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The MALL proof nets renaissance

◮ Since its inception (1987) the problem of finding a “good
notion” of MALL proof nets has remained open.

◮ Last few years have seen a renaissance of this theme:
◮ (1996, Girard, Monomial Nets)
◮ 2003, Hughes-van Glabbeek, Linkings Nets
◮ 2004, Hamano, ext. of Mon. MALL PN (mix, softness analys.)
◮ 2004, Laurent-Tortora, (slice) normaliz. for pol. MALL PN
◮ 2005, Curien-Faggian, L-nets
◮ 2007, Maieli, Contractible MALL PN
◮ 2008, Maieli-Laurent, strong normalization for Monomial PN
◮ 2008, Mogbil-de Naurois. Correctness of MALL is PS

NL-Complete
◮ 2008, de Falco, GoI for MALL
◮ 2008, Di Giamberardino, Jump Nets.

◮ here a comparing of the current technologies for MALL PN,
based on “weights” (dependencies) w.r.t.

abstraction and efficiency of the representation.
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Standard key ingredients of a Proof Nets (PN) syntax

naively

◮ PN are parallel presentations of sequential proofs (SP) of LL

◮ PN quotient classes of equivalent proofs, modulo irrelevant
permutations of derivation rules.

key ingredients:

◮ a graph syntax (proof structures, PSs)

◮ a correctness criterion (defining PNs among PSs)

◮ an interpretation of the sequent calculus proofs (SPs)

◮ a cut elimination procedure
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Main properties for a “good notion” of PN (1/3)

The interpretation (translation) of SP into PS must be:

Sound: the PS associated to a SP, must be correct (a PN);

Function: SP 7→ PN;

Canonical surjection: SP equal up to (reasonable) commutations
of rules must be identified upon translation to a PN;

Efficient: P-time in the size (of the proofs).

(naively) we should preserve the computational
complexity of the interpreted proofs;

(seriously) we should respect the notion that a
semantics (PN) is a
structure-preserving map or some kind
of homomorphism from proofs.
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Main properties for a “good notion” of PN (2/3)

The cut elimination procedure must be

Defined directly on PS;

Complete: any cut node of a PS reduces in one step;

Local: a cut elimination step only affects the nodes
(immediately) connected to the reducing cut node;

Strong normalising: terminating and (locally) confluent;

Efficient: P-time in size.
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Main properties for a “good notion” of PN (3/3)

Finally, the correctness criterion must be:

Geometrical: an intrinsic (not inductive) characterisation of those
PS that sequentialise to SP (they are PN);

Stable: under cut elimination;

Efficient: checking correctness and sequentialization P-time.
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MALL Proof Structures: weights

◮ the problem is to cope with the &-rule

Γ,A Γ,B
&

Γ,A&B

for which a superimposition of two proof nets must be made.



MALL Proof Structures: weights

◮ A solution: a boolean variable (eigen-wight) for each &-link:

Γ,A Γ,B
&p

Γ,A&B
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p slice

Γ,A
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◮ which separates the two slices of the superimposition:

p̄ slice

Γ,B
&p

Γ,A&B



MALL Proof Structures: weights

◮ then, we can get different notions of PN in which links are
weighted by non-zero:

◮ monomials (Girard, 1998)

dependence condition:
if L depends on p then w(L) ≤ w(&p)

◮ or (general) polynomials (∼ Hughes-Van Glabbeek, 2003).

no dependence at all!

of the Bool -algebra generated by the eigen weights.



Interpretation: MALL SP 7→ Monomial PN (1/7)

◮ There is no canonical surjection from SP to Monomial PN.

◮ There is only a non-surjective mapping allowing a minimal

(only on conclusion links) superimposition of slices
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Interpretation: MALL SP 7→ Monomial PN (2/7)

Example

ax
B⊥,B

ax
A⊥,A

ax
A⊥,A

&
A⊥,A&A

⊗
B⊥,B ⊗ A⊥,A&A

ax
B⊥,B

ax
A⊥,A

⊗
B⊥,B ⊗ A⊥,A

ax
B⊥,B

ax
A⊥,A

⊗
B⊥,B ⊗ A⊥,A

&
B⊥,B ⊗ A⊥,A&A

&
B⊥&B⊥,B ⊗ A⊥,A&A



Interpretation: MALL SP 7→ Monomial PN (2/7)

ax
B⊥,B

ax
A⊥,A

ax
A⊥,A

A⊥,A&A

B⊥,B ⊗ A⊥,A&A

ax
B⊥,B

ax
A⊥,A

B⊥,B ⊗ A⊥,A

ax
B⊥,B

ax
A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A

axioms map to

BB⊥ A⊥ A B⊥

B⊥ B

B

A

A

A⊥

A⊥A
1

1

A⊥

1
1

1
1 1

1



Interpretation: MALL SP 7→ Monomial PN (3/7)

B⊥,B

A⊥,A A⊥,A
&

A⊥,A&A

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A
⊗

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A
⊗

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A

the topmost & (with eigen-weight p) and ⊗-rules map to

BB⊥ A⊥ A B⊥ B AA⊥A

&p

p

p̄

1

1

1

BB⊥ A

11

A⊥

11

⊗

1

⊗



Interpretation: MALL SP 7→ Monomial PN (4/7)

B⊥,B

A⊥,A A⊥,A

A⊥,A&A
⊗

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A

the middle ⊗ and &-rules (with eigen-weight q) map to:

BB⊥ A⊥ A B⊥ B AA⊥A

&p

p

p̄1

1

⊗⊗

1

B

A

A⊥

&q

q̄q̄

q q

1 1

⊗



Interpretation: MALL SP 7→ Monomial PN (5/7)

B⊥,B

A⊥,A A⊥,A

A⊥,A&A

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A
&

B⊥&B⊥,B ⊗ A⊥,A&A

finally, the lowest &-rule (with eigen-weight r) maps to:

BB⊥ A⊥ A B⊥ B AA⊥A

&p ⊗⊗

B

A

A⊥

&q

⊗

&r

qrqr

q̄r q̄r

pr̄

p̄r̄r̄

r

rr̄r̄ r

111



Interpretation: MALL SP 7→ Monomial PN (6/7)

It is not invariant under the raising of the O,⊗,⊕, & over the &-rule

Example: if we permute the ⊗ over the &p-rule

B⊥,B A⊥,A
⊗

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A



Interpretation: MALL SP 7→ Monomial PN (7/8)

It is not invariant under the raising of the O,⊗,⊕, & over the &-rule

Example: if we permute the ⊗ over the &p-rule

B⊥,B A⊥,A
⊗

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A

then, this SP maps into a different (w.r.t. the previous one) PN:

BB⊥ A⊥ A B⊥ B AA⊥A

&p ⊗⊗

B

A

A⊥

&q

⊗

&r

qrqr

q̄r q̄r

r

111

pr̄

A⊥

⊗

B

pr̄

p̄r̄p̄r̄

r̄ r̄ r r



Interpretation: MALL SP 7→ Monomial PN (8/8)
It is not invariant under the raising of the O,⊗,⊕, & over the &-rule

Example: if we permute the ⊗ over the &p-rule

B⊥,B A⊥,A
⊗

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A

then, this SP maps into a different (w.r.t. the previous one) PN:

BB⊥ A⊥ A B⊥ B AA⊥A

&p ⊗⊗

B

A

A⊥

&q

⊗

&r

qrqr

q̄r q̄r

r

111

pr̄

A⊥

⊗

B

pr̄

p̄r̄p̄r̄

r̄ r̄ r r

when we add a &-link, we don’t know if a link L1 of π1 is the same as another link L′ of π2;

in general, p.w1(L) + p̄.w2(L2) is not a monomial, except when L1,L2 are conclusions



Interpretation: MALL SP 7→ Polynomial PN (1/8)

There is a canonical surjection from MALL SP to Polynomial PN



Interpretation: MALL SP 7→ Polynomial PN (2/8)

There is a canonical surjection from MALL SP to Polynomial PN
Example:

B⊥,B

A⊥,A A⊥,A

A⊥,A&A

B⊥,B ⊗ A⊥,A&A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&A

B⊥&B⊥,B ⊗ A⊥,A&A



Interpretation: MALL SP 7→ Polynomial PN (3/8)

There is a canonical surjection from MALL SP to Polynomial PN
Example:

B⊥,B

A⊥,A A⊥,A

A⊥,A&qA

B⊥,B ⊗ A⊥,A&qA

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&qA

B⊥&pB
⊥,B ⊗ A⊥,A&qA

assign an eigen weight to each & in the sequent conclusion and
(upwards) propagate them



Interpretation: MALL SP 7→ Polynomial PN (4/8)

There is a canonical surjection from MALL SP to Polynomial PN
Example:

B⊥,B

q̄

A⊥,A

q

A⊥,A
&q

A⊥,A&qA

B⊥,B ⊗ A⊥,A&qA

q̄

B⊥,B

q̄

A⊥,A

B⊥,B ⊗ A⊥,A

q

B⊥,B

q

A⊥,A

B⊥,B ⊗ A⊥,A
&q

B⊥,B ⊗ A⊥,A&qA

B⊥&pB
⊥,B ⊗ A⊥,A&qA

inductively (top-down) separate each slice with monomials



Interpretation: MALL SP 7→ Polynomial PN (5/8)

There is a canonical surjection from MALL SP to Polynomial PN
Example:

p̄

B⊥,B

p̄q̄

A⊥,A

p̄q

A⊥,A
&

A⊥,A&qA

B⊥,B ⊗ A⊥,A&qA

pq̄

B⊥,B

pq̄

A⊥,A
⊗

B⊥,B ⊗ A⊥,A

pq

B⊥,B

pq

A⊥,A
⊗

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&qA
&p

B⊥&pB
⊥,B ⊗ A⊥,A&qA



Interpretation: MALL SP 7→ Polynomial PN (6/8)
There is a canonical surjection from MALL SP to Polynomial PN
Example:

p̄

B⊥,B

p̄q̄

A⊥,A

p̄q

A⊥,A
&

A⊥,A&qA

B⊥,B ⊗ A⊥,A&qA

pq̄

B⊥,B

pq̄

A⊥,A
⊗

B⊥,B ⊗ A⊥,A

pq

B⊥,B

pq

A⊥,A
⊗

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&qA
&p

B⊥&pB
⊥,B ⊗ A⊥,A&qA

– a Polynomial PN is a sequent forest with weighted axioms

– replace parallel axioms AX1, AX2, ..AXn with weights w1, w2, ..., wn, by

a signle AX with weight w =
∑n

i wi .

B⊥ B⊥ B A⊥ A A

&q⊗&p

p̄ p̄q + pq = q

pq̄ + pq = p p̄q̄ + pq̄ = q̄

1 1 1



Interpretation: MALL SP 7→ Polynomial PN (7/8)

It is invariant under the raising of the O,⊗,⊕,&-rule over &-rule:
Example:

p̄q̄

B⊥,B

p̄q̄

A⊥,A
⊗

B⊥,B ⊗ A⊥,A

p̄q

B⊥,B

p̄q

A⊥,A
⊗

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&qA

pq̄

B⊥,B

pq̄

A⊥,A

B⊥,B ⊗ A⊥,A

pq

B⊥,B

pq

A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&qA

B⊥&pB
⊥,B ⊗ A⊥,A&qA



Interpretation: MALL SP 7→ Polynomial PN (8/8)
It is invariant under the raising of the O,⊗,⊕,&-rule over &-rule:
Example:

p̄q̄

B⊥,B

p̄q̄

A⊥,A
⊗

B⊥,B ⊗ A⊥,A

p̄q

B⊥,B

p̄q

A⊥,A
⊗

B⊥,B ⊗ A⊥,A
&

B⊥,B ⊗ A⊥,A&qA

pq̄

B⊥,B

pq̄

A⊥,A

B⊥,B ⊗ A⊥,A

pq

B⊥,B

pq

A⊥,A

B⊥,B ⊗ A⊥,A

B⊥,B ⊗ A⊥,A&qA

B⊥&pB
⊥,B ⊗ A⊥,A&qA

maps to the same (previous) Polynomial PN:

B⊥ B⊥ B A⊥ A A

B⊥&pB
⊥ B ⊗ A⊥ A&qA

&q⊗&p

p̄q + pq = q

pq̄ + pq = p p̄q̄ + pq̄ = q̄

1 1 1

p̄q + p̄q̄ = p̄



Efficiency of the weight interpretations

◮ monomial and polynomial mapping are both efficient:
P-time in the size of the SP.

◮ more efficient than linkings mapping (HvG, 2003):
Exponential in the size of the SP.
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◮ more efficient than linkings mapping (HvG, 2003):
Exponential in the size of the SP.



Global Cut-elimination with Monomial PS

⊕1

A ⊕ A

A A A⊥

⊗

B⊥

A⊥ ⊗ B⊥

B B

&q⊕2 ⊕1 ⊕2

B&B B⊥ ⊕ B⊥

B⊥ B⊥ B B

p

p̄

&p

q

q̄q̄

q

B&B

reduces



Global Cut-elimination with Monomial PS

via the duplication of the dependency graph of q (Maieli, 2007)

A ⊕ A

A⊥

⊗

B⊥

A⊥ ⊗ B⊥

B B

&q ⊕1 ⊕2

B&B B⊥ ⊕ B⊥

B⊥ B⊥ B B

p

p̄

&p

q

q̄

B&B

q̄

q

AA

⊕2⊕1



Global Cut-elimination with Monomial PS

to (we replace q by two news eigen-weights r and s):

⊕1

A ⊕ A

A A A⊥

⊗

B⊥

⊕2 ⊕2

B⊥ B B

p̄

&p

B&B

⊕1

B⊥

A⊥ ⊗ B⊥

B B

BB

p

&r

&s

p̄s

p̄s̄p̄s̄

p̄s

pr

pr̄

B⊥A⊥AA

⊕2⊕1

pr

pr̄



Local Cut-elimination with Monomial PS

or, via a new dependence condition

if L is a link depends on p then w(L) ≤
∑n

i=1 wi(&p)

(Laurent-Maieli, 2008)

⊕1

A ⊕ A

A A A⊥

⊗

B⊥

⊕2 ⊕2

B⊥ B B

&p

B&BA⊥ ⊗ B⊥

B

B⊥

B

&q

B B

B⊥ B⊥

p̄

q̄

q

q̄

q

&q ⊕1

B⊥

p

pq̄

p̄q

pq

p̄q̄



Cut-elimination with Monomial PS
finally, ⊕i/& cuts reduce:

◮ globally, by erasing of slices r̄ and s,

◮ locally, by erasing of slices q̄@p and q@p̄)

A ⊕ A

A A⊥

⊗

B⊥

⊕2

B⊥ B B

p̄

&p

B&B

B⊥

A⊥ ⊗ B⊥

B

B

p

B⊥A⊥A

⊕1

p

p̄

p

p̄



Cut-elimination with Monomial PS

◮ both global and local cut elimination procedures are
terminating and confluent;

◮ but with an unknown Complexity (P-time?).



Cut-elimination with Polynomial PS

A A A⊥

⊗

B⊥ B B

&q

B⊥ B⊥ B B

p

p̄

&p

q

q̄q̄

q

⊕

A ⊕ A A⊥ ⊗ B⊥

⊕

B&B

reduces, to



Cut-elimination with Polynomial PS

A A A⊥

⊗

B⊥

B⊥ B⊥ B B

p

p̄

&p⊕

A ⊕ A A⊥ ⊗ B⊥ B&B

B B

p̄ p̄

p p

we replace

{

each occurrence of q by
∑n

i wi(B
⊥

left) = p

each occurrence of q̄ by
∑m

j wj(B
⊥

right) = p̄

with wi (resp., wj) any weight belonging to an axiom with a literal

conclusion occurring in the most left (resp., most right) B⊥



Cut-elimination with Polynomial PS

A A A⊥

⊗

B⊥

B⊥ B⊥ B B

p

p̄

&p⊕

A ⊕ A A⊥ ⊗ B⊥ B&B

B B

p̄ p̄

p p

we replace

{

each occurrence of q by
∑n

i wi(B
⊥

left) = p

each occurrence of q̄ by
∑m

j wj(B
⊥

right) = p̄

with wi (resp., wj) any weight belonging to an axiom with a literal

conclusion occurring in the most left (resp., most right) B⊥

It is strong normalising (P-time) and confluent (∼ Hughes, 2007)



Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing”):
if a link L depends on a variable p then w(L) ≤ w(&p).

(PN): every valuation induces a (unique) slice s.t. for every switching

(obtained by mutilating one premise in each O and by adding
a jump from a &p-node to a node depending on p) is ACC.
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Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing”):
if a link L depends on a variable p then w(L) ≤ w(&p).

(PN): every valuation induces a (unique) slice s.t. for every switching

(obtained by mutilating one premise in each O and by adding
a jump from a &p-node to a node depending on p) is ACC.

Example: a non correct PS

A A A⊥ B⊥

p̄

p

q̄

q

&q⊗&p

B B

⊗

C⊥C

p

O

p̄

⊗

O

C⊥

C

q̄

q



Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing”):
if a link L depends on a variable p then w(L) ≤ w(&p).

(PN): every valuation induces a (unique) slice s.t. for every switching

(obtained by mutilating one premise in each O and by adding
a jump from a &p-node to a node depending on p) is ACC.

Example: there is a non-ACC switching with the pq-slice

A A⊥ B⊥

p q

&q⊗&p

B

⊗

C⊥C

O

⊗

O

C⊥

C

q

p



Correctness Criterion for Monomial PN

(PS): the crucial point is the dependence condition (“&-boxing”):
if a link L depends on a variable p then w(L) ≤ w(&p).

(PN): every valuation induces a (unique) slice s.t. for every switching

(obtained by mutilating one premise in each O and by adding
a jump from a &p-node to a node depending on p) is ACC.

Checking Correctness and Sequentialization Complexity (P-time?)



Correctness Criterion for Polynomial PN (1/2)

(PS) – no dependence condition (weights are more liberal).
+ every valuation induces an unique (by ⊕-resolution) slice.

(PN) – Girard’s criterion (by single switched slices) is not sufficient.
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Correctness Criterion for Polynomial PN (1/2)

(PS) – no dependence condition (weights are more liberal).
+ every valuation induces an unique (by ⊕-resolution) slice.

(PN) – Girard’s criterion (by single switched slices) is not sufficient.

Gustave PS correct by single switched slices but non-sequentializable

&p

⊕

⊗ ⊗

⊕

⊗

⊕

A B⊥ B A⊥ B⊥ B⊥ BAA

&r&q

A⊥B A⊥

pqr
pqr

p̄qr + p̄qr̄ = p̄q p̄qr + p̄qr̄ = p̄q

pq̄r + p̄q̄r = q̄r

pq̄r + p̄q̄r = q̄r

pqr̄ + pq̄r̄ = pr̄

pqr̄ + pq̄r̄ = pr̄

q̄p̄r̄

q̄p̄r̄



Correctness Criterion for Polynomial PN (2/2)

Definition (HvG’03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and O].

Checking Correctness and Sequentialization are P-time (Hughes,’07).



Correctness Criterion for Polynomial PN (2/2)

Definition (HvG’03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and O].

Checking Correctness and Sequentialization are P-time (Hughes,’07).



Correctness Criterion for Polynomial PN (2/2)

Definition (HvG’03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and O].

Checking Correctness and Sequentialization are P-time (Hughes,’07).



Correctness Criterion for Polynomial PN (2/2)
Definition (HvG’03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and O].

Gustave PS is, by (2), not correct

&p

⊕

⊗ ⊗

⊕

⊗

⊕

A B⊥ B A⊥ B⊥ B⊥ BAA

&r&q

A⊥B A⊥

pqr
pqr

p̄qr + p̄qr̄ = p̄q p̄qr + p̄qr̄ = p̄q

pq̄r + p̄q̄r = q̄r

pq̄r + p̄q̄r = q̄r

pqr̄ + pq̄r̄ = pr̄

pqr̄ + pq̄r̄ = pr̄

q̄p̄r̄

q̄p̄r̄

Checking Correctness and Sequentialization are P-time (Hughes,’07).



Correctness Criterion for Polynomial PN (2/2)

Definition (HvG’03) : PN

(1) each slice is a MLL PN.

(2) every set of at least 2 slices separates (toggles) a & not belonging
to any switching cycle [a cycle containing at most one switch edge
(premise or jump edge) for each & and O].

Checking Correctness and Sequentialization are P-time (Hughes,’07).



conclusions

Representation Cut-elimination

PN syntax P-time Correctness P-time Translation Abstraction P-time Confluence

Monomial ? linear No ? Yes

Polynomial Yes linear Yes Yes Yes


