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Abstract. In this work we present a paradigm of focusing proof search
based on an incremental construction of retractile (i.e, correct or sequen-
tializable) proof structures of the pure (units free) multiplicative and
additive fragment of linear logic. The correctness of proof construction
steps (or expansion steps) is ensured by means of a system of graph re-
traction rules; this graph rewriting system is shown to be convergent, that
is, terminating and confluent. Moreover, the proposed proof construction
follows an optimal (parsimonious, indeed) retraction strategy that, at
each expansion step, allows to take into account (abstract) graphs that
are ”smaller” (w.r.t. the size) than the starting proof structures.
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1 Introduction

This work aims to make a further step towards the development of a research
programme, firstly launched by Andreoli in 2001 (see [1], [2] and [3]), which
points to a theoretical foundation of a computational programming paradigm
based on the construction of linear logic proofs (LL, [8]). Naively, this paradigm
relies on the following isomorphism: proof = state and construction (or inference)
step = state transition. Traditionally, this paradigm is presented as an incremental
(bottom-up) construction of possibly incomplete (i.e., open or with proper axioms)
proofs of the bipolar focusing sequent calculus (see Sect. 2 for a brief introduction).
This calculus satisfies the property that the complete (i.e., closed or with logical
axioms) bipolar focusing proofs are fully representative of all closed proofs of
linear logic: this correspondence is, in general, not satisfied by the polarized
fragments of linear logic. Bipolarity and focusing properties ensure more compact
proofs since they get rid of some irrelevant intermediate steps during proof search
(or proof construction).

Now, while the view of sequent proof construction is well adapted to theorem
proving, it is inadequate when we want to model some proof-theoretic intuitions
behind, e.g., concurrent logic programming which requires very flexible and
modular approaches. Due to their artificial sequential nature, sequent proofs are
difficult to cut into modular (reusable) concurrent components.
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A much more appealing solution consists of using the technology offered
by proof nets of linear logic or, more precisely, some forms of de-sequentialized
(geometrical, indeed) proof structures in which the composition operation is
simply given by (possibly, constrained) juxtaposition, obeying some correctness
criteria. Actually, the proof net construction, as well the proof net cut reduction,
can be performed in parallel (concurrently), but despite the cut reduction, there
may not exist executable (i.e., sequentializable) construction steps: in other words,
construction steps must satisfy a, possibly efficient, correctness criterion. Here, a
proof net is a particular ”open” proof structure, called transitory net (see Sect. 3),
that is incrementally built bottom-up by juxtaposing, via construction steps,
simple proof structures or modules, called bipoles. Roughly, bipoles correspond to
Prolog-like methods of Logic Programming Languages: the head is represented by
a multiple trigger (i.e., a multiset of positive atoms) and the body is represented by
a layer of negative connectives with negative atoms. We say that a construction
step is correct (that is, a transaction) when it preserves, after juxtaposition,
the property of being a transitory net: that is the case when the given abstract
transitory structure retracts (after a finite sequence of rewriting steps) to an
elementary collapsed graph (i.e., single node with only pending edges). Each
retraction step consists of a simple (local) graph deformation or graph rewriting.
The resulting rewriting system is shown to be convergent (i.e., terminating and
confluent), moreover, it preserves, step by step, the property of being a transitory
structure (see Theorem 1 and Lemma 1 in Sect. 3.1). Transitory nets (i.e.,
retractile structures) correspond to derivations of the focusing bipolar sequent
calculus (Sect. 4, Theorem 2).

The first retraction algorithm for checking correctness of the proof structures
of the pure multiplicative fragment of linear logic (MLL), was given by Danos
in his Thesis ([6]); the complexity of this algorithm was later shown to be
linear, in the size of the given proof structure, by Guerrini in [10]. Then, the
retraction criterion was extended, respectively, by the author, in [14], to the pure
multiplicative and additive (MALL) proof nets with boolean weights and then by
Fouqueré and Mogbil, in [7], to polarized multiplicative and exponential proof
structures.

Traditionally, concerning proof nets of linear logic, the main interest on the
retraction system is oriented to study the complexity of correctness criteria or cut
reduction. Here, our (original) point of view is rather to exploit retraction systems
for incrementally building (correct) proof structures. Indeed, the convergence
of our retraction system allows to focus on particular retraction strategies that
turn out to be optimal (in the graph size) w.r.t. the problem of incrementally
constructing transitory nets. Actually, checking correctness of an expanded proof
structure is a task which may involve visiting (i.e., retracting) a large portion of
the so obtained net: some good bound for these task would be welcome. Here,
we show that checking correctness (retraction) of a MALL transitory net, after
a construction attempt, is a task that can be performed by restricting to some
”minimal” (i.e., already partially retracted) transitory nets. The reason is that
some subgraphs of the given transitory net will not play an active role in the
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construction process, since they are already correct and encapsulated (i.e., border
free): so, their retraction can be performed regardless of the construction process
(that is the main content of Corollary 1, in Sect. 3.2).

Finally, we give in Sect. 5 a comparing with some related works concerning:

1. analogous attempts to give a theoretical foundation of computational pro-
gramming paradigms based on the construction of proofs of intuitionistic or
linear logic (notably, some works of Pfenning and co-authors, [4], and some
works of Miller and co-authors, [15] and [5]);

2. alternative syntaxes for additive-multiplicative proof structures (mainly, those
ones given, respectively, by Girard [8] and Hughes–van Glabbeek in [11]).

2 Construction of bipolar focusing proofs

In this section we give a brief presentation of the bipolar focusing sequent calculus
introduced by Andreoli; more technical details can be found in [1]. We start with
the basic notions of the MALL fragment of LL, without units and Mix rule. We
arbitrarily assume literals a, a⊥, b, b⊥, ... with a polarity: negative for atoms and
positive for their duals. A formula is built from literals by means of the two
groups of connectives:

negative : O (”par”) and & (”with”);
positive : ⊗ (”tensor”) and ⊕ (”plus”).

A proof is then built by the following rules of the MALL sequent calculus:

identity: id
A,A⊥

Γ,A ∆,A⊥
cut

Γ,∆

multiplicatives:
Γ,A ∆,B ⊗
Γ,∆,A⊗B

Γ,A,B O
Γ,AOB

additives:
Γ,A Γ,B N
Γ,ANB

Γ,Ai ⊕i=1,2
Γ,A1 ⊕i A2

The bipolar focusing sequent calculus is a refinement of the previous one,
based on the crucial properties of focusing and bipolarity (see, also, [12]). The
focusing property states that, in proof search (or proof construction), we can
build (bottom up) a sequent proof by alternating clusters of negative inferences
with clusters of positive ones. As consequence of this bipolar alternation we get
more compact proofs in which we get rid of the most part of the bureaucracy
hidden in sequential proofs (as, for instance, irrelevant permutations of rules).
Remind that, w.r.t. proof search, negative (resp., positive) connectives involve a
kind of don’t care non-determinism (resp., true non-determinism).

A monopole is a formula built on negative atoms using only the negative
connectives, while a bipole is a formula built from monopoles and positive atoms,
using only positive connectives; moreover, bipoles must contain at least one
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positive connective or be reduced to a positive atom, so that they are always
disjoint from monopoles. Given a set F of bipoles, the bipolar focusing sequent
calculus Σ[F ] is a set of inferences of the form

Γ1 . . . Γn
B

Γ

where the conclusion Γ is a sequent made by a multiset of negative atoms and
the premises Γ1, ..., Γn are obtained by fully focusing decomposition of some
bipole B ∈ F in the context Γ (therefore, Γ1, ..., Γn are mutiset of negative atoms
too). More precisely, due to the presence of additives (in particular the sum ⊕
connective) a bipole B is naturally associated to a set of inferences B1, ..., Bm+1,
where m is the number of ⊕ connectives present in B. For instance, in the purely
multiplicative fragment of LL (i.e, MLL), the bipole B = a⊥ ⊗ b⊥ ⊗ (cOd)⊗ e,
where a, b, c, d and e are (negative) atoms, yields the inference below (on the left
hand side), more compact than the explicit one (on the right hand side):

Γ, c, d ∆, e
B

Γ,∆, a, b
⇔

Γ, c, d O
Γ, cOd ∆, e ⊗
Γ,∆, (cOd)⊗ e b, b⊥ a, a⊥ ⊗

Γ,∆, a, b,a⊥ ⊗ b⊥ ⊗ (cOd)⊗ e

where Γ and ∆ range over a multiset of negative atoms; the identity axioms
a, a⊥ and b, b⊥ are omitted in the bipolar sequent proof for simplicity. Observe,
the couple a and b plays the role of a trigger (or multi-focus) of the B inference;
more generally, a trigger (of a bipole) is a multi-set of duals of the positive atoms
occurring in the bipole. Intuitively, the main feature of the bipolar focusing
sequent calculus is that its inferences are triggered by multiple focus, like in [15]
and and [5]. Bipoles are clearly inspired by the methods used in logic programming
languages: the positive layer of a bipole corresponds to the head, while the negative
layer corresponds to the body of a Prolog-like method.

The bipolar focusing sequent calculus, with only logical axioms (id), has been
proven in [1] to be isomorphic to the focusing sequent calculus, so that (closed)
proof construction can be performed indifferently in the two systems. The main
idea behind this isomorphism is the bipolarisation technique, that is a simple
procedure that allows to transform any provable formula F of the LL sequent
calculus into a set of bipoles, called universal program of the bipolar sequent
calculus. In Example 1 we give an instance of (closed) bipolar focusing derivation.

Example 1. Assume an universal program with four bipoles as follows:

B1 = f⊥ ⊗ (xOgOhO(d&e)),
B2 = x⊥ ⊗ (a&b),
B3 = g⊥ ⊗ ((a⊥ ⊕ b⊥)⊗ c⊥),
B4 = h⊥ ⊗ c⊗ (d⊥ ⊕ e⊥).

Each bipole induces a non empty set of bipolar inferences as follows:

– both bipoles B1 and B2 induce a single inference
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Γ, x, g, h, d Γ, x, g, h, e
B1Γ, f

resp., Γ, a Γ, b
B2Γ, x

– while both bipoles B3 and B4 induce two inferences

Γ B′3Γ, g, a, c
and

Γ B′′3Γ, g, b, c
resp.,

Γ, c
B′4Γ, h, d

and
Γ, c

B′′4Γ, h, e

– then, the resulting bipolar focusing proof Π of f if built as follows:

B′3g,a, c
B′4a, g,h,d

B′′3g,b, c
B′4b, g,h,d
B2x, g, h, d

B′3g,a, c
B′′4a, g,h, e

B′′3g,b, c
B′′4b, g,h, e
B2x, g, h, e

B1f

Although this derivation is quite compact and abstract, it still presents some
structural drawbacks like duplications of some sub-proofs. Therefore, we will
move, in the next section, to more flexible proof structures.

3 Bipolar transitory structures

In this section we introduce the de-sequentialized version of the bipolar focusing
sequent calculus, i.e. a graphical representation of bipolar structures (eventually
correct, i.e. bipolar nets) which preserves only essential sequentializations.

Definition 1 (links). Assume an infinite set L of resource places a, b, c, ... (also
ports or addresses). A link consists of two disjoint sets of places, top and bottom,
together with a polarity, positive or negative, and s.t. a positive link must have
at least one bottom place, while a negative link must have exactly one bottom
place. The border or frontier of a link is the set of its top and bottom places.

Graphically, links are represented like in Fig. 1 and distinguished by their
shape: triangular for negative and round for positive links. Top (resp., bottom)
places are drawn as edges incident to a vertex. We may use variables xp, yp, zp, ...
for links with a polarity p ∈ {+,−}, and the compact expression link+ (resp.,
link−) for a positive (resp., negative) link. Moreover, we define some relations
on the set of links; in particular, given two links, x and y, we say:

– they are adjacent if they have (or share) a common place;
– x is just above (resp., just below) y if there exists a place that is both at the

bottom (resp., top) of x and at the top (resp., bottom) of y;
– they are connected if they belong to the transitive closure of the adjacency

relation.

Definition 2 (transitory structure). A transitory structure (TS) is a set π
of links satisfying the following conditions:

1. if two links are one above the other, then they have opposite polarity;



6 Roberto Maieli

2. if two links have a top (resp. bottom) place in common, then they must have
the same polarity;

3. if two negative links have a top place in common, then they must share their
(unique) bottom place.

Moreover, a TS π is called:

– bipolar (BTS), if any place occurring at the top of some positive link of π also
occurs at the bottom of some negative link of π and vice-versa (the bottom
place of any negative link also occurs at the top of some positive link);

– negative hyperlink, if it is a set of, at least two, negative links with same
bottom place;

– positive hyperlink, if it is a set of connected positive links;
– bipole, when it contains exactly one positive link; a bipole is then called

elementary (or multiplicative) when it does not contain any negative hyperlink.

Finally, in a TS π, the set of bottom (resp., top) places that do not occur at the
top (resp., bottom) of any link of π is called the bottom (resp., top) border or
frontier of π. If the top border of π is empty, then π is called closed. A place
shared by at least two links of the same polarity is called (additive) multiport.

A CB

O O
&

AO(B&C) = (AOB)&(AOC)

⊗ ⊗

A B C

ED

⊕

((A⊗D⊥)⊕ C))⊗ B ⊗ E⊥ = (A⊗D⊥ ⊗ B ⊗E⊥)⊕ (C ⊗ B ⊗ E⊥)
⊕

O O O
&

⊗ ⊗

Fig. 1. links, hyperlinks, bipoles and bipolar transitory structures

Intuitively, w.r.t. the standard syntax of proof nets of linear logic, nega-
tive (resp., positive) links correspond to generalized (i.e., n-ary) O-links (resp.,
⊗-links). Similarly, negative (resp., positive) hyperlinks correspond, modulo dis-
tributivity and associativity of linear connectives, to generalized & (resp., ⊕)
of negative (resp., positive) links. Instances of negative and positive hyperlinks
are, respectively, given in the leftmost and middle side pictures of Fig. 1, where
links are enclosed within dashed lines; graphically, these hyperlinks represent
the distributive law of negative (O/&), respectively, positive (⊗/⊕) connectives.
An instance of BTS is also given in the rightmost picture of Fig. 1, with two
bipoles enclosed within dashed lines (bullets, •, graphically represent multiports).
Intuitively, bipoles correspond to bipolar inferences of the sequent calculus.

3.1 Retraction of bipolar transitory structures

We are interested in those BTSs that correspond to bipolar focusing sequent
proofs: these correct BTSs will be called bipolar transitory nets (BTN). In the
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following we will give a geometrical way to characterize BTNs: actually we will
show that BTNs are those BTSs whose abstract structures retract, by means
of sequences of rewriting rules (graph deformation steps), to special terminal
collapsed graphs . This retraction technique was primarily exploited by Danos in
his thesis ([6]), limited to the multiplicative proof structures (see rules R1, R2

and R3 of Definition 5) and then extended by Maieli in [14] to the multiplicative
and additive proof structures. The latter work provides a binary version of rules
R5 and R6 of Definition 5 that only works with closed proof structures labeled
by boolean monomial weights (see [9]). Here, we further extend these techniques,
by generalizing the rules above, to weightless proof structures that are focusing,
bipolar, possibly open and with n-ary links.

Definition 3 (abstract structure). An abstract structure (AS) is a undirected
graph π∗ equipped with a set C(π∗) of pairs of coincident edges: two edges are
coincident if they share at least a vertex, called base of the pair. Each pair has a
type α ∈ {O,&, C} (where C denotes the additive contraction). We call cluster
of type α a tuple of edges that are pairwise pairs of C(π∗) with type α. A pair
(resp., cluster) is graphically denoted by a crossing arc close to the base. Some
pending edges (i.e., edges that are incident to only one node) of an AS are called
conclusions (resp. hypotheses) of the AS. We call collapsed any acyclic AS π∗

with at most a single node and C(π∗) = ∅.

Notation: a dashed edge incident to a vertex v is a compact representation of
possibly several edges (with possibly clusters) incident to v; variables a, b, c, ...
denote (dashed) edges; possibly partially dotted arcs with labels α ∈ {O,&, C}
are compact representations of pairs (clusters) of type α; vertices may be denoted
by naturals inside (dotted) circles À, Á, ... . A cluster of n edges, a1, ..., an, with
type α, is denoted by α(a1, ..., an) (sometimes, simply αn).

Definition 4 (abstraction). We may transform (abstract) a given BTS π,
with bottom border Γ and top border ∆, in to an AS π∗ (also abstraction of π)
with conclusions Γ and hypothesis ∆, built by applying the following procedure:

1. a link+ with border a1, ..., an becomes a vertex with incident edges a1, ..., an;
2. a link− with top places a1, ..., an and bottom place b becomes a vertex that is

base for a cluster O(a1, ..., an) and with b as an additional incident edge;
3. a place (multiport) a that is bottom (resp., top) place of n links− becomes

a vertex that it is base of a cluster &(a1, ..., an) (resp., C(a1, ..., an)) with n
copies of a, and with an additional incident edge labeled by a;

4. a place (multiport) a that is top (resp., bottom) place of n links+ becomes a
vertex that is base of a cluster C(a1, ..., an), with n copies of a, and with an
additional incident edge labeled by a;

5. we may compact π∗ by some applications of structural retractions R1, R2.

Definition 5 (retraction system). Given an AS π∗, a retraction step is a
replacement (also, deformation or rewriting) of a subgraph S (called, retraction
graph) of π∗ with a new graph S′ (called, retracted graph), leading to π′∗ according
to one of the following rules R1, ..., R9.
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R1 (structural): with the condition that, like in Fig. 2, the retraction graph of
π∗ contains a vertex À with only two incident edges, a and b, none of them
pending; then, this graph is replaced in π′∗ by a single new edge c s.t. any
pair of C(π∗) containing a or b is replaced in C(π′∗) by a pair of the same
type and with c at the place of a or b.

R2 (structural): with the condition that, like in Fig. 2, the retraction graph
of π∗ contains two distinct vertices À and Á with a common edge c not
occurring in any pair of C(π∗); then, one of these two nodes, À or Á, together
with the edge c, does not occur in π′∗; moreover, C(π∗) = C(π′∗).

R3 (multiplicative): 1 with the condition that, w.r.t. the retraction graph of π∗

in Fig. 2, all vertices are distinct and there exists a cluster O(a1, ..., an), with
base in À, whose edges, an−1 and an are also incident to vertex Á; moreover,
an−1 and an do not occur in any pair, except the cluster O(a1, ..., an). Then,
π′∗ (resp. C(π′∗)) is obtained from π∗ (resp. from C(π∗)) by erasing an (resp.,
by replacing O(a1, ..., an) with O(a1, ..., an−1)).

R4 (associative): 2 with the conditions that, w.r.t. the retraction graph of π∗

in the Fig. 2 (all vertices are distinct):
1. vertex À is a base for the cluster α(a1, ..., an);
2. vertex Á is a base for the cluster α(b1, ..., bm);
3. α ∈ {O,&, C} and n,m ≥ 2;
4. the only edges incident to the vertex Á are b1, ..., bm, an.

Then, the edge an (resp., vertex Á) does not occur in π′∗ and both clusters,
α(a1, ..., an) and α(b1, ..., bm) of C(π∗), are replaced in C(π′∗) by an unique
cluster α(a1, ..., an−1, b1, ..., bm) with base in vertex À.

1

b

a

c R1
1

1

a

b

a

b

2
c  R2

O
1

2

1

2
an−1an

b

c

a1

b

c

an−1

O R3

a1
1 1

b1 bm. . .

 R4

. . .an−1a1

. . .b1 bm

a1 an

c c

α

. . .
2α α

Fig. 2. structurals (R1, R2), multiplicative (R3) and associative (R4) retractions

R5 (distributive): 3 with the condition that, w.r.t. the retraction graph of π∗

in Fig. 3, all vertices are distinct and each vertex vi (1 ≤ i ≤ n) has only
ai, bi and ci (1 ≤ i ≤ n) as incident edges with the following conditions:
1. ci is an edge occurring in the cluster &(c1, ..., cn, d) with base in vh;
2. bi is an edge occurring both in the cluster C(b1, ..., bn), with base in vertex

vk, and in the cluster Oi(ai, bi), with base in vertex vi;
3. ai is a non empty bundle of edges occurring in the cluster O(ai, bi);

moreover, each edge e ∈ ai must satisfy one of the following conditions:

1 Intuitively, this rule corresponds to the replacement of an axiom by its η-expansion.
2 Intuitively, this rule corresponds to the associativity of, respectively, O,& and C.
3 A reminiscence of the distributivity (&n

i=1(aiOf))&d a` (&n
i=1(ai)Of)&d (see [14]).
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(a) either it is a pending edge or an edge incident to a vertex with only
pending edges not labeled by any conclusion of π∗; in that case, there
must exist at least such an analogous edge for each bundle a1, ..., an;

(b) or it must occur in a C cluster and, in that case, for each bundle
a1, ..., an, there must exist exactly one edge that occurs in this C
cluster too.

Then, π∗ retracts to π′∗ like in Fig. 3. Observe that edges b1, ..., bn, except
one, bi, do not occur in π′∗; similarly, the cluster C(b1, ..., bn) /∈ C(π′∗).
Moreover, new edges g and e are added to π′∗ (similarly, new pairs,
O(bi, g) and &(d, e) occur in C(π′∗) with base, respectively, in the new
vertex vh′ and vh′′).

R6 (semi-distributive): 4 with the condition that, w.r.t. the retraction graph of
π∗ in Fig. 3, all vertices are distinct and each vertex vi, with 1 ≤ i ≤ n, has
only ai, bi and ci (1 ≤ i ≤ n) as incident edges with the following conditions:
1. ci is an edge occurring in the cluster &(c1, ..., cn, d) with base in vh;
2. bi is an edge occurring in the cluster C(b1, ..., bn) with base in vk;
3. ai is, possibly, a bundle of edges occurring neither in a pair with bi nor

in a pair containing ci.
Then, π∗ retracts to π′∗ like in Fig. 3. Observe, π′∗ does not contain any
b1, ..., bn except one, bi, (resp., C(b1, ..., bn) /∈ C(π′∗)). Finally, in π′∗ we
add a new edge g and a new vertex vh′ (resp., a, possibly, new cluster
&(d, g′) ∈ C(π′∗) with base vh′).

i

h

k

a1 ai an

1 i n

d1 ... n...

a1 ...
...

cic1 cn

...

b1 bi bn

an

d &

f
...

ai

Oi

C

O1

&

k

O
bi g

e

c c

h

h′

h′′ R5

&

cncic1
f

On

1 i n

h

...

ai
k ni... ...

anai

1

a1

d
...

bi
bn

c1 ci cn

c1 ci cn

&

... an

f

a1 ...

k

 R6

f

d
&

bi

g

c c

h

h′

C

&
b1

Fig. 3. retraction rules: distributive (R5) and semi-distributive (R6)

R7 (&-annihilation): with the conditions that, w.r.t. the retraction graph of π∗

in Fig. 4, all vertices are distinct and each ai, with 1 ≤ i ≤ n, is an edge
occurring in the cluster &(a1, ..., an); moreover, each ai must belong to a
collapsed subgraph of π∗ non containing conclusions of π∗, with the condition
that any couple ai, aj (1 ≤ i, j ≤ n) cannot belong to the same collapsed graph.
Then, in π′∗, each ai will be disconnected from vh (so, &(a1, ..., an) /∈ C(π′∗)).

R8 (O-annihilation): with the condition that, w.r.t. the retraction graph of
π∗ in Fig. 4, all vertices are distinct and edges a1, ..., an occur in a cluster
O(a1, ..., an); then, π∗ retracts to π′∗, like in Fig. 4, whenever d is:

4 Reminiscence of the semi-distributivity (&n
i=1(f ⊗ ai))&d a (f ⊗ (&n

i=1(ai))&d ([14]).
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1. either a bundle of pending edges not labeled by any conclusion of π∗ and
not occurring in a pair with any ai;

2. or a bundle of pending edges not occurring in any pair with any ai and e
is also a bundle of pending edges with at least one of them labeled by a
conclusion of π∗ and none of them occurring in a pair with any ai.

Then, in π′∗ the edge an will be disconnected form vertex À; therefore, C(π′∗)
will contain all the pairs of C(π∗) except those one containing an.

R9 (merge): with the condition that, w.r.t. the retraction graph of π∗ in Fig. 4,
all vertices are distinct and χ∗1 and χ∗2 are both collapsed AS made, resp., by
a vertex À and a vertex Á, with, resp., only pending edges a1, ..., an≥1 and
b1, ..., bm≥1, with bm that is neither a conclusion nor an hypothesis of π∗.
Then, π′∗ is obtained by gluing χ∗1 with χ∗2 and erasing Á and bm.

&
 R7

c c

1 i i
a1 an

a1 ai an

. . .. . . . . . . . .

ai

n 1 n

h h

d1 di dn d1 di dn

1

2

c

2

e

c

1

3O
an−1

3

d

an−1an Oa1 a1
an

 R8

d e

21

a1
. . . . . .

bmb1an

 R9

a1
. . . . . .

b1

1

an bm−1

χ∗
1 χ∗

2 χ∗
3

Fig. 4. retraction rules: annihilations (R7 and R8) and merge (R9)

We say that π∗ retracts to π′∗ when there exists a non empty finite sequence
of retraction steps starting at π∗ and terminating at π′∗; then, we say that π∗ is
retractile when there exists a σ∗ 6= π∗ s.t. π∗ retracts to σ∗. A non retractile AS
is called terminal. A sequence of retraction steps is said complete when it ends
with a terminal AS. An AS collapes when it retracts to a collapsed graph. A pair
of possible (or admissible) retraction instances for π∗, Ri and Rj , with i 6= j, is
called a critical pair (denoted by Ri|Rj) when the application of Ri inhibits the
application of Rj (or vice-versa).

Theorem 1 (convergence of retraction). If π∗ is an AS with conclusions
Γ and hypothesis ∆ then, any complete retraction sequence starting at π∗ ends
with a terminal AS χ∗; moreover, if χ∗ is collapsed, then any complete retraction
sequence starting at π∗ ends with χ∗.

Proof. Termination is proved by (lexicographic) induction on the complexity
degree of π∗, that is, a triple 〈]P, ]N, ]E〉, where ”]P”, ”]N” and ”]E” denotes
the number of, respectively, pairs, nodes and edges of π∗.

For the confluence, we reason, analogously, by induction on the complexity
degree of the starting π∗. The crucial point is to show that for each critical pair,
R5|R5, R5|R8 and R8|R8, we can find, in a few steps, an almost local confluence
strategy that allows to apply the hypothesis of induction.

Assume π∗ collapses by a retraction sequence S. For simplicity reasons, we use
natural numbers to denote the border of the retraction (resp. retracted) graph.



Construction of retractile proof structures 11

R5|R5. Assume S starts with an instance of R5, leading to π∗1 ; moreover, assume
π∗ may also retracts, by a different instance of R5, to π∗2 6= π∗1 . We reason by
induction on the complexity degree of π∗. Then the proof follows by showing
a local confluence by means of two instances of rule R6, like in Figure 5.

 
R
5

O O

CC

1

C

1

C

&

&

&

O

O

Oπ∗

σ∗

&

1

π∗2

π∗1

 R 5  
R
6

 R 6

Fig. 5. confluence of a critical pair R5|R5

R5|R8. Assume S starts with an instance of R5, leading to π∗1 ; moreover, assume
π∗ may also retract, by an other admissible instance of O-annihilation R8 to
σ∗1 6= π∗1 . By definition of R5 (case 3a), the only admissible case of rule R8 is
case 1. So, we reason by induction on the complexity degree of π∗. Then the
proof follows by showing a local confluence, like in Figure 6.

R8|R8. Assume S starts with an instance of R8, leading to π∗1 ; moreover, assume
π∗ also retracts, by an other admissible instance of R8, to π∗2 6= π∗1 , like
in Figure 7. Now observe that we can apply to both π∗1 and π∗2 the same
retraction rules, modulo some irrelevant labeling, and finally converge to the
same correct by a last application of the merge rule R9.

Observe that, for the way distributive and semi-distributive retraction rules are
defined, it never occurs the case of a non critical pair (R5, R6) like in Figure 8,
where the C-cluster with base in vertex 2 is partially shared by the two retraction
rules R5 and R6. Indeed, it never occurs the case, except the multiplicative
retraction, that a cluster is partially shared by the retraction graphs of two
retraction rules.
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Fig. 6. confluence of a critical pair R5|R8
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Fig. 7. confluence of a critical pair R8|R8
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Fig. 8. a pseudo non-critical pair R5|R6
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Next Lemma 1 intuitively says that abstraction commutes under retraction;
it will play a crucial role in the sequentialization of BTSs (Theorem 2, Sect. 4).

Lemma 1 (abstraction). Assume π∗ is an AS that retracts to π′∗ by an in-
stance of Ri (i = 1, ..., 9) and assume there exists a BTS π that abstracts to π∗;
then, we can find a BTS π′ whose abstraction is π′∗.

Proof. For each case Ri=1,...,9, we show how to locally deform some bipoles of
the given BTS π in such a way to get a BTS π′ whose abstraction is π′∗.

1. If i = 1 (resp., i = 2), then the proof follows simply by the definition of the
abstraction procedure (point 5 of Definition 4).

2. If i = 3, then assume π abstracts to a π∗ which retracts to π′∗, by an instance
of multiplicative retraction R3 following the notation given in Figure 2.
Assume π is like in the left hand side picture of Figure 9, with bipoles β1
and β2 enclosed within dotted lines; then we can build a BTS π′ simply by
replacing in π bipoles β1 and β2 with bipoles β′1 and β′2 like in the contiguous
picture. Clearly, π′ abstracts to the π′∗ as given in Figure 2, with the bundle
c, possibly, partitioned in two sub sets, c′ (on the top) and c′′ (on the bottom).

β′2

+

−

b
+

+

a1an−1 . . .a1an−1an
+
b

. . .

−

c′′ c′′

c′c′

π: π′:

β′1β1

β2

Fig. 9. abstraction under (multiplicative) retraction R3

3. If i = 4, then assume π abstracts to a π∗ which retracts, by an instance of
associative retraction R4, to π′∗ following the notation given in Figure 2;
then we distinguish two cases, according to the type of the cluster, α:
(a) if α =O (resp., α = &), assume π appears like in the Picture case (a) of

Figure 10. Then, we can build a BTS π′ simply by replacing bipoles β1
and β2 with the unique bipole β′1. Clearly, π′ abstracts to π′∗ like in the
retraction rule R4 of Figure 2.

(b) otherwise, α = C, then we reason like before except for the reference to
the Picture case (b) of Figure 10. We could also assume a partitioning of c
in to a cluster O(c′) and a bundle of edges c′′, respectively, on the top and
on the bottom of β1 and β′1. Observe that, in this case a partial renaming
(a partial substitution) of the additive multiport, corresponding to the
cluster C(a1, ..., an−1, b1, ..., bm), will be necessary in the BTS π′, in such
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Picture case (a)

+
cc

−

+

ana1
+

−

−

. . .

. . .

a1 b1. . .

b1

. . .an−1 bm

bm

π: π′:

β′1

β2

β1

Picture case (b)

+

−

+

+

−

−

. . . bmb1

. . .
a1

. . .

an−1a1
. . .

c′′ c′′

an−1 c′c′

bmb1

π: π′:

β2

β1 β′1

Fig. 10. abstraction under associative retractions R4

a way that the tuple (a1, ..., an−1, b1, ..., bm) would represent different
copies of the same address (remind, by Definition 1, a link consists of
two disjoint sets of ports).

Remark : observe that a positive (resp., negative) link with an unique top
and bottom place plays the role of a ”polarity inverter”, widely used in the
most part of polarized fragments of LL.

4. If i = 5 (resp., i = 6), then we reason like in the previous case, except for:
(a) the reference to the notation of the retraction rule R5 (resp., R6) as given

in Figure 3;
(b) the abstraction of both π and π′ as given in the two contigous pictures

of Figure 11 (resp., Figure 12).

c′′
+

c1 ci cn

+
f

b1 bi bn
a1 ai an

−1 −i −n

. . .. . .. . .

π:

d

β2

β1
c′

c′′

+

c1 ci cn

a1 ai an

−1 −i −n

d
−

+

+

f

. . . . . .

β2

β′′1

β′1

π′:

bi
g

e
c′

Fig. 11. abstraction under retraction R5

5. Cases i = 7, 8, 9 are similar. We only mention the case i = 8. Assume
π∗  R8

π′∗, w.r.t. the notation given in Figure 4, and assume π is like on left
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βn
2

+

c1 ci cn

−1 −i −n

+1 +i +n

−

d

f

a1 ai an. . .. . . . . .

g1 gi gn

. . . . . .π:

β1
2

βi
2

β1

c′

c′′

g
+

c1 ci cn

−1 −i −n

+1 +i +n

a1 ai an

−

−

+

d

fg1 gi gn

. . . . . .

β′′1

β′1

π′:

β′12 β′i2 β′n2

c′

c′′

bi

Fig. 12. abstraction under retraction R6

hand side picture of Figure 13. Then, we can build a π′, by simply replacing
in π bipoles β1, β2, β3 with bipoles β′1, β2 and β3, like on the right hand side
picture of Figure 13. Clearly, π′ abstracts to the retracted AS π′∗ as given in
the retraction rule R8 of Figure 4.

β3

+

−

c

+
d

π:

an

e
+

. . .an−1a1

β1

β2 β3

+

−

c

a1
+
d

an
an−1

+

π′:

e

. . .

β′1

β2

Fig. 13. abstraction under retraction R8

Definition 6 (bipolar transitory net). A BTS π with bottom border Γ and
top border ∆, is correct, that is a bipolar transitory net (BTN), when its ab-
straction π∗, with conclusions Γ and hypothesis ∆, collapses.

Example 2. In Fig. 14 we give an instance of (closed) BTS π (Pic. A1) obtained
by juxtaposing bipoles β1, β2, β

′
3, β
′′
3 , β

′
4 and β′′4 . Observe, π is correct (it is a

BTN) since its abstraction π∗ (Pic. A2) collapses after few retraction steps:
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1. first we get the AS of Pic. A3 after some instances of distributive retraction
R5 applied to the dotted retraction graph of Pic. A2;

2. then we get the AS of Pic. A4 after a couple of instances of semi-distributive
retractions R6 applied to the dotted retraction graphs of Pic. A3;

3. finally, we get the collapsed graph after three multiplicative retractions
instances R3 applied to the dotted retraction graphs of Pic. A4 (modulo
some structural retractions).

+

− −

+

− −
ba

x
g h

+ +

e

+ +

f

d

c

⊕

⊕

&1

&2

β1

β2

β ′
3

β ′′
3

β ′
4

β ′′
4

Picture A1

x
g h

e

f

OO

C

C

&1

C

C

d

c

C

CC

Picture A2

&2

a b

C C

C C

y
h

x
g

d eba

c

O

&2 &1

f
P icture A3

Picture A4

O

c

f

g h

yx

Fig. 14. bipolar net (Pic. A1) with its collapsing abstractions (Pics. A2,3,4)

3.2 Construction of transitory nets via optimal retraction

Analogously to the construction of bipolar focusing sequent proof seen in Sect. 2,
in the construction of BTNs, places are decorated by type information, that is,
occurrences of negative atoms. A bipole β is viewed as an agent which continuously
attempts to perform a bottom-up expansion step of the given BTN π: this step
consists of adding (by a gluing operation ”?”) a non empty cluster (a sum, indeed)
of bipoles from the top border places whose types match the trigger, i.e. the
bottom places, of the given bipoles. Not all construction steps are admissible.
We will only consider those ones that preserve correctness by retraction. Now,
checking correctness of an expansion is a task which, a-priori, repeatedly involves
visiting (i.e., retracting) the whole portion of the expanded BTS. Actually, we
could avoid, at each construction step, considering the whole structure built up,
by e.g. taking advantage of the incremental construction in such a way to reduce
the complexity of the contraction task. That is exactly the content of the next
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Corollary 1, immediate consequence of the Convergence Theorem 1. Intuitively,
Corollary 1 allows us to incrementally pursue an optimal retraction strategy that
manages, when they exist, abstract correction graphs that are strictly smaller
(w.r.t. the complexity degree) than the starting ones.

Corollary 1 (optimal retraction). Let π be a BTN (with a non empty top
border) and let β a non empty cluster (a sum) of bipoles, whose bottom border
matches some places of the top border of π. Assume π abstracts to π∗ and assume
η∗ is the AS, which π∗ retracts to, by only applying those retraction instances
whose retraction graph does not contain pending (border) edges. Then, (π ? β)∗

collapses iff η∗ ? β∗ collapses too.

Example 3. We graphically show a reason why Corollary 1 ”delays” those retrac-
tions that involve the border of the abstraction associated to the BTN to be
expanded. Actually, assume π abstracts to an AS π∗ with hypothesis a, b, d, e, f
and conclusion c, like in the graph below the dotted line of Pic. B1 in Fig. 15.
Assume π′∗ is obtained from π∗ by an instance of distributivity R5 applied to
the couple of O-pairs with, respectively, base Á and Â, like in the graph below
the dotted line of Pic. B2: this retraction involves the border a, b and d. Now, if
we expand π∗ by the (abstract) sum of bipoles (β1 ⊕ β2)∗, through the border
d, e, we get the AS π∗ ? (β1⊕ β2)∗ (the whole Pic. B1) whose retraction does not
collapse5 while the expanded AS π′∗ ? (β1 ⊕ β2)∗ (the whole Pic. B2) collapses.

1

2 3 4

5

b

c

a f

π∗:

O

C

d e
C OO

(β1 ⊕ β2)
∗

&

Picture B1

3 4
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C

e

(β1 ⊕ β2)
∗

&

5

&

O
π′∗:

1

2

c

a

b d

P icture B2
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+ +

c

⊕

⊕

&2

β ′
3

β ′′
3

β ′
4

β ′′
4

− −
&1

+

−

x

+

f

d e

β2

β ′
1

β ′′
1

y

P icture C

Fig. 15. expansion steps (Pics. B1, B2) and a BTS (Pic. C)

5 It is no longer possible to apply rule R5 since condition 3b of Definition 5 is violated.
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4 Sequentialization of bipolar transitory nets

In this section we show that correct BTSs correspond (sequentialize) to proofs of
the bipolar focusing sequent calculus and vice-versa.

There exists an almost direct correspondence (modulo associativity and dis-
tributivity of linear connectives) between a sequential bipole B and a an additive
sum of bipoles B = {β1 ⊕ · · · ⊕ βn≥1}, as follows:

1. the positive layer of B corresponds to the positive hyperlink made by the
positive links of B connected through the border (see Definition 1);

2. the negative layer of B corresponds to the set of negative hyperlinks of B;
3. the negative literals (i.e., atoms) of B correspond to the top places of B while

(the dual of) the positive literals of B correspond to the bottom places of B;
4. each bipole βi corresponds to the i-th bipolar inference induced by the

sequential bipole B (see Example 1 in Sect. 2).

In general, ports (resp. multiports) correspond to a single (resp., multiple)
occurrence of literals. Then, we say that a bipolar sequential proof Π with
hypothesis ∆ and conclusions Γ de-sequentializes to π, when π is a BTN with top
border ∆ (resp., bottom border Γ ) and each instance of the i-th bipolar inference
induced by B ∈ Π corresponds to a bipole βi ∈ π. The other way round, from
BTNs to bipolar sequential proofs, is called sequentialization.

Theorem 2 ((de-)sequentialization). A sequent proof Π, with conclusions
Γ = c1, ..., cn and hypothesis ∆ = d1, ..., dm), de-sequentializes in to a BTN π,
with bottom places Γ and top places ∆.

Proof. By induction on the number of bipolar inferences of Π∆
Γ . Assume the last

bipole of Π is B, like in the derivation of Picture A in Figure 16. By the induction
hypothesis, we know that each Π∆i

Γi
, with 1 ≤ i, j ≤ n, de-sequentializes to a

BTN πi whose corresponding AS π∗i collapses in to χ∗i . Moreover, we know that,
modulo associativity and distributivity of linear connectives, the bipolar inference
B of Π corresponds to the bipole β in the picture B of Figure 16. Clearly β
abstracts to the obvious β∗. So, we may glue χ∗1, ..., χ

∗
m with β∗ through the

common border and, finally, we may retract the resulting AS until the collapsed
graph with pending edges Γ and ∆, like in Picture C of Figure 16.

Remark 1. In the proof of the de-sequentialization part we took the same ”mini-
mal” decision made by Girard in [9], that is: given a sequential proof with an
additive inference

Π1

Γ,A

Π2

Γ,B
Π : &

Γ,A&B

”how do we know that a formula or a link X of Π1 is the same as another
formula or link Y of Π2 ? There is no simple answer [...] there is at least
the possibility to decide that no identification between Π1 and Π2 is made,
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Π∆1
Γ1

. . . Π∆i
Γi

. . . Π
∆j

Γj
. . . Π∆n

Γn

ΠΓ
∆: B

Γ = Γ ′, Γ ′′

Picture A

Picture C

. . . C

∆i ∆j

. . .

. . .
Γ ′i Γ ′j

c′′h ∈ Γ ′′

β:

− −

⊗
k1

. . .

&k

O O

1 m ≤ nk

. . . . . .

β∗:

χ∗j. . .. . . χ∗i

m < n

Γ ′ Γ ′
. . .

Γ ′i ⊆ Γi Γ ′j ⊆ Γj

Picture B

Fig. 16. a de-sequentialization step

but for the conclusions, i.e. the formulas of Γ ; by the way the sequent
calculus formulation of the &-rule stipulates that the contexts of the two
premises must be equal, hence this is a clear case where there is no doubt
as to the identification between a formula in Π1 and a formula in Π2.”
(Girard, [9], pp. 7-8).

The other ”maximal” decision might be to follow Hughes and van Glabbeek
in [11]: they, roughly, identify everything in a proof structure that is immediately
below the axioms links; in other words, they, move all the additive contractions
immediately below the axiom links (in a canonical form). This seems an elegant
solution for representing closed proof structures but not for juxtaposing open
modules with, a-priori, ”non canonical” additive contractions (see also Section 5).

”Anyway, the main problem is to find a sequentialisation theorem ; this
means to give an intrinsic characterization of sequentialisable proof-
structures.”(Girard, [9], page 8).

Theorem 3 (sequentialization). A BTN π, with bottom places Γ and top
places ∆, sequentializes in to a bipolar sequential proof Π, with conclusions Γ
and hypothesis ∆, in such a way that each bipole β of π corresponds to a bipolar
inference B in Π.

Proof. It is given by induction on the complexity degree of the abstraction π∗

corresponding to the given π. By the the stability of abstraction under retraction
(Lemma 1), we show that at each retraction step π∗  Ri π

′∗, for i = 1, ..., 9, it
is possible to recover a BTN π′ from the retracted ATS π′∗, with same border.
Then, by hypothesis of induction, π′ sequentializes to a proof Π

′∆′

Γ ′ from which,
finally, by deformations of Π ′, that is, permutations of some bipolar inferences
of Π ′, we get a sequential proof Π∆

Γ .
We reason by cases, according to Ri, with 1 ≤ i ≤ 9. We only show few

interesting cases (the other ones are similar and so omitted).
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Case i = 6 (semi-distributive) . Assume π∗  R6
π′∗, then, by Lemma 1, we

know how to build a BTN π′ that abstracts to π′∗; so, assume π and π′ are
like in Figure 12. Then, by hypothesis of induction, π′ sequentializes to the
following bipolar focusing sequential proof Π ′:

Σ1

...

Γ1, c
′

Σ′2,i

...

Γ ′2, ai. . . β
′i
2 . . .

Γ ′2, gi

Σ′′2
...

Γ ′′2 , f β′1Γ2, g

Σ2

...
Γ2, d

Π ′ : β′′1Γ, c′′

...

Now, simply, by permuting n-copies of the sub-proof Σ′′2 of Π ′ we can build
the proof Π below, according to the notation of Figure 12 (observe: bipoles
β′i2 , β

′
1 and β′′1 are replaced by bipoles βi2 and β1, for 1 ≤ i ≤ n).

Σ1

...

Γ1, c
′

Σ′2,i

...

Γ ′2, ai

Σ′′2
...

Γ ′′2 , f. . . βi2 . . .
Γ2, gi

Σ2

...
Γ2, d

Π : β1
Γ, c′′

...

The other possible cases, obtained by adding (resp., removing) some top (resp.,
bottom) places in (resp., from) the involved bipoles, are treated analogously
and so omitted.
Remark : observe how, in this case, the induction step of the proof (prove that
”if π′ sequentializes, then π sequentializes too”) follows (indeed, exploits) the
correct direction of the semi-distributivity ((f ⊗ (&n

i=1(ai))&d ` (&n
i=1(f ⊗

ai))&d w.r.t. Figure 3), while the retraction rule R6 follows the opposite
direction ((&n

i=1(f ⊗ ai))&d 6` (f ⊗ (&n
i=1(ai))&d).

Case i = 8 (O-annihilation) . Assume π∗  R8
π′∗ so, by Lemma 1, we know

how to build a BTN π′ that abstracts to π′∗. Assume π and π′ are like in
the Figure 13. Then, by hypothesis of induction, π′ sequentializes in to the
following bipolar focusing sequential proof Π ′:

. . .

Σ′i
...

Γi, a1, ..., an−2, d, e
β3

Γi, a1, ..., an−2,an, e
β2

Γi, a1, ...,an−1, an
β′1Γ, c, an . . .

Π ′ :
...



Construction of retractile proof structures 21

Now, we can easily build the below proof Π from Π ′, simply, by replacing
bipole β′1 of Π ′ with bipole β1 in Π and then by erasing all the occurrences of
an everywhere in the built Π except those ones occurring above the inference
corresponding to β1, following the notation of Figure 13.

. . .

Σi
...

Γi, a1, ..., an−2, d, e
β3

Γi, a1, ..., an−2,an, e
β2

Γi, a1, ...,an−1, an
β1

Γ, c . . .
Π :

...

Observe that the erasing of the occurrences of an can be done safely6, since,
in the built Π, the only bipolar inferences whose trigger may consume the
resource an are those ones corresponding to the bipole β3 (whose abstraction,
by definition of R8, is a collapsed graph): this follows from the fact that,
by Definition 1, an labels a port that in π′ (resp., in π, by the abstraction
Lemma 1) may only occur at the bottom of the bipole β3 (resp., both at the
bottom of β3 and at the top of bipole β1).
Other possible cases, obtained by adding (resp., removing) some top or
bottom places in (resp., from) bipoles (e.g., β3 could contain pending edges
with other conclusions than an) are treated analogously and so omitted.

Example 4. Observe, the closed bipolar net given in Example 2 (Fig. 14, Pic.
A1), sequentializes in to the bipolar focusing proof Π displayed at the end of
Example 1; we illustrates how the sequentialization works in that case. Assume
π (Pic. A1, Fig. 14) abstracts to π∗ (Pic. A2) and assume π∗ retracts to π′∗ like
in Pic. A3, after a block of distributive retractions (without losing generality, we
may treats a sequence of retractions of the same type R5 as a single generalized
retraction R5). By Abstraction Lemma 1 we may build a BTN π′ from π′∗ like in
Pic. C of Fig. 15; then, by hypothesis of induction we know that π′ sequentializes
to the bipolar sequent proof Π ′ below:

B′3g,a, c
B′4a, g,h,d

B′′3g,b, c
B′4b, g,h,d
B2x, g, h, d

B′3g,a, c
B′′4a, g,h, e

B′′3g,b, c
B′′4b, g,h, e
B2x, g, h, e

B′′1x, g, h,y
B′1f

Clearly, π is nothing else that π′ in which we replaced bipoles β′1 and β′′1 with
the single bipole β1. Since bipole β′1 (resp., β′′1 ) corresponds (sequentializes) to
the inference B′1 (resp., B′′1 ), then π sequentializes to Π obtained from Π ′ by
simply replacing the two inferences B′1 and B′′1 with the unique inference B1

which trivially corresponds to bipole β1.

6 In the sense that what we get after the erasing is still a sequent proof.
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An other possible sequentialization of π′ could have been the following sequent
proof (we leave as an exercise to verify the sequentialization of π in that case):

B′3g,a, c
B′4a, g,h,d

B′3g,a, c
B′′4a, g,h, e
B2a, g, h,y

B′′3g,b, c
B′4b, g,h,d

B′′3g,b, c
B′′4b, g,h, e
B′′1b, g, h,y

B2x, g, h, y
B′1f

(Picture H)

5 Conclusions, related and future works

In this work we provided:

1. a very simple syntax for open proof structures (BTSs) that allows to extend
the paradigm of proof construction to the MALL fragment of LL. In particular,
we set a precise correspondence, called sequentialization (Theorem 2) between
focusing bipolar sequent proofs and correct BTSs (i.e., BTNs);

2. a convergent retraction system to check correctness of BTNs (Theorem 1);
3. an optimal strategy for incrementally building BTNs (Corollary 1).

Concerning other attempts to give a theoretical foundation of computational
paradigms based on sequent proof construction, we only mention:

– some works of Pfenning and co-authors, from 2002 and later (see, e.g., [4]),
which rely neither on focusing (or polarities) nor on proof nets but on softer
notions of sequent calculus proofs;

– some works of Miller and co-authors which generalize focused sequent proofs
to admit multiple ”foci”: see, e.g., [15] and [5]; the latter also provides
a bijection to the unit-free proof nets of the MLL fragment, but it only
discusses the possibility of a similar correspondence for larger fragments.
At this moment, we are exploring a direct sequentialization from retractile
transitory nets to, possibly open, multi-focus sequential calculi.

Concerning the related literature on additive proof nets, although there currently
exist several satisfactory syntaxes for MALL proof structures, we briefly discuss
some reasons that lead us to avoid most of them (at least in this first approach):

– Girard, [8]: requiring boolean (monomial) weights over proof structures is a
condition that prevents certain transactional structures: take e.g. a simple
BTS containing a single positive hyperlink or the rightmost BTS of Fig. 1;

– Hughes-van Glabbeek, [11]: similarly to the previous one, this syntax seems
well adapt to take in to account only closed proof structures; actually, it has
the inconvenient of allowing additive contractions only immediately below the
axiom links; although this canonical form has great advantages for semantical
reasons, it does not seem adapted to the composition of arbitrary modules
that may require ”non canonical” contractions.



Construction of retractile proof structures 23

Moreover, since these syntaxes make, more or less, explicit reference to graph
dependencies (like jumps) they, a-priori, seem to garble the ”principle of locality”
required by retraction systems.

Finally, as future works, we aim at investigating:

– the complexity class of the optimal BTNs construction;
– an extension of the retraction system that could preserve BTNs under the

(almost local) cut reduction proposed by Laurent and Maieli in [13].
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