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Abstract

It is now well-established that the so-called focalization property plays a central role in the design of
programming languages based on proof search, and more generally in the proof theory of linear logic. We
present here a sequent calculus for non-commutative logic (NL) which enjoys the focalization property. In the
multiplicative case, we give afocalized sequentializationtheorem, and in the general case, we show that
our focalized sequent calculus is equivalent to the original one by studying the permutabilities of rules
for NL and showing that all permutabilities of linear logic involved in focalization can be lifted to NL permut-
abilities. These results are based on a study of the partitions of partially ordered setsmodulo entropy.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Non-commutative logic, NL for short, was introduced by Abrusci and the second author in [1,14]
(see also Section 3). It unifies commutative linear logic [7] and cyclic linear logic [15], a classical
conservative extension of the Lambek calculus [9]. The present paper investigates the “focalization”
property for non-commutative logic.

1.1. The property of focalization

The rules of the sequent calculus for linear logic, LL, are well-known to split into two categories
according to their deterministic or non-deterministic behaviour in proof construction: irreversible rules,
like the⊗ and⊕-rules:
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� �,A � �,B

� �,�,A⊗ B
⊗ � �,A

� �,A⊕ B
⊕1,

which introduce non-deterministic choices in proof search, and reversible rules, like:

� �,A,B �� �,A�B

� �,A � �,B �,� �,A � B

which can be applied immediately in the (bottom-up) process of proof construction, because having a
proof of the conclusion is equivalent to having proof(s) of the premise(s).

Here, the connectives whose introduction rules are reversible are dual to the connectives whose
introduction rules are irreversible, and this extends to the other connectives of LL: callnegative,
or asynchronous, formulas with reversible main connective, andpositive, or synchronous, their
duals.

A priori, deterministic and non-deterministic steps can be interleaved in a very complex way in proof
search, but theproperty of focalization, introduced by Andreoli in [2], enables to significantly reduce this
complexity: when you have negative formulas in a sequent, you can decompose them deterministically
– in parallel – up to positive subformulas; on the other hand, when you have no negative formula, you
need to make the choice of a positive formula, but then, you can proceed similarly and deterministically
decompose the chosen positive formula – thefocus– systematically up to negative subformulas. This is
a constructive statement: any proof can be transformed – by appropriate permutations of rules – into a
focalized proof, i.e. a proof where negative and positive inferences are grouped as explained above. A
focalized sequent calculusis defined in [2] for LL and proven equivalent to the standard one. The idea
is essentially to consider two shapes of sequents: when decomposing a negative formula, the sequent is
a usual one� �, where� is a set of formula occurrences, and negative rules are similar to the usual
ones; when decomposing a positive formula, the sequent is of the form� � | A, whereA is a formula
(the focus) and� contains only atoms or positive formulas. Positive rules keep the focus: for instance,
the rule for⊗ is:

� � | A � � | B ⊗,� �,� | A⊗ B

and two structural rules enable to start focusing on a formula (decision), and leave the focus (reaction)
when positive rules have been applied obsessionally up to negative subformulas.

� � | P
decision, P positive� �,P

� �,N
reaction, N negative.� � |N

For instance, there is only one focalized proof of the following sequent:

� A⊥, E⊥,D⊥, A⊗ (B ⊗ C), (C⊥�B⊥)⊗ (D ⊗ E),

whereA,B,C,D,E are positive atomic formulas.
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� A⊥ | A
� B⊥ | B � C⊥ | C
� C⊥, B⊥ | (B ⊗ C)

� A⊥, C⊥, B⊥ | A⊗ (B ⊗ C)

� A⊥, A⊗ (B ⊗ C),C⊥, B⊥

� A⊥, A⊗ (B ⊗ C),C⊥�B⊥

� A⊥, A⊗ (B ⊗ C) | C⊥�B⊥
� E⊥ | E � D⊥ |D
� E⊥,D⊥ |D ⊗ E

� A⊥, E⊥,D⊥, A⊗ (B ⊗ C) | (C⊥�B⊥)⊗ (D ⊗ E)

� A⊥, E⊥,D⊥, A⊗ (B ⊗ C), (C⊥�B⊥)⊗ (D ⊗ E)

The proof obtained by takingA⊗ (B ⊗ C) as the lowest active formula is not focalized because then,
B ⊗ C cannot be active, forC⊥ andB⊥ are not formulas of the sequent (they still appear as subformulas
of (C⊥�B⊥)⊗ (D ⊗ E)).

In practice, the advantage of the focalized calculus is that it reduces the intrinsic non-determinism of
proof search, and for this reason, it has been applied to the design of programming languages based on
proof search, see e.g. [4]. From a more theoretical viewpoint, focalization is also now a central property
in ludics [8].

It is worth noting that the paradigm ofuniform proofs, introduced by Miller et al. in [12], was an
important precursor of focusing. In fact, it has been the first attempt towards a foundation of logic
programming based on the sequent calculus instead of the Robinson’s resolution method. A uniform
proof is essentially an intuitionistic proof. This approach was interesting from a computational point
of view because it manages the important distinction betweenpermanentand temporaryinformation.
But intuitionistic proofs did not allow any theoretical exhaustive foundation of the proof construction
paradigm. In other words, uniform proofs identify a restricted class of proofs which is not complete w.r.t.
the class of intuitionistic proofs, but only w.r.t. the fragment of the hereditary Harrop formulas, whereas
focusing proofs are complete w.r.t full LL – and we shall extend this to non-commutative logic in the
present paper.

1.2. Problems in the non-commutative case

Let us first concentrate on the multiplicative fragment MNL, which contains the main difficulties.
In [3], Andreoli and the first author showed that the focalization property insequent calculuscorre-

sponds to a “hereditary splitting” lemma forproof nets, i.e. a refinement of Girard’s original splitting
lemma [7] – a central lemma towards the sequentialization theorem (see Section 4). In particular, MNL
proof nets [1] do enjoy the focalization property, because of the correctness criterium and sequential-
ization theorem given in [1]. This abstract notion of focalization (hereditary splitting) implies that there
should be a sequentialization into a focalized sequent calculus, but it does not give explicitely such a
sequent calculus at all.
The two main difficulties towards the definition of a focalized sequent calculus for MNL are the follow-
ing:
• Par. According to [1], ifπ is an MNL proof net with conclusion�,A�B, then the proof structure

obtained by removing the link of conclusionA�B is still a proof net. This implies that the commu-
tative multiplicative disjonction,par �, should be negative, like in the commutative case. However,
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in the sequent calculus given in [1] and relying on order varieties (see below and Section 2), the
introduction rule for�:

� �[A,B]
� �[A�B/A,B]

erases information. Here,� denotes an order variety, and the problem is that from an order variety
�[z/x, y], where the pointsx and y have been identified, there is no way to recover the original
variety� in general.

• Entropy. In the calculus given by [14] relying on partial orders, this drawback disappears, i.e. the
�-rule is indeed reversible:

� �,A,B ,
� �,A�B

but then there is a problem with another rule, entropy:

� �;�;� ,
� �,�,�

which enables to increase the partial order underlying a sequent by replacing parallel sums (commas)
by serial sums (semicolons), and is clearly highly non-deterministic. Non-determinism should be
reduced as much as possible when defining a proof search oriented sequent calculus.
The solution relies on the following ideas:

• Taking the reversible structural rules for� and�:

� �,A,B

� �,A�B

� �;A;B .� �;A � B

A consequence is that entropy, which was originally contained in the�-rule [1], should appear some-
where else.

• Pushing entropy towards⊗ and�-rules. For these rules, we consider context splitting plus some
entropy. For instance, such an inference is admissible:

� �′, A � �,B

� �;�′;A� B .
� (�,�′);A� B

It is not obvious that, given any proof, one may systematically permute rules so as to push entropy in
this way, but it will turn out to be a consequence of the sequentialization theorem for multiplicative
NL in Section 7 – and more generally it follows from NL permutabilities given in Section 8.
Anyway, how much entropy should be used? As said above, this rule is highly non-deterministic and
its use should be minimized.
This leads us to the problem of partitionning contexts, actually series–parallel orders,up toentropy.

1.3. Partitions of series–parallel orders

Given a fixed series–parallel orderω and a fixed partition(X, Y ) of its support|ω|, we give in Sections
5 and 6:
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• Admissibility. Conditions under whichω can be “partitionned modulo entropy” into two orders onX

andY , i.e. the equation

ω � (ωX <ωY )

admits a solution, withωX,ωY series–parallel orders onX, Y respectively; here,� denotes theentropy
relation between partial orders, recalled in Section 2.

• Optimality:optimal solutions to this partitionning problem, i.e. minimal such orders when they exist.
There are two cases, depending on how the two orders are composed: parallel sum (which corresponds to
the connective⊗) and serial sum (which corresponds to the connective�), respectively studied in Sec-
tions 5 and 6. The case of parallel sum is almost trivial, while the case of serial sum is significantly more
difficult, and involves in particular the combinatorics of series–parallel orders and their representations
as special trees, which we callspines.

It is worth noting that the binary splitting of orders has been extended, in [5], to the more general
splitting of orders inn pieces,n � 2.

1.4. Focalized sequentialization

The results on partitions of orders enable us to define in Section 7 a focalized sequent calculus for
MNL, where sequents are:
• either order varieties, essentially when applying reversible rules,
• or pointed order varieties (an order plus a focus), for the positive rules.

We show it equivalent to the original sequent calculus (recalled in Appendix 9) via focalized sequen-
tialization from proof nets, as advocated at the beginning.

1.5. Focalized sequent calculus for full NL

In Section 9 (see also [11]), we give a focalized sequent calculus for full NL, generalizing the calculus
of Section 7. We prove the equivalence with the original sequent calculus by studying the permutabilities
of rules for NL (Section 8) and showing that all LL permutabilities involved in focalization can be
“lifted” to NL permutabilities.

2. Order varieties

2.1. Series–parallel orders

Let us recall the definition of series–parallel orders. Letω andτ be partial orders on disjoint setsX
andY respectively; theirserial andparallel sumsω<τ andω ‖ τ , respectively, are two partial orders
onX � Y defined by:
• (ω1<ω2)(x, y) if, and only if, x<ω1y or x<ω2y or (x ∈ X andy ∈ Y ),
• (ω1 ‖ω2)(x, y) if, and only if, x<ω1y or x<ω2y.

The class ofseries–parallel orderson a given setX is the least class of partial orders containing the
unique orders on singletons and closed by serial and parallel sums. For a more substantial survey, see
[13].
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2.2. Order varieties

An order variety[1,14] on a given setX is a ternary relation� which is:

∀x, y, z ∈ X, �(x, y, z)⇒ �(y, z, x) cyclic

∀x, y ∈ X,¬�(x, x, y) anti-reflexive

∀x, y, z, t ∈ X�(x, y, z) and�(z, t, x)⇒ �(y, z, t) transitive

∀x, y, z, t ∈ X, �(x, y, z)⇒ �(t, y, z) or �(x, t, z) or �(x, y, t) spreading

An order variety� onX is saidtotal when∀x, y, z ∈ X, x /= y /= z /= x ⇒ �(x, y, z) or �(z, y, x).
For instance, any oriented cycleG = (a1 → · · · → an → a1) induces a total order varietyr(G) on
the set of vertices by:r(G)(x, y, z) if, and only if, y is betweenx andz in G; it will be denoted by
(a1a2 . . . an) = (a2 . . . ana1), etc. Note that(abc) is an order variety on{a, b, c} but not on{a, b, c, d}
as it does not enjoy the spreading condition. Spreading enables to systematically give “presentations” of
order varieties as partial orders in a reversible way, as follows.

Given an order variety� onX andx ∈ X, we may define a partial order�x onX \ {x} by: �x(y, z)

if, and only if, �(x, y, z). Conversely, given a partial orderω = (X,<) and z ∈ X, let
z
< denote the

binary relation:x
z
< y if, and only if, x < y andz is comparable with neitherx nor y; then we may

define an order varietyω onX, theclosureof ω by ω(x, y, z) if, and only if: x < y < z or y < z < x

or z < x < y or x
z
< y or y

x
< z or z

y
< x. Whenω = �, we say thatω presents�. The closure of partial

orders identifies serial and parallel sums:

ω<τ = ω ‖ τ = τ <ω.

The above order variety is denoted

ω ∗ τ
and called thegluing of ω andτ . Hence the operation∗ takes two partial orders and produces an order
variety.

The two processes of fixing a point in an order variety and gluing orders are related by the following
equations:

�x ∗ x = � and(ω ∗ x)x = ω,

for � an order variety on a setX, x ∈ X andω a partial order onX \ {x}. So an order variety is – as its
name implies – a kind of gluing of order structures.

Series–parallel order varietiesare precisely those order varieties which can be presented by a series–
parallel order. A series-parallel order variety� on a setX can be representated by arootless planar tree
with leaves labeled by elements ofX and ternary nodes labeled by⊗ or�: take an arbitrary presentation
of � as a series-parallel orderω, writeω as a – non-unique (associativity, commutativity) – planar binary
treet with leaves labeled by elements ofX, and root and nodes labeled by⊗ for parallel sum, or� for
serial sum; then remove the root oft .
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For instance(x < y <z) ‖ v ‖(t < u) can be represented by:

To read the tree, take three leavesa, b, c; then(a, b, c) is in the order variety if, and only if:
• the node◦ at the intersection of the three pathsab, bc andca is labeled by� and
• the pathsa�, b� andc� are in this cyclic order while moving clockwise around�.

Thesupportsof a partial orderω or an order variety� are denoted|ω|, |�|. Restrictionsto a subsetX
of the support are denotedω�X, ��X; restriction preserves the structures of order and order variety, and
preserves series–parallelism.

2.3. Seesaw and entropy

Seesawis the equivalence relation between series–parallel ordersω andτ on a same given set, defined
byω = τ . In caseω andτ are series-parallel, it turns out to be precisely the equivalence∼ given by:

(ω1 ‖ω2) ∼ (ω1<ω2).

Entropy� is the relation between series–parallel orders on the same given set defined byω � τ if,
and only if,ω ⊆ τ andω ⊆ τ . In the series-parallel case, it turns out to be precisely the least reflexive
transitive relation such that:

ω[ω1 ‖ω2] � ω[ω1<ω2].
Entropy is clearly a partial order, compatible with restriction:

ω � τ ⇒ ω�Y � τ �Y

and with the serial and parallel sums of orders:

ω1 � τ1 and ω2 � τ2 ⇒ ω1 ‖ω2 � τ1 ‖ τ2 and ω1<ω2 � τ1<τ2.

More importantly, entropy between orders corresponds to inclusion of order varieties: given two order
varieties�, � onX andx ∈ X, we have

� ⊆ � if, and only if, �x � �x.
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This is independent from the choice ofx: hence� ⊆ � if, and only if, there existsx ∈ X such that
�x � �x , and givenx, y ∈ X, we have�x � �x if, and only if,�y � �y .

In the tree representation for series–parallel order varieties, entropy is performed by changing some
�-nodes into⊗-nodes.

2.4. Wedge

Let I be a non-empty set. Given partial ordersωi, i ∈ I , on a given setX, there is a largest par-
tial orderω (w.r.t. �) such thatω � ωi for all i. It is denoted

∧
ωi , thewedgeof the family (ωi)i∈I ;

whenI has cardinality 2, we writeω1 ∧ ω2. Partial orders on a given set form a complete inf-semi-lattice
for entropy and wedge. The wedge commutes “partially” with restriction, i.e. ifY ⊆ |ωi |, then:(∧

ωi

)
�Y � ∧

ωi�Y .

The wedge is not inclusion in general! For instance,(a <(b ‖ c)) ∩ ((a < b) ‖ c) = ((a < b) ‖ c)
whereas(a <(b ‖ c)) ∧ ((a < b) ‖ c) = (a ‖ b ‖ c), because((a < b) ‖ c) �� (a <(b ‖ c)). However,

∧
ωi

⊆⋂
ωi . Also, in general,

∧
ωi may not be series-parallel even if all theωi are series-parallel. For

instance,

(c < d < a < b) ∧ (a < c < b < d) = N(a, b, c, d) = {(a, b), (c, b), (c, d)}.
If on the other hand�i , i ∈ I, are order varieties onX, theirwedge

∧
�i is(∧

(�i )x

)
∗ x

for an arbitraryx ∈ X. (This is independent from the choice ofx.) The wedge of order varieties com-
mutes partially with restriction as above, and the two notions of wedge are related by:(∧

�i

)
x

=
∧

(�i )x and

(∧
ωi

)
∗ x =

∧
(ωi ∗ x).

There is a particular case of wedge which we shall use in the sequentialization theorem: let� be an
order variety on a setX � {x} � {y}, and letz �∈ X � {x} � {y}; define theidentification�[z/x, y] of x
andy into z in � by:

�[z/x, y] = ��X∪{x} [z/x] ∧ ��X∪{y} [z/y].
Identification is clearly monotonic (� ⊆ � implies�[z/x, y] ⊆ �[z/x, y]) and, as proved in [14], we

have�[z/x, y]z ∗ (x ‖ y) ⊆ �. A more detailed introduction to order varieties can be found in [14].

3. Non-commutative logic

3.1. Language of NL

Formulas of NL are built from atomsp, q, . . . (positive), p⊥, q⊥, . . . (negative) and the following
connectives and constants:
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Positive Negative

Multiplicative ⊗ times � par
� next � sequential
1 one ⊥ bot

Additive ⊕ plus � with
0 zero  top

Exponential ! of course ? why not

Negation is defined by usual De Morgan rules exchanging positive and negative connectives of a
same row. For instance,(A� B)⊥ = B⊥ � A⊥. A compound formula is said positive (resp. negative)
when its main connective is positive (resp. negative). Therefore, a formula is either an atom (positive or
negative), or a positive compound formula, or a negative compound formula.

3.2. Proof nets of MNL

Cut-free proof structures.As we are interested in proof search, we only deal withcut-freeproof
structures, but there are proof structures with cut links as well. Proof nets for multiplicative NL have
been introduced in [1]. Thelinks are the following graphs where the vertices are labeled by formulas of
MNL:
• identity links:

with two conclusionsA⊥ andA and nopremise;
• ⊗, �,� and�-links:

where the formulaA is thefirst premise, the formulaB is thesecond premiseand the third formula is
theconclusionof the link.

A proof structure (of MNL)is a graph built from links of MNL such that every occurrence of formula
is the conclusion of exactly one link of MNL and the premise of at most one link. Ifπ is a proof
structure of MNL, theconclusionsof π are the occurrences of formulas inπ which are not premises of a
link.

Switchings.We consider formulas withdecorations: ↑ (question) or↓ (answer). Adecorated formula
is of the formA↑ or A↓, whereA is a formula of MNL. Define↑̄ =↓ , ↓̄ =↑. For each linkl of MNL,
we can consider two sets of decorated formulas:
• lin is the set of all decorated formulasAx , whereA is a premise ofl andx is ↓, orA is a conclusion

of l andx is ↑;
• lout is the set of allAx , whereA is a premise ofl andx is ↑, orA is a conclusion ofl andx is ↓.
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For each linkl of MNL we define a setS(l) of (partial) functions fromlin to lout , called theswitching
positionsof l, as follows:

Given a proof structureπ , aswitchingfor π is a functions such that for every linkl of π , s(l) ∈ S(l).
A switchings for π is �3-free if for every�-link l, s(l) /= �3.

Let π be a proof structure ands a switching forπ . Theswitched proof structures(π) is the oriented
graph with vertices the decorated formulas labelingπ , and with an oriented edge fromAx to By if,
and only if, eitherBy = s(l)(Ax) for some linkl in π , orAx = C↓ andBy = C↑ for some conclusion
C of π .

A trip in s(π) is a cycle or a maximal path ins(π).
Correctness criterium.Let π be a proof structure of MNL ands a switching forπ . A cyclev in s(π) is
bilateral if v is not of the form:

Ax, . . . , By, . . . , Ax̄, . . . , Bȳ, . . . , Ax,

whereA,B are occurrences of formulas inπ andx, y are decorations. A proof structureπ of MNL is a
proof netif, and only if, for every switchings for π :
(i) there is exactly one cycleσ in s(π),

(ii) σ contains all the conclusions,
(iii) σ is bilateral.

The order variety associated to a proof net.Let π be a proof net of MNL with conclusion�. If s
is a switching forπ , the conclusions in the unique cycle ofs(π) appear by pairsC↓, C↑, so the two
occurrences of a conclusion can be identified ands(π) induces a cycle (a total order variety) on the set
of unlabeled conclusions. Denote byαπ,s this total order variety on the set� of unlabeled conclusions.
Then the order variety associated toπ is απ =∧

s απ,s , an order variety on�. It follows from [1] that
απ is a series-parallel order variety.

In particular, if a proof netπ is obtained from a proof netπ ′ by adding a� or �-link A B
C

, then

απ = απ ′ [C/A,B].
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See Section 2 for the definition of the identification of two points in an order variety. In the case of a
�-link, the correctness criterium impliesαπ ′ = ω ∗ (A<B) for some orderω, and thusαπ = ω ∗ C.

4. Focusing MNL proof nets

If π is a proof net of MNL andA is one of its positive conclusions, thenA is said asplitting conclusion
of π , writtenA ∈ Split(π), when removing fromπ the link A1 A2

A
introducingA leads to two disjoint

proof structuresπ1 andπ2. Moreover in that caseπ1 andπ2 are proof nets. The essential content of the
sequentialization theorem for MNL [1] is the following: ifπ is a proof net of MNL with no negative
conclusion, then Split(π) /=�.

Now letπ be a proof net of MNL andA be one of its conclusions. ThenA is a said to be afocusing
conclusion ofπ , writtenA ∈ Foc(π), when one of the following holds:
• A is a positive atom andπ is an axiom link,
• A ∈ Split(π), π is split atA = A1� A2 orA1⊗ A2 into the two proof netsπ1 andπ2, and

{
A1 is negative orA1 ∈ Foc(π1) and
A2 is negative orA2 ∈ Foc(π2).

Therefore, whenπ is not reduced to an axiom link, Foc(π) ⊆ Split(π). For instance, in the follow-
ing non-commutative proof net,(C⊥ � B⊥)⊗ (D � E) is focusing, whereasA� (B � C) is only a
splitting conclusion.

The splitting property can be refined as follows [3]:

Theorem 4.1 (Focusing). If π is a proof net of MNL with no non-atomic negative conclusion, then
Foc(π) /=�.

Focusing is a form of hereditary splitting. We shall now make more precise the meaning of focusing in
terms of a splitting strategy in the sequentialization procedure.

5. Partitions of series–parallel orders: parallel sum

In the present section and the next one, we consider a fixed series–parallel orderω and a fixed partition
(X, Y ) of |ω|, and we give:
• conditions under whichω can be “partitionned modulo entropy” into two orders onX andY ,
• optimal solutions to the partitionning problem, i.e. minimal such orders when they exist.
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There are two cases, depending on how the two orders are composed: parallel sum (which corresponds
to the connective⊗) and serial sum (which corresponds to the connective�). In this section, we consider
the case of the parallel sum.

Lemma 5.1. The following are equivalent:
(i) ω = ω�X ‖ ω�Y .

(ii) There exist series–parallel ordersωX,ωY onX, Y, respectively, such thatω � (ωX ‖ωY ).

Proof. (i) ⇒ (ii) is trivial. Conversely, ifω � (ωX ‖ωY ), thenω ⊆ (ωX ‖ωY ), therefore inω any two
elements, one inX one inY , are incomparable. This impliesω = ω�X ‖ ω�Y , sinceω = (ω1<ω2), with
|ω1| /=� and|ω2| /=�, implies|X| =� or |Y | =�. �

When the above condition is satisfied,ω�X andω�Y are clearly optimal.

Lemma 5.2. For any pair of series–parallel ordersωX,ωY on X, Y, respectively, such thatω �
(ωX ‖ωY ), we haveω�X � ωX andω�Y � ωY .

Proof. Obvious consequence of the commutation of� with restriction (see Section 2).�

6. Partitions of series–parallel orders: serial sum

6.1. Admissibility

Definition 6.1 (Admissible partition). Letω be a series–parallel order onX � Y . (X, Y ) is saidadmissi-
blewhen it enjoys the following two properties:

(i) for all x ∈ X, y ∈ Y , y≮x,
(ii) for all x1, x2 ∈ X, y1, y2 ∈ Y , ω�x1,x2,y1,y2

/= (x1<y1) ‖(x2<y2).

The rest of the section is devoted to:
• show that this notion of admissibility characterizes those partitionsX � Y of the support ofω for

which the equation

ω � (ωX <ωY )

with ωX, ωY onX, Y respectively, admits a solution;
• give optimal solutions to the above equation.
We first prove the following lemma:

Lemma 6.2. Letω andσ be series–parallel orders onX � Y, such that(X, Y ) is admissible forσ and
ω � σ. Then(X, Y ) is admissible forω.

Proof. ω � σ impliesω ⊆ σ , therefore:
(i) If ω(y, x) for somex ∈ X, y ∈ Y , thenσ(y, x).
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(ii) If ω�x1,x2,y1,y2
= (x1<y1) ‖(x2<y2), then fromω�x1,x2,y1,y2

� σ �x1,x2,y1,y2
, we getσ �x1,x2,y1,y2

=
(x1<y1) ‖(x2<y2) or (x1<y1<x2<y2) or (x2<y2<x1<y1).

Both conclusions contradict the assumption that(X, Y ) is admissible forσ . �

Definition 6.3 (Well-teasing). ω is saidwell-teasedby (X, Y ) when either|ω| is empty, orω = ω1 ‖ω2
orω1<ω2, and one of the following holds:

{|ω1| ⊆ X and ω2 is well-teased by(X, Y ) or
|ω2| ⊆ Y and ω1 is well-teased by(X, Y ).

For instance, the partial orderω = (x1<y1) ‖(x2 ‖ y2) with x1, x2 ∈ X andy1, y2 ∈ Y , is well-teased:
indeedω = x2 ‖(x1<y1) ‖ y2. On the other hand(x1<y1) ‖(x2<y2) is not well-teased.

Essentially, ω is well-teased by(X, Y ) if, and only if, ω can be represented by a binary tree (with
nodes labelled by<, ‖) where all leaves inX (resp. in Y ) are on the left side (resp. right side).

Lemma 6.4. The following are equivalent:
(i) (X, Y ) is admissible forω.
(ii) ω is well-teased by(X, Y ).

(iii) There exist series–parallel ordersωX,ωY onX, Y, respectively, such thatω � (ωX <ωY ).

Proof. (i) ⇒ (ii). By induction onω. If ω is empty, any partition is both admissible and well-teasing.
Otherwise,ω = (ω1<ω2) or (ω1 ‖ω2), with |ω1| and|ω2| both non empty.
• ω = (ω1<ω2). Since(X, Y ) is admissible forω, we have:
◦ eitherX ⊆ |ω1| andY = Y1 � Y2, with Y1 ⊆ |ω1| andY2 = |ω2|,
◦ or Y ⊆ |ω2| andX = X1 �X2, with X1 = |ω1| andX2 ⊆ |ω2|.
In the first case,(X, Y1) is admissible forω1, so by inductionω1 is well-teased by(X, Y1), i.e.ω1 can
be represented by a binary treeT (with nodes labelled by<, ‖) with leaves inX on the left and leaves
in Y on the right. Thusω = (ω1<ω2) is represented by the grafting ofT and any tree-representation
of ω2, which is well-teased because|ω2| ⊆ Y . The second case is symmetric.

• ω = (ω1 ‖ω2). If somex1 ∈ X ∩ |ω1| andy1 ∈ Y ∩ |ω1| havex1 < y1, then, by definition of admissi-
bility (second condition),ω2 = (ω2�X ‖ω2�Y ). By induction,ω1 is well-teased, soω = (ω2�X ‖ω1 ‖
ω2�Y ) is also well-teased. If on the other hand, somex2 ∈ X ∩ |ω2| andy2 ∈ Y ∩ |ω2| havex2 < y2,
the argument is similar.

(ii) ⇒ (iii). In a tree-representation ofω with leaves inX on the left and leaves inY on the right, replace
all ‖-labels by<-labels: this gives a new tree which represents a total orderωX <ωY .
(iii) ⇒ (i). In (ωX <ωY ), every element inX is less than every element inY , therefore(ωX <ωY )

enjoys properties 1 and 2 of Definition 6.1, hence(X, Y ) is admissible for(ωX <ωY ). By Lemma 6.2
this implies that(X, Y ) is admissible forω, sinceω � (ωX <ωY ). �

6.2. Optimality

Definition 6.5 (�). Given (X, Y ) an admissible partition forω, let O(ω,X, Y ) be the set of series–
parallel orders(ωX <ωY ), with ωX onX andωY on Y , such thatω � (ωX <ωY ). Define�X,Y (ω) to
be the wedge

∧
O(ω,X, Y ).
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By Lemma 6.4, O(ω,X, Y ) is non-empty when(X, Y ) admissible forω, so �X,Y (ω) is well-
defined.

Facts 6.6.
(i) ω � �X,Y (ω).

(ii) If X =� or Y =� then�X,Y (ω) = ω.

(iii) �X,Y (ωX <ωY ) = ωX <ωY when|ωX| = X and|ωY | = Y.

Lemma 6.7(�X,�Y ). �X,Y (ω) is of the form�X(ω)<�Y (ω) with�X(ω) and�Y (ω) partial orders
onX, Y, respectively.

Proof. For any(ωX <ωY ) ∈ O(ω,X, Y ) we have(�X <�Y ) � (ωX <ωY ), so (�X <�Y ) � ∧
O(ω,X, Y ), in particular(�X <�Y ) ⊆ �X,Y (ω), and this implies�X,Y (ω)(x, y) for anyx ∈ X and
y ∈ Y . �

Lemma 6.8. Letω be a series–parallel order on the disjoint unionX � Y. Then for any series–parallel
order τ onX � Y, such that(X, Y ) is admissible forτ andω � τ, we have�X,Y (ω) � �X,Y (τ ).

Proof. ω � τ implies O(τ,X, Y ) ⊆ O(ω,X, Y ), hence O(ω,X, Y ) = O(τ,X, Y ) � Z for some setZ
of orders onX � Y. Then:

�X,Y (ω)=
∧(

O(τ,X, Y ) � Z

)

=
(∧

O(τ,X, Y )

)
∧

(∧
Z

)

�∧
O(τ,X, Y )

=�X,Y (τ ). �

Theorem 6.9 (Optimality). If (X, Y ) is an admissible partition forω, then for any pair of series–
parallel ordersωX,ωY on X, Y, respectively, such thatω � (ωX <ωY ), we have�X(ω) � ωX and
�Y (ω) � ωY .

Proof. By Lemma 6.8,ω � (ωX <ωY ) implies�X,Y (ω) � �X,Y (ωX <ωY ), and by Facts 6.6,�X,Y

(ωX <ωY ) = (ωX <ωY ), whence�X(ω) � ωX and�Y (ω) � ωY by Lemma 6.7. �

6.3. Preservation of series–parallelism

We show that ifω is series–parallel, so is�X,Y (ω). It is not obvious since the wedge of series-parallel
orders may not b e series-parallel, as noticed in Section 2. However, by induction, it is a consequence of
the following explicit formulas for�X,Y :

Lemma 6.10. Let (X, Y ) be an admissible partition of a series–parallel orderω = (ω1<ω2). Then:
• eitherX ⊆ |ω1|, |ω2| ⊆ Y and�X,Y (ω) = (�X,Y (ω1)<ω2),
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ω = �X,Y (ω) =

• or Y ⊆ |ω2|, |ω1| ⊆ X and�X,Y (ω) = (ω1<�X,Y (ω2)).

ω = �X,Y (ω) =

Proof. Note that the statements about the decomposition of|ω| are the same as the cases in the
proof of Lemma 6.4 (ii⇒ iii) and directly follow from the definition of admissibility. Let us show
the equations concerning�X,Y (ω). By symmetry we simply consider the first case. We haveω =
(ω1<ω2) � (�X,Y (ω1)<ω2), so by Theorem 6.9, we just have to show that(�X,Y (ω1)<ω2) is indeed
optimal. To this end, take series–parallel ordersωX, ωY onX, Y respectively, such thatω � (ωX <ωY ).
Sinceω = (ω1<ω2) ⊆ (ωX <ωY ) and on the other handX ⊆ |ω1| and |ω2| ⊆ Y , we may conclude
that

(ωX <ωY ) = (ω1X <ω1Y <ω′2),

with |ω1X <ω1Y | = |ω1| and|ω′2| = |ω2|, as the notation suggests. Restriction to|ω2| gives

ω2 � ωY �|ω2| = ω′2

and restriction to|ω1| gives

ω1 � (ω1X <ω1Y ).

Hence�X,Y (ω1) � �X,Y (ω1X <ω1Y ) = (ω1X <ω1Y ) by Lemma 6.8 and Facts 6.6, and(�X,Y (ω1)

<ω2) � (ω1X <ω1Y <ω′2) = (ωX <ωY ). �

Lemma 6.11. Let (X, Y ) be an admissible partition of a series–parallel orderω = (ω1 ‖ · · · ‖ωn). If
there existxi ∈ X ∩ |ωi | and yi ∈ Y ∩ |ωi | such thatxi < yi, then for anyj /= i, ωj = (ωjX ‖ωjY ),

with |ωjX| ⊆ X and|ωjY | ⊆ Y.
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Proof. Immediate consequence of the definition of admissibility.�

Lemma 6.12. Let (X, Y ) be an admissible partition of a series–parallel orderω = (ω1 ‖ · · · ‖ωn) =�n
i=1ωi, where eachωi is either a singleton, or of the formσi < τi with |σi | and |τi | non-empty.

Then:
• either for anyi, ωi = (ωiX ‖ωiY ) with |ωiX| ⊆ X and|ωiY | ⊆ Y, and:

ω=
( n�
i=1

ωiX

)
‖
( n�
i=1

ωiY

)

�X,Y (ω)=
( n�
i=1

ωiX

)
<

( n�
i=1

ωiY

)
,

ω = �X,Y (ω) =

• or for somei, there existxi ∈ X ∩ |ωi | andyi ∈ Y ∩ |ωi | such thatxi < yi, and then:

ω=
( �
j /=i

ωjX

)
‖ωi ‖

( �
j /=i

ωjY

)

�X,Y (ω)=
( �
j /=i

ωjX

)
<�X,Y (ωi)<

( �
j /=i

ωjY

)
,

with for anyj /= i, |ωjX| ⊆ X and|ωjY | ⊆ Y.

ω = �X,Y (ω) =

Proof. The first case is obvious, so let us consider the second case. The equation forω is an immediate
consequence of Lemma 6.11. CallδX,Y (ω) the right hand side of the equation for�X,Y (ω): clearlyω �



R. Maieli, P. Ruet / Information and Computation 185 (2003) 233–262 249

δX,Y (ω) so we just have to show thatδX,Y (ω) is optimal in order to conclude that�X,Y (ω) = δX,Y (ω).
Take series–parallel ordersωX, ωY onX, Y respectively, such thatω � (ωX <ωY ).

We first show thatδX,Y (ω) ⊆ (ωX <ωY ). Let a, b,∈ X � Y be such thatδX,Y (ω)(a, b). If ω(a, b),
we are done becauseω ⊆ (ωX <ωY ). Otherwise, disinguish between the possible positions ofa andb
in |ω|:
• a, b ∈ |ωi |: we have(a, b)∈δX,Y (ω)�|ωi |=�X,Y (ωi), and by Theorem 6.9, fromωi � (ωX<ωY )�|ωi |

follows�X,Y (ωi) � (ωX <ωY )�|ωi |, thus(a, b) ∈ (ωX <ωY );
• a ∈⊎

j /=i |ωjX| andb ∈ |ωi |: by hypothesis,ωi is either a singleton, or of the formσi < τi with |σi |
and|τi | non-empty; it cannot be a singleton for it contains at leastxi andyi , so it is of the formσi < τi ;
then by Lemma 6.10 either|τi | ⊆ Y or |σi | ⊆ X; if |τi | ⊆ Y , then a ∈ X so (a, b) ∈ (ωX <ωY )

wheneverb ∈ |τi |, and whenb ∈ |σi |, anyy ∈ |τi | gives

(a, b, y)∈ω
(b, y)∈(ωX <ωY )

(a, y)∈(ωX <ωY ),

so(a, b) ∈ (ωX <ωY ) becauseω ⊆ ωX <ωY ; if |σi | ⊆ X, we have by hypothesis ayi ∈ Y ∩ |ωi | ⊆
|τi |, so

(a, yi)∈(ωX <ωY ),

and again, taking anyx ∈ |σi | ⊆ X leads to

(a, x, yi)∈ω
(x, yi)∈(ωX <ωY ),

hence(a, x) ∈ (ωX <ωY ), and then(ωX <ωY )(a, b) for b ∈ |τi | by transitivity;
• a ∈ |ωi | andb ∈⊎

j /=i |ωjY |: symmetric;

• a ∈⊎
j /=i |ωjX| andb ∈⊎

j /=i |ωjY |: (ωX <ωY )(a, b) follows from the previous two items by tran-
sitivity, since|ωi | /=�.
Moreover,δX,Y (ω) ⊆ ωX ∗ ωY . Indeed, by definition of the order variety associated to a partial or-

der,(a, b, c) ∈ δX,Y (ω) impliesδX,Y (ω)�a,b,c= (a < b< c) or ((a < b) ‖ c) or a cyclic permuta tion of
the above orders. SinceδX,Y (ω) ⊆ (ωX <ωY ), δX,Y (ω)�a,b,c= (a < b< c) implies (ωX <ωY )�a,b,c=
(a < b< c), hence(a, b, c) ∈ ωX ∗ ωY . Now, assume thatδX,Y (ω)�a,b,c=((a < b) ‖ c). Asω ⊆ δX,Y (ω),
the only possibility for(a, b, c) �∈ ωX ∗ ωY is whenω�a,b,c= (a ‖ b ‖ c). It is clear that the only possi-
ble positions ofa, b, c in |ω| area, b, c all in |ωi |, and by Theorem 6.9,δX,Y (ω)�|ωi | = �X,Y (ωi) �
(ωX <ωY )�|ωi |, so(a, b, c) ∈ (ωX <ωY )�|ωi | = (ωX ∗ ωY )�|ωi |, contradiction.

To sum up,δX,Y (ω) ⊆ (ωX <ωY ) andδX,Y (ω) ⊆ ωX ∗ ωY , soδX,Y (ω) � (ωX <ωY ). This holds for
anyωX, ωY such thatω � (ωX <ωY ), henceδX,Y (ω) = �X,Y (ω). �

Corollary 6.13. If ω is series–parallel, then so is�X,Y (ω).

Example 6.14. Let ω = (a ‖ b) < (e ‖ (c < d)), X = {a, b, c}, Y = {d, e}. Then�X,Y (ω) = ((a ‖
b) < c) < (d < e).
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6.4. Spines

Consider a series–parallel orderω with an admissible partition(X, Y ) (or equivalently, a well-teasing
partition, by Lemma 6.4), and a tree-representation ofω with leaves inX on the left and leaves inY
on the right. Using associativity, the middle path from the root to the point of separation betweenX

andY can be compressed into an “alternating path” where two consecutive nodes have different labels
(<, ‖).

X Y...
σk −<

|
<−τk
...

σi−1− ‖
|

σi − ‖
...

−→

X Y...
σk −<−τk

...
(σi−1 ‖ σi)− ‖

...

This compression may create ternary nodes on the middle path, as in the figure below, where• and◦
represent alternating labels (resp.< and‖, or‖ and<). The result of this compression is called thespine
of (ω,X, Y ).

σn − ◦ − τn

|
σn−1− • − τn−1

...
σ2− ◦ − τ2

|
σ1− • − τ1

if n is even

σn − • − τn

|
σn−1− ◦ − τn−1

...
σ2− ◦ − τ2

|
σ1− • − τ1

if n is odd

Definition 6.15 (Spine). Assumeω is well-teased by(X, Y ). With the notations of figure in Section 6.4
we call[((σ1, τ1), . . . , (σn, τn)), ξ ] thespineof (ω,X, Y ).
• Theσi (resp.τi), 1 � i � n, are called the left (resp. right)stingsand are series–parallel orders on

disjoint subsetsXi of X (resp.,Yi ⊆ Y ),
• ξ ∈ {<, ‖} is the label of the root,
• n is called theheightof the spine.
It should satisfy the following requirements:
• both|σn| and|τn|, respectively, top-left and top-right sting, are not empty;
• |σi | � |τi | /=�, for anyi such that 1� i � n.
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Lemma 6.16. Assumeω is well-teased by(X, Y ), and let[((σ1, τ1), . . . , (σn, τn)), ξ ] be the spine of
(ω,X, Y ). Then�X(ω) = (σ1< · · ·<σn) and�Y (ω) = (τn < · · ·<τ1).

X Y...
σi+1− ‖−τi+1

|
σi −<−τi

|
σi−1− ‖−τi−1

...
ω

X Y...
σi+1−<−τi+1

|
σi −<−τi

|
σi−1−<−τi−1

...
�X,Y (ω)

Proof. This is just a reformulation of the equations in Lemmas 6.10 and 6.12.�

7. Focalized calculus and sequentialization for MNL

Definition 7.1. A sequentis of the form either�, where� is an order variety of formula occurrences, or
γ | A, whereA is a formula occurrence andγ is a series–parallel order of formula occurrences. In the
latter case,A is called thefocus.

In other terms, a sequent is an order variety or a pointed order variety. Note that we omit the sym-
bol � at the beginning of sequents, since it is useless in one-sided sequents. The rules of the sequent
calculus are given in Table 1 As we are interested in proof search, we only deal withcut-freesequent
calculus.

Observe that a crucial rule of NL, entropy, does not appear explicitely in Table 1 As we have already
said in the introduction, entropy is a source of non-determinism in proof search. In Table 1, it is included
in the rule for�, the only place where it is actually necessary: this is not trivial, but a consequence
of the results in the previous section, and the rest of the present section is devoted to proving that this
“optimized” sequent calculus is actually equivalent to the original one in [1,14] or in Appendix 9. We
do this by proving adequacy and sequentialization w.r.t. proof nets.

Example 7.2. Similarly to the example given in the introduction, there is only one focusing proof for
the sequent with order variety� =� on

{A⊥, E⊥,D⊥, A� (B � C), (C⊥ � B⊥)⊗ (D � E)}

with A,B,C,D,E positive:
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Table 1
Focalized sequent calculus for MNL

Identity

p positive atom
p⊥ | p

Reaction

N is negative

γ ∗N
reaction

γ |N
Decision

P is positive andγ contains only atoms or positive formulas

γ | P
decision

γ ∗ P
Multiplicative connectives

�Y (γ ) | A �X(γ ) | B �
γ | A� B

(X, Y ) admissible partition forγ

γ ′ | A γ ′′ | B ⊗
(γ ′ ‖ γ ′′) | A⊗ B

γ ∗ (A<B) �
γ ∗ A � B

γ ∗ (A ‖B)
�

γ ∗ A�B

A⊥ | A
B⊥ | B C⊥ | C �
(C⊥<B⊥) | B � C �

(A⊥ ‖(C⊥<B⊥)) | A� (B � C)
decision

(A⊥ ‖A� (B � C)) ∗ (C⊥<B⊥) �
(A⊥ ‖A� (B � C)) ∗ C⊥ � B⊥

reaction
(A⊥ ‖A� (B � C)) | C⊥ � B⊥

D⊥ |D E⊥ | E �
(E⊥ ‖D⊥) |D � E ⊗

(A⊥ ‖E⊥ ‖D⊥ ‖A� (B � C)) | ((C⊥ � B⊥)⊗ (D � E))
decision

(A⊥ ‖E⊥ ‖D⊥ ‖A� (B � C)) ∗ ((C⊥ � B⊥)⊗ (D � E))

Note that, for instance, entropy is used for the�-rule on the right:(E⊥ ‖D⊥) � (E⊥<D⊥) and
�D⊥,E⊥(E

⊥ ‖D⊥) = (E⊥<D⊥).

Example 7.3. Non-commutativity can be used to reduce part of the non-determinism of context split-
ting, because some failures in commutative LL can be avoided just by using thestructural properties
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of the context. An obvious example is given by (η-expanded) proofs ofB⊥, A⊥, (A tensorB). In the
non-commutative case, there is a single possible partition, and it leads to an actual proof:

...
A⊥ | A

...
B⊥ | B ,

(B⊥ < A⊥) | A� B

whereas in the commutative case, there are two possible partitions, one leading to a proof as above, the
other one leading to an arbitrarily long failure in general:

...
A⊥ | A

...
B⊥ | B

(B⊥ ‖ A⊥) | A⊗ B

failure...
B⊥ | A

failure...
A⊥ | B .

(B⊥ ‖ A⊥) | A⊗ B

Facts 7.4. Let D be a sequent calculus proof of a sequentC with a single conclusion formula. In a
sequent of the formγ | A, only atoms or positive formulas occur inγ.

Theorem 7.5(Adequacy). To any proof D with conclusion� (resp. ω | A) in the focalized sequent
calculus we associate a cut-free proof netD− of MNL with same conclusion and associated order variety
αD− enjoyingαD− ⊇ � (resp. αD− ⊇ ω ∗ A).
Proof. By induction onD. The cases of identity, reaction and decision are trivial. For�, we have by
induction a proof netD′− associated to the proofD′ of γ ∗ (A<B), with αD′− ⊇ γ ∗ (A<B): this
implies the absence of conclusion betweenB↑ andA↓ for any switching inD′, so the proof structure
D− obtained by adding a�-link betweenA andB is a proof net, and

αD− = αD′−[A � B/A,B] ⊇ (γ ∗ (A<B))[A � B/A,B] = γ ∗ A � B

by monotonicity of identification in order varieties. For�, the argument just forgets the point with
switchings which isn’t to be checked. The cases of⊗ and� are immediate. �

Theorem 7.6(Sequentialization). Letπ be a cut-free proof net of MNL with conclusion� and� be any
order variety on� such that� ⊆ απ .

• If � contains non-atomic negative formulas, then there is a proofD with conclusion� in the focusing
sequent calculus such thatD− = π.

• Otherwise for any focusing conclusionA ∈ Foc(π) ⊆ �, there is a proofD with conclusion�A | A in
the focusing sequent calculus such thatD− = π.

Proof. By induction on the size ofπ .
• π contains only atoms. Thenπ is an axiom link with conclusionsp, p⊥, with p the positive one, and

we can easly sequentializeπ with the identity:

p⊥ | p
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• � contains at least one non-atomic negative conclusion. Then we need to consider two cases.
(i) π is obtained fromπ ′ by adding a conclusion linkA � B, and� = �′ � {A � B}.

Let � be an order variety such that� ⊆ απ . By definition,απ = απ ′ [A � B/A,B] and moreover

απ ′ = (απ)A�B ∗ (A<B)

since the correctness criterium ensures that, for any swichings, s(π ′) contains no conclusion
betweenB↑ andA↓. Now, from�A�B � (απ)A�B , we get(�A�B <A<B) � ((απ)A�B <A

<B), whence�A�B ∗ (A<B) ⊆ (απ)A�B ∗ (A<B) = απ ′ by definition of entropy. Now con-
sider the proof netπ ′, and distinguish between the following two cases:
(a) Among the conclusions�′, A, B of π ′, there is still a non-atomic negative one. We know

that�′ = �A�B ∗ (A<B) ⊆ απ ′ so we can apply the induction hypothesis and get a focal-
ized sequential proofD′ of �′ such thatD′− = π ′, whence a proofD by application of a
�-rule:

D′
�A�B ∗ (A<B) �
�A�B ∗ A � B

with conclusion�A�B ∗ A � B = �,
(b) Otherwise,π ′ contains no non-atomic negative conclusion and at least a positive one. By

Theorem 4.1, there exists a focusing conclusionF . In this case we can apply the induction
hypothesis and get a proofD′ of �′F | F such thatD′− = π ′. W.r.t. the previous case, it is
sufficient to add an instance of the Decision rule in order to get the focusing sequent proof
D:

D′
�′F | F

�′

(ii) π is obtained fromπ ′ by adding a conclusion linkA�B, and� = �′ � {A�B}.
Let � be an order variety such that� ⊆ απ . We haveαπ = απ ′ [A�B/A,B], so

(απ)A�B ∗ (A ‖B) ⊆ απ ′

follows from Section 2. Again, from�A�B � (απ)A�B , we get�A�B ∗ (A ‖B) ⊆ (απ)A�B ∗
(A ‖B) ⊆ απ ′ . Consider the proof netπ ′, and distinguish between the following two cases:
(a) Among�′, A, B there is a non-atomic negative conclusion. Since�′ = �A�B ∗ (A ‖B) ⊆

απ ′ , we can apply the induction hypothesis and get a focusing sequential proofD′ of �′ such
thatD′− = π ′, whence a proofD by application of a�-rule:

D′
�A�B ∗ (A ‖B)

�A�B ∗ A�B

with conclusion�A�B ∗ A�B = �.

(b) Otherwise, ifπ ′ contains no non-atomic negative conclusion and at least a positive one, we
proceed as in the case ofA � B, by adding Decision rule.

• � contains only atoms and non-atomic positive conclusions. By Theorem 4.1, Foc(π) /=�, and there
are two possibilities.
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(i) Foc(π) contains a formulaA� B andπ is obtained fromπ1 (with conclusion�1 � {A}) π2
(with conclusion�2 � {B}) by adding a conclusion linkA� B.
(a) Both premises of the selected focusing link are focusing as well, i.e.A ∈ Foc

(π1) and B ∈ Foc(π2). Let � be an order variety such that�⊆απ . We haveαπ =
(απ1)A <A� B <(απ2)B . Letγ1 = (απ1)A, γ2 = (απ2)B , two series–parallel orders on�1,

�2 respectively, and letσ = �A�B . We have

σ � (γ2<γ1).

Since the partition(�1, �2) is clearly admissible for(γ2<γ1), it follows from Lemma 6.2
that(�1, �2) is admissible forσ as well. Hence, by Theorem 6.9 (optimality),��1(σ ) � γ1
and��2(σ ) � γ2, so

��1(σ ) ∗ A ⊆ γ1 ∗ A = απ1

and

��2(σ ) ∗ B ⊆ γ2 ∗ B = απ2.

We can therefore apply then induction hypothesis and get two focalized proofs,D1 of
��1(σ ) | A andD2 of ��2(σ ) | B, whence a focalized proofD by application of a�-
rule:

D1

��1(σ ) | A
D2

��2(σ ) | B �
σ | A� B

(b) One premise of the selected focusing link is not focusing, say e.g.,A /∈ Foc(π1) andB ∈
Foc(π2). W.r.t. the previous case, the differences are the use of the other induction hy-
pothesis and the addition of an instance of the Reaction rule (A is indeed negative in this
case):

D1

��1(σ ) ∗ A reaction
��1(σ ) | A

D2

��2(σ ) | B �
σ | A� B

(ii) Foc(π) contains a formulaA⊗ B andπ is obtained fromπ1 (with conclusion�1, A) π2 (with
conclusion�2, B) by adding a conclusion linkA⊗ B.
(a) Both premises of the selected focusing link are focusing. Let� be an order variety such that

� ⊆ απ . We haveαπ = (απ1)A ‖A� B ‖(απ2)B , and

σ = �A�B � (απ1)A ‖(απ2)B,

so σ = (σ ��1
) ‖(σ ��2

) by Lemma 5.1, and by restrictions,σ ��1
� (απ1)A and σ ��2

�
(απ2)B . By definition of entropy, we conclude:

σ ��1
∗A ⊆ (απ1)A ∗ A = απ1
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and

σ ��2
∗B ⊆ (απ2)B ∗ B = απ2.

We can now apply the induction hypothesis and get two focalized proofsD1 of σ ��1
|A, and

D2 of σ ��2
|B, whence the following focalized proofD by an application of the⊗-rule:

D1

σ ��1
|A

D2

σ ��2
|B ⊗

σ | A⊗ B

(b) If one premise of the link is not focusing, the argument is the same as withA� B. �

8. Permutabilities in full NL

The original sequent calculus for NL is recalled in Appendix 9. For the exponentials, there is a slight
difference between our presentation and the sequent calculus on order varieties given in [14]: here,
applications of weakening are grouped at the level of identities and the rule for1, and contractions are
systematically applied to the implicitely ?ed part of the sequent (7) in the⊗- and�-rules; this enables
us to get rid of explicit rules for weakening and contraction; on the other hand thecentrerule of [14]
becomes theabsorptionrule, where again, a contraction is applied.

Two rulesR1 andR2 are said to be in asituation of permutabilityif there is a proof in whichR2 is
applied just afterR1 and the conclusion ofR1 is not a premise ofR2. In that case,R1 is saidimpermutable
belowR2 if there is a sequent that can only be proved withR2 belowR1; otherwiseR1 is saidpermutable
belowR2.

Permutabilities in NL are summarized in Tables 2 and 3. The little bar− means: “the rule of column
R1 can always permute below the rule of rowR2”. The cross× means thatR1 andR2 are not in a
situation of permutability. A numeral in the table means impermutability ofR1 belowR2, and we exhibit
some counter-examples in Table 3; most of them are taken or adapted from [6,10]. For impermutability
7 (10 is similar),A = (B ⊗ C)� (D ⊗ E) and the correct proof is:

Table 2
Permutabilities in NL

R2\R1 � ⊗ ⊕ � � � ⊥ ! ? Abs Entropy

� – – – – – – – × – – –
⊗ – – – – – – – × – – –
⊕ – – – – – – – × – – –
� 1 – – – – – – × – – –
� 1 1 – – – – – × – – –
� 2 2 3 – – – – × – 4 5
⊥ – – – – – – – 6 – – 7
! × × × × × × × × × 8 ×
? – – – – – – – 9 – – 10
Absorption – – – – – – – × – – –
Entropy 11 – – – – – – × – 12 –
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Table 3
Exceptions to permutabilities in NL

1 � : A�B ∗ B⊥ ⊗ A⊥
2 � : A � B ∗ (⊥⊗ ‖B⊥ ‖A⊥)
3 � : A � B ∗ B⊥ ⊕ A⊥
4 A⊥ : (!A) � A

5 � : (B⊥ ‖A⊥) ∗ (A⊗ B) � (A� B)

6 A⊥ : !A ∗ ⊥
7 � : ((A ‖B⊥ ‖D⊥)<(C⊥ ‖E⊥)) ∗ ⊥
8 A⊥ : !(A⊕ B)

9 � : !A ∗ ?A⊥
10 � : ((A ‖B⊥ ‖D⊥)<(C⊥ ‖E⊥)) ∗ ?0
11 � : (B⊥ ‖A⊥) ∗ A� B

12 A : (B⊥ ‖E⊥) ∗ (C⊥<D⊥)

� : B⊥ ∗ B � : C⊥ ∗ C ⊗
� : B ⊗ C ∗ (B⊥ ‖C⊥)

� :D⊥ ∗D � : E⊥ ∗ E ⊗
� :D ⊗ E ∗ (D⊥ ‖E⊥) �

� : A ∗ ((B⊥ ‖C⊥)<(D⊥ ‖E⊥))
entropy

� : (A ‖B⊥ ‖D⊥) ∗ (C⊥ ‖E⊥) ⊥.
� : ((A ‖B⊥ ‖D⊥)<(C⊥ ‖E⊥)) ∗ ⊥

The reason for the impermutability is that there is no series–parallel orderτ on A,B⊥, C⊥,D⊥,
E⊥ such thatτ = A ∗ ((B⊥ ‖C⊥)<(D⊥ ‖E⊥)) and((A ‖B⊥ ‖D⊥)<(C⊥ ‖E⊥)) � τ , as noticed in
[14], Section 4.2. For impermutability 12,A = (E �D)⊗ (C � B) and the correct proof is:

A : E⊥ ∗ E A :D⊥ ∗D �
A : E �D ∗ (D⊥<E⊥)

A : C⊥ ∗ C A : B⊥ ∗ B �
A : C � B ∗ (B⊥<C⊥) ⊗

A : ((B⊥<C⊥) ‖(D⊥<E⊥)) ∗ A
absorption

A : (B⊥<C⊥) ‖(D⊥<E⊥)
entropy.

A : (B⊥ ‖E⊥) ∗ (C⊥<D⊥)

The reason for the impermutability here is similar: there is no series–parallel orderτ onB⊥, C⊥,D⊥,
E⊥ such thatτ = (B⊥ ‖E⊥) ∗ (C⊥<D⊥) andτ � (B⊥<C⊥) ‖(D⊥<E⊥).

Let us now comment on the non-trivial permutations in Table 2. The⊗-rule is permutable below�
because if the premise of a�-rule is the conclusion of a⊗-rule, the two subformulasA andB of the
formulaA � B introduced are necessarily in the same premise of⊗, i.e.A andB are either both in|ω|
or both in|τ |:

7 : ω ∗ C 7 : τ ∗D ⊗
7 : (ω ‖ τ)[A<B] ∗ C ⊗D �.
7 : (ω ‖ τ)[A � B] ∗ C ⊗D
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Permutation of entropy below� holds becauseω ∗ (x < y) ⊆ � implies� is of the formτ ∗ (x < y)

with ω � τ . Permutation of entropy below� holds by monotonicity of identification:ω ∗ (x ‖ y) ⊆ �

impliesω ∗ z ⊆ �[z/x, y]. Permutation of⊗ below entropy holds becauseτ � (ω1 ‖ω2) impliesτ is of
the form(τ1 ‖ τ2) with τi � ωi, i = 1, 2.

A relevant property of Table 2 is expressed by the following lemma.

Lemma 8.1. Positive(�,⊗,⊕, !) and negative(�,�,�,⊥, ?) rules are permutable below positive
rules. All rules are permutable below absorption. All rules but� and absorption are permutable below
entropy.

Now, there is an evident forgetful functor from NL to (commutative) LL mapping:
• a formulaA of NL to a formulaA◦ of LL, taking the connectives� and� respectively to⊗ and�;
• a proofD of a sequent(7 : �) in the original calculus for NL to a proofD◦ of the sequent(7◦ : |�|◦)

in LL , by forgetting the order variety and the entropy rule.

Table 2 implies that all relevant LL permutabilities are available in NL:

Lemma 8.2. Let R1, R2 be two NL rules, with (R1, R2) /∈ {�, absorption} × {⊥, ?}, andR◦1, R◦2 the
corresponding LL rules. If R◦1 is permutable belowR◦2 in LL, thenR1 is permutable belowR2 in NL and:{

either entropy is permutable belowR2 in NL
or R1 is permutable below entropy in NL.

As a consequence, if (R1, R2) /∈ {�, absorption} × {⊥, ?} andD is an NL proof of an NL sequent
(7 : �) such thatD◦ ends withR◦1 aboveR◦2 andR◦1 is permutable belowR◦2 in LL, thenD ends with:

· · ·
R1· · · entropy· · ·
R2

7 : �
andR1 can be permuted belowR2 in D.

Proof. LL permutations are recalled in Appendix 9. The only assertion which is not straightforward is
the one about entropy, and a simple inspection shows that the only four possibly problematic cases are
precisely�/⊥,�/?, absorption/⊥ and absorption/? �

9. Focalized sequent calculus for full NL

A sequentis of one of the following forms:
(7 : �), where7 is a set of occurrences of formulas and� an order variety of occurrences of formulas,
(7 : ω | A), where7 is a set of occurrences of formulas,ω a partial order of occurrences of formulas,

andA is an occurrence of formula.
We omit the symbol� at the beginning of sequents, as it is useless in one-sided sequents. The sequent

calculus is given in Table 4.

Theorem 9.1(Adequacy). To any proof of(7 : �) or (7 : �A | A) in the focalized sequent calculus, we
associate a proof of(7 : �) in the original sequent calculus.
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Table 4
Focalized sequent calculus for full NL

Identity
a is a negative atom

7 : a | a⊥ 7, a : | a⊥
Positive rules

7 :�Y (ω) | A 7 :�X(ω) | B �, if (X, Y ) is admissible forω
7 : ω | A� B

7 : ω1 | A 7 : ω2 | B ⊗
7 : (ω1 ‖ω2) | A⊗ B

7 : |A !
7 : | !A

(no rule for0) 1
7 : |1

7 : ω | A ⊕1
7 : ω | A⊕ B

7 : ω | B ⊕2
7 : ω | A⊕ B

Negative rules

7 : ω ∗ (A<B) �
7 : ω ∗ A � B

7 : ω ∗ (A ‖B)
�

7 : ω ∗ A�B

7,A : ω
?

7 : ω ∗ ?A

7 : ω ⊥
7 : ω ∗ ⊥  

7 : ω ∗  7 : ω ∗ A 7 : ω ∗ B
�

7 : ω ∗ A � B

Reaction
N is negative

7 : ω ∗N
reaction

7 : ω |N
Decision
P is positive andω is a series-parallel order containing only atoms
or positive formulas

7 : ω | P
decision 1

7 : ω ∗ P
7,A : ω | A

decision 2
7,A : ω

Proof. Forget focalization (hence reaction and decision 1), and add entropy to the�-rule(ω � �Y (ω)<

�X(ω)) :
7 :�Y (ω) ∗ A 7 :�X(ω) ∗ B �

7 :�Y (ω)<�X(ω) ∗ A� B entropy.
7 : ω ∗ A� B

Decision 2 becomes absorption.�

Theorem 9.2(Completeness). To any proof of(7 : �) in the original sequent calculus, we associate a
proof in the focalized sequent calculus by distinguishing between two cases:



260 R. Maieli, P. Ruet / Information and Computation 185 (2003) 233–262

• If |�| contains non-atomic negative formulas, then the focalized proof has conclusion(7 : �).
• Otherwise the focalized proof has conclusion(7 : �P | P) for some positive formulaP in |�|.
Proof. The functor from NL to commutative LL of Section 8 can be extended to the focalized case
so as to map a focalized NL proof of(7 : �) or (7 : �P | P) to a focalized LL proof of(7◦ : |�|◦) or
(7◦ : |�P |◦ | P ◦), by simply forgetting the order variety. By [2], commutative LL proofs can be focal-
ized, by permuting logical steps and adding a decision or a reaction between groups of rules of the same
polarity, so the situation can be summarized in the following diagram:

NL ...........✲ focalized NL

LL

(−)◦

❄
✲ focalized LL

(−)◦

❄

and we want to construct the top dotted arrow. LetD be an NL proof. We proceed by induction on the
number of permutations applied in order to focalizeD◦ (bottom arrow). By Lemma 8.2, each LL permu-
tation is simulated by one or two NL permutations, except the LL permutations⊗/⊥,⊗/?, absorption/⊥
and absorption/?, but these two cases never occur during focalization because, more generally, focaliza-
tion never uses permutations of rulesbelow negative rules. So we get an NL proofD′ whose tranlation
(D′)◦ is the focalized LL proof(D◦)′ obtained fromD◦, and now we just have to deal with entropy:
by Lemma 8.1, entropy is permutable above all NL rules but�, so we get an NL proof where entropy
is concentrated below�-rules. But we can do better and move up all the entropy which bears on each
premise of each�-rule separately. Indeed given

7 : ω ∗ A 7 : ω′ ∗ B �
7 : (ω′<ω) ∗ A� B entropy,

7 : τ ∗ A� B

let Y = |ω| andX = |ω′|: we haveτ � (ω′<ω), so by Theorem 6.9, we may infer�X(τ) � ω′ and
�Y (τ) � ω; therefore we may rewrite the above piece of proof as:

7 : ω ∗ A entropy
7 :�Y (τ) ∗ A

7 : ω′ ∗ B entropy
7 :�X(τ) ∗ B � + entropy,

7 : τ ∗ A� B

and by permuting entropy up in the proof as above, we reach a proofD′′ where the only entropy applied
is the one contained in the focalized�-rule of Table 4. Its translation is still(D′)◦ = (D◦)′, hence it is
the required focalized proof.�

Appendix A: Original sequent calculus for non-commutative logic

We recall the sequent calculus for NL introduced in [14]. Sequents(7 : �) consist of an order variety
� of formula occurrences, and a set7 of formula occurrences (with no additional structure).7 is disjoint
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from |�|. In the following sequent calculus, all order varieties and orders are assumed series—parallel. In
particular, in dereliction and the⊥-rule,ω is series–parallel, and in the entropy rule,� is series–parallel.
Identity

7 : A⊥ ∗ A
Structural rules

7,A : ω ∗ A
absorption

7,A : ω
7 : �

entropy,� ⊆ �
7 : �

Multiplicatives

7 : ω ∗ A 7 : ω′ ∗ B �
7 : (ω′<ω) ∗ A� B

7 : ω ∗ (A<B) �
7 : ω ∗ A � B

7 : ω ∗ A 7 : ω′ ∗ B ⊗
7 : (ω ‖ω′) ∗ A⊗ B

7 : ω ∗ (A ‖B) �
7 : ω ∗ A�B

Additives
7 : ω ∗ A 7 : ω ∗ B �

7 : ω ∗ A � B

7 : ω ∗ A ⊕1
7 : ω ∗ A⊕ B

7 : ω ∗ B ⊕2
7 : ω ∗ A⊕ B

Exponentials
7,A : ω

?
7 : ω ∗ ?A

7 : A !
7 : !A

Constants

7 : 1 7 : ω ⊥
7 : ω ∗ ⊥ (no rule for0) 7 : ω ∗  

Appendix B: Permutabilities in linear logic

The conventions are the same as in Section 8. The numeral 0 in the table means impermutability.
References are [6,10].

R2\R1 ⊗ ⊕ � � ⊥ ! ? Abs

⊗ – – – – – × – –
⊕ – – – – – × – –� 0 – – – – × – –� 0 0 – – – × – 0
⊥ – – – – – 0 – –
! × × × × × × × 0
? – – – – – 0 – –
Absorption – – – – – × – –
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