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Abstract

It is now well-established that the so-called focalization property plays a central role in the design of
programming languages based on proof search, and more generally in the proof theory of linear logic. We
present here a sequent calculus for non-commutative logic (NL) which enjoys the focalization property. In the
multiplicative case, we give docalized sequentializatiotheorem, and in the general case, we show that
our focalized sequent calculus is equivalent to the original one by studying the permutabilities of rules
for NL and showing that all permutabilities of linear logic involved in focalization can be lifted to NL permut-
abilities. These results are based on a study of the partitions of partially orderedoskt® entropy
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Non-commutative logic, NL for short, was introduced by Abrusci and the second author in [1,14]
(see also Section 3). It unifies commutative linear logic [7] and cyclic linear logic [15], a classical
conservative extension of the Lambek calculus [9]. The present paper investigates the “focalization”
property for non-commutative logic.

1.1. The property of focalization

The rules of the sequent calculus for linear logic, LL, are well-known to split into two categories
according to their deterministic or non-deterministic behaviour in proof construction: irreversible rules,
like the® and@-rules:
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FT,A FA,B FI,A
FILA,A®B FI,A® B

which introduce non-deterministic choices in proof search, and reversible rules, like:

®1,

FT,A, B FT,A I—F,B&
I, A®B FIA&B

which can be applied immediately in the (bottom-up) process of proof construction, because having a
proof of the conclusion is equivalent to having proof(s) of the premise(s).

Here, the connectives whose introduction rules are reversible are dual to the connectives whose
introduction rules are irreversible, and this extends to the other connectives of LLneggdtive,
or asynchronousformulas with reversible main connective, apdsitive, or synchronoustheir
duals.

A priori, deterministic and non-deterministic steps can be interleaved in a very complex way in proof
search, but thproperty of focalizationintroduced by Andreoli in [2], enables to significantly reduce this
complexity: when you have negative formulas in a sequent, you can decompose them deterministically
— in parallel — up to positive subformulas; on the other hand, when you have no negative formula, you
need to make the choice of a positive formula, but then, you can proceed similarly and deterministically
decompose the chosen positive formula —ftiis— systematically up to negative subformulas. This is
a constructive statement: any proof can be transformed — by appropriate permutations of rules — into a
focalized proofi.e. a proof where negative and positive inferences are grouped as explained above. A
focalized sequent calculus defined in [2] for LL and proven equivalent to the standard one. The idea
is essentially to consider two shapes of sequents: when decomposing a negative formula, the sequent is
a usual oneé- A, whereA is a set of formula occurrences, and negative rules are similar to the usual
ones; when decomposing a positive formula, the sequent is of theHfotnh A, whereA is a formula
(the focus) and\ contains only atoms or positive formulas. Positive rules keep the focus: for instance,
the rule for® is:

FT|A +A|B
FILA|A®B

and two structural rules enable to start focusing on a formula (decision), and leave the focus (reaction)
when positive rules have been applied obsessionally up to negative subformulas.

Al decision P positive fAN reaction N negative.
A, P FA|N
For instance, there is only one focalized proof of the following sequent:

FAL EL, DY A®(B®C), (CH9BY)® (DR E),

whereA, B, C, D, E are positive atomic formulas.



R. Maieli, P. Ruet / Information and Computation 185 (2003) 233-262 235

FBY|B FcCt|C
FAL|A FCH B | (B®CO)
AL CLBLA®(B®CO)
FAL,LA®Q (B®C),Ct, Bt
AL AR (B®C),CH9B*t FEL|E FDY|D
FAL,A® (B®C)|CHeB*t HEL, DY |DQE
FALEL DL A®B®O)|(CH9BY)® (DR®E)
HFAL EL, DI A®(B®C), (CH9BY) ® (D® E)

The proof obtained by taking ® (B ® C) as the lowest active formula is not focalized because then,
B ® C cannot be active, fof - and B are not formulas of the sequent (they still appear as subformulas
of (Ct9B1) ® (D ® E)).

In practice, the advantage of the focalized calculus is that it reduces the intrinsic non-determinism of
proof search, and for this reason, it has been applied to the design of programming languages based on
proof search, see e.g. [4]. From a more theoretical viewpoint, focalization is also now a central property
in ludics [8].

It is worth noting that the paradigm afiform proofs introduced by Miller et al. in [12], was an
important precursor of focusing. In fact, it has been the first attempt towards a foundation of logic
programming based on the sequent calculus instead of the Robinson’s resolution method. A uniform
proof is essentially an intuitionistic proof. This approach was interesting from a computational point
of view because it manages the important distinction betvsgmanentndtemporaryinformation.

But intuitionistic proofs did not allow any theoretical exhaustive foundation of the proof construction
paradigm. In other words, uniform proofs identify a restricted class of proofs which is not complete w.r.t.
the class of intuitionistic proofs, but only w.r.t. the fragment of the hereditary Harrop formulas, whereas
focusing proofs are complete w.r.t full LL — and we shall extend this to non-commutative logic in the
present paper.

1.2. Problems in the non-commutative case

Let us first concentrate on the multiplicative fragment MNL, which contains the main difficulties.

In [3], Andreoli and the first author showed that the focalization propersenuent calculusorre-
sponds to a “hereditary splitting” lemma fproof netsi.e. a refinement of Girard’s original splitting
lemma [7] — a central lemma towards the sequentialization theorem (see Section 4). In particular, MNL
proof nets [1] do enjoy the focalization property, because of the correctness criterium and sequential-
ization theorem given in [1]. This abstract notion of focalization (hereditary splitting) implies that there
should be a sequentialization into a focalized sequent calculus, but it does not give explicitely such a
sequent calculus at all.

The two main difficulties towards the definition of a focalized sequent calculus for MNL are the follow-

ing:

e Par. According to [1], if r is an MNL proof net with conclusiolr, A2 B, then the proof structure
obtained by removing the link of conclusiofie B is still a proof net. This implies that the commu-
tative multiplicative disjonctionpar 2, should be negative, like in the commutative case. However,
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in the sequent calculus given in [1] and relying on order varieties (see below and Section 2), the
introduction rule forg:

- afA, B]
- alASB/A, B]

erases information. Here,denotes an order variety, and the problem is that from an order variety
a[z/x, y], where the points and y have been identified, there is no way to recover the original
varietya in general.

e Entropy.In the calculus given by [14] relying on partial orders, this drawback disappears, i.e. the
2-rule is indeed reversible:

FT,A, B
FT,A%B

but then there is a problem with another rule, entropy:

FT ALY ,
FILA X
which enables to increase the partial order underlying a sequent by replacing parallel sums (commas)
by serial sums (semicolons), and is clearly highly non-deterministic. Non-determinism should be
reduced as much as possible when defining a proof search oriented sequent calculus.
The solution relies on the following ideas:
e Taking the reversible structural rules ferandv:

FI,A,B FINAB
FT, A%B FIT;AVB

A consequence is that entropy, which was originally contained irptiele [1], should appear some-
where else.

e Pushing entropy toward® and ©-rules. For these rules, we consider context splitting plus some
entropy. For instance, such an inference is admissible:

FALA FA,B
FA;A;AOB _
F(A,AY,AOB

It is not obvious that, given any proof, one may systematically permute rules so as to push entropy in
this way, but it will turn out to be a consequence of the sequentialization theorem for multiplicative
NL in Section 7 — and more generally it follows from NL permutabilities given in Section 8.

Anyway, how much entropy should be used? As said above, this rule is highly non-deterministic and
its use should be minimized.

This leads us to the problem of partitionning contexts, actually series—parallel arge¢osntropy.

1.3. Partitions of series—parallel orders

Given afixed series—parallel ordeand a fixed partitioriX, Y) of its supportfw|, we give in Sections
5 and 6:
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e Admissibility. Conditions under which can be “partitionned modulo entropy” into two ordersXn
andY, i.e. the equation

o 4 (wx <wy)

admits a solution, witkvy , wy series—parallel orders 0, Y respectively; heresl denotes thentropy

relation between partial orders, recalled in Section 2.
e Optimality: optimal solutions to this partitionning problem, i.e. minimal such orders when they exist.
There are two cases, depending on how the two orders are composed: parallel sum (which corresponds to
the connectiver) and serial sum (which corresponds to the conne@iyeespectively studied in Sec-
tions 5 and 6. The case of parallel sum is almost trivial, while the case of serial sum is significantly more
difficult, and involves in particular the combinatorics of series—parallel orders and their representations
as special trees, which we cafines

It is worth noting that the binary splitting of orders has been extended, in [5], to the more general
splitting of orders im piecesn > 2.

1.4. Focalized sequentialization

The results on partitions of orders enable us to define in Section 7 a focalized sequent calculus for
MNL, where sequents are:
e either order varieties, essentially when applying reversible rules,
e or pointed order varieties (an order plus a focus), for the positive rules.

We show it equivalent to the original sequent calculus (recalled in Appendix 9) via focalized sequen-
tialization from proof nets, as advocated at the beginning.

1.5. Focalized sequent calculus for full NL

In Section 9 (see also [11]), we give a focalized sequent calculus for full NL, generalizing the calculus
of Section 7. We prove the equivalence with the original sequent calculus by studying the permutabilities
of rules for NL (Section 8) and showing that all LL permutabilities involved in focalization can be
“lifted” to NL permutabilities.

2. Order varieties
2.1. Series—parallel orders

Let us recall the definition of series—parallel orders. ketndt be partial orders on disjoint sels
andY respectively; theiserial andparallel sumsw < 7 andw || T, respectively, are two partial orders
on X WY defined by:
o (w1<w2)(x,y) if,andonlyif, x<,yorx<yyor(x e Xandy €Y),
o (w1llw2)(x,y) if,andonlyif, x<,yo0rx<ey,y.

The class oferies—parallel ordersn a given sek is the least class of partial orders containing the
unique orders on singletons and closed by serial and parallel sums. For a more substantial survey, see
[13].
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2.2. Order varieties

An order variety[1,14] on a given seX is a ternary relatiom which is:

Vx,y,z€ X, ax,y,z) = a(y, 2, x) cyclic
Vx,y € X, —a(x, x,y) anti-reflexive
Vx,vy,z,t € Xa(x, y, z) anda(z, t, x) = a(y, z, 1) transitive

Vx,v,z,t € X,a(x,y,z) = at,y,z) Ora(x,t,z) ora(x, y, t) spreading

An order varietyx on X is saidtotal whenVx, y,z € X, x #y # z # x = a(x, y, z) ora(z, y, x).
For instance, any oriented cycteé = (a3 — --- — a, — a1) induces a total order variet(G) on
the set of vertices by:(G)(x, y, z) if, and only if, y is betweernx andz in G; it will be denoted by
(a1az...ay) = (az2...aya1), etc. Note thatabc) is an order variety offa, b, ¢} but not on{a, b, ¢, d}
as it does not enjoy the spreading condition. Spreading enables to systematically give “presentations” of
order varieties as partial orders in a reversible way, as follows.

Given an order varietgg on X andx € X, we may define a partial order on X \ {x} by: a,(y, 2)

if, and only if, a(x, y, z). Conversely, given a partial order= (X, <) andz € X, let < denote the

binary relation:x < y if, and only if, x < y andz is comparable with neither nor y; then we may
define an order variets on X, theclosureof w by w(x, y, z) if,andonly iffx <y <zory <z <ux

Z X y — .
orz<x<yoOrx <yory < zorz < x. Whenw = «, we say thato presents.. The closure of partial
orders identifies serial and parallel sums:

w<tT=ow|t=T<o.
The above order variety is denoted
w*xT

and called thgluing of w andt. Hence the operation takes two partial orders and produces an order
variety.

The two processes of fixing a point in an order variety and gluing orders are related by the following
equations:

o ¥ x =aand(w * x), = o,

for « an order variety on a sef, x € X andw a partial order orX \ {x}. So an order variety is — as its
name implies — a kind of gluing of order structures.

Series—parallel order varietieare precisely those order varieties which can be presented by a series—
parallel order. A series-parallel order varietpn a setX can be representated byaotless planar tree
with leaves labeled by elementsX¥fand ternary nodes labeled gyor ©: take an arbitrary presentation
of « as a series-parallel ordet write w as a — non-unigue (associativity, commutativity) — planar binary
treer with leaves labeled by elements ¥f and root and nodes labeled &yfor parallel sum, o© for
serial sum; then remove the rootzof
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Wi w2 - Wi ]
1 Wa
w w

For instancex <y <z) || v ||(r < u) can be represented by:
z

R

G\Q B ®/® U
:E/ \U

To read the tree, take three leave9, c; then(a, b, ¢) is in the order variety if, and only if:
e the nodeo at the intersection of the three pathls bc andca is labeled by® and
e the paths:®, b® andc® are in this cyclic order while moving clockwise arouad
The supportsof a partial ordee or an order variety are denotedw|, |«|. Restrictiongo a subseX
of the support are denotedl y, ay; restriction preserves the structures of order and order variety, and
preserves series—parallelism.

2.3. Seesaw and entropy

Seesavis the equivalence relation between series—parallel ordarglr on a same given set, defined
by w = 7. In casew andt are series-parallel, it turns out to be precisely the equivalengiwen by:

(01 || @2) ~ (w1 < w2).

Entropy < is the relation between series—parallel orders on the same given set defined byif,
and only if,w C t andw C 7. In the series-parallel case, it turns out to be precisely the least reflexive
transitive relation such that:

wlw || w2] < wlw < w2].

Entropy is clearly a partial order, compatible with restriction:

wodt = olydrtly
and with the serial and parallel sums of orders:
w1<dty and w1 = wi||loedti| and wi<wr <11 <100

More importantly, entropy between orders corresponds to inclusion of order varieties: given two order
varietiesa, f on X andx € X, we have

a C B if,andonlyif, a«, < B,.
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This is independent from the choice of hencea C g if, and only if, there exists € X such that
a, < B, and givenx, y € X, we havex, < B, if, and only if,a, < By.

In the tree representation for series—parallel order varieties, entropy is performed by changing some
®-nodes intogr-nodes.

2.4. Wedge

Let 7 be a non-empty set. Given partial ordessi € I, on a given selX, there is a largest par-
tial orderw (w.r.t. <) such thatw < w; for all i. It is denoted/\ w;, the wedgeof the family (w;);er;
whenI has cardinality 2, we write; A wo. Partial orders on a given set form a complete inf-semi-lattice
for entropy and wedge. The wedge commutes “partially” with restriction, i}.df |w;|, then:

(/\wi)ry < iy

The wedge is not inclusion in general! For instan¢@<(b | ¢)) N ((a<b) | ¢) = ((a<b)]| c)
whereaga <(b | ¢)) A((a<b)|lc) =(al|lb]| c), becausé(a <b) || c) L (a <(b] ¢)). However,\ w;
C (M wi. Also, in general,/\ w; may not be series-parallel even if all tag are series-parallel. For
instance,

(c<d<a<byANla<c<b<d)=N(a,b,c,d)={(a,b), (c,b),(c,d)}.

If on the other hand;, i € I, are order varieties oX, theirwedge/\ «; is

(/\(di)x> * X

for an arbitraryx € X. (This is independent from the choice o The wedge of order varieties com-
mutes partially with restriction as above, and the two notions of wedge are related by:

(/\a,)x = A\(@): and (/\w,) xx = [\ (5 *x).

There is a particular case of wedge which we shall use in the sequentialization theoreive let
order variety on a seX W {x} W {y}, and letz ¢ X W {x} W {y}; define theidentificationa[z/x, y] of x
andy into z in « by:

az/x, y] = dxupg [2/x] A dxupy [2/y]

Identification is clearly monotoniex(C f impliesa[z/x, y] € Bl[z/x, y]) and, as proved in [14], we
havea[z/x, y]; * (x || y) € a. A more detailed introduction to order varieties can be found in [14].
3. Non-commutative logic
3.1. Language of NL

Formulas of NL are built from atomg, ¢, ... (positive, p*, ¢+, ... (negativ@ and the following
connectives and constants:
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Positive Negative
Multiplicative ® times Q par

0) next v sequential

1 one 1 bot
Additive @ plus & with

0 zero T top
Exponential ! of course ? why not

Negation is defined by usual De Morgan rules exchanging positive and negative connectives of a
same row. For instancéA © B)* = B+ v AL. A compound formula is said positive (resp. negative)
when its main connective is positive (resp. negative). Therefore, a formula is either an atom (positive or
negative), or a positive compound formula, or a negative compound formula.

3.2. Proof nets of MNL

Cut-free proof structuresAs we are interested in proof search, we only deal vettlt-free proof
structures, but there are proof structures with cut links as well. Proof nets for multiplicative NL have
been introduced in [1]. Thinks are the following graphs where the vertices are labeled by formulas of
MNL:

e identitylinks:

At A

with two conclusionsA' and A and nopremise
e ®,9, ® andv-links:

NSNS\ N

where the formula is thefirst premise the formulaB is thesecond premisand the third formula is
theconclusionof the link.

A proof structure (of MNLJs a graph built from links of MNL such that every occurrence of formula
is the conclusion of exactly one link of MNL and the premise of at most one link. i a proof
structure of MNL, theconclusion®f r are the occurrences of formulasirwhich are not premises of a
link.

SwitchingsWe consider formulas witbecorations 4 (question) or], (answer). Adecorated formula
is of the formA™ or A, whereA is a formula of MNL. Definet =| , | =*. For each link of MNL,
we can consider two sets of decorated formulas:

e ['" is the set of all decorated formulas’, whereA is a premise of andx is |, or A is a conclusion

of I andx is 1;

e [°"! js the set of alld*, whereA is a premise of andx is 1, or A is a conclusion of andx is | .
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For each link of MNL we define a sef (/) of (partial) functions froni’” to [°*, called theswitching
positionsof I, as follows:

QR ®L PR L
A ,B AY B .A < Bi o 24 > B_
AVARAVARV/ VA
" ® ® - v < >y
OR v3 VR vL

Given a proof structure, aswitchingfor = is a functions such that for every link of r, s (1) € S(0).
A switchings for r is V3-freeif for every v-link I, s(l) # V3.

Let w be a proof structure anda switching forz. Theswitched proof structure(rr) is the oriented
graph with vertices the decorated formulas labelingand with an oriented edge fro#* to B if,
and only if, eitherBY = s(I)(A*) for some link! in 7, or A* = C¥ and B> = C" for some conclusion
Cofm.

A trip in s(rr) is a cycle or a maximal path in().

Correctness criteriumLet 7 be a proof structure of MNL anda switching forz. A cyclev in s(x) is
bilateral if v is not of the form:

A ... .BY, ... A, ... ,BY ... A%,

whereA, B are occurrences of formulasinandx, y are decorations. A proof structuteof MNL is a
proof netif, and only if, for every switching for =:
(i) there is exactly one cycle in s(x),
(i) o contains all the conclusions,
(i) o is bilateral.

The order variety associated to a proof neet = be a proof net of MNL with conclusiofr. If s
is a switching forr, the conclusions in the unique cycle gfr) appear by pair€t, CT, so the two
occurrences of a conclusion can be identified a@d induces a cycle (a total order variety) on the set
of unlabeled conclusions. Denote by ; this total order variety on the s€tof unlabeled conclusions.
Then the order variety associateditds a, = /\; a s, an order variety or". It follows from [1] that
oy IS a series-parallel order variety.

In particular, if a proof netr is obtained from a proof net’ by adding as or v-link %, then

or =ay[C/A, B].
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See Section 2 for the definition of the identification of two points in an order variety. In the case of a
v-link, the correctness criterium implies’ = w * (A < B) for some ordet, and thusy, = w * C.

4. Focusing MNL proof nets

If v is a proof net of MNL and is one of its positive conclusions, thdrnis said asplitting conclusion
of 7, written A € Split(r), when removing fronx the link 2242 introducingA leads to two disjoint
proof structuresr; andsmro. Moreover in that caseq andswro are proof nets. The essential content of the
sequentialization theorem for MNL [1] is the following: #f is a proof net of MNL with no negative
conclusion, then Splitr) # .

Now letr be a proof net of MNL andi be one of its conclusions. Thenis a said to be ocusing
conclusion ofr, written A € Fod(rr), when one of the following holds:
e A is apositive atom ang is an axiom link,
e A e Split(r), wis splitatA = A1 ® A2 or A1 ® A» into the two proof nete, andsno, and

A1 is negative orA1 € Foq(ir;) and
Ao is negative od> € FoQ(r2).

Therefore, whemr is not reduced to an axiom link, Fot) C Split(;r). For instance, in the follow-

ing non-commutative proof netC+ v B1) ® (D © E) is focusing, whereag © (B ®© C) is only a
splitting conclusion.

M \/ N/ \/
A Bodl C¢B DOFE
\é N S

®
At Ao (Bo6C) (Ct»BY) @ (DOE) E+ Dt

The splitting property can be refined as follows [3]:

Theorem 4.1 (Focusing. If & is a proof net of MNL with no non-atomic negative conclusitiren
Fodr) + .

Focusing is a form of hereditary splitting. We shall now make more precise the meaning of focusing in
terms of a splitting strategy in the sequentialization procedure.

5. Partitions of series—parallel orders: parallel sum

In the present section and the next one, we consider a fixed series—parallel ardea fixed partition
(X,7Y) of |o|, and we give:
e conditions under which can be “partitionned modulo entropy” into two ordersXrandY,
e optimal solutions to the partitionning problem, i.e. minimal such orders when they exist.
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There are two cases, depending on how the two orders are composed: parallel sum (which corresponds
to the connectivey) and serial sum (which corresponds to the conne@iuén this section, we consider
the case of the parallel sum.
Lemma 5.1. The following are equivalent
() o =olx |l ofy.
(i) There exist series—parallel ordetisy, wy on X, Y, respectivelysuch thatw < (wy || wy).

Proof. (i) = (ii) is trivial. Conversely, ifo < (wx || wy), thenw C (wx || wy), therefore inw any two
elements, one iX oneinY, are incomparable. This implies= o[y || wly, Sincew = (w1 < w2), with

lw1| # & and|wz| # , implies|X| = Jor|Y|=@. U
When the above condition is satisfied,y andw|, are clearly optimal.

Lemmab.2. For any pair of series—parallel ordersy, wy on X, Y, respectively such thatw <
(wx loy), we havew [y < wx andw|y < wy.

Proof. Obvious consequence of the commutatiordofvith restriction (see Section 2).0J

6. Partitions of series—parallel orders: serial sum
6.1. Admissibility

Definition 6.1 (Admissible partitioh Let w be a series—parallel order ghw Y. (X, Y) is saidadmissi-
ble when it enjoys the following two properties:

() forallxeX,yeY, V£X,
(i) forall xi,x2€ X,y1,y2€Y, o[y x5y F (1<y1) [[(x2 < y2).

The rest of the section is devoted to:
e show that this notion of admissibility characterizes those partitionsY of the support ofw for
which the equation

o < (wx <wy)

with wx, wy on X, Y respectively, admits a solution;
e give optimal solutions to the above equation.
We first prove the following lemma:

Lemma 6.2. Letw ando be series—parallel orders ok @ Y, such that(X, Y) is admissible for and
o < o. Then(X, Y) is admissible foew.

Proof. w < o impliesw C o, therefore:
() If w(y,x)forsomex € X,y €Y, theno(y, x).
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(”) If a)rxl,xz,yl,yz = (xl < yl) ||(x2 < y2)a then from rxl,xz,yl,yz g (e} I\xl,xz,ylvyzl
(x1<y1) [[(x2 < y2) Or (x1 < y1 <x2<y2) O (x2 < y2 <x1<Yy1).
Both conclusions contradict the assumption {{#tY) is admissible for. O

we geto |

X1,X2,)1,Y2 —

Definition 6.3 (Well-teasing. w is saidwell-teasediy (X, Y) when eitheljw| is empty, ofw = w1 || w2
or w1 < w2, and one of the following holds:

lw1] € X and w2 iswell-teased byX, Y) or
lw2] €Y and w1 is well-teased byX, Y).

For instance, the partial order= (x1 < y1) ||(x2 || y2) with x1, xo € X andy1, y» € Y, is well-teased:
indeedw = x2 || (x1 < y1) || y2. On the other handr1 < y1) || (x2 < y2) is not well-teased.

Essentially w is well-teased by X, Y) if, and only if, » can be represented by a binary tree (with
nodes labelled by, ||) where all leaves ifX (resp in Y) are on the left side (respght side)

Lemma 6.4. The following are equivalent
() (X,Y)is admissible foe.
(i) wiswell-teased byX, Y).
(i) There exist series—parallel ordetisy, wy on X, Y, respectivelysuch thatw < (wx < wy).

Proof. (i) = (ii). By induction onw. If w is empty, any patrtition is both admissible and well-teasing.

Otherwisew = (w1 < w2) Or (w1 || w2), with |w1| and|w2| both non empty.

o w = (w1 <w?y). Since(X, Y) is admissible fok, we have:

o eitherX C |w1] andY = Y1 W Yo, with Y1 C |w1| andY> = |w>|,

o OrY C |wzl andX = X1 W X5, with X1 = |w1| andX> C |w»|.

In the first case(X, Y1) is admissible fokw1, so by inductiornw is well-teased by X, Y1), i.e.w; can
be represented by a binary trégwith nodes labelled by, ||) with leaves inX on the left and leaves
in Y on the right. Thuss = (w1 < w?) is represented by the grafting fand any tree-representation
of wy, which is well-teased becaugey| C Y. The second case is symmetric.

e w=(w1] wp).lfsomex; € X N|w1| andys € Y N |w1| havex, < y1, then, by definition of admissi-
bility (second condition)w, = (w2[y || w2y ). By induction,w; is well-teased, s@ = (w2[y || w1 ||
w2y ) is also well-teased. If on the other hand, sompe& X N |wz| andys € Y N |wz| havexs < yo,
the argument is similar.

(i) = (iii). In a tree-representation ef with leaves inX on the left and leaves iH on the right, replace

all ||-labels by<-labels: this gives a new tree which represents a total esger wy.

(i) = (i). In (wx <wy), every element inX is less than every element in, therefore(wy < wy)

enjoys properties 1 and 2 of Definition 6.1, herigg Y) is admissible fowy < wy). By Lemma 6.2

this implies that X, Y) is admissible foww, sincew < (vx <wy). O

6.2. Optimality

Definition 6.5 (A). Given (X, Y) an admissible partition fow, let O(w, X, Y) be the set of series—
parallel orderswy < wy), with wx on X andwy onY, such thatw < (wx < wy). DefineAx y(w) to
be the wedge\ O(w, X, Y).
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By Lemma 6.4, Qw, X, Y) is non-empty when(X, Y) admissible forw, so Ay y(w) is well-
defined.

Facts 6.6.
() o < Axy(w).
(i) F X=gorY =g thenAxy(w) =w.
(III) AX,Y(U)X <wy) = wx <wy When|wx| = X and |lwy| =Y.

Lemma 6.7(Ax, Ay). Ax.y(w) is of the formA x (w) < Ay (w) with Ax (w) and Ay (w) partial orders
onX, Y, respectively

Proof. For any(wx <wy) € O(w, X, Y) we have(Jy < Jy) < (wx <wy), SO (Tx < Ty) <A\
O(w, X, Y), in particular(x < Jy) € Ax.y(w), and this impliesA x y (w)(x, y) for anyx € X and
yeY. O

Lemma 6.8. Letw be a series—parallel order on the disjoint uni&ns Y. Then for any series—parallel
ordert on X WY, such that(X, Y) is admissible for andw < 7, we haveAy y(w) < Ax y (7).

Proof. o < t implies Ot, X,Y) € O(w, X, Y), hence Quw, X,Y) = O(z, X, Y) W Z for some sef
of orders onX W Y. Then:

AX,Y(w)z/\(O(r, X,Y) z)

:(/\O(r, X, Y)) A (/\Z)
g/\O(r, X,Y)
:AX’Y(T). ([l

Theorem 6.9 (Optimality). If (X, Y) is an admissible partition forn, then for any pair of series—
parallel orderswy, wy on X, Y, respectively, such that < (wx < wy), we haveAx(w) < wx and
Ay(w) < wy.

Proof. By Lemma 6.8w < (wx <wy) impliesAx y(w) < Ax y(wx <wy), and by Facts 6.6)x y
(wx < wy) = (wx <wy), whenceAy (w) < wyx andAy(w) < wy by Lemma 6.7. O

6.3. Preservation of series—parallelism

We show that itw is series—parallel, so 8 x y (w). It is not obvious since the wedge of series-parallel
orders may not b e series-parallel, as noticed in Section 2. However, by induction, it is a consequence of
the following explicit formulas forA x y:

Lemma 6.10. Let(X, Y) be an admissible partition of a series—parallel order= (w1 < w2). Then
e eitherX C |wy|, lwz2] €Y andAx y(w) = (Ax,y(w1) < w2),
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XY Y XY Y
w1 w2 Ax,y(wi) w2
w= Axy(w) =
< <

e OrY C |wy|, |lw1] € X and Ay y () = (w1 < Ax,y(w2)).

X

X XY XY
Wi wa w1 AX,Y(WZ)
w= Axy(w) =
< <

Proof. Note that the statements about the decompositiofwpfare the same as the cases in the
proof of Lemma 6.4 (ii= iii) and directly follow from the definition of admissibility. Let us show
the equations concerning x y(w). By symmetry we simply consider the first case. We have
(w1 <w2) < (Ax y(w1) <w2), S0 by Theorem 6.9, we just have to show ttiak y (w1) < wy) isindeed
optimal. To this end, take series—parallel ordexs wy on X, Y respectively, such that < (wx < wy).
Sincew = (w1 < w2) C (wx < wy) and on the other han® C |w1]| and|w2| C Y, we may conclude
that

(wx <wy) = (w1x < W1y < ®)),

with |w1x < w1y| = |w1] and|w)| = |w2|, as the notation suggests. Restrictiofdg| gives
@2 QY || = @)

and restriction tdw1| gives
w1 < (w1x < w1y).

HenceAyx y(w1) < Ax y(wix <wiy) = (w1x < w1y) by Lemma 6.8 and Facts 6.6, atWy y(w1)
<w2) < (w1x <w1y <)) = (wx <wy). O

Lemma 6.11. Let (X, Y) be an admissible partition of a series—parallel orde= (w1 || - - - || w,). If
there existy; € X N |w;| and y; € Y N |w;| such thatx; < y;, then for any;j # i, w; = (wjx [l wjy),
with lwix| € X andla)jyl cY.
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Proof. Immediate consequence of the definition of admissibility]

Lemma 6.12. Let (X, Y) be an admissible partition of a series—parallel order= (w1 || - - - || wy) =
||i_, wi, where eachw; is either a singletonor of the formo; < 7; with |o;| and |r;| non-empty
Then

e either for anyi, w; = (w;x || wiy) With |w; x| € X and|w;y| C Y, and:

n n
w=( wiX) ||( I in)
=1 i=1

]

n
w) <( I w)
i=1 i=1

X Y X
Il; wix [l; wiy Il wix
W= Axy(w) =
| <

e or for somei, there exist; € X N |w;| andy; € Y N |w;| such thaty; < y;, and then
w=( | wjx) Il i ||( | w,y)
JF#i JF#i

AX,Y(w)I( | CUjX) <Axy(®) <( I ij>,
JF# J#i

=3 || —

AX,Y(w)=(

with forany;j # i, |wjx| € X and|w;y| C Y.

X XY Y
X XY
"j;éi Wix Wi ]lj.—,éi v
lswixe/ NS (i)
Axy(w) =
Il <

Proof. The first case is obvious, so let us consider the second case. The equadids &rimmediate
consequence of Lemma 6.11. Gl y (w) the right hand side of the equation far y (w): clearlyw <

Y

Il; 2; wiv
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5x.y (w) SO we just have to show thé y (w) is optimal in order to conclude th#ty y (w) = dx .y (w).

Take series—parallel ordeds;, wy on X, Y respectively, such that < (wx < wy).

We first show thaby y () C (wx <wy). Leta, b, € X WY be such thaby y(w)(a, b). If w(a,b),
we are done becaugeC (wy < wy). Otherwise, disinguish between the possible positions arfidb
in|wl:

e a,b € |w;|:we havea, b) €dx vy (@) [|,,|= Ax.y (@), and by Theorem 6.9, from; < (wx <wy) ||y,
follows AX,Y(Q)i) d(wy < wy) Flwilv thUS(a, b) € (wx <wy);

e ac &J#I. lwjx| andb € |w;|: by hypothesise; is either a singleton, or of the form < 7; with |o;]
and|t;| non-empty; it cannot be a singleton for it contains at leasndy;, so it is of the forny; < 7;;
then by Lemma 6.10 eithdr;| C Y or |o;| € X; if |t;] C Y, thena € X so (a, b) € (wx < wy)
whenevew € |t;|, and wherb € |o;|, anyy € |1;| gives

(a,b,y)ew
(b, y) € (wx <wy)
(Cl, y)e(a)X <a)Y),

S0 (a, b) € (wx <wy) because C wy < wy, if |o;| C X, we have by hypothesisya € Y N |w;| C
7], SO

(a, yi) €(wx <wy),
and again, taking any € |o;| € X leads to

(a,x,y)ew

(x, yi) € (wx <wy),

hence(a, x) € (wx < wy), and thenwyx < wy)(a, b) for b € |t;| by transitivity;
e a € |w;j|andb € Lﬂjﬁ lwjy|: symmetric;
e ac Lﬂ#i lwjx| andb UJ#;' lwjy|: (wx <wy)(a, b) follows from the previous two items by tran-

sitivity, since|w;| # .

Moreover,dx y(w) € wx * wy. Indeed, by definition of the order variety associated to a partial or-
der,(a, b, c) € dx,y(w) impliesdy,y ()|, 5= (@ <b<c)or ((a <b) | c) or acyclic permuta tion of
the above orders. Sindg y (») € (wx <wy), 8x,y (@) 4. = (a <b<c) implies (wx <wy)l,p.c=
(a <b<c),hencea, b, c) € wx * wy. Now, assume thaly y (w) [, .= ((a <b) | c). Asw C 5x,y (w),
the only possibility for(a, b, ¢) ¢ wx * wy is whenwl, , .= (a | b ¢). Itis clear that the only possi-
ble positions ofa, b, ¢ in || area, b, ¢ all in |w;|, and by Theorem 6.%x y (@) [|,,| = Ax,y(w;) <
(wx <wy) |4 S0(a, b, ¢) € (wx <wy)[|y,| = (@x * wy)I,,, contradiction.

Tosumupdy.y(w) C (wx <wy) anddyy (w) C wx * wy, S08x,y (w) < (wx < wy). This holds for
anywy, wy such thatw < (wx <wy), hencély y(w) = Axy(w). O

Corollary 6.13. If w is series—parallelthen so isAx y (w).

Example 6.14. Letw=(a || b) < (e || (c <d)), X ={a,b,c}, Y ={d,e}. ThenAx y(w) = ((a ||
b) <c) < (d < e).
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6.4. Spines

Consider a series—parallel ordewith an admissible partitionX, Y) (or equivalently, a well-teasing
partition, by Lemma 6.4), and a tree-representatiom a¥ith leaves inX on the left and leaves il
on the right. Using associativity, the middle path from the root to the point of separation bekveen
andY can be compressed into an “alternating path” where two consecutive nodes have different labels

(<, 1D-

X Y
o — < X Y
| :
< —Tk O — < —Tf
) )
oi—1— |l (oi—1lloi) — |l
| X

oi — |

This compression may create ternary nodes on the middle path, as in the figure belows amese
represent alternating labels (respand||, or || and<). The result of this compression is called gpne
of (w, X, 7).

O, —0— Ty op— 00— Ty,
| |
Op—1—® —Tp-1 Op—1—0—Tp-1
02 —0— 12 02 —0— 12
| |
o1—e—T1 o1—e—T1T1
if nis even if nis odd

Definition 6.15(Sping. Assumew is well-teased by X, Y). With the notations of figure in Section 6.4

we call[((o1, T1), . .. , (o0, Tn)), €] thespineof (w, X, Y).

e Theo; (resp.1;), L < i < n, are called the left (resp. righstingsand are series—parallel orders on
disjoint subset; of X (resp.,Y; C Y),

e £ € {<, ||} isthe label of the root,

e n is called theheightof the spine.

It should satisfy the following requirements:

e both|o,| and|z,|, respectively, top-left and top-right sting, are not empty;

e |o;|W]T;| # &, for anyi such that 1< i < n.
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Lemma 6.16. Assumew is well-teased byX, Y), and let[((o1, t1), ... , (ou, Tn)), £] be the spine of
(w,X,Y). ThenAx(w) = (o1 <---<oy) andAy(w) = (1, <--- < 11).

X Y X Y
Oit1— | —Tit+1 Oi4l — < —Titl
| |
o —<—T o —<—T
| |
oi-1— | —Ti-1 0j-1— <—Ti-1

0 Ax.y ()

Proof. This is just a reformulation of the equations in Lemmas 6.10 and 6.02.

7. Focalized calculus and sequentialization for MNL

Definition 7.1. A sequents of the form eithet, wherex is an order variety of formula occurrences, or
y | A, whereA is a formula occurrence andis a series—parallel order of formula occurrences. In the
latter caseA is called thefocus

In other terms, a sequent is an order variety or a pointed order variety. Note that we omit the sym-
bol - at the beginning of sequents, since it is useless in one-sided sequents. The rules of the sequent
calculus are given in Table 1 As we are interested in proof search, we only deatutitieesequent
calculus.

Observe that a crucial rule of NL, entropy, does not appear explicitely in Table 1 As we have already
said in the introduction, entropy is a source of non-determinism in proof search. In Table 1, it is included
in the rule for®, the only place where it is actually necessary: this is not trivial, but a consequence
of the results in the previous section, and the rest of the present section is devoted to proving that this
“optimized” sequent calculus is actually equivalent to the original one in [1,14] or in Appendix 9. We
do this by proving adequacy and sequentialization w.r.t. proof nets.

Example 7.2. Similarly to the example given in the introduction, there is only one focusing proof for
the sequent with order variety= ¢ on

{(AYEY, DY A (BOC), (CHvBY)® (DO E))

with A, B, C, D, E positive:
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Table 1
Focalized sequent calculus for MNL

Identity

p positive atom
prip

Reaction

N is negative

ES
reaction
vIN
Decision

P is positive and/ contains only atoms or positive formulas

vIP
y * P

decision

Multiplicative connectives

Ay(y) A Ax(y) | B

® (X, Y) admissible partition foy

y|AQOB
y' I A y" | B @ y * (A <B) y* (Al B)
@' lly")IA® B y*AV B y % A9B

B+ |B cti|c
At1A  (Ct<BYH|BOC
(AL (Ct<BH)|AGBOCO)

decision
(AL AG (B OC) *(Ct<B)
(AL|AGBOC)*xCtv Bt . D | D E+|E
reaction ©
(AtlAoBOC)|CtvBt (ELIDYIDOE

(AL EFIDH[AGBOC) | (CHVBYH®(DOE))

AL |EL DL 1A BOC)*(CHvBYH)® (DO E)) decision

Note that, for instance, entropy is used for therule on the right:(E+ || DY) < (E+ < D+) and
Api pr(EL| DY) = (E+ < D).

Example 7.3. Non-commutativity can be used to reduce part of the non-determinism of context split-
ting, because some failures in commutative LL can be avoided just by usirggrtietural properties
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of the context. An obvious example is given by-éxpanded) proofs oB+, A+, (A tensorB). In the

non-commutative case, there is a single possible partition, and it leads to an actual proof:

At A B+ | B
(BL<AH|AGOB

whereas in the commutative case, there are two possible partitions, one leading to a proof as above, the
other one leading to an arbitrarily long failure in general:

: : faiI}Jre faillure
N N : :
A J_l A . B | B BJ_ | A AJ_ | B

Facts 7.4. Let D be a sequent calculus proof of a sequénwith a single conclusion formuldn a
sequent of the form | A, only atoms or positive formulas occurjn

Theorem 7.5(Adequacy) To any proof D with conclusiona (resp w | A) in the focalized sequent
calculus we associate a cut-free proof fiet of MNL with same conclusion and associated order variety
ap- enjoyingap- 2 a (resp ap- 2 w x A).

Proof. By induction onD. The cases of identity, reaction and decision are trivial. Fowe have by
induction a proof neD’” associated to the prod? of y x (A < B), with o~ 2 y * (A < B): this
implies the absence of conclusion betweghand At for any switching inD’, so the proof structure
D~ obtained by adding &-link betweenA andB is a proof net, and

ap- =ap-[AVB/A,B] 2 (y x(A<B))[AVB/A,Bl=y*xAVB

by monotonicity of identification in order varieties. Fgr, the argument just forgets the point with
switchings which isn’t to be checked. The casegand® are immediate. O

Theorem 7.6(Sequentialization)Let be a cut-free proof net of MNL with conclusidbranda be any

order variety onl” such thatx C «;,.

e If I" contains non-atomic negative formuldken there is a prooP with conclusionx in the focusing
sequent calculus such thax™ = 7.

e Otherwise for any focusing conclusigne Fodr) C T, there is a proofD with conclusiorus | A in
the focusing sequent calculus such that = 7.

Proof. By induction on the size of.
e 7 contains only atoms. Thenis an axiom link with conclusiong, p*, with p the positive one, and
we can easly sequentializewith the identity:

prip
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e I' contains at least one non-atomic negative conclusion. Then we need to consider two cases.
() = is obtained fromr’ by adding a conclusion link v B, andl’ =T’ W {A V B}.
Leta be an order variety such thatC «, . By definition,«,; = a;/[A V B/A, B] and moreover

or = (Ar)avp * (A < B)

since the correctness criterium ensures that, for any swichin@r’) contains no conclusion

betweenB™ andA'. Now, fromassz < (r)avs, We get(aavs <A <B) < ((0r)av <A

< B), whencexsyp * (A < B) C (az)avp * (A < B) = a,s by definition of entropy. Now con-

sider the proof net’, and distinguish between the following two cases:

(@) Among the conclusionE’, A, B of 7/, there is still a non-atomic negative one. We know
thate’ = a4y * (A < B) C a, SO we can apply the induction hypothesis and get a focal-
ized sequential prooD’ of «' such thatD’™ = =/, whence a prooD by application of a
v-rule:

D/
xavB * (A <B)
aayp * AV B

with conclusionx sy * A V B = a,

(b) Otherwise;r’ contains no non-atomic negative conclusion and at least a positive one. By
Theorem 4.1, there exists a focusing conclusiorin this case we can apply the induction
hypothesis and get a prodf of «, | F such thatD’™ = n". W.r.t. the previous case, it is
sufficient to add an instance of the Decision rule in order to get the focusing sequent proof
D:

D/
ay | F

d/

(i) = is obtained fromr’ by adding a conclusion link’e B, andl’ = I’ & {A’® B}.
Let « be an order variety such thatC «,. We havex, = o,/ [A’®B/A, B], SO

(@x)awp * (Al B) S ay

follows from Section 2. Again, fromaop < () app, We getasop * (A B) C (ar)apB *
(A || B) C ay . Consider the proof net’, and distinguish between the following two cases:
(@) AmongI”, A, B there is a non-atomic negative conclusion. SiaCe as5p * (A || B) €

a,/, we can apply the induction hypothesis and get a focusing sequentialprobt’ such

thatD'~ = n/, whence a prooD by application of ag-rule:

’D/
as9p * (A] B) with conclusionxssp * A’®B = a.
AADB * A?B

(b) Otherwise, ifr’ contains no non-atomic negative conclusion and at least a positive one, we
proceed as in the case 4fv B, by adding Decision rule.
e I" contains only atoms and non-atomic positive conclusions. By Theorem 4.(z Fgc(s, and there
are two possibilities.
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(i) Foc(xr) contains a formulad © B andrx is obtained fromr1 (with conclusionI’y W {A}) w2

(with conclusionl"> W { B}) by adding a conclusion link ©® B.

(a) Both premises of the selected focusing link are focusing as well, A.e Foc
(r1) and B € FoQ(mp). Let « be an order variety such thatCo,. We havea, =
(@r)A <A O B <(ar,)p. Letyr = (ax,)a, 2 = (ax,) B, tWO series—parallel orders dn,
I's respectively, and let = a4op. We have

o d(y2<y1).

Since the partitioI'1, I'p) is clearly admissible fofy» < y1), it follows from Lemma 6.2
that(I'1, I'2) is admissible for as well. Hence, by Theorem 6.9 (optimalityr, (0) < 1
andAr,(o) < y2, SO

Al“l(U)*Ag Vl*A=0!n1
and
Ar,(0) * B C y2 % B = y,.

We can therefore apply then induction hypothesis and get two focalized pDofef
Ar,(0) | A and D, of Ar,(o) | B, whence a focalized prodD by application of a®-
rule:

D1 Do
Ar,(0) | A Ar,(o) | B
c|AOB

(b) One premise of the selected focusing link is not focusing, say £.¢.Fodx1) andB e
Fodmp). W.r.t. the previous case, the differences are the use of the other induction hy-
pothesis and the addition of an instance of the Reaction rilis {ndeed negative in this

case):
Dy
Ar,(o) * A ) Do
7AF1(G) A reaction Ar,(0) | B
oc|A®B ©

(i) Foc(mr) contains a formulad ® B andx is obtained fromrs (with conclusionl'y, A) w2 (with
conclusionl",, B) by adding a conclusion link ® B.
(a) Both premises of the selected focusing link are focusingalbet an order variety such that
a C ar. We haver,; = (azy)a ll A © B |l(ax,) 5, and

o =apeB < (ar)a ll(az,)B,

soo = (olpr,) I(o]r,) by Lemma 5.1, and by restrictions,|, < (ery)4 and o [, <
(ar,) . By definition of entropy, we conclude:

olr; *A C (g )a * A = angy
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and
olr,*B C (ar,)B * B = az,.

We can now apply the induction hypothesis and get two focalized piepts o [, |A, and
D, of o[, | B, whence the following focalized pro@ by an application of the-rule:

D1 D>
UrF1|A GTF2|B
c|A®B

(b) If one premise of the link is not focusing, the argument is the same asAwittB. [

8. Permutabilities in full NL

The original sequent calculus for NL is recalled in Appendix 9. For the exponentials, there is a slight
difference between our presentation and the sequent calculus on order varieties given in [14]: here,
applications of weakening are grouped at the level of identities and the rule &md contractions are
systematically applied to the implicitely ?ed part of the sequ@iiri the ®- and®-rules; this enables
us to get rid of explicit rules for weakening and contraction; on the other hancktiteerule of [14]
becomes thabsorptionrule, where again, a contraction is applied.

Two rulesR1 and R» are said to be in aituation of permutabilityf there is a proof in whichR; is
applied just afteRr1 and the conclusion a?1 is not a premise oR». In that caseR; is saidimpermutable
below R; if there is a sequent that can only be proved wRkphbelow R1; otherwiseR; is saidpermutable
below R>.

Permutabilities in NL are summarized in Tables 2 and 3. The little-bareans: “the rule of column
Ry can always permute below the rule of raR”. The crossx means thatR; and R, are not in a
situation of permutability. A numeral in the table means impermutabilitgdbelow R, and we exhibit
some counter-examples in Table 3; most of them are taken or adapted from [6,10]. For impermutability
7 (10 is similar),A = (B ® C) ® (D ® E) and the correct proof is:

Table 2

Permutabilities in NL
Ro\R1 ©) ® ® v ] & 1 ! ? Abs Entropy
o} - - - - - - - x - - -
® - - - - - - - x - - -
® - - - - - - - x - - -
v 1 - - - - - - X -
B 1 1 - - - - - % _ _ _
& 2 2 3 - - - - X - 4 5
1 - - - - 6 - - 7
! X X X X X X X X X 8 X
o - _ _ _ _ 9 - - 10
Absorption - - - - - - _ % _ _ _
Entropy 11 - - - - - - x - 12 -
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Table 3
Exceptions to permutabilities in NL
1 5 A9B x B+ ® AL
2 B:AXB*x(L®T|BL|Ab
3 J:A&B % BL ) AL
4 Al (A& A
5 F:BLHAH «(A®B)&(AGB)
6 Al 1axL
7 (A B DY <t EL) « L
8 Al 1A B)
9 1A %241
10 (A B DY <t EL) 0
11 g BL1AH*AOB
12 A:BLEL Lt <Db

& :B-«B g:Cct«C @Dt D P E+-+E
®
Zi:B®C*(BL|ChH :DQEx (DL EL)
©)
& Ax((BL]|CH) <(D* || EY))
& (A B DY (CLH| ED)
(Al B DY) <(CHEL) =L

entropy

The reason for the impermutability is that there is no series—parallel erderA, B+, C+, D+,
E+ such that = A x (BL || CY) <(D* || EY)) and((A || B+ || DY) <(C* || E1)) < 7, as noticed in
[14], Section 4.2. For impermutability 12, = (F © D) ® (C ® B) and the correct proof is:

A:E+%E A:DL*D@ A:Ct%xC  A:B'«xB
A:EQ®D=x(D+<Eb A:COB=x*(B+<ch ®
A:(Bt<CH|(DF<EY) A
A:(BLt<CcYH| (DL <EL)

A: (BT | EY) x(Ct<Db

absorption

entropy.

The reason for the impermutability here is similar: there is no series—parallelwme?l, ct, D+,
E+ suchthat = (B || EY) x (Ct < DY) andr < (B <CH) (Dt < EY).

Let us now comment on the non-trivial permutations in Table 2. hwile is permutable below
because if the premise ofwarule is the conclusion of ®-rule, the two subformulad and B of the
formula A v B introduced are necessarily in the same premisg,dfe. A and B are either both inw|
or both in|z|:

O:woxC O:7t%D
O:(w||T)[A<B]*CQ®D
O:(w|T)[AVB]l*C®D
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Permutation of entropy below holds because * (x < y) C a impliesa is of the formz *x (x < y)
with o < . Permutation of entropy below holds by monotonicity of identificationy * (x || y) C «
impliesw * z C a[z/x, y]. Permutation o below entropy holds becaused (w1 || w2) impliest is of
the form(z1 || 72) with ; < w;,i = 1, 2.

A relevant property of Table 2 is expressed by the following lemma.

Lemma 8.1. Positive(®, ®, @,!) and negativg v, g, &, L, ?) rules are permutable below positive
rules All rules are permutable below absorptiofill rules but® and absorption are permutable below
entropy

Now, there is an evident forgetful functor from NL to (commutative) LL mapping:
e aformulaA of NL to a formulaA® of LL, taking the connective® andv respectively tag and’g;
e a proofD of a sequent® : «) in the original calculus for NL to a prod®° of the sequent®° : |«|°)
in LL, by forgetting the order variety and the entropy rule
Table 2 implies that all relevant LL permutabilities are available in NL:

Lemma 8.2. Let Ry, R2 be two NL ruleswith (R1, R2) ¢ {O, absorption x {L, ?}, and R7, R5 the
corresponding LL ruledf Rf is permutable belowR; in LL, thenR; is permutable belowk, in NL and

either entropy is permutable beloRs in NL
or Ry is permutable below entropy in NL.

As a consequencé (R1, R2) ¢ {©®, absorptiory x {1, ?} andD is an NL proof of an NL sequent
(® : a) such thatD° ends withR7 aboveR; and R is permutable belowkS in LL, thenD ends with

Ry
—*_entropy
R,

O:a
and R1 can be permuted below, in D.

Proof. LL permutations are recalled in Appendix 9. The only assertion which is not straightforward is
the one about entropy, and a simple inspection shows that the only four possibly problematic cases are
precisely®/ L, ©/?, absorptiofl and absorptiof? [

9. Focalized sequent calculus for full NL

A sequents of one of the following forms:
(® : o), where® is a set of occurrences of formulas andn order variety of occurrences of formulas,
(®:w| A), where® is a set of occurrences of formulasa partial order of occurrences of formulas,
andA is an occurrence of formula.
We omit the symbat- at the beginning of sequents, as it is useless in one-sided sequents. The sequent
calculus is given in Table 4.

Theorem 9.1(Adequacy) To any proof of(® : &) or (® : a4 | A) in the focalized sequent calculus, we
associate a proof of® : ) in the original sequent calculus
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Table 4
Focalized sequent calculus for full NL

Identity
a is a negative atom

@:alaJ- @,a:lal
Positive rules
O:Ay(w)| A O:Ax(w) | B

O, if (X, Y) is admissible foew

O:w|AOB
O:w|A ®:w2|B ®:A
O: (w1 l|lw2) | AQ B Q:1A
(no rule forQ) e:1 1
O:wlA O:wl|B
— @1 — ®2
O:0w|ADB O:w|ADB
Negative rules
O:w*x(A<B) O:wox(A|B) - 0,A:0
O:w*xAVB O:wx*x AYB O:wx*x?A
O:w S — O:wxA O:w*xB
®wxl © ©roxT O:w+A&B &
Reaction
N is negative
Mreaction
O:w|N
Decision

P is positive andv is a series-parallel order containing only atoms
or positive formulas
O:w|P O,A:w|A

O P decision 1 o Aw decision 2

Proof. Forget focalization (hence reaction and decisiqrahyl add entropy to the-rule (v < Ay (w) <
Ax(w)) :

O:Ay(w)x A O:Ax(w)* B
O:Ay(w)<Ax(w)*xAOB
O:wxAOB

©
entropy.

Decision 2 becomes absorption]

Theorem 9.2(Completeness)lo any proof of(® : «) in the original sequent calculus, we associate a
proof in the focalized sequent calculus by distinguishing between two cases:
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o If || contains non-atomic negative formulas, then the focalized proof has concl@ioz).
o Otherwise the focalized proof has conclusi@h: ap | P) for some positive formul in |«|.

Proof. The functor from NL to commutative LL of Section 8 can be extended to the focalized case
S0 as to map a focalized NL proof 6B : &) or (® : ap | P) to a focalized LL proof of(®° : |«|°) or

(©° : Jap|® | P°), by simply forgetting the order variety. By [2], commutative LL proofs can be focal-
ized, by permuting logical steps and adding a decision or a reaction between groups of rules of the same
polarity, so the situation can be summarized in the following diagram:

NL eeeeees ~ focalized NL
(=)° (=)°

LL — focalized LL

and we want to construct the top dotted arrow. Delbe an NL proof. We proceed by induction on the
number of permutations applied in order to focall2e(bottom arrow). By Lemma 8.2, each LL permu-
tation is simulated by one or two NL permutations, except the LL permutafigis ®/?, absorptior L

and absorptiof?, but these two cases never occur during focalization because, more generally, focaliza-
tion never uses permutations of ruleslow negative rulesSo we get an NL proaD’ whose tranlation

(D')° is the focalized LL proofD°)’ obtained fromD°, and now we just have to deal with entropy:

by Lemma 8.1, entropy is permutable above all NL rules®uso we get an NL proof where entropy

is concentrated below-rules. But we can do better and move up all the entropy which bears on each
premise of eackp-rule separately. Indeed given

O:wx*x A ®:0 xB
O: (0 <w)*xAOB
®:t«xAOB

entropy,

let Y = |w| and X = |o’|: we haver < (o' <w), SO by Theorem 6.9, we may inféxx(r) < " and
Ay (1) < w; therefore we may rewrite the above piece of proof as:

O:wxA entropy O:0 *B entropy
O:Ay(t)*x A ®:Ax(t)* B o + entropy,
O:txAOB

and by permuting entropy up in the proof as above, we reach a préufhere the only entropy applied
is the one contained in the focalizegrule of Table 4. Its translation is sti{iD’)° = (D°)’, hence it is
the required focalized proof.OJ

Appendix A: Original sequent calculus for non-commutative logic

We recall the sequent calculus for NL introduced in [14]. Sequ@dtsx) consist of an order variety
« of formula occurrences, and a $2bf formula occurrences (with no additional structu@)is disjoint
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from |«|. In the following sequent calculus, all order varieties and orders are assumed series—parallel. In
particular, in dereliction and thé-rule, w is series—parallel, and in the entropy rues series—parallel.
Identity

O:ALtxA
Structural rules
O,A:0*xA . O:p
—2—'— - absorption entropy,a C
®,A: w0 O:a by 4

Multiplicatives
O:wxA ®:a)/>x<B® ®:wx(A<B)

O: (v <w)*xAQOB O:wxAVB
O:w*xA O:0' xB ® O:wx*x(A]| B) o
O:(w|o)*AQB O:w*x ASB
Additives
O:woxA ®O:w*xB O:wxA O:wx*xB
O:wxA&B & O:wxADB o1 O:wxADB &2
Exponentials
®,A:w ° ©:A ,
O:w*x?A ®: 1A~
Constants _
O:w

0:1 B ol * (noruleford) @:wxT

Appendix B: Permutabilities in linear logic

The conventions are the same as in Section 8. The numeral 0 in the table means impermutability.
References are [6,10].

R2\R1 ® @ 9 & 1 ! ? Abs
® - - - - - X - -

® — — — — — X — —

S 0 - - - - X — —

& 0 0 - - - X - 0

1L — - — — - 0 — —

! X X X X X X X 0

? - - - - - 0 - -
Absorption - - - - - X - -
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