- (PS): the crucial point is the **dependence condition** ("&-boxing"): if a link *L* depends on a variable *p* then $w(L) \le w(\&_p)$.
- (PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ⊗ and by adding a jump from a &_p-node to a node depending on p) is ACC.

Example: there is a non-ACC switching with the *pq*-slice

- (PS): the crucial point is the dependence condition ("&-boxing"): if a link L depends on a variable p then $w(L) \le w(\&_p)$.
- (PN): every valuation induces a (unique) slice s.t. for every switching (obtained by mutilating one premise in each ⊗ and by adding a jump from a &_p-node to a node depending on p) is ACC.

Checking Correctness and Sequentialization Complexity (P-time?)

(PS) - no dependence condition (weights are more liberal).
 + every valuation induces an unique (by ⊕-resolution) slice.
 (PN) - Girard's criterion (by single switched slices) is not sufficient.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- (PN) Girard's criterion (by single switched slices) is not sufficient.

(PS) - no dependence condition (weights are more liberal).
 + every valuation induces an unique (by ⊕-resolution) slice.
 (PN) - Girard's criterion (by single switched slices) is not sufficient.

- (PS) no dependence condition (weights are more liberal).
 - + every valuation induces an unique (by $\oplus\text{-resolution})$ slice.
- (PN) Girard's criterion (by single switched slices) is not sufficient.

Gustave PS correct by single switched slices but non-sequentializable

Definition (HvG'03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices *separates* (*toggles*) a & not belonging to any *switching cycle* [a cycle containing at most one switch edge (premise or jump edge) for each & and ⊗].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (HvG'03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices *separates* (*toggles*) a & not belonging to any *switching cycle* [a cycle containing at most one switch edge (premise or jump edge) for each & and ⊗].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (HvG'03) : PN

- (1) each slice is a MLL PN.
- (2) every set of at least 2 slices separates (toggles) a & not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each & and ⊗].

Definition (HvG'03) : PN

- (1) each slice is a MLL PN.
- (2) every set of at least 2 slices separates (toggles) a & not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each & and ⊗].

Gustave PS is, by (2), not correct

Checking Correctness and Sequentialization are P-답해e 위·Uaffes. '0후'). 후 가속으

Definition (HvG'03) : PN

- (1) each slice is a MLL PN.
- (2) every set of at least 2 slices separates (toggles) a & not belonging to any switching cycle [a cycle containing at most one switch edge (premise or jump edge) for each & and ⊗].

conclusions

		Cut-elimination			
PN syntax	P-time Correctness	P-time Translation	Abstraction	P-time	Confluence
Monomial	?	linear	No	?	Yes
					Yes

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 오 ()