Interactive correctness criterion for multiplicative-additive proof-nets

Roberto Maieli Dipartimento di Filosofia Università degli Studi Roma Tre Via Ostiense, 234 - 00144 Roma maieli@uniroma3.it

Proof-nets are special graphs (proof-structures) representing de-sequentialised proofs of the linear logic sequent calculus. Each proof-net stands for a class of sequent proofs which are equivalent modulo irrelevant permutations of logical rules.

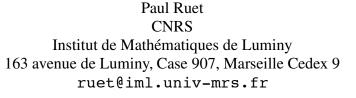
Here we present an interactive characterisation of those cut-free proof-structures coming from proofs of the multiplicative-additive fragment of linear logic (MALL, see [1, 3]). This work is intended to extend to MALL proof-nets an original proposal in [2]: see Appendix E.7 of [2] for an interactive correction criterion for proof-nets of the multiplicative fragment of linear logic. Its natural consequence we will be the study of the question of *modularity* for additive proof-nets.

A MALL **proof** is a proof built with the rules of Figure 1.

Figure 1. MALL sequent proofs calculus

A MALL **proof-structure** with a unique conclusion F (denoted π_F) is the graph obtained by gluing the formula tree of F together with a set of *axiom links* (a set of pairs of orthogonal *literals* A_i and A_i^{\perp}) via the border of F. Each &-vertex of F is equipped with a distinct variable, called **eigen-weight**, x, y, z, ...; each axiom link is then labelled with a **weight**, i.e., a term in the Boolean algebra generated by the set of eigen-weights of F (see an example in Figure 2).

Any proof in the sequent calculus is trivially mapped to a proof structure, but of course, not every proof-structure is correct in the sense that it arises from a sequent calculus proof. It is therefore crucial to be able to characterise



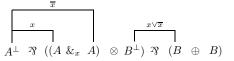


Figure 2. a MALL proof-structure

the correct proof-structures, if possible by simple geometrical means. It is moreover natural to look for an interactive characterisation, i.e., such that checking the correctness of a proof-structure π_F only amounts to play with a set of "para-proofs" (or "tests") $\sigma_{F^{\perp}}$ associated to the orthogonal formula F^{\perp} : an interaction between π_F and a $\sigma_{F^{\perp}}$ is then given by the cut-reduction between F and F^{\perp} , which may converge or not.

Formally, a MALL **para-proof** is a single-conclusion derivation, built bottom-up, by means of the rules of Figure 3. Each formula is possibly equipped with a *pseudo-weight*, i.e., a conjunction (\wedge) of variables x, y, ... or negations of variables $\overline{x}, \overline{y}...$

$$\frac{\Gamma, A_w \quad A_{w'}^{\perp}, \Delta}{\Gamma, \Delta} cut$$

 $(w_i, 1 \le i \le n, \text{ is, possibly, a weight and } w, w' \text{ may be equal })$

$$\frac{\Gamma, A_w \quad B_w, \Delta}{\Gamma, (A \otimes B)_w, \Delta} \otimes \qquad \frac{\Gamma, A_w, B_w}{\Gamma, (A^{\mathfrak{B}}B)_w} \mathfrak{P}$$

$$\frac{\Gamma, A_w}{\Gamma, (A \& B)_w} \&_1 \qquad \frac{\Gamma, B_w}{\Gamma, (A \& B)_w} \&_2$$

$$\frac{\Gamma, A_{w \wedge x}}{\Gamma, (A \oplus B)} \oplus_x \qquad \frac{\Gamma, B_{w \wedge \overline{x}}}{\Gamma, (A \oplus B)} \oplus_{\overline{x}}$$

(where x does not occur in w neither in any weight of Γ)

Figure 3. MALL para-proofs calculus

A para-proof π reducts a (ready) cut in one step, in sym-

bols $\pi \mapsto \pi'$, in the following cases (*convergence*):

A para-proof π does not reduct a ready cut ($\pi \mapsto \emptyset$, the proof is destroyed) in the following cases (*divergence*):

$$\begin{array}{c|c} \underline{\Gamma, A} & \underline{\Delta, B^{\perp}} \\ \hline \underline{\Gamma, A\& B} & \underline{\Delta, A^{\perp} \oplus B^{\perp}} \\ \hline \Gamma, \Delta & \end{array} \mapsto \emptyset \,, \quad \begin{array}{c|c} \underline{\Gamma, B} & \underline{\Delta, A^{\perp}} \\ \hline \Gamma, A\& B & \underline{\Delta, A^{\perp} \oplus B^{\perp}} \\ \hline \Gamma, \Delta & \end{array} \mapsto \emptyset$$

A &-valuation φ of a proof-structure π_F is a choice of one premise, left or right, for each $\&_x$ -vertex in the formula tree of F.

Let φ be a valuation of π_F , σ_F be the sub-graph of π , called the φ -slice, which holds under φ , and $\tau_{F^{\perp}}$ be a paraproof of F^{\perp} , called a φ -test, built according to φ (choose an instance of \oplus_x -rule, resp. $\oplus_{\overline{x}}$ -rule, if x, resp. \overline{x} , holds in φ). Then a φ -interaction of π is the graph, $\langle \sigma_F, \tau_{F^{\perp}} \rangle_{\varphi}$ obtained after (iteratively) reducing the cut $\overline{F^{-}F^{\perp}}$ between σ_F and $\tau_{F^{\perp}}$.

A φ -interaction is said to be **complete** if it does not contain an axiom link with a *pending conclusion* (i.e., a conclusion which is not premise of any cut link).

An interaction session is obtained from a union of φ_i interactions $\bigcup_{i \in I} \langle \sigma_F, \tau_{F^{\perp}} \rangle_{\varphi_i}$ by erasing each (proper) axiom link *l* that is common to all interactions $\langle \sigma_F, \tau_{F^{\perp}} \rangle_{\varphi_i}$, together with all those cut-links having *l* as a premise.

A pair of literals $L_w, L'_{w'}$ is said to be a **toggling pair** if its weights w and w' contain dual occurrences of a same variable x (e.g., $x \in w$ and $\overline{x} \in w'$).

A **critical cycle** is a cycle (in an interaction session) containing a unique toggling pair.

Interactive Correction Criterion : A proof-structure π_F with a single conclusion F is **correct**, or is a **proof-net**, when (1) any interaction $\langle \sigma_F, \tau_{F^{\perp}} \rangle_{\varphi}$, induced by a valuation φ is complete, acyclic and connected, and (2) any interaction session $\langle \sigma_F, \tau_{F^{\perp}} \rangle_{\varphi_i}, i \in I$, of at least 2 interactions, contains a toggling pair not occurring in any critical cycle.

Example. Assume we want interactively check the correctness of the proof-structure π of Figure 2. We first have to verify condition (1): actually, there are only two possible interactions for π , one induced by $\varphi(x) = left$ (Figure 4) and the other one induced by $\varphi(x) = right$ (Figure 5); both are complete, connected and acyclic. Finally, in order to verify condition (2), we only have to check that the unique

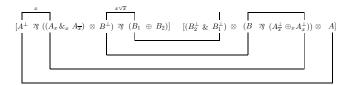


Figure 4. the unique $\varphi(x) = left$ interaction

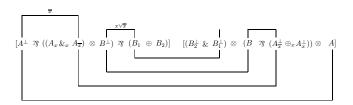


Figure 5. the unique $\varphi(x) = right$ interaction

interaction session of Figure 6, obtained by superposing the two interactions above contains a toggling pair not in a critical cycle, and that is the case.

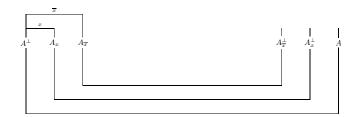


Figure 6. the unique interaction session of π

Theorem. Any MALL sequent proof of Γ can be desequentialised into a proof-net with the unique conclusion $\mathfrak{P}(\Gamma)$, and vice-versa.

We prove this by showing that a proof-structure is a proof-net iff it is so according to [3].

References

- J.-Y. Girard. *Proof-nets: the parallel syntax for proof theory*. Marcel Dekker, 1996.
- [2] J.-Y. Girard. On the meaning of logical rules i: syntax vs. semantics. *Computational Logic*, eds. Berger and Schwictenberg, SV, Heidelberg:215–272, 1999.
- [3] D. Hughes and R. Van Glabbeek. Proof-nets for unit-free multiplicative-additive lineare logic. *Proceedings of IEEE Logic in Computer Science*, 2003.

O O O O
🍝 🕨 🚺 + 🚱 http://lii.rwth-aachen.de/lics/lics06/accepted06.html#shortpresentations
🕁 🛄 🛄 Gephi, an opon software AIC Roberto Maieli Uniroma3.it CINECA GoogleMaps Repubblica YouTube Wikipedia Notizie (515) 🕇 I più conosciuti 🕶
LICS 2006 Accepted Short Presentations
The following short presentations (listed in random order) have been accepted at LICS 2006:
Julian Zinn and Rakesh Verma. A Polynomial-time Algorithm for Uniqueness of Normal Forms of Linear Shallow Term Rewrite Systems
Aaron Hunter. Non-Closure Results for First-Order Spectra
Detlef Kaehler, Ralf Kuesters and Thomas Wilke. A Dolev-Yao-based Definition of Abuse-free Protocols
Guillaume Burel and Claude Kirchner. An Abstract Completion Procedure for Cut Elimination in Deduction Modulo
Roberto Maieli and Paul Ruet. Interactive correctness criterion for multiplicative-additive proof-nets
Leona F. Fass. A Logical Look at Agents' Problem-Solving on the Semantic Web
Jørgen Villadsen. Nominalization in Intensional Type Theory
Murray Patterson, Yongmei Liu, Eugenia Ternovska and Arvind Gupta. Grounding for Model Expansion in k-Guarded Formulas
Back to the LICS 2006 web page.
Last modified: Mon May 8 19:12:48 CEST 2006