Interactive correctness criterion for multiplicative-additive proof-nets
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Proof-nets are special graphs (proof-structures) repre-
senting de-sequentialised proofs of the linear logic sequent
calculus. Each proof-net stands for a class of sequent proofs
which are equivalent modulo irrelevant permutations of log-
ical rules.

Here we present an interactive characterisation of
those cut-free proof-structures coming from proofs of the
multiplicative-additive fragment of linear logic (MALL, see
[1,3]). This work is intended to extend to MALL proof-nets
an original proposal in [2]: see Appendix E.7 of [2] for an
interactive correction criterion for proof-nets of the multi-
plicative fragment of linear logic. Its natural consequence
we will be the study of the question of modularity for addi-
tive proof-nets.

A MALL proof is a proof built with the rules of Figure 1.
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Figure 1. MALL sequent proofs calculus

A MALL proof-structure with a unique conclusion F'
(denoted 7p) is the graph obtained by gluing the formula
tree of F' together with a set of axiom links (a set of pairs of
orthogonal literals A; and A;") via the border of F. Each
&-vertex of F is equipped with a distinct variable, called
eigen-weight, x, y, z, ...; each axiom link is then labelled
with a weight, i.e., a term in the Boolean algebra generated
by the set of eigen-weights of F' (see an example in Fig-
ure 2).

Any proof in the sequent calculus is trivially mapped to
a proof structure, but of course, not every proof-structure
is correct in the sense that it arises from a sequent calcu-
lus proof. It is therefore crucial to be able to characterise
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Figure 2. a MALL proof-structure

the correct proof-structures, if possible by simple geomet-
rical means. It is moreover natural to look for an interac-
tive characterisation, i.e., such that checking the correctness
of a proof-structure 7 only amounts to play with a set of
“para-proofs” (or “tests”) o1 associated to the orthogonal
formula F*: an interaction between 7w and a 0. is then
given by the cut-reduction between F and F'*, which may
converge or not.

Formally, a MALL para-proof is a single-conclusion
derivation, built bottom-up, by means of the rules of Fig-
ure 3. Each formula is possibly equipped with a pseudo-
weight, i.e., a conjunction (A) of variables z, v, ... or nega-
tions of variables @, ....
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Figure 3. MALL para-proofs calculus

A para-proof 7 reducts a (ready) cut in one step, in sym-



bols 7 +— 7', in the following cases (convergence):
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A para-proof 7 does not reduct a ready cut (w — , the
proof is destroyed) in the following cases (divergence):
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A &-valuation ¢ of a proof-structure 7 is a choice of
one premise, left or right, for each & -vertex in the formula
tree of F'.

Let ¢ be a valuation of 7, o be the sub-graph of T,
called the ¢-slice, which holds under ¢, and 7. be a para-
proof of F+, called a ¢-test, built according to ¢ (choose
an instance of @ -rule, resp. @z-rule, if x, resp. T, holds
in ). Then a @-interaction of 7 is the graph, (op, TrL ),
obtained after (iteratively) reducing the cut ——r between
or and T L.

A p-interaction is said to be complete if it does not con-
tain an axiom link with a pending conclusion (i.e., a conclu-
sion which is not premise of any cut link).

An interaction session is obtained from a union of ;-
interactions U;c1(0p, TrL )y, by erasing each (proper) ax-
iom link / that is common to all interactions (o r, Tp1)y,,
together with all those cut-links having [ as a premise.

A pair of literals L., L’ , is said to be a toggling pair
if its weights w and w’ contain dual occurrences of a same
variable z (e.g., x € wand T € w’).

A critical cycle is a cycle (in an interaction session) con-
taining a unique toggling pair.

Interactive Correction Criterion : A proof-structure 7 g
with a single conclusion F' is correct, or is a proof-net,
when (1) any interaction (o, Tp1 ), induced by a valua-
tion ¢ is complete, acyclic and connected, and (2) any inter-
action session (0, Tp1)y,, € I, of at least 2 interactions,
contains a toggling pair not occurring in any critical cycle.

Example. Assume we want interactively check the correct-
ness of the proof-structure 7 of Figure 2. We first have to
verify condition (/): actually, there are only two possible
interactions for 7, one induced by p(z) = left (Figure 4)
and the other one induced by p(z) = right (Figure 5); both
are complete, connected and acyclic. Finally, in order to
verify condition (2), we only have to check that the unique
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Figure 4. the unique p(z) = left interaction
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Figure 5. the unique ¢ (z) = right interaction

interaction session of Figure 6, obtained by superposing the
two interactions above contains a toggling pair not in a crit-
ical cycle, and that is the case.

Figure 6. the unique interaction session of =

Theorem. Any MALL sequent proof of I' can be de-
sequentialised into a proof-net with the unique conclusion
X (I"), and vice-versa.

We prove this by showing that a proof-structure is a
proof-net iff it is so according to [3].
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