
Cut Elimination for Monomial Proof Nets of the Purely

Multiplicative and Additive Fragment of Linear Logic

Roberto Maieli

To cite this version:

Roberto Maieli. Cut Elimination for Monomial Proof Nets of the Purely Multiplicative and
Additive Fragment of Linear Logic. [Research Report] Department of Mathematics and Physics,
Roma TRE University. 2007. <hal-01153910>

HAL Id: hal-01153910

https://hal.archives-ouvertes.fr/hal-01153910

Submitted on 21 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01153910

Cut Elimination for Monomial Proof Nets of the Purely Multiplicative

and Additive Fragment of Linear Logic∗

Roberto Maieli
Università degli Studi “Roma Tre”

maieli@uniroma3.it

Revisited Version: April 28, 2015
· · ·

Earlier Version: December 29, 2007

Abstract

We present a simple cut-elimination procedure for MALL proof nets with monomial weights (à la Girard)
and explicit contraction links, based on an almost local cut reduction steps. This procedure preserves correctness
of proof nets and it is strong normalizing and confluent.

Keywords : Proof Theory, Sequent Calculus, Cut Elimination, Proof Nets, Linear Logic.

Contents

1 Introduction 2
1.1 Multiplicative-Additive fragment of LL . 2
1.2 Monomial interpretation . 4
1.3 Polynomial interpretation . 6
1.4 Correctness Criterion for Monomial PNs . 8
1.5 Cut-elimination for Monomial PSs . 9

2 Proof-structures with explicit binary contraction links 10

3 Cut-elimination 13
3.1 Ready cut-elimination . 13
3.2 Commutative cut-elimination . 14

3.2.1 The confluence problem . 14
3.3 Stability . 19
3.4 Strong normalization . 21

3.4.1 Weak normalization . 21
3.4.2 Confluence . 21

4 Proof-structures with explicit n-ary contraction links 26
4.1 Cut-elimination . 29
4.2 Stability . 32
4.3 Strong cut-elimination . 32

∗Partially supported by the CNR-CNRS Research Programme Interaction Complexity and the MIUR Research Programme Rete

Italo-Francese di Ricerca in Logica e Geometria della Computazione. The author thanks Olivier Laurent and Paul Ruet for their

remarks and suggestions.

1

1 Introduction

Proof Nets (PNs) are parallel presentations of sequential proofs (SP) of Linear Logic; they quotient classes of
equivalent proofs, modulo irrelevant permutations of derivation rules. The standard key ingredients of a PN syntax
are

• a graph syntax, i.e., proof structures (PSs);

• a correctness criterion defining PNs among PSs;

• an interpretation of the sequent calculus proofs;

• a cut elimination procedure

The correctness criterion should be:

• geometrical: an intrinsic (non-inductive) characterisation of those PS that sequentialise to SP (they are PN);

• stable: under cut elimination;

• efficient: checking correctness and sequentialization should be P-time with respect to the number of nodes.

• Sequentializable: (P-time), i.e., each PN must be the image of at least one SP.

The interpretation (translation) of SP into PS should be:

• sound: the PS associated to a SP, must be correct (a PN);

• function: SP 7→ PN ;

• canonical surjection: SP equal up to (reasonable) commutations of rules must be identified upon translation
to a PN;

• efficient: P-time in the size (of the proofs).

– we should preserve the computational complexity of the interpreted proofs;

– we should respect the notion that a semantics (PN) is a structure-preserving map or some kind of
homomorphism from proofs.

The cut elimination procedure should be:

• defined directly on PS;

• complete: any cut node of a PS, reduces in one step;

• local: a cut elimination step only affects the nodes (immediately) connected to the reducing cut node;

• strong normalising: terminating and (locally) confluent;

• efficient: P-time in size.

1.1 Multiplicative-Additive fragment of LL

Sequent Calculus – Formulas A,B, ... are built from literals by the binary connectives ⊗ (tensor), O (par), &
(with) and ⊕ (plus). Negation (.)⊥ extends to any formula by de Morgan laws:

(A⊗B)⊥ = (B⊥
OA⊥) (AOB)⊥ = (B⊥ ⊗A⊥)

(A&B)⊥ = (B⊥ ⊕A⊥) (A⊕B)⊥ = (B⊥&A⊥)

MALL (resp., MLL) Sequents Γ,∆ are sets of formula occurrences A1, ..., An≥1, proved using the following rules
(resp., only identity and multiplicative rules):

• identity:
ax

A,A⊥
Γ, A ∆, A⊥

cut
Γ,∆

• multiplicatives:
Γ, A ∆, B

⊗
Γ,∆, A⊗B

Γ, A,B
O

Γ, AOB

2

• additives:
Γ, A Γ, B

&
Γ, A&B

Γ, A
⊕1

Γ, A⊕B

Γ, B
⊕2

Γ, A⊕B

Proof Structures – The problem is to cope with the &-rule

Γ, A Γ, B
&

Γ, A&B

for which a superimposition of two proof nets must be made. A solution is to introduce for each &-link a boolean
variable (called eigen-wight)

Γ, A Γ, B
&p

Γ, A&B

which distinguishes between two slices of the superimposition:

p̄ slice

Γ, A
&p

Γ, A&B

p slice

Γ, B
&p

Γ, A&B

But this immediately opens to the problem of which kind of superposition can be performed over already de-
sequentialized PSs? Let’s illustrate this by an example. Assume a sequential proof as follows:

A,A⊥ B,B⊥

⊗
A,A⊥ ⊗B,B⊥

Π1 : ⊕1
A⊕A,A⊥ ⊗B,B⊥

A,A⊥ B,B⊥

⊗
A,A⊥ ⊗B,B⊥

Π2 : ⊕2
A⊕A,A⊥ ⊗B,B⊥

Π : &p
A⊕A,A⊥ ⊗B,B⊥&pB

⊥

By hypothesis of induction we may assume Π1 desequentializes in to (the MLL PN) π1 and Π2 desequentializes in
to (the MLL PN) π2 as follows:

A B B⊥ A A⊥

⊗

B B⊥

π1 π2

⊗

A⊥

Then there are different possibilities of superposing pi1 and π2 in order to get a proof structure π that is a
desequentialization of Π.

1. (Girard’s solution) minimal superposition: only conclusions superpose

A B B⊥ A A⊥

⊗

B B⊥

π1 π2

⊗

A⊥

A⊥ ⊗ BA⊕ A &p

B⊥&pB
⊥

p̄p̄pp

⊕1 ⊕2

2. intermediate superposition with unary ⊕-links: only some links superpose

A B B⊥

⊗

A⊥ B⊥

&p

A

A⊥ ⊗ B B⊥&pB
⊥

pp

p̄ p̄

A⊕A

⊕1⊕2

3

3. (Hughes-Van Glabbeek solution) maximal superposition with binary ⊕-links: the whole formula tree super-
pose (like in the MLL case).

A B B⊥

⊗

A⊥ B⊥

&p

A

A⊥ ⊗ B B⊥&pB
⊥

pp

p̄ p̄

A⊕A

⊕

Observe, the following is an example of wrong superposition: the ⊕i cannot simultaneolsy be of type ⊕1 and ⊕2.

A B B⊥

⊗

A⊥ B⊥

&p

A⊥ ⊗ B B⊥&pB
⊥

p

p̄

A⊕ A

p+ p̄

⊕i

So, given the Bool-algebra generated by the eigen-weights, we can get different notions of PN in which links are
weighted by non-zero

• (Girard, 1998): monomials in case of dependence condition (if L depends on p then w(L) ≤ w(&p)),

• or more general polynomials when no dependence at all is given.

1.2 Monomial interpretation

There is no canonical surjection from SP to Monomial PS. There is, indeed, only a (canonical) non-surjective
mapping s.t.:

• nodes are weighted by non-zero monomials generated by the eigen-variables indexing the &’s nodes (satisfying
the crucial dependency condition (if a node ν depends on a variable p then w(ν) ≤ w(&p));

• a minimal superimposition of slices is allowed.

We illustrate that by means of an example. Assume we want de-sequentialize a SP as follows

ax
B⊥, B

ax
A⊥, A

ax
A⊥, A

&
A⊥, A&A

⊗
B⊥, B ⊗A⊥, A&A

ax
B⊥, B

ax
A⊥, A

⊗
B⊥, B ⊗A⊥, A

ax
B⊥, B

ax
A⊥, A

⊗
B⊥, B ⊗A⊥, A

&
B⊥, B ⊗A⊥, A&A

&
B⊥&B⊥, B ⊗A⊥, A&A

then, axioms (in blue)

ax
B⊥, B

ax
A⊥, A

ax
A⊥, A

A⊥, A&A

B⊥, B ⊗A⊥, A&A

ax
B⊥, B

ax
A⊥, A

B⊥, B ⊗A⊥, A

ax
B⊥, B

ax
A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&A

B⊥&B⊥, B ⊗A⊥, A&A

map to the following sub-proof nets (axioms links) with weight 1

BB⊥ A⊥ A B⊥

B⊥ B

B

A

A

A⊥

A⊥A 1

1

A⊥

1
1

1
1 1

1

4

the topmost & (with eigen-weight p) and ⊗-rules

B⊥, B

A⊥, A A⊥, A
&

A⊥, A&A

B⊥, B ⊗A⊥, A&A

B⊥, B A⊥, A
⊗

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A
⊗

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&A

B⊥&B⊥, B ⊗A⊥, A&A

map to the following PNs

BB⊥ A⊥ A B⊥ B AA⊥A

&p

p

p̄

1

1

1

BB⊥ A

11

A⊥

11

⊗

1

⊗

then, the middle ⊗ and &-rules (with eigen-weight q)

B⊥, B

A⊥, A A⊥, A

A⊥, A&A
⊗

B⊥, B ⊗A⊥, A&A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A
&

B⊥, B ⊗A⊥, A&A

B⊥&B⊥, B ⊗A⊥, A&A

map to the following PN with only monomial weights

BB⊥ A⊥ A B⊥ B AA⊥A

&p

p

p̄1

1

⊗⊗

1

B
A

A⊥

&q

q̄q̄

q q

1 1

⊗

and, finally, the lowest &-rule (with eigen-weight r)

B⊥, B

A⊥, A A⊥, A

A⊥, A&A

B⊥, B ⊗A⊥, A&A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&A
&

B⊥&B⊥, B ⊗A⊥, A&A

maps to the following PN with only monomial weights

5

BB⊥ A⊥ A B⊥ B AA⊥A

&p ⊗⊗

B
A

A⊥

&q

⊗

&r

qrqr

q̄r q̄r

pr̄

p̄r̄r̄

r

rr̄r̄ r

111

Observe, this de-sequentialization is not invariant under the raising of the O,⊗,⊕,& over the &-rule. Actually, if
we raise, in the previous SP, the ⊗ over the &p-rule, as follows

B⊥, B A⊥, A
⊗

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A
&

B⊥, B ⊗A⊥, A&A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&A

B⊥&B⊥, B ⊗A⊥, A&A

we get an equivalent PS which de-sequentialise into the following different PN

BB⊥ A⊥ A B⊥ B AA⊥A

&p ⊗⊗

B
A

A⊥

&q

⊗

&r

qrqr

q̄r q̄r

r

111

pr̄

A⊥

⊗

B

pr̄

p̄r̄p̄r̄

r̄ r̄ r r

When we add a &-link, we don’t know if a link L1 of π1 is the same as another link L′ of π2: in general,
p.w1(L) + p̄.w2(L2) is not a monomial, except when L1, L2 are conclusions.

1.3 Polynomial interpretation

There is a canonical surjection from MALL SP to Polynomial PN as illustrated in the following example. Assume
the following SP:

B⊥, B

A⊥, A A⊥, A

A⊥, A&A

B⊥, B ⊗A⊥, A&A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&A

B⊥&B⊥, B ⊗A⊥, A&A

assign an eigen weight to each & in the sequent conclusion

B⊥, B

A⊥, A A⊥, A

A⊥, A&qA

B⊥, B ⊗A⊥, A&qA

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&qA

B⊥&pB
⊥, B ⊗A⊥, A&qA

and propagate the eigen-weights upwards as follows

6

B⊥, B

q̄

A⊥, A

q

A⊥, A
&q

A⊥, A&qA

B⊥, B ⊗A⊥, A&qA

q̄

B⊥, B

q̄

A⊥, A

B⊥, B ⊗A⊥, A

q

B⊥, B

q

A⊥, A

B⊥, B ⊗A⊥, A
&q

B⊥, B ⊗A⊥, A&qA

B⊥&pB
⊥, B ⊗A⊥, A&qA

finally, separate, inductively (top-down), each slice by monomial weights as follows

p̄

B⊥, B

p̄q̄

A⊥, A

p̄q

A⊥, A
&

A⊥, A&qA

B⊥, B ⊗A⊥, A&qA

pq̄

B⊥, B

pq̄

A⊥, A
⊗

B⊥, B ⊗A⊥, A

pq

B⊥, B

pq

A⊥, A
⊗

B⊥, B ⊗A⊥, A
&

B⊥, B ⊗A⊥, A&qA
&p

B⊥&pB
⊥, B ⊗A⊥, A&qA

The resulting corresponding de-sequentialized PN is a sequent forest with weighted axioms. We may replace parallel
axioms ax1, ax2, ..axn with, resp., weights w1, w2, ..., wn, by a signle ax link with weight w =

∑n
i wi as follows

B⊥ B⊥ B A⊥ A A

B⊥&pB
⊥ B ⊗ A⊥ A&qA

&q⊗&p

p̄ p̄q + pq = q

pq̄ + pq = p p̄q̄ + pq̄ = q̄

1 1 1

Observe, this ”polynomial interpretation” is now invariant under the raising of the O,⊗,⊕,&-rule over &-rule;
indeed the following(equivalent) SP maps to the same (previous) Polynomial PN.

p̄q̄

B⊥, B

p̄q̄

A⊥, A
⊗

B⊥, B ⊗A⊥, A

p̄q

B⊥, B

p̄q

A⊥, A
⊗

B⊥, B ⊗A⊥, A
&

B⊥, B ⊗A⊥, A&qA

pq̄

B⊥, B

pq̄

A⊥, A

B⊥, B ⊗A⊥, A

pq

B⊥, B

pq

A⊥, A

B⊥, B ⊗A⊥, A

B⊥, B ⊗A⊥, A&qA

B⊥&pB
⊥, B ⊗A⊥, A&qA

Observe that in general this surjective de-sequentialization may lead to PS labeled by polynomial weights; e.g., the
next SP

p̄q̄
ax

A,A⊥

⊕1
A,A⊥ ⊕B⊥

p̄q
ax

B,B⊥

⊕2
B,A⊥ ⊕B⊥

&q
A&qB,A⊥ ⊕B⊥

pr̄
ax

A,A⊥

⊕1
A,A⊥ ⊕B⊥

pr
ax

B,B⊥

⊕2
B,A⊥ ⊕B⊥

&r
A&rB,A⊥ ⊕B⊥

&p
(A&qB)&p(A&rB), A⊥ ⊕B⊥

de-sequentializes into a PS with some links weighted by ”non-monomial“ weighted. By the way observe the
conclusion or terminal links must be labeled by the monomial weight 1 as in the following PN.

7

&r

&p

&q

⊕

B⊥A⊥

ABA B

pr̄

p̄q̄

p̄q

pr

p̄q̄ + p̄r

p̄q + pr

1 1

Finally, concerning the efficiency of the weight interpretations, observe that:

• both monomial and polynomial mapping are quite efficient: P-time in the size of the given sequent proof
(there are 2.n slices, where n is the number of &-rules of the SP π);

• more efficient than linkings mapping (Hughes-Van Glabbeek, 2003) that is Exponential in the size of the
sequent proof (there are 2n, where n is the number of the & connective occurring in the sequent Γ).

1.4 Correctness Criterion for Monomial PNs

• proof structure: the crucial point is the dependence condition (“&-boxing”): if a link L depends on a
variable p then w(L) ≤ w(&p).

• proof net: every boolean valuation, ϕ : eigenweights→ {0, 1}, induces a (unique) slice S s.t. every switching
on S, obtained by

– mutilating one premise in each O,

– mutilating the unique &-premise in S,

– adding a jump (an edge) from a &p-node to a node depending on p,

is an acyclic and connected (ACC) graph.

In the following we give an example of non correct PS.

A A A⊥ B⊥

p̄

p

q̄

q

&q⊗&p

B B

⊗

C⊥C

p

O

p̄

⊗

O

C⊥

C

q̄

q

Actually, fixed a valuation ϕ(p) = ϕ(q) = 1, we get a non-ACC switching as follows.

8

A A⊥ B⊥

p q

&q⊗&p

B

⊗

C⊥

p

O

⊗

O

C⊥

C

q

C

1.5 Cut-elimination for Monomial PSs

Assume a monomial PN π with cuts as follows.

⊕1

A⊕ A

A A A⊥

⊗

B⊥

A⊥ ⊗ B⊥

B B

&q⊕2 ⊕1 ⊕2

B&B B⊥ ⊕B⊥

B⊥ B⊥ B B

p

p̄

&p

q

q̄q̄

q

B&B

We call dependency graph of q w.r.t. π (Maieli, 2007) the (possibly disconnected) subgraph of π made by only
those links and edges whose weight depends on q; e.g., the dependency graph of q w.r.t. π is the blue sub-graph as
follows:

A⊕ A

A⊥

⊗

B⊥

A⊥ ⊗B⊥

B B

&q ⊕1 ⊕2

B&B B⊥ ⊕ B⊥

B⊥ B⊥ B B

p

p̄

&p

q

q̄

B&B

q̄

q

AA

⊕2⊕1

Then π reduces to the following π′ via the duplication of the dependency graph of q: we replace in π′ the eigen-weight
q of π by two news (fresh) eigen-weights r and s as follows

9

⊕1

A⊕ A

A A A⊥

⊗

B⊥

⊕2 ⊕2

B⊥ B B

p̄

&p

B&B

⊕1

B⊥

A⊥ ⊗ B⊥

B B

BB

p

&r

&s

p̄s

p̄s̄p̄s̄

p̄s

pr

pr̄

B⊥A⊥AA

⊕2⊕1

pr

pr̄

Consequently, ⊕i/& cuts reduce to the following PN by erasing slices r̄ and s (i.e., by evaluating r̄ = 0 and s = 0).

A⊕A

A A⊥

⊗

B⊥

⊕2

B⊥ B B

p̄

&p

B&B

B⊥

A⊥ ⊗ B⊥

B

B

p

B⊥A⊥A

⊕1

p

p̄

p

p̄

Cut elimination procedure is shown to be terminating and confluent but with an unknown Complexity (P-time?).

2 Proof-structures with explicit binary contraction links

In this section we recall the basic notions of Girard’s proof-net; we adopt the syntax with explicit contractions like
in [Lau99].

Definition 1 (proof structure) A Girard proof structure π of MALL, shortly proof structure (PS), is an ori-
ented graph s.t. each edge is labelled by a MALL formula and built on the set of nodes (or vertexes) following
the typing constraints of Figure 1. Pending edges are called conclusions; fixed a node, an entering edge is called
premise while its unique emergent edge is called conclusion. We call link the graph made by a node together with
its premise(s) and (possibly) its conclusion(s).
If π involves the &-links L1, ..., Lk then:

1. we associate a Boolean variable (p, q, ...), called eigen weight, to each &-node of π (eigen weights are supposed
to be different; we use ǫp to denote a variable p or its negation p, and ǫp for its orthogonal);

2. we associate a weight w, i.e., a product (conjunction) of eigen weights or negations of eigen weights of π
(p, p, q, q...), to each node with the constraint that two nodes have the same weight if they have a common
edge, except when the edge is the premise of a & or C-node, in these cases we do as follows (see Figure 2):

10

⊗ O & C

A⊗ B AOB A&B A

A B AA⊥

cut

A

ax

A⊥A

A BB A B A A

A⊕ BA⊕ B

⊕1 ⊕2

Figure 1: MALL links

w1

C&p

ν1 ν2 ...
wnwp̄w.p

w

ν1 ν2

w =
∑n

i=1wi

p does not occur in w ∀i∀j, wiwj = 0 (1 ≤ i, j ≤ n)

Figure 2: Weights for & and C links

(a) if w is the weight of a &-link and p is its eigen weight then w does not depends on p and its premise
links must have weights w.p and w.p (we say that a weight w depends on p when p or p occurs in w);

(b) if w is the weight of a C-link and w1, w2 are the weights of its premise links then we must have w = w1+w2

and w1w2 = 0;

3. a conclusion node has weight 1;

4. if w is the weight of a &-link with eigen weight p and w′ is a weight depending on p and appearing in the
proof-structure then w′ ≤ w.

A node L with weight w depends on the eigen weight &p if w depends on p or L is a C-node and one of the weights
just above it depends on p.

Remark 1 :

1. (splitting variable) – Observe that, since the weights associated to a PS are products (monomials) of the
Boolean algebra generated by the eigen weights associated to a proof structure, then, for each weight w asso-
ciated to a contraction node, there exists a unique eigen weight p that splits w into w1 = wp and w2 = wp.
We some times index a C-link with its splitting variable p, like in Figure 3.

2. (dependency condition) – Observe that the graph π of Figure 4 is not a proof structure since it violates
condition 4 of Definition 1; actually, if w = q is the weight of the &p-link and w′ = p is a weight depending
on p and appearing in the proof-structure then p 6≤ q.

Definition 2 (slice and switchings) A valuation ϕ for a PS π is a function from the set of all weights of π into
{0, 1}. Fixed a valuation ϕ for π then:

• the slice ϕ(π) is the graph obtained from π by keeping only those nodes with weight 1 together its emerging
edges;

v1 v2v1 v2

w1 w2

w1.w2 = 0

wp wp

C Cp w⇒ ∃p s.t.w1 + w2 = w

Figure 3: Splitting variable of a contraction link

11

C

C

π

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

p

w′ = p

w = q

cut

Figure 4: Violation of the dependency condition

C

O

(b&c)⊗ a

⊗ C

⊕ ⊕&p

ax

ax

ax

ax

O

p

p p

p

1

1 1

p

1

p

p

p

π

(a⊥Oc⊥)⊕ (a⊥Ob⊥)

C

⊗ C

⊕&p

ax

O

ax

S(π)

Figure 5: Example of non sequentializable PS

• a multiplicative switching S for π is the non oriented graph built on the nodes and edges of ϕ(π) with
the modification that for each O-node we take only one premise and we cut the remaining one (left/right
O-switch);

• an additive switching (or simply a switching) is a multiplicative switching where for each &-node we cut the
(unique) premise in ϕ(π) and we add an oriented edge, called jump, from the &-node to a L-node whose
weight depends on the eigen weight of the &-node.

Definition 3 (Girard’s proof-net) A PS π is correct (it is a proof-net, PN), if any switching induced by a
valuation of π is acyclic and connected (ACC).

Theorem 1 ((de-)sequentialization) A PN can be sequentialized into a MALL sequent proof with same con-
clusions and vice-versa (de-sequentialization).

Proof — see[Gir96]. �

Remark 2 The proof structure π on the left hand side of Figure 5 is not correct (not sequentializable): actually,
fixed a valuation ϕ s.t. ϕ(p) = 1, then there exists a switching S(π) with a remote jump that is not ACC (see the
right hand side of Figure 5). Nevertheless, π is correct by multiplicative slices (all multiplicative switchings, without
remote jumps, are ACC).

12

cut

ax

A wA L′

A

L′′L′′

Figure 6: Axiom-cut reduction step

cut

cutπ π′

B C BB⊥

⊗ O

CC⊥

cut

C⊥B⊥

w

w

w

Figure 7: (⊗/O)-cut reduction step

3 Cut-elimination

3.1 Ready cut-elimination

We follow [Gir96].

Definition 4 (ready cut reduction) Let L be a cut in a proof net π whose premises A and A⊥ are the respective
conclusions of links L′, L′′ both different from the contraction C. Then we define the result π′ (reductum) of reducing
this ready cut in π (redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by removing in π both formulas A,A⊥ (as well as
L) and giving a new conclusion to L′′ (resp., L′), the other conclusion of L′ (resp., L′′) (see Figure 6).

(⊗/O)-cut: if L′ is a ⊗-link with premises B and C and L′′ is a O-link with premises B⊥ and C⊥, then π′ is
obtained by removing in π the formulas A and A⊥ as well as our cut link L with L′ and L′′ and adding two
new cut links with respective premise B, B⊥ and C,C⊥ (see Figure 7).

(&/⊕1)-cut: if L′ is a &p-link with premises B and C and L′′ is a ⊕1-link with premise B⊥, then π′ is obtained
in three steps: first we remove in π both formulas A, A⊥ as well as our cut link L with L′ and L′′, then we
replace the eigen weight p by 1 and keep only those links (vertexes and edges) that still have nonzero weight;
finally we add a cut between B and B⊥ (see Figure 8).

(&/⊕2)-cut: if L′ is a &p-link with premises B and C and L′′ is a ⊕2-link, with premise C⊥, then π′ is obtained
in three steps: first we remove in π both formulas A, A⊥ as well as our cut link L with L′ and L′′, then we
replace the eigen weight p& by 0 and keep only those links (vertexes and edges) that still have nonzero weight;
finally we add a cut between C and C⊥.

Theorem 2 (stability under ready cut reduction) If π is a proof net s.t. π reduces to π′ in one step of ready
cut reduction, then π′ is still a proof net.

cut

&p ⊕1 cut

B C B⊥ B B⊥

w

wpwp w

π π′[p/1]

Figure 8: (&/⊕1)-cut reduction step

13

C

ax

ax

ax

ax

C
π

&p &q

cut

Figure 9: Reducing a commutative cut

ax

ax

ax

ax

C&p &′

q

C

ax

ax

&′′

q

Cp

π1

cut

cut

C

ax

ax

ax

ax

&q

ax

ax

C

Cq

π2

&p′

&p′′

cut

cut

Figure 10: Non confluent, commutative, cut reduction

Proof — See [Gir96]. �

3.2 Commutative cut-elimination

3.2.1 The confluence problem

– In general, reducing a cut involving a contraction link as (at least) one of its premises from a proof structure π
may lead to several solutions, depending on which sub-graph of π we decide to duplicate. For instance, reducing
the commutative cut of π of Figure 9 may lead to solutions π1 as well solution π2, depicted in Figure 10, depending
on which additive box (&q or &p) we decide to duplicate. Of course these two resulting proof nets are different
and there is no a-priori way to make them equal. Girard, in [Gir96], does not give any detail for the solution to
this problem; indeed, a Church-Rosser procedure is only given for the ready cut-elimination.

Definition 5 (restriction, empire, spreading) Assume a proof structure π, an eigen weight p and a weight w,
then:

• the restriction of π w.r.t. p (resp., p), denoted π ⇃p (resp., π ⇃p), is what remains of π when we replace p
with 1 (resp., p with 1) and keep only those vertexes and edges whose weight is still non zero;

• the empire (or the dependency graph) of the eigen weight p w.r.t. π, denoted Ep, is the (possibly disconnected)
subgraph of π made by all links depending on p.

• the spreading of w over π, denoted by w.[π], is the product of w for π, i.e., π where we replaced each weight
v with the product of weights vw.

Observe that, in general, the spreading does not preserve the property of being a proof structure; moreover, it can
be defined also over an empire.

Lemma 1 (empire) If a &p-node belongs to the empire of Eq, then E(p) ⊂ E(q).

Proof— If the &p-node belongs to the empire of Eq then the weight w of the &p-node depends on q (i.e., w = w′q
or w = w′q) then trivially, by the dependency condition 4 of Definition 1, each node v whose weight depends on p
will also depends on q. �

14

cut

C⊥

C

BOC BOC B⊥

⊗

w

w wwpwp

L

π:

Figure 11: (C/⊗)-redex

BOC BOC

⊗ ⊗ C C

cut

cut

cut

cut

B⊥ C⊥ax

ax

ax

ax

wp w

wp w

π′:

Figure 12: (C/⊗)-reductum

Definition 6 (commutative cut reduction) Let L be cut link in a proof net π whose premises A and A⊥ are
the respective conclusions of links L′ and L′′ s. t. at least one of them is a contraction link C. Then we define the
result π′ (reductum) of reducing this commutative cut in π (redex) , as follows:

(C/⊗)-cut : if L′ is a C-link and L′′ is a ⊗-link, like in Figure 11, then π reduces in one (C/⊗) step to π′, like
in Figure 12.

(C/C)-cut : if both L′ and L′′ are contraction links, then we consider two sub-cases:

• the weight w of, resp., L′ and L′′ is split by the same p variable, then π reduces in one (Cp/Cp) step to
π′ like in Figure 13;

• the weight w of L′, resp., L′′, is split by the two different variables, p and q, like in Figure 14, then π
reduces in one (Cp/Cq) step to π′, like in Figure 15.

(C/⊕i)-cut : if L′ is a C-link and L′′ a ⊕i=1,2-link, then π reduces in one (C/⊕) step to π′, like in Figure 16.

(C/&)-cut : if L′ is a C-link and L′′ a &p-link, like in Figure 17, then π reduces in one (C/&) step to π′, like in
Figure 18, with the assumptions that q̄.[E ′

p] and q.[E ′′
p] are obtained by spreading q̄, resp., q, over two copies

of the empire of p, E ′
p and E ′′

p , where we replaced any eigen weight with a new (fresh) one.

Example 1 Assume we want reduce the commutative (C/&)-cut of the proof net in Figure 19 First, we calculate
E ′ and E ′′, like in Figure 20. Then we perform the cut reduction step C/&, like in Figure 21.

cut

cutπ π′

cut

A A A⊥ A⊥ AA A⊥ A⊥

wp

w wp

wp
wp

wpwp

Cp Cp

Figure 13: (Cp/Cp)-cut reduction step

15

cut

w

wp wp wqwq

A A⊥ A⊥A

π:

Cp Cq

Figure 14: (Cp/Cq)-redex

C C

cut

cut

cut

cut

ax

ax

ax

ax

C C

AA A⊥ A⊥

wpq

wpq

wpq

wpq

wp

wp

wq

wq

π′:

Figure 15: (Cp/Cq)-reductum

cut

π π′

w

wpwp

C

cut
A⊥

ax

A⊥

cut

⊕i

⊕i ⊕i

A⊥

ax

C A⊥

cut

w

wp wp

A A

B&C B&C

B&C B&C

Figure 16: (C/⊕i)-cut reduction step

cut

&p

B⊥ C⊥B ⊕ C B ⊕ C

χ

wp wpwq

w

wq

A A⊥

Cq

Figure 17: (C/&)-redex

16

B ⊕ C B⊥ C⊥

cut

B ⊕ C

&p′′

B⊥ C⊥

&p′

cut

... ...

...C C

χ′

wnq̄w1q̄

w1

A1 An

w1q wnq

wq̄

wq

wn

q̄.[E ′

p] q.[E ′′

p]

Figure 18: (C/&)-reductum

&p

⊗ ⊗

ax

ax

C

C

ax

ax

C

cut

q

q

C C C C

&q

ax

ax

ax

ax

Figure 19: Redex π

17

⊗ ⊗

ax

ax

C

C C C

ax

ax

&p′

q

q

q

⊗ ⊗

ax

ax

C

C C C

ax

ax

&p′′

q

q

q

Figure 20: Graphs E ′ and E ′′

ax

ax

ax

ax

cut

cutax

ax

⊗ ⊗

ax

ax

C

C

ax

ax

C
⊗⊗q

q

q

q

&q
C

C

C

qq

&p′′
&p′

Figure 21: Reductum π′

18

3.3 Stability

Theorem 3 (stability under commutative cut reduction: I part) If π is a proof net s.t. it reduces to π′ in
one step of commutative cut reduction that is different from the C/&-case, then π′ is still a proof net.

Proof — (sketch) All cases are more or less immediate consequences of the next graph theoretical property (see
also [Gir06], pages 250-251):

Property 1 (Euler-Poicaré invariance) Given a graph G, then

♯CC − ♯Cy = ♯V − ♯E

where ♯CC, ♯Cy, ♯V and ♯E denotes, respectively, the number of connected components, cycles, vertexes and edges
of G.

�

Lemma 2 (conservative/extensive switching) Assume π is a proof net that reduces to π′ in one step of com-
mutative cut reduction Cq/&p. We say that a switching for π′ is extensive (resp., conservative) w.r.t. q if it makes
(resp., does not make) use of at least a jump going from the &q-node to a node that was not previously depending
on q in π. Then, for any conservative switching for π′ that is not ACC we can find a corresponding switching for
π that is not ACC too.

Proof — Immediate. �

Lemma 3 (separation) Assume π is a proof net containing two nodes, &p′ and &p′′ , with weights, resp., w′q
and w′′q, for some eigen weight q of π. Then, there cannot exist in π a node whose weight depends both on p′ and
on p′′.

Proof — By absurdum, assume a node v whose weight w depends both on p′ and p′′, that is, for instance,
w = w1.p

′.p′′. Now fix an evaluation ϕ s.t. ϕ(w) = 1, then by the dependency condition 4 of Definition 1, we have
both w1.p

′.p′′ ≤ w′q and w1.p
′.p′′ ≤ w′′q; but this is only possible when ϕ(w) = 0, contradicting the assumption

ϕ(w) = 1. �

Theorem 4 (stability under commutative cut reduction: II part) If π is a proof net that reduces to π′ in
one step of cut reduction C/&, then π′ is a proof net too.

Proof — (sketch) First observe that each cut reduction step Cq/&p preserves the property of being a proof
structure. This follows by construction of π′. In particular Lemma 1 ensures that we can safely rename the sets of
eigen weights in E ′ and E ′′ and get still a proof structure.
Moreover, by Lemma 2 it is enough to only verify that all the extensive switchings, w.r.t. q, for π′ are ACC. In
the rest of proof, whenever it is not explicitly declared, each switching for π′ is meant to be extensive w.r.t. q.
Connexion - Assume by absurdum there exists such a switching S′(π′) that is disconnected. Then there exists
at least a node vj occurring in a connected component γ1 that is separated from the component γ2 that contains
the &q-node together with the jump ν directed to a node vi (see the picture on the left hand side of Figure 22,
where γ1 and γ2 are separated by dotted lines). This means that there not exist in S′(π′) a path from vj to vi.
Now let S′′(π′) be an other switching that is a copy of S′(π′) except for the jump ν from the &q-node to a vh
node that was already depending on q in π (in other words, S′′ is a conservative switching, w.r.t. q, which differs
from S′ only for the jump ν, like in the picture on the right hand side of Figure 22). Clearly in S′′(π′) there is
no connection path between vi and vj , otherwise this path should go through the ν-jump (and so through the
&p-node) contradicting the assumption that the &q-node and vj were disconnected in S′(π′). But this contradicts,
by Lemma 2, the hypothesis that π was correct.
Acyclicity - Assume there exists a cycle in S′(π′) going through a jump ν from the &q-node to a node vi whose
weight wi depends on q, like in Figure 23 where γ is the path in S′(π′) from the conclusion of the &q-node to vi.
Now, the new variable p′ or its negation (resp., p′′ or its negation) occurs by definition of the reduction step Cq/&p

in the weight wi (let us say wi = w′
ip

′q) so, by the condition 4 of Definition 1 and the connexion of S′(π′) showed
before, the &p′ -node (resp., the &p′′ -node) and the node vi must be connected in S′(π′) in two possible ways:

1. either by a path going through the &q-node without accrossing γ, like a path γ1 in Figure 24,

2. or like a path γ′
2 or γ′′

2) of Figure 24, that is, non going through the &q-node and possibly accrossing γ.

In both cases we can set a conservative switching S′′(π′) that is identical to S′(π′) except for the jump ν going
from the &q-node to the node vj whose conclusion A⊥ is the premise of the reductum cut, like in Figure 25. Then
we get a cycle, contradicting, by Lemma 2, the hypothesis that π was correct. �

19

γ2

wj

vi

vj

ν

w
S ′(π′)

γ1

&q

w′

iq

γ2

wj

vj

w

γ1

vh
ν

vi
S ′′(π′)

&q

w′

iq

w′

hq

Figure 22:

w

viν

S ′(π′)

γ
&q

w′

ip
′q

Figure 23:

vi

w′p

&q

&p′

w′

ip
′q

w

ν

S ′(π′)

γ

γ1

γ′′

2

γ′

2

Figure 24:

20

vi

&q

&p′ vj

w

γ1

γ
γ′

2

γ′′

2

w′

ip
′q w′p

ν

A⊥A
cut

S ′′(π′)

Figure 25:

3.4 Strong normalization

3.4.1 Weak normalization

We say that a cut link L is safe when reducing L does not make disappear any other cut link L′ 6= L from the
reductum. Similarly, a cut reduction step is safe when it concerns a safe cut link. A cut reduction strategy is
a finite sequence of cut reduction steps of Definition 4 and 6; a strategy is safe when it contains only safe cut
reduction steps.

The complexity of a cut node is the logical complexity of its cut-formula1. We say that a cut-node with weight w
has depth n if |w| = n, where |w| is the number of variables of negations of variables occurring in w.

Lemma 4 (safe reduction) If π is a proof net with only cut links of type &/⊕i, then at least one of them is safe.

Proof — By absurdum, assume π contains only &/⊕i cut links (at least one) and assume none of them is safe;
then by the dependence condition we can easily find a switching with a cycle. �

Theorem 5 (weak normalization) If π is a non cut-free proof net, then there exists a safe reduction strategy
for π terminating with a cut-free (normal) proof net.

Proof — Assume a safe reduction strategy consisting in applying a safe reduction step &/⊕i only when no other
reduction choice is possible. By Lemma 4 we know that such a strategy exists. Then, termination of this such a
safe strategy follows by induction on the lexicographic order of the cut complexity sequence ♯1, ..., ♯n of π, where
n is the number of eigen-weight variables occurring in π and ♯i, with 1 ≤ i ≤ n, is the sum of the complexities
of all cuts whose depth is i. It is immediate to check that the complexity sequence decreases at each reduction
step, except for the reduction step C/&, where in order to apply the hypothesis of induction we have to ensure
that the length n of the complexity sequence does not increase. In other words we have to show that there cannot
exists in π′ a cut whose weight has depth greater than n. Now, assume by absurdum that, after one step of cut
reduction C/&p, π reducts to π′ with a cut node vi whose depth is n + 1, so the cut complexity sequence of π′

is ♯1, ..., ♯n, ♯(n + 1). This could only be consequence of the fact that, after the C/&p-reduction step, the eigen
weight p of π has been replaced in π′ by two new eigen weights p′ and p′′. In other words, the weight wi of vi will
depend both on p′ and p′′, like in Figure 26, with for instance w′

ip
′p′′ ≤ w1q and w′

ip
′p′′ ≤ w1q, contradicting the

Separation Lemma 3. �

3.4.2 Confluence

Theorem 6 (confluence) Assume π is proof net s.t. it reduces in one step α to π′ (π α π′) and it reduces in
an other step β to π′′ (π β π′′); then, there exists a proof net σ such that π′ reduces, in a certain number of
steps, to σ (π′ ∗ σ) and π′′ reduces, in a certain number of steps, to σ (π′′ ∗ σ).

Proof — (sketch) Assume π α π′ and π β π′′, then we proceed by cases according to α and β and we show
that there always exists such a σ which both π′ and π′′ reduce to.
Case 1 - If neither α nor β is a reduction step involving a &-node as a cut premise node, then it is easy to check
that we get the confluence to σ by two more single reduction steps, π′ β σ and π′′ α σ, like in Figure 27 (the
diamond composition).

1The logical complexity of a formula is inductively defined as follows: atoms have complexity 1; the complexity of A⊥ is the same

as the complexity of A; the complexity of B • C, where • is any binary connective, is the sum of the complexities of B and C plus 1.

21

&p′

cut1 cut2

&p′′

w′ = w′

ip
′p′′

w1qw1q

vi

Figure 26:

π
′

α

β

π σ

β

α

π
′′

Figure 27: Diamond composition

Case 2 - Otherwise, if α or β is a reduction step involving a &-node as a cut premise node, then we split our
reasoning in two main sub-cases:
Case 2.1 - α or β is a ready cut &/⊕i. In these cases we get the confluence to σ by (possibly) two more single
reduction steps, like in Figure 27. First, observe that the diamond composition can be partial, in the case that
both α and β concern two &/⊕i cuts s.t. one of them depends on the eigen weight of the &-node that is premise
of the other cut. Second, observe the case when α is a reduction step of a (C/&p)-cut link L1 and β is a reduction
step of a (C/&pq)-cut link L2, with L1 depending on q and L2 depending on p, is excluded by the correctness of π.
Case 2.2 - Both α and β are two commutative reduction steps, then of course at least one of them must be a
commutative reduction C/&. (Observe the case when α is a reduction step Cq/&p (with C depending on q) and β
is a reduction step Cp/&q (with C depending on p) is excluded by the correctness of π. We consider the remaining
sub-cases:

1. Assume α and β concern the reduction of, respectively, cut L1 and cut L2 of Figure 28. Then, the two
sequences of reductions, π α π1 β π′

1 of Figure 29 and π β π2 α π′
2 of Figure 30, converge to π′

1 = σ
by means of a sequence of two axiom reductions starting from π′

2 (i.e., π′
2

∗
AX π′

1 = σ).

2. Assume α and β concern the reductions of, respectively, cut L1 and cut L2 of Figure 31. Then, the two
reduction sequences, π α π1 β π′

1 of Figure 32 and π β π2 α π′
2 of Figure 33, can converge in to π′

2 = σ
by means of two more commutative reductions, Cp′/Cp′ and Cp′′/Cp′′ applied to π′

1 (i.e., π′
1

∗
(C/C) π

′
2 = σ).

We omit the simpler particular sub-case when the reduction β concerns a commutative Cp/Cp reduction
whose weight w2 depends on q.

3. Assume α and β concern the reductions of, respectively, cut L1 and cut L2 of Figure 34. First observe that,

Cq &p

w1

Cp

w2

Cq

π:

L2L1

cut cut

Figure 28:

22

Cq

Cp′ Cp′′

Cq

w1q

&p′

&p′′

w1q

w1q

w1q

Cp′

Cp′′

w2q

w2q

w2

π α π1:

π1 β π′

1:

cut

cut

cut

cut

cut

cut

cut

Figure 29:

ax

ax

ax

ax

Cp

Cp

Cq

Cq

&p′′

ax

ax

ax

ax

w1

&p′

w1q

w1q

w2q

w2q

w2p′q

w2p
′′q

π β π2:

π2 α π′

2:

w2q w2p

w2p
′qw2q

w2p′′q

w2p

Cp′′

Cp′

cut

cut

cut

cut

cut cut

cut

cutcut

cut cut

cut

cut

Figure 30:

23

w1

&pCq

w2

CpCp

π:

L2L1

cut cut

Figure 31:

Cq Cq

w1q

&p′

&p′′

w1q

w1q

w1q

Cp′

Cp′′

w2q

w2q

w2

π α π1:

π1 β π′

1:

Cp′ Cp′′ Cp′
Cp′′

Cp′

Cp′′

cut

cut

cut

cut cut

cutcut

Figure 32:

24

w1q

&p′

w1q

&p′′

w2p
′q w2p′q

w2p
′′q w2p′′q

w1

w2p

w2p

π β π2:

π2 α π′

2:

cut

cut

cut

cut

cut

cut cut

cut cut

Figure 33:

Cq

w1

&p Cr

w2

Cp

π
L1 L2

cutcut

Figure 34:

25

Cp′ Cp′′

Cq

w2

Cr

w2r

Cq
ax

Cr

Cq

w2r

w1q

w1q
ax

Cp′

Cp′′Cr

w2q

w2q

&p′

w1q
&p′′

w1q

ax

ax

cut

cut

cut

cut

cut

cut

cut

cut

cut

π α π1:

π1 β π′

1:

Figure 35:

by the dependency condition 4 of Definition 1, the &r-node cannot occur in the empire E(p), so the reduction
α does not implies any duplication of the eigen weight r in π′. Now, consider the two reduction sequences,
π α π1 β π′

1 of Figure 35 and π β π2 α π′
2 of Figure 36. Clearly π′

1 converges to π′
2 = σ by means of

two more commutative reduction steps, (Cr/Cp′) and (Cr/Cp′′), modulo some some axiom reductions. We
omit the particular (simpler) sub-cases when the weight w2 of cut L2 depends on q.

4. In all the remaining cases, illustrated in

(a) Figure 37,

(b) Figure 38,

(c) Figure 39

the confluence is obtained as simple diamond composition (see Figure 27).

�

Example 2 According to our reduction system rules, the problematic (non confluent) reduction of the commutative
cut of π of Figure 9 (see Section 3.2.1), has got now a (unique solution): the confluent reduction sequence is
illustrated by Figure 40 and Figure 41.

Theorem 7 (strong normalization) Cut-elimination is strong normalizing.

Proof — Weak-normalization (Theorem 5) and confluence (Theorem 6) imply strong normalization. �

4 Proof-structures with explicit n-ary contraction links

Proof-structures with explicit n-ary contraction links differ from those one defined in Definition 1 only for the use
of n-ary contractions (defined in Figure 42) instead of the binary ones. Then, the notion of slices and switchings
(Definitions 2) and proof-nets (Definitions 3) remain unchanged as well the (De-)Sequentialization Theorem 1.

Remark 3 (binary syntax vs. n-ary syntax for C-links) Observe that in general the syntax with n-ary con-
traction is not equivalent to the former one with binary contraction, at least for the following two reasons:

1. Figure 43 shows an example of proof-net with an n-ary contraction link whose monomial sum, pqr+pr+ qr+
pq + pqr, cannot be associated in such a way to reduce this n-ary contraction into a sum of only monomial
binary sums (contractions);

26

ax

ax

ax

ax

Cp

Cp

&p′′

w1

&p′

w1q

w1q

w2p

w2p

Cr

Cr

w2r

w2r

Cr

ax

ax

ax

ax
w2p′q

w2p
′q

Cr

w2r

ax

ax

ax

ax

Cr

Cr

w2p
′′q

w2p′′q

w2r

Cq

Cq

Cp′

Cp′

Cp′′

Cp′′

cut

cut

cut

cut

cut

cut

cut

cut

cut

cut

cut

cut

cut

π β π2:

π2 α π′

2:

Figure 36:

&pCq

w1 w2
π

&rCp

cut cut

L1 L2

Figure 37:

&pCq

w1 w2
π

&rCq

cut cut

L1 L2

Figure 38:

&pCq

w1 w2
π

&rCs

cut cut

L1 L2

Figure 39:

27

C C

cut

cut

cut

cut

ax

ax

ax

ax

C C

&p
&q

ax

ax

q

q

pq

pq

pq

pq

p

p

ax

ax

Figure 40:

C C

ax

ax

ax

ax

C C

pq

pq

pq

pq

&q

q qpp

&p

Figure 41:

v1

C

...

vn...

w

∀i, j (with 1 ≤ i, j ≤ n) wi.wj = 0

wn

A A

A

w1

w =
∑n

i=1wi

Figure 42: n-ary contraction link

28

C

ax

ax

ax

ax

&p

ax

ax

⊗

C

ax

ax

ax

ax

ax
C

C

&q

&r

pqr⊗

C

p̄q̄r̄

p̄r

qr̄

pq̄

Figure 43: Proof-net with n-ary contraction

C CC C

&q

q qpp

&p

⊗

⊗

⊗

⊗

pq

C

pq

pq

pq

Figure 44: Proof-net with n-ary contraction

2. moreover Figure 44 shows an example of proof-net that as soon its n-ary contraction is factorized into only
binary contraction, the resulting proof-net will quotients less proofs than the previous one (in other words the
new proof-net has less sequentialization than the original one with the n-ary contraction.

4.1 Cut-elimination

We only consider here the reduction steps of commutative cuts, since the reduction of ready-cuts remains unchanged
w.r.t. that one of Section 3.1

• the C/⊗-cut of Figure 45, reduces in one step like in Figure 46.

• the C/C-cut, like in Figure 47, reduces in one step like in Figure 48 and we keep only those nodes and edges
with nonzero weight.

• the C/⊕-cut of Figure 49 is reduced in a way that is a trivial generalization of the simpler one illustrated in
Figure 16.

• the C/&-cut of Figure 50 reduces in one step like in Figure 51, where wi.[E
i
p], 1 ≤ i ≤ n is obtained by

spreading wi over a copy of the empire of p, Eip, and replacing in it each eigen weight with a new (fresh) one
(observe that w =

∑n
i=1 wi and by the dependency condition it must be ∀j, w ⊂ vj=1,...m, i.e. there exists a

prefix σ s.t. wσ = vj , therefore vjw = vj).

29

A⊥A⊥

C

cut

A⊥

A

B C

⊗

ww w1 wi wn

w

〈π, E〉

Figure 45:

cut C ⊗ cutB

w w1

cut

cut

wi

wn

⊗

⊗CcutC

w

ww1

wwi

wwn

wwi

...

...

...

...

wwn

A⊥

A⊥

A⊥

...

...
ww1

Figure 46:

C

A A A

w′

iw′

1 w′

n

A⊥A⊥

C

cut

w

... ... A⊥

w′′

1 w′′

j w′′

m

Figure 47:

cut C

cut

cut

cut

C

CCcutA

A

A cut C

w′

1

w′

i

w′

n

w′′

1

w′′

j

w′′

m

...

...

...

...

w′

1w
′′

1

w′

1w
′′

j

w′

iw
′′

j

...

...

w′

nw
′′

1

C

...

w′

nw
′′

m

...
w′

iw
′′

m
w′

nw
′′

j

A⊥

...

A⊥

...

A⊥

w′

1w
′′

m

w′

iw
′′

1

...

...

Figure 48:

A⊥A⊥

C

cut

w

A⊥

A

w′

1w

B

⊕i

w′

i w′

n

Figure 49:

30

C

A A A

cut

w

... ...

&p

B C

wpwpw1 wi wn

Figure 50:

B ⊕ C B⊥ C⊥

cut

B ⊕ C B⊥ C⊥

cut

...

...C C

χ′
A1

...

...

...

...
w1

wn

v1w1 vmw1 vmwnv1wn ...

v1
∑n

i=1wi vm
∑n

i=1wi

... Am

q̄.[E1
p] q.[En

p]

&pn&p1

Figure 51:

31

4.2 Stability

Naively, we show that if there exists an extensive switching S(π), with n extensive jumps. that is not ACC, then
(by a reasoning like in Theorem 4) we can find an other non ACC switching S′(π) with a number of extensive
jumps strictly smaller than n. So, by iterating t reasoning for S′ we get (t the end, when n = 0) a conservative
switching S ∗ (π) (the base of the induction) that is not ACC, contradicting the (analogous) of Theorem 3.

4.3 Strong cut-elimination

Similar to Theorem 7.

References

[DR89] Danos, V. and Regnier, L. The Structure of Multiplicatives. Archive for Mathematical Logic, 1989,
28:181-203.

[Gir87] Girard, J-Y. Linear Logic. Theoretical Computer Science, 50, pp.1-102, 1987.

[Gir96] Girard, J-Y. Proof-nets: the parallel syntax for proof theory. Logic and Algebra. Marcel Dekker,
1996.

[Gir06] Girard, J-Y. Le point aveugle. Cours de Logique. Volume I, Vers la Perfection. Ed. Hermann, 2006,
Paris.

[HVG03] Hughes, D. and Van Glabbeek, R. Proof Nets for Unit-free Multiplicative-Additive Linear Logic. In
Proc. of IEEE Logic in Computer Science, 2003.

[Lau99] Laurent, O. Polarized Proof-Nets: Proof-Nets for LC (Extended Abstract). In J.-Y. Girard, editor,
Typed Lambda Calculi and Applications 1999, LNCS 1581, pp. 213-227. Springer-Verlag. Avril
1999.

32

