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Abstract. We present a demonstration of Andreoli’s focusing theorem for proofs
of linear logic (MALL) that avoids directly reasoning on sequent calculus proofs.
Following Andreoli-Maieli’s strategy, exploited in the MLL case, we prove the
focusing theorem as a particular sequentialization strategy for MALL proof nets
that are in canonical form. Canonical proof nets satisfy the property that asyn-
chronous links are always ready to sequentialization while synchronous focusing
links represent clusters of links that are hereditarily ready to sequentialization.
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1 Introduction

Focusing is an efficient proof-search procedure for Linear Logic [4], based on a proof
normalization result (the "Focusing Theorem") that has been described by Andreoli
in [1]. Focusing is described there in terms of the sequent system of (commutative)
Linear Logic, which it refines in two steps: "Dyadic", resp. "Triadic" system. Basically,
each refinement eliminates redundancies in proof-search due to irrelevant sequentializa-
tions of inference figures in the sequent-based representation of proofs. The expressive
power of Focusing is captured in a crisp way in a fully representative fragment of Lin-
ear Logic, called "LinLog", introduced in [1] together with a normalization procedure
from Linear Logic to LinLog. Usually the focusing theorem is proved in the linear se-
quent calculus and the proof is quite complex requiring an argument that makes use of
a double induction. Andreoli and Maieli have shown in [2] that Focusing can also be
interpreted in the proof net formalism, where it appears, at least in the multiplicative
fragment of linear logic (MLL), to be a simple refinement of the "Splitting Lemma" for
proof nets. The Splitting Lemma is at the core of the Sequentialization procedures for
proof nets, and Focusing thus appears as a sequentialization strategy. This change of
perspective allows the generalization of the Focusing result to (the multiplicative frag-
ment of) any logic where the "Splitting Lemma" holds. Here we extend this idea of [2]
to the case of MALL proof nets: we show how the focusing theorem for MALL can be
interpreted as a refinement of a Focusing Lemma in which, in addition to the splitting
case, it is also necessary to take into account clusters of tensor (⊗) and plus (⊕i) links
that are hereditarily ready to sequentialization (this is also known as the "critical syn-
chronous section"). In order to show this result we first need to fix a syntax for MALL
proof nets. Unlike what happens for MLL proof nets, the syntax of MALL proof nets
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is not so peaceful and univocal ([5, 6, 9]). There are essentially two syntaxes for MALL
proof nets: that one by Girard [5] based on proof structures weighted with Boolean
monomials, and a "more canonical" one by Hughes and Van Glabbeek [6]. Here, we
choose the former syntax and we show how it is possible to transform monomial proof
nets into canonical forms, in the same way as done by Hughes and Van Glabbeek. The
canonical form of the (monomial) proof nets is now given by the adoption of an ad-
ditive contraction link allowed only with atomic premises or with ⊕ premises coming
from different instances of unary additive ⊕ links, i.e. ⊕1 and ⊕2. This new syntactic
condition (on contraction links) allows to maximize the superposition of proof struc-
tures thus rendering them more canonical.
Paper Contributions. We characterize a (proper sub-)class of of (monomial) proof
nets, that is in correspondence with the class of focusing MALL sequent proofs: this is
called the class of proof nets in canonical form (CPN, Definition 6). The correspondence
between CPNs and focusing proofs is established via the sequentialization Theorem 4
which relies on the Focusing Theorem 3, a refinement of the Splitting and Ready Lem-
mas 4 and 5. The canonical form of a given proof net π ensures that the asynchronous
conclusions (i.e., conclusions of type O,N) of π are always ready to sequentialization,
while the Focusing Theorem 3 allows to identify those synchronous conclusions links
(of type ⊕,⊗ links) of π that are hereditarily (i.e., recursively) ready to sequentialization.

2 The MALL fragment of linear logic

In this paper, we consider only the pure (without units) multiplicative and additive frag-
ment of Linear Logic (MALL). MALL formulas A, B, ... are built from literals (propo-
sitional variables P,Q, ... and their negations P⊥,Q⊥, ...) and the binary connectives ⊗
(tensor), O (par), & (with) and ⊕ (plus). Negation (.)⊥ extends to arbitrary formulas by
the de Morgan laws: (A⊗B)⊥ = (A⊥O B⊥), (A O B)⊥ = (A⊥⊗B⊥), (A&B)⊥ = (A⊥⊕B⊥),
and (A ⊕ B)⊥ = (A⊥&B⊥). A MALL sequent Γ is a multiset of formulas A1, ..., An. Se-
quents are one-sided, so we may omit turnstiles (⊢). The rules of the proof system Σ1 are
depicted in the top part of Fig.1. In the MALL fragment we consider, the refined focused
system described in [1] can be reduced to Σ2 of Fig. 1: it is called the "Dyadic System
Σ2 for MALL". Connectives are split into two categories: asynchronous (or negative),
O and N, corresponding to a kind of "don’t care non-determinism" and synchronous
(or positive), ⊗ and ⊕, corresponding to a kind of "true non-determinism" w.r.t. proof-
search. Furthermore, we assume that the class of atomic formulas is split into two dual,
disjoint sub-classes: the positive atoms X,Y,Z, ... and their negative duals X⊥,Y⊥,Z⊥, ...
with X⊥⊥ = X (but this distinction is only conventional). Focusing sequents are of two
types: "⊢ Γ ⇑ L" and "⊢ Γ ⇓ F", where Γ is a multiset of non-asynchronous formulas,
L is a list of formulas and F is a single formula called the "focus" of the sequent. The
Focusing system is justified by the following theorem (stated and proved in [1]):

Theorem 1 (Andreoli, 1992). Let Γ be a multiset of non-asynchronous formulas and
L an ordered list of formulas: ⊢Σ1 Γ, L if and only if ⊢Σ2 Γ ⇑ L.

The original proof consists in showing that any proof of Γ, L, in the standard sequent
system Σ1, can be mapped, by permutation of inferences and deletion of dummy sub-
proofs, into a proof of Γ ⇑ L in the focusing system Σ2 and vice-versa. In the following,
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The monadic sequent system Σ1 for MALL:

ax
A, A⊥

Γ, A ∆, A⊥
cut

Γ, ∆

Γ, A ∆, B
⊗

Γ, ∆, A ⊗ B
Γ, A, B

O
Γ, A O B

Γ, A Γ, B
&

Γ, A&B
Γ, Ai ⊕i=1,2

Γ, A1 ⊕i A2

The dyadic (focused) sequent system Σ2 for MALL:

- Logical rules: O,N,⊗,⊕i=1,2

Γ ⇑ L, F,G
O

Γ ⇑ L, F OG
Γ ⇑ L, F Γ ⇑ L,G

N
Γ ⇑ L, F NG

Γ ⇓ F ∆ ⇓ G
⊗

Γ, ∆ ⇓ F ⊗G
Γ ⇓ Fi ⊕i=1,2

Γ ⇓ F1 ⊕ F2

- Identity [id] : if F is a positive atom
- Reaction [R ⇑] : if F is not asynchronous
- Reaction [R ⇓] : if F is neither synchronous nor a positive atom
- Decision [D] : if F is synchronous or a positive atom

id
F⊥ ⇓ F

Γ, F ⇑ L
R ⇑

Γ ⇑ L, F

Γ ⇑ F
R ⇓

Γ ⇓ F
Γ ⇓ F

D
Γ, F ⇑

Fig. 1. the monadic Σ1 (top) and dyadic Σ2 (bottom) systems for MALL

we show a different proof of this result as a refinement of the sequentialization of MALL
proof nets. Focusing basically appears as a strategy in the choice of the sequentializable
formulas in the Sequentialization procedure. For doing that, we need first to choose a
syntax for MALL proof structures which, unlike the MLL case, is neither standard nor
univocal ([5, 6, 9]). For several reasons1 we prefer the syntax of [8] (refinement of [5]).

3 Proof structures

Definition 1 (pre-proof structure). A MALL pre-proof structure (PPS) π is a directed
graph such that each edge is labelled by a MALL formula, each node has a type in
{ax, cut,⊗,O,N,⊕1,⊕2,C, •} and built according to the following typing constraints:

⊗

A B

A⊗ B

O
A B

A O B

N
A B

A N B

⊕1

A

A⊕ B

⊕2

B

A⊕ B

C

A A

A cut

A A⊥ ax

A A⊥ A

1. the entering (resp., outgoing or exiting) edges of a node L are the premises (resp.,
the conclusions) of L;

2. each edge must be conclusion of exactly one node and premise of at most one node;

1 Compared with the syntax of [6], monomial proof structures [8] are technically simpler; they
allow us to easily extend to the MALL case arguments originally used for the MLL case such as
Laurent’s Splitting Lemma [7] and Andreoli-Maieli’s Focusing Theorem [2]. Monomial proof
structures have a natural presentation in terms of Coherent Spaces [4] and their correctness
criterion can be also formulated in terms of "graph retraction steps" à la Danos [9].
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3. "•" denotes a dummy node whose unique premise is also called conclusion of π;
4. a node whose conclusion (resp., conclusions) is conclusion (resp. are conclusions)

of π are called terminal or conclusion nodes of π.

We call link the pseudo-graph made by a node together with its premise(s) and its
conclusion(s) (if any); e.g. the previous figure displayed the so called MALL links.

Proof structures are PPSs equipped with boolean weights. Assume a set B of Boolean
variables denoted by p, q, r, ..., then a monomial weight (simply, a weight) w, v, ..., over
B is a product (conjunction) of variables or negation of variables of B. We replace p.p
by p. Often, in a product of weights, v and w, we omit “.” and we write “vw” instead of
“v.w”. As usual in a Boolean algebra, we define the standard order relation “≤” between
two weights v and w as follows: v ≤ w if there exists a weight v′ s.t. v = v′.w. We also
assume the following notation: 1 for the empty product, 0 for a product where both p
and its negation p̄ appear and ϵp for a variable p or p̄. We say that a weight w depends
on a variable p when ϵp appears in w; two weights, v and w, are disjoint when v.w = 0.

Definition 2 (proof structure). A MALL proof structure (shortly, PS) is any PPS π
whose nodes are equipped with monomial weights as follows:

1. we associate a Boolean variable (p, q, ...), called eigen weight, to each &-node of
π (eigen weights are supposed to be different);

2. we associate a weight w, i.e., a product (conjunction) of eigen weights or negations
of eigen weights of π (p, p, q, q...), to each node with the constraint that two nodes
have the same weight if they have a common edge, except when the edge is the
premise of a & or C-node: in these cases we proceed as follows:
(a) if w is the weight of a &-link and p is its eigen weight then w does not depend

on p and its premise links, L1 and L2, must have weights resp., w.p and w.p;
(b) if w is the weight of a C-link and w1,w2 are the weights of its premise links, L1

and L2, then w = w1 + w2 and w1w2 = 0 (see the two l.h.s. pictures below);

L1wp L2 wp̄

Np w

A N B

A B
L1w1 L2 w2

C w

A

A A

p does not occur in w = wp + wp̄ w = w1 + w2 and w1w2 = 0

L1wq L2 wq̄

Cq w

A

A A

∃q s.t. w1 = wq and w2 = wq̄

3. every node that is conclusion of π has weight 1 (dummy nodes • have weight 1);
4. (dependence condition2) if w is the weight of a &-link with eigen weight p and w′

is a weight depending on p and appearing in the proof-structure then w′ ≤ w.

Fact 1 Since the weights associated to a PS are products (monomials) of the Boolean
algebra generated by the eigen weights associated to a proof structure then, for each
weight w associated to a contraction node, there exists a unique eigen weight q that
splits w into w1 = wq and w2 = wq̄. We sometimes index a contraction node C with its
splitting variable q, that is Cq as in the rightmost hand side picture above.

2 The dependence condition corresponds to the resolution condition of [6].
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Definition 3 (valuation, slice, switching). A valuation φ for a PS π is a function from
the set of all weights of π into {0, 1}. Fixed a valuation φ for π then:

– a slice φ(π) is the graph obtained from π by keeping only those nodes with weight
1 together with its outgoing edges (conclusion(s));

– a multiplicative switching (induced by φ), S m(π) of π, is the un-directed graph built
on the nodes and edges of φ(π) with the modification that for each O-node we take
only one premise and we cut the remaining one (it is called, left/right O-switch);

– an additive switching (induced by φ) of π (or simply a switching), denoted S a(π)
or simply S (π), is a multiplicative switching where for each &-node L we cut the
(unique) premise in S m(π) and we add an directed edge, called jump, from L to a
node L′ whose weight depends on the eigen weight of the &-node L.

Definition 4 (proof-net). A MALL PS π is correct, so it is a MALL proof net (PN), if
every (additive) switching S (π) is an acyclic and connected graph (ACC).

Example 1. The PPS π on the l.h.s. below is a PS while the PPS π′ on the r.h.s. is not
so since there exist a node whose weight w′ = p (resp., w′′ = p) depends on a Np-node,
whose weight is w = q, but p ≰ q (resp., p ≰ q), contradicting Definition 2(4). Observe
that jumps are necessary for the correctness criterion (Definition 4), otherwise proof
structures that are not image of any sequent proof of MALL would be correct. Consider
e.g. the PS π1 on the l.h.s. below (bottom). Actually π1 is "correct" if we reason only by
multiplicative slices although its conclusions (B NC)⊗ A, (A⊥OC⊥)⊕(A⊥O B⊥) are
not a provable sequent in MALL. Actually, fixed a valuation φ s.t. φ(p) = 1, there exists
an additive switching S (π1) (induced by φ) that is not ACC as the one in the right hand
side (note that S (π) consists of the sub-graph with solid edges).

π :

ax

qp
ax

qp̄
ax

q̄

Np w = q

Nq 1

Cp q

Cq 1

cut

1

ax
1

π′ :

ax

qp
ax

qp̄
ax

q̄

Np w = q

Nq 1

Cp q

Cq 1

cut

1
Cp 1

ax

w′′ = p

ax

w′ = p̄

Cp 1

ax3

p̄

ax2

p

ax1

p̄

ax0

p

π1 :

C 1

⊗

1

O pNp 1

⊕1 p

C

1
⊕2 p̄

O p̄

(A⊥OC⊥) ⊕ (A⊥O B⊥)

(B NC)⊗ A

ax3

p̄

ax2

p

ax1

p̄

ax0

p

C 1

⊗

1

O p

S (π1) :

Np 1

⊕1 p

C

1
⊕2 p̄

O p̄

(A⊥OC⊥) ⊕ (A⊥O B⊥)

(B NC)⊗ A

jump
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Definition 5 (substitution, restriction, empire, spreading). Let π be a PS, p and q
eigen weights and w a weight in π, then:

– the substitution of p by q in π, denoted with π[q/p] is the graph π′ obtained from π
by replacing each occurrence of p (resp., p̄) by q (resp., q̄);

– the restriction of π w.r.t. p (resp., of π w.r.t. p̄), denoted π ⇃p (resp., π ⇃p), is what
remains of π when we replace p with 1 and p̄ with 0 (resp., we replace p with 0 and
p̄ with 1) and keep only those vertexes and edges whose weight is still non null;

– the empire (or the dependency graph) of the eigen weight p w.r.t. π, denoted Ep, is
the (possibly disconnected) subgraph of π made by all links depending on p;

– the spreading of w over π, denoted by w.[π], is the product of w for π, i.e., π in which
we replace each weight v with the product of weights vw;

– π[ρ′/ρ] denotes the substitution3 in π of a sub-graph (or module) ρ with a graph ρ′.

Definition 6 (canonical form). Let π be a PS, ρ a sub-graph of π and π′ and ρ′ two
graphs. We say that π commutes to π′, denoted π { π′, if π′ is obtained from π by
replacing ρ with ρ′, i.e. π′ = π[ρ′/ρ], by one of the following commutation rules:

– R0: π{ π, by R0, if π′ = π[ρ′/ρ] where ρ and ρ′ are the two modules below:

ρ :

Cp(p + p̄) = 1 Cp(p + p̄) = 1

axp axp̄

A A⊥AA A⊥

A A⊥

ρ′ :

ax

1

A A⊥

– R1: π{ π′, by R1, if π′ = π[ρ′/ρ] where ρ and ρ′ are as below and • ∈ {⊗,O}:

ρ :

wp̄wp̄wp wp

• wp̄• wp

C w

ρ′ :

wp̄wp̄wp wp

C wC w

• w

– R2 : π{ π′, by R2, if π′ = π[ρ′/ρ] where ρ and ρ′ are as below, for i = 1, 2:

ρ :

wp̄wp

⊕i wp̄⊕i wp

C w

ρ′ :

wp̄wp

⊕i w

C w

– R3: π { π′, by R3, if π′ = π[ρ′/ρ] where ρ and ρ′ are as below with the condi-
tion that every weight w in π containing an occurrence of r (resp., of r̄) has been
replaced in π′ by the weight w′ = w[q/r] (resp., by the weight w′ = w[q̄/r̄]).

ρ :

wp̄r̄wp̄rwpq wpq̄

Nr wp̄Nq wp

C w

ρ′ :

wp̄q̄wp̄qwpq wpq̄

C wq̄C wq

Nq w

In every rule, ρ is called a redex of π (resp., a reductum of π′) moreover, the (unique)
contraction node that occurs in the redex is called the contraction (node) in commuta-
tion condition. We say that a PS π is in canonical form (CPS) iff it does not contain any
redex ρ (or, equivalently, it has no contraction in commutation condition).

A proof net π is in canonical form (it is a canonical proof net, CPN) iff π is a CPS.
3 Observe that in general substitutions may not preserve the property of being a proof structure.
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Proposition 1 (canonical form). Let π be a PS, Ri (0 ≤ i ≤ 3) be one of the commuta-
tion rules of Definition 6 and π′ be the graph s.t. π{ π′ by Ri. If π is a PN then:
(1) π′ is a PN too with the same conclusions of π;
(2) there exists a CPN πc, with the same conclusions of π, s.t. it can be obtained from π
by applying a finite number of instances of commutation rules, i.e. π{∗ πc.

Proof. (1) Commutation rules R0,R1 and R2, trivially preserve the property of being a
PN. In case of an instance of R3 we need first to ensure that the dependence condition 4
of Definition 2 is preserved. We show that if L′ is a node of π′ whose weight w′ depends
on an eigen variable q then w′ ≤ w where w is the weight of the Nq-link in π′.

[P1]: observe that since π is correct by hypothesis then, neither ϵr nor ϵq nor ϵr may
occur in w and, for similar reasons, if v is the weight of the Np then, neither ϵr nor ϵq
nor ϵp may occur in the weight v of Np neither in π nor in π′.

There are two possible cases for w′:

1. either w′ is not effected by the substitution [q/r], i.e. w′ = w′[q/r] and in this case
since w′ ≤ wp (by hypothesis is in π) then w′ ≤ w also in π′ (by [P1]);

2. or w′ is effected by the substitution [q/r] that is, w′ = w′′[q/r] where w′′ was the
weight of L′ in π before the substitution of the commutation rule R3. Since w′′ is
the weight of L′ in π depending on the weight of Nr, we know that w′′ ≤ wp̄ so w′′

has one of the following forms, w′′ = v′rwp̄ or w′′ = v′r̄wp̄. Assume w′′ = v′rwp̄,
then w′′ = v′rwp̄ ≤ wp̄ and so, by transitivity, w′′ = v′rwp̄ ≤ w. Now, since ϵr does
not occur in w (by [P1]), the substitution v′rwp̄[q/r] = w′′[q/r] = w′ thus w′ ≤ w.

It is not difficult to show that if L′ is a node of π depending on an eigen weight s , r
then w′′ = w′[q/r] ≤ v where w′′ and v are, resp., the weights of L′ and Ns in π′. We
only show the case when s = p and we omit the rest, that is, we show that if w′ is the
weight of a node L′ depending on the eigen weight p of the node Np, then w′ ≤ v where
v is the weight of Np in π′. Observe that since π is correct then v cannot depend neither
on q nor on r in π and so v cannot depend on q (after eventually the substitution) in π′

(otherwise we can easily find a switching in π containing a cycle). Now, if w′ in π has
the following form w′ = v′ϵrϵp, since by correctness of π neither ϵr nor ϵq nor ϵp may
occur in v, from w′ = v′ϵrϵp ≤ v in π we conclude w′[q/r] ≤ v.

Finally, in order to show that an instance of commutation rule R3 also preserves
correctness we reason by contradiction. Assume by absurdum that π′ is not correct, let
us say that there exists a switching S φ(π′) with a cycle or a disconnected component.
Assume e.g. that S φ(π′) (with e.g. φ(q̄) = 1) contains a cycle, then this cycle must
contain at least a node L′ whose weight w′ contains an occurrence of ϵq that replaced an
occurrence of ϵr in w′′ where w′′ is the weight of L′ in π′ before the substitution (i.e.,
w′ = w′′[q/r] or equivalently, w′′ = v.ϵr and w′ = v.ϵq). Since w′′ depends on Nr in
π then w′′ has the form w′′ = vwp̄ϵr and since w′ = w′′[ϵq/ϵr], then w′′ must have the
form w′′ = v.wp̄ϵr then it is easy to find a switching S φ(π) containing a cycle as in the
two leftmost graphs of Fig.2, contradicting the assumption that π is correct. We reason
in a similar way in case S φ(π′) contains a disconnected component.
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wp̄q̄

C wq̄

Nq

w
L′ w′ = vwp̄ϵq

jump

Nr

wp̄

C

w
L′ w′′ = vwp̄ϵr

jump

S φ(π′) S φ(π)

Fig. 2. cycles inside switchings (l.h.s.) and a blocking path for T (rightmost h.s.)

(2) By induction on the sum of the logical degrees4 of the formulas that are conclusions
of the uppermost contraction nodes that are in commutation condition in π. ⊓⊔

Instances of CPNs are given below: indeed, only π1 and π2 are canonical (proof nets).

Npp + p̄

1

⊕2 p̄

C1

1

axp ax p̄

⊕1p̄

A A⊥
AA A⊥

A N A A⊥ ⊕ A⊥

A⊥ ⊕ A⊥

A⊥ ⊕ A⊥

Npp + p̄

1

Cp + p̄

⊕11

1

axp axp̄

A A⊥AA A⊥

A N A A⊥

A⊥ ⊕ A⊥

Npp + p̄

1

⊕1 p̄

C1

1

axp ax p̄

⊕1p̄

A A⊥
AA A⊥

A N A A⊥ ⊕ A⊥

A⊥ ⊕ A⊥

A⊥ ⊕ A⊥

π1 π2 π3

Actually, the notion of canonical form allows us to exclude redundant structures from
the realm of MALL proof nets. Consider e.g. the two instances of monomial PS, π0 and
π′0 below, with same conclusions, given in the Appendix 2 of [6]: only π0 is a CPN;
indeed, π0 can be obtained from π′0 by iterating the commutation rules of Definition 6:
the only allowed (canonical) contractions are the blue ones while the two red ones, with
conclusions resp., P and P⊥ (in π′0), are not allowed because they contract two identical
axioms (thus, we can apply R0); moreover, the rightmost contraction with conclusion
Q N Q is in commutation condition thus, by rule R3, it can be permuted with the two N-
nodes above, Nq1 and Nq2 . In the following we show that the notion of cut-free canonical
proof net is sound and complete w.r.t. the notion of focusing sequent proof.

π0: :π′0

Theorem 2 (de-sequentialization). A proofΠ of a sequent Γ in Σ1 can be mapped (ie.,
de-sequentialized) into a CPN with same conclusions Γ.

4 The logical degree of a formula F, denoted ∂(F), is defined by induction on the height of
F: if F is atomic then ∂(F) = 0, else F has the form F1 ◦ F2, with ◦ ∈ {O,⊗,N,⊕}, and
∂(F) = ∂(F1) + ∂(F2) + 1.
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Proof. By induction of the height of Π via Proposition 1. All cases are easy except the
case when last rule of Π is an instance of the N-rule, in this case we need to apply
Proposition 1 in order to get a canonical proof net. Assume last rule of Π is a N-rule.
By hypothesis of induction,Π1 (resp.,Π2) de-sequentializes into the canonical proof net
π1 (resp., π2) with same conclusions. We may then link together π1 and π2 by a N-link
between conclusions F and G and by adding n a contraction C-links, one contraction
for each pair of identical conclusions Ai, Ai coming from resp., π1 and π2. Thus we build
the proof net π♯, as in the picture below, on which we may finally apply Proposition 1(3)
in order to get the canonical proof net π which Π de-sequentializes to.

Π1

⊢ A1, ..., Ai, ..., An, F
Π2

⊢ A1, ..., Ai, ..., An,G
Π : N

⊢ A1, ..., Ai, ..., An, F NG
⊓⊔

Definition 7 (ready and splitting links). Let π be a CPN. A link L of π is ready (to se-
quentialization) whenever deleting everything of L except its premise(s) produces one or
more sub-proof nets having among their conclusions the premise(s) of L. A conclusion
of π is ready if it is the conclusion of a ready link.

If L is a terminal ⊗-link of π of type A B
A⊗ B , we say that L is splitting for π when

removing L from π (we erase everything of L except its premises) splits π in two sub-
proof nets: πA, having A among its conclusions and πB, having B among its conclusions.
Split(π) denotes the set of terminal tensor links that are splitting for π.

We say that π with at least a terminal tensor link is in splitting condition iff it does
not contain neither an asynchronous conclusion nor a ready conclusion of type ⊕.

Fact 2 (terminal links of type ⊕i or O are ready) Assume π is a CPN with conclu-
sions Γ, F. If L is a terminal link of type Ai

A1⊕A2
⊕i with F = A1 ⊕ A2 (resp., of type A B

A O B
with F = A O B) then, L is a ready link and removing L as in Definition 7 produces a
sub-proof net πAi (resp., πA,B) with conclusions Γ, Ai (resp., Γ, A, B).

Note that a terminal tensor link of a proof net π may be not ready to sequentialiation
(it may be "non splitting" for π). A contraction link is never ready "alone": its "readi-
ness" is subordinate to that one of the N-link which this contraction depends on. In the
following, we adopt some notions of [7] adapted to the case of MALL cut-free CPNs.

Definition 8 (switching, descending and blocking paths).

– Given a CPS π, a jump graph for π (or a jumped PS π), denoted J(π), is the graph
obtained by adding to π some (possibly none) jumps; we allow in J(π) jumps from
an Np-node to a Cp node depending on p5.

5 Note that a J(π) differs from a switching S (π) for the following facts: (i) we do not consider
slices, (ii) we do not mutilate premises and (iii) there can be multiple (possibly, none) jumps
exiting from a Np-node and going to different nodes depending on p or Cp nodes.
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– Fixed a J(π) for π, a switching path γ in J(π) is a path that exists in some switching
S (π) of π. We say that n switching paths γ1, ...γn of J(π) are compatible iff there
exists a switching S (π) s.t. γ1, ..., γn are paths of S (π).

– If e is an edge of π, its descending path δ(e) is the unique directed path starting
from e and ending with the premise of a terminal node. If N is a node other than the
axiom then, δ(N) denotes the descending path of the unique conclusion of N. δ(N)
is empty if and only if N is terminal.

– Let T be a ⊗ node of a proof net π and J(π) one of its possible jump graphs:
– a correctness/blocking node for T is a node N of type ▽ ∈ {O,N} with two
disjoint switching paths of J(π), κ0 and κ1, going from T to N and s.t. both paths
start with a premise of T and end with a premise of N or a jump of N in case N is
a N-node; κ0 and κ1 are called correctness paths for T;
– a blocking path for T is a path γ in J(π) that goes from one premise to the
other of T (without passing through the conclusion of T) and bouncing on both
the premises (resp., on one premise and one jump) of a blocking node N of type O
(resp. of type N); in other words, γ starts from one premise of T , it ends with the
second premise of T and it also enters one premise of N and immediately exits the
other premise of N (or it enter one premise of N and exits with a jump, or the other
way round, in case N = N); thus γ = κA · N · κB appears as in the graph (A) of
Fig. 3 where "·" denotes the concatenation of switching paths.

E.g. graph (F) of Fig. 3 is an instance of jumped CPN in which the (unique) O-node is
a blocking node for ⊗3 while the (unique) Np-node is a blocking node for ⊗2.

Next two Facts and Lemmas 1, 2 and 3 are used to prove Lemma 4 which is neces-
sary for the Ready Lemma 5, the "pivot" lemma of the Focusing Theorem 3.

Fact 3 The two correctness paths, κA and κB for T = A B
A⊗ B , are compatible switching

paths and κ · T · κB, i.e., the path going from κA to κB (or the other way round) and
bouncing on the two premises of T (without going through the conclusion of T), is a
compatible switching path too.

Fact 4 If N is a node of a CPN other than the ax-node, then δ(N) is a switching path.

Lemma 1 (blocking contraction). Let π be a CPN with conclusions Γ = A1, ..., An s.t.
none of them is conclusion of a terminal N-link.

(i) - If some Ai is conclusion of a terminal contraction link Li and N is the N-node
which Li depends on, then neither Ai (i.e., Li) nor N is ready (N is called the blocking
contraction node for L) see picture (B) of Fig.3.

(ii) - Moreover, there does not exist any switching path exiting the conclusion of N
and stopping (downwards) at Li as e.g. γ′ and γ′′ in pictures (C) and (D) of Fig. 3.

Proof. (i) - By definition of PS, every contraction link depends on the eigen variable
of some N link of π, thus in particular any terminal contraction link Li depends on the
eigen weight p of some Np link of π and since by assumption none terminal link of π
is of type N, the Np-node must be above some conclusion A j of π (by correctness of π,
i , j); thus the Np-link is not ready to sequentialization yet as in Fig.3(B) of where the
terminal link ◦ below the Np-link is such that ◦ ∈ {⊕,⊗,O}).

(ii) - it follows by correctness of π (see graphs (C) and (D) of Fig.3). ⊓⊔
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Fig. 3. switching, blocking, descendent and correctness paths, and splitting conclusions

E.g., the Np-node of picture (F) of Fig. 3 is blocking for contraction node C1.

Lemma 2. If π is a PN with conclusions A1, ..., An then there exists at least a conclusion
Ai that is not conclusion of a contraction link.

Proof. Assume π is a PN having only terminal contraction links, L1, ..., Ln. Then, by
Lemma 1 if N is the node Np which Li depends on then, N is not ready so it must be
above a terminal contraction link L j with i , j, by correctness of π. Since the weight of
Li is 1 (by definition of PS), by the dependency condition, also the weight of N must be
1 but then the Np-link cannot be above any contraction link L j, a contradiction. ⊓⊔

Lemma 3 (blocking splitting). Let π be a PN with a terminal tensor link T that is
not splitting for π then: (i) there exists a blocking node N of type ▽ ∈ {O,N} for T
moreover, (ii) every switching path exiting the conclusion of N and compatible with κ0
and κ1 cannot contain any node of the correctness paths, κ0 and κ1, for T .

Proof. By induction on the number n of N-nodes of π. If n = 0 (we are in the MLL
case, [7]) then let T be a terminal ⊗ node and S (π) be a (multiplicative) switching: the
removal of T splits S (π) into two connected components (by the ACC-correctness). If
all O nodes are such that both their premises belong to the same connected compo-
nent, then T is a splitting node for π since the removal of T in π has two connected
components as well (which are ACC-correct). Otherwise there exists a O node N with
a premise in each connected component of the removal of T in S (π). Each of these
components contains a premise of T and a premise of N and (by connectivity) a path
from the first to the second. The two obtained paths are switching and disjoint. Finally,
in the component containing N, the obtained path cannot contain the conclusion of N
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otherwise, one could connect the two paths and obtain a cycle in the correctness graph
S ′(π) obtained from by S (π) by changing the choice of the premise of N; for similar
reasons (since by Fact 4, δ(N) is a switching path), δ(N) cannot meet neither κA nor κB
(see graph (E) of Fig.3).

Otherwise, n > 0 then, we assume by absurdum that π is the smallest (w.r.t. the
graphical size) proof net containing a terminal ⊗ node T that is not splitting for π and
such that there exists no blocking node N for T . Le us choose a N node N in π in such a
way that it is as low as possible (i.e., the weight of N is 1). It is always possible to find
such a node N in a correct proof net, otherwise we can find a switching for π containing
a cycle, contradicting the correctness assumption. Let p be the eigen weight of N and
let π ⇃p the restriction of π w.r.t. p. Clearly π ⇃p, after having properly removed the
residual unary N or C nodes left, is a correct proof net, let us say π′, of smaller size
than π but with still the same terminal tensor links of π (although the premises of these
tensors may have been changed). Thus, in π′ every terminal tensor link is either splitting
or there exists a blocking node for such a tensor.

1. if T is not splitting for π′ then there exists a blocking node N′ of type ▽ for T which
is also blocking for T in π: we can consider a switching S ′φ(π) that is the switching
S ′(π) induced by a valuation φ s.t. φ(p) = 1 (resp., φ( p̄) = 0);

2. otherwise, the removal of T splits π′ into two sub-proof nets, π′A and π′B with A and
B the two premises of T . Now, if we restore the restriction π ⇃p then, the removal of
T from π ⇃p induces two graphs, (π ⇃p)A (π ⇃p)B, corresponding resp., to π′A and π′B
after removing the residual "unary" node Np and all residual "unary" contraction
links of type Cp. Note that the residual unary node Np must occur either in (π ⇃p)A

or in (π ⇃p)B; let us say Np stays in (π ⇃p)B. Then, by correctness we know that:
[P1]: for every switching S φ(π ⇃p)B) there is a path from B to the unary node Np.
There are two cases for (π ⇃p)A:
(a) either no residual unary Cp node depending on p occurs in (π ⇃p)A; this means

that π′A (the proof net obtained from the restriction (π ⇃p)A, after the removal
of residual unary node, contains none node depending on p therefore it π′A is a
sub-proof net of π therefore T is splitting for π; a contradiction;

(b) or at least a residual unary C node M depending on p occurs in (π ⇃p)A. Then
we can easily build a jump graph for π′, let us say J(π′) containing a blocking
path for T as in the rightmost h.s. picture of Fig.2, a contradiction:

i. consider the switching path κA that starts with the jump from Np to M (i.e.,
κ′A) and continues up to the left premise A of T (i.e., κ′′A ), and then consider

ii. the second switching path κB starting from the unique premise of Np and
continuing up to the right premise B of T ; this path exists by [P1].

See e.g., also Fig.3(F) with T = ⊗2 and N = Np.

In order to show (ii), observe that δ(N) cannot meet κA (resp., κB) in a node, let us say
M′ (resp., M′′) otherwise we could find a switching for π′ containing a cycle starting
from the conclusion of N = Np and following the red path in the graph (E) of Fig.3. ⊓⊔

Lemma 4 (splitting). If π is a CPN in splitting condition then Split(π) , ∅ (see Def.7).

Proof. Assume π is a CPN in splitting condition, then by Definition 7 and by Contrac-
tion Lemma 1 none conclusion of π that is conclusion of a contraction link is ready (that
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holds in particular for all synchronous conclusions of type F⊕G). Assume by absurdum
that none synchronous conclusion is ready thus none tensor conclusion is splitting for
π. We show that there exists a jump graph J(π) for π containing a switching path with a
cycle, contradicting the assumption π is correct. Let Fi = Ai ⊗ Bi be the conclusion of a
terminal tensor link Ti of π.

[P.1] Since by assumption Ti is not splitting then, by Lemma 3, there exists a block-
ing node Ni (of type ▽) for Ti with two correction paths, κAi and κBi . Starting from Ni,
we follow δ(Ni) until we reach a terminal node T j which, by Lemma 3(ii), must be dif-
ferent from Ti. By correctness of π, κAi , κBi and δ(N0) are compatible switching paths.
There are now two cases for T j:

1. either T j is a terminal tensor link then, we continue as before in [P.1] (with T j at
the place of Ti) until we reach a new conclusion Tk which must be different from
all already visited conclusions, by Lemma 3(ii);

2. or T j is a terminal contraction link then, we then continue following the jump jp

(taken in the opposite direction) to the Np-node N j on which the contraction T j

depends on and then we continue with the descendent path δ(N j) until we reach a
new conclusion Tk which, by Lemma 1, must be different from all terminal nodes
previously visited. Observe that, by correctness of π, the composition of switching
paths, T j · jp · (Np = N j) · δ(N j), entails a compatible switching path.

Iterating steps 1 and 2 above, we build an infinite sequence

ν = κAi · Ni · δ(Ni) · · · T j · jp · N j · δ(N j) · · · Tk · κBk · Nk · δ(Nk) · · ·

where Ai, Bi are the premises of a generic terminal tensor link Ti : Ai Bi
Ai ⊗ Bi

and jpi denotes
a jump (taken in the opposite direction) going from a Np node to a terminal contraction
node T j depending on p. Since π is finite, ν must visit twice a same node M. Observe
that ν exists in a J(π) and it is not difficult to show that there exists a switching S (π)
containing such a ν (all components of ν are compatible since steps 1 and 2 preserve
compatibility), contradicting the correctness of π. Next figure illustrates two possibil-
ities for node M depending on whether the descendent path δ(Nn) meets a descendent
path (black option) or a correction path (grey option) already visited by ν; indeed, it
does not matter the type of node M we can always find a cycle in a switching path.

⊓⊔
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E.g., Split(π) = {⊗1,⊗4} for the CPN π of Fig.3(F) (neither ⊗2 nor ⊗3 is splitting for π).

Lemma 5 (ready). If π is a CPN s.t. it is not an ax-link and it has no asynchronous
conclusions, then there exists a terminal link that is a ready ⊕i-link or a splitting ⊗-link.

Proof. Let π be a CPN s.t. it is not an ax-link and it has no asynchronous conclusion.
If π has no terminal contraction links and, since π is not reduced to an axiom link, it
must contain at least a terminal synchronous links L (⊕i or ⊗); if L is an ⊕i-link then it
is trivially ready, otherwise π has only terminal ⊗-links then it is in splitting conditions
and so, by the Splitting Lemma 4, there exists a splitting link.

Otherwise, if π contains terminal contractions then, by Lemma 2, it cannot contain
only terminal contraction links and, since it is not reduced to an axiom link and it has
no asynchronous conclusions, it must contain at least a synchronous terminal link L;
if L is an ⊕i-link then it is trivially ready, otherwise π has only terminal links that are
contractions (of non asynchronous formulas) or terminal ⊗-links then it is in splitting
condition and so, by the Splitting Lemma 4, there exists a splitting link. ⊓⊔

Definition 9 (focusing conclusions). Let π be a CPN and F be one of its conclusions.
F is focusing for π (we write, F ∈ Foc(π)) iff one of the following conditions holds:

1. F is a positive atom and π is reduced to an axiom link.
2. F is the conclusion of a terminal ⊕i-link L of type Ai

A1⊕A2
⊕i and Ai is asynchronous

or a negative atom or Ai ∈ Foc(πAi ), for 1 ≤ i ≤ 2.
3. F = (A⊗ B) ∈ Split(π) and π is split at F into two sub-PNs, πA and πB, and

(a) A is asynchronous or a negative atom or A ∈ Foc(πA) and
(b) B is asynchronous or a negative atom or B ∈ Foc(πB);

where πAi (resp., πA, πB) is (resp. are) the sub-proof net(s) obtained by removing from π
the vertex ⊕i (resp., ⊗) of L together with its outgoing edge A1 ⊕ A2 (resp., A⊗ B).

Proposition 2. Let π be a CPN with no asynchronous conclusion.

1. If L is a terminal ⊗-link, A B
A⊗ B ⊗, that is splitting for π and πA and πB are the two

CPNs obtained by splitting π at L and A is not a negative atom then Foc(πA)\ {A} ⊆
Foc(π) (and similarly for the B side).

2. If L is a terminal ⊕i link, Ai
A1⊕A2

⊕i, for 1 ≤ i ≤ 2, and πAi is the sub-CPN obtained
by removing L and Ai is a non negative atom then Foc(πAi ) \ {Ai} ⊆ Foc(π).

Proof. We only discuss case 1 (case 2 is simpler so we omit it). Assume S = A⊗ B is
splitting for π with no asynchronous conclusion. We reason by induction on the size of
π. We show that if F ∈ Foc(πA) \ {A} then F ∈ Foc(π). Since F is focusing in πA, there
are three cases to consider according to Definition 9:

1. F is a positive atom and πA is reduced to an axiom link, with conclusions F and F⊥,
one of which being A. But, by hypothesis, A is not a negative atom, hence A , F⊥;
moreover, by hypothesis, F ∈ Foc(πA) \ {A}, hence A , F. Contradiction.
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2. F = (C ⊗D) ∈ Foc(πA) and πA is split at F into two sub-CPNs, πC and πD s.t.:
[⋆1] C is asynchronous or a negative atom or C ∈ Foc(πC);
[⋆2] D is asynchronous or a negative atom or D ∈ Foc(πD).

Since A is a conclusion of πA different from F (by hypothesis, F ∈ Foc(πA) \ {A})
and πA is split at F into πC and πD then A must be in the conclusions of πC or πD.
We assume, without loss of generality, that A is a conclusion of πD (other than D,
obviously). Let π′ be the PS consisting of πD and πB and the splitting link of π at
S , as in the picture (G) of Fig.3. It is not difficult to see that:

[⋆3] π′ is a CPN split at S into πD and πB and
[⋆4] π is split at F into πC and π′.

In case D ∈ Foc(πD), then D must be synchronous otherwise πD must be an axiom
and, since A , D, we would get A = D⊥, contradicting the assumption; now, since
π′ is smaller (in size) than π, by the induction hypothesis applied to [⋆3], we infer:

[⋆5] Foc(πD) \ {A} ⊆ Foc(π′) so D ∈ Foc(π′) since D ∈ Foc(πD) \ {A} and A , D.
From [⋆5], [⋆2] and D , A, we get:

[⋆6] D is asynchronous or a negative atom or D ∈ Foc(π′).
From [⋆1], [⋆6] and [⋆4], by Definition 9, we conclude that F ∈ Foc(π).

3. F = C⊕D is a synchronous formula of πA that is conclusion of a ready terminal link
⊕1 (resp., ⊕2) and πC (resp., πB) is the sub-CPN s.t. C (resp., D) is asynchronous or
a negative atom or C ∈ Foc(πC) (resp., D ∈ Foc(πD)) then, we proceed as in case 2.

⊓⊔

Theorem 3 (focusing). If π is a PN with no asynchronous conclusion then, Foc(π) , ∅.

Proof. We proceed by contradiction. Assume there exists a CPN πwith no asynchronous
conclusion and s.t. Foc(π) = ∅. We choose π of minimal size. There are two cases:

1. Either π has no synchronous conclusion then, since it contains neither asynchronous
conclusion (by assumption) and since by Lemmas 1 and 2 it cannot contain any
contraction link, π must be an axiom link. But then, one of the two conclusions
must be a positive atom which, by Definition 9, is focusing for π. Contradiction.

2. Or π does contain at least one synchronous conclusion, and since it contains no
asynchronous conclusion, by application of the Ready Lemma 5, we know that
there exists a synchronous conclusion F of π that is either a ready conclusion of
type A⊕B or a splitting conclusion of type A⊗ B. We only discuss the latter case (the
former case is similar, so omitted). Assume there exists a synchronous conclusion
F = A⊗ B of π which splits π into two sub-proof-nets, πA and πB. Suppose that:

[⋆1] A is neither asynchronous nor a negative atom.
By construction, the conclusions of πA other than A are conclusions of π hence
not asynchronous. Since A itself is not asynchronous by [⋆1], then none of the
conclusions of πA are asynchronous. Since πA is strictly smaller than π, which is a
PN of minimal size without asynchronous nor focusing conclusions, we infer that:

[⋆2] Foc(πA) , ∅.
Now, A is not a negative atom by [⋆1], hence by Proposition 2, we have that:

[⋆3] Foc(πA) \ {A} ⊆ Foc(π).
Since Foc(π) = ∅, by [⋆3], we conclude that Foc(πA) ⊆ {A} and thus Foc(πA) = {A},
by [⋆2]. Hence A ∈ Foc(πA). Thus, by discharging hypothesis [⋆1], we conclude:
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[⋆4] A is asynchronous or a negative atom or A ∈ Foc(πA).
Symmetrically, we can equally prove that:

[⋆5] B is asynchronous or a negative atom or B ∈ Foc(πB).
From [⋆4] and [⋆5], by Definition 9, we conclude that F ∈ Foc(π). Contradiction.

⊓⊔

Consider e.g. the CPN π of Fig.3(F) then, Foc(π) = {(A O B)⊗((E N E)⊕ F)}.
The canonical form of PNs (Proposition 1) together with the Focusing Theorem 3

assure a seqentialization strategy (Theorem 4) mapping CPNs in to focusing proofs.

Theorem 4 (focusing sequentialization). A cut-free CPN π with conclusions Γ se-
quentializes into a focusing MALL sequent proof π♯ with conclusion:
⋆ ⊢ Γ′ ⇓ F, if Γ = Γ′, F does not contain asynchronous conclusion and F ∈ Foc(π);
⋆ ⊢ Γ′ ⇑ L otherwise, where Γ = Γ′, L and Γ′ is a multiset of non-asynchronous
formulas and L is a list of formulas.

Proof. By induction on the size of π. If π is an (atomic) axiom link with conclusions
A, A⊥ then, π♯ : ⊢A⊥⇓A

⊢A⊥,A⇑ . Otherwise, if π contains an asynchronous conclusion F then
since π is in canonical form, F is conclusion of a terminal asynchronous link L, O or N.

1. If L : A B
A O B and π has conclusions Γ = Γ′, A O B then we can remove L (the vertex

O together with its conclusion edge labelled by A O B) and get a CPS πA,B with
conclusions Γ′, A, B which is trivially correct. By hypothesis of induction πA,B se-
quentializes in to π′♯ :⊢ Γ′′ ⇑ L, A, B from which we conclude by an instance of
O-rule π♯ : ⊢Γ′′⇑L,A,B

⊢Γ′′⇑L,A O B . Note that some instances of R ⇑ can be applied in case that
A or B were no longer asynchronous formulas.

2. If L is a link of type N, i.e. L : A B
A N B , with eigen weight p and Γ = Γ′, A N B, then:

(a) take the restriction of π w.r.t. p, π ⇃p (resp., the restriction of π w.r.t. p, π ⇃p);
(b) in π ⇃p (resp., π ⇃p) erase the (unique) vertex labeled by Np and merge its emer-

gent edge (its conclusion) together with its unique incident edge (its unique
non-null premise) labelled by A (resp., by B), as in the figure below;

(c) in π ⇃p (resp., π ⇃p) erase every residual (unary) vertex of type Cp and merge
its outgoing edge (the conclusion) together with its unique incident edge (the
unique non-null premise) labelled by the contracted formula F (as below).

ν1wp ν2 wp̄ = 0

Np w

A N B

A

⇒

ν1w

A

ν2 wp̄ = 0 ×ν1wp ν2 wp̄ = 0

C w

F

F

⇒

ν1w

F

ν2 wp̄ = 0

The resulting graph is a proof net πA (resp., πB) with conclusions Γ′, A (resp., Γ′, B).
By hypothesis of induction, πA and πB sequentialize in to π♯1 :⊢ Γ′′ ⇑ L, A and
π
♯
2 :⊢ Γ′′ ⇑ L, B thus by an instance of N-rule we conclude π♯ : ⊢Γ

′′⇑L′,A ⊢Γ′′⇑L′,B
⊢Γ′′⇑L′,A N B

where Γ′ = Γ′′, L. Note that some instances of R ⇑ could be applied upwards in
case that A or B were no longer asynchronous formulas.

In case π has no asynchronous conclusions, since by hypothesis is not an axiom link, at
least one of its conclusions is conclusion of a synchronous link (by the Ready Lemma 5)
then, by Focusing Theorem 3, there exists F ∈ Foc(π). Assume F = A ⊗ B.
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1. If A ∈ Foc(πA) and B ∈ Foc(πB), we apply the hypothesis of induction on πA and πB

and we get two focusing proofs, π♯1 : Γ′1 ⇓ A and π♯2 : Γ′2 ⇓ B, that we can assemble
together in to the proof π♯ as in the l.h.s. below.

2. Otherwise, in the case A (resp., B) is a negative atom or an asynchronous formula,
we apply the hypothesis of induction on πA (resp., πB) and we get a focusing proof
π
♯
1 :⊢ Γ′1, A ⇑ (resp., π♯2 :⊢ Γ′2 ⇑ B) from which we conclude with a proof π♯ as in the

r.h.s. below (where e.g., A is a negative atom and B is an asynchronous formula).

Γ′1 ⇓ A Γ′2 ⇓ B
π♯: ⊗

Γ′ ⇓ A⊗ B

Γ′1, A ⇑ R ⇑
Γ′1 ⇑ A

R ⇓
Γ′1 ⇓ A

Γ′1 ⇑ B
R ⇓

Γ′2 ⇓ B
π♯ ⊗

Γ′ ⇓ A⊗ B
⊓⊔

4 Conclusions

We are finally ready to give a proof of Andreoli’s Theorem 1:

Proof. Let Π be a proof in Σ1 of the sequent ⊢ Γ, L which, by Theorem 2 and Proposi-
tion 1, de-sequentializes in to the canonical proof net π of Γ, L which finally sequential-
izes, by Theorem 4, in a proof Π ′ of the sequent ⊢Σ2 Γ ⇑ L in Σ2 (see the diagram).

sequent proof : Π
de−sequentialization
−−−−−−−−−−−−−−→ π : proof net

d →

focused proof : Π ′
f oc−sequentialization
←−−−−−−−−−−−−−−− π′ : canonical proof net

⊓⊔
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