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In this work we present a computation paradigm based on a concurrent and incremental construction
of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment
of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspon-
dence between this paradigm and those more pragmatic ones inspired to transactional or distributed
systems. In particular we show that the construction of additive proof nets can be interpreted as
a model for super-ACID (or co-operative) transactions over distributed transactional systems (typi-
cally, multi-databases).
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1 Introduction

This work takes a further step towards the development of an ambitious research programme, firstly
started by Andreoli in [1], which aims at a theoretical foundation of a computational programming
paradigm based on the construction of proofs of linear logic (LL, [4]). Naively, this paradigm relies on
the following isomorphism: “proof”=“state” and “construction step (or inference)”=“state transition”.
While the view of proof construction is well adapted to theorem proving, it is inadequate when we want
to model the execution of widely distributed applications (typically over the Internet) which are designed
with very flexible, concurrent and modular approaches. Due to their artificial sequential nature, sequent
proofs are difficult to cut into composable (reusable) concurrent modules. A much more appealing
solution consists in using the technology offered by proof nets of linear logic or, more precisely, some
forms of de-sequentialized (geometrical indeed) proof structures in which the composition operation is
simply given by (constrained) juxtaposition, obeying to some correctness criteria.
Actually, the proof net construction, as well as the proof net cut reduction, can be performed in parallel
(concurrently), but despite from the cut reduction, there may not exist executable (sequentializable)
construction steps: in other words, construction steps must satisfy an “efficient” correction criterion.
The resulting paradigm is very close to more pragmatic ones, like those ones coming from transactional
or distributed systems.
Concretely, here, we present a model for the incremental construction of proof nets of the pure mul-
tiplicative and additive fragment of linear logic (MALL, [5]). This model extends the previous one,
given in [2], for the pure multiplicative fragment of linear logic (MLL). In particular, we give a syntax
for bipolar focussing proof-structures that are de-sequentialized (geometrical) representations of possi-
bly incomplete (open or with proper axioms) proofs of the bipolar focussing sequent calculus [1]. This
calculus has the following properties:
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1. the possibly incomplete (open) focussing proofs are strictly isomorphic to the possibly open proofs
of the bipolar focussing sequent calculus;

2. the complete (closed or with logical axioms) focussing proofs are fully representative of all the
closed proofs of linear logic.

Hence by 1 and 2, proof construction can be performed equivalently in these three proof systems of
LL: sequent calculus, focussing sequent calculus and bipolar focussing sequent calculus. Bipolarity and
focussing properties ensure more compact proofs since they get rid of some irrelevant intermediate steps
in the construction.
In [2, 3], the concurrent construction of open (transitory) MLL proof nets was interpreted as an incremen-
tal juxtaposition of link modules (agents) that allows to model the behavior of ACID transactions over
strongly distributed systems. Here the proof construction of transitory MALL proof nets is interpreted as
an additive (super) juxtaposition of interacting slices (multiplicative transitory proof nets). Locally the
concurrent construction of MALL proof nets can be viewed as an incremental juxtaposition of hyper-
links (a disjoint sum of multiplicative links) that, like co-operative agents, allow to model some kinds of
(non-deterministic) co-operation among ACID transactions.

2 Bipolar Focussing Sequent Calculus

We recall some basic definitions of the standard sequent calculus of MALL, then we introduce the related
bipolar focussing sequent calculus, based on the crucial properties of focussing and bipolarity (find more
in [1], [6] and [7]). We, arbitrarily assume literals a,a⊥,b,b⊥, ... with a polarity: negative for atoms and
positive for their duals, then given a set A of atoms, an A -formula is a formula built from atoms and
their duals, using the (two groups of) connectives of MALL: negative, O (”par”) and & (”with”) and
positive, ⊗ (”tensor”) and ⊕ (”plus”). Finally, a proof of MALL is build by means of the following
(groups of) inferences:

identity : ax
A,A⊥ multiplicatives : Γ,A ∆,B ⊗

Γ,∆,A⊗B
Γ,A,B

O
Γ,AOB

additives : Γ,A Γ,B
N

Γ,ANB
Γ,A ⊕1

Γ,A⊕1 B
Γ,B ⊕2

Γ,A⊕2 B

The focussing property states that, in the proof search (or proof construction), we can build (bottom up)
a sequent proof by alternating clusters of negative inferences followed by clusters of positive inferences.
As consequence of this bipolar alternation we obtain more compact proofs in which we get rid of the
most part of all the bureaucracy hidden in sequential proofs (as, for instance, irrelevant permutation
of rules): what remains is a focussing bipolar proof. Remind that w.r.t. proof search negative (resp.,
positive) connectives involve a kind of don’t care non-determinism (resp., true non-determinism).

An A -monopole is an A -formula built on negative A -atoms using only the negative connectives; an A -
bipole is an A -formula built from A -monopoles and positive A -atoms, using only positive connectives;
moreover, bipoles must contain at least one positive connective or be reduced to a positive atom, so that
they are always disjoint from monopoles.
Given a set F of A -bipoles, the bipolar focussing sequent calculus Σ[A ,F ] is a set of inferences of the
form:

Γ1 . . . Γn F
Γ
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where the conclusion Γ is a sequent made by only of negative A -atoms and the premises Γ1, ...,Γn

are obtained by fully focussing decomposition of some bipole F ∈F in the the context Γ (a multiset
of negative atoms). More precisely, due to the presence of additives (in particular the ⊕ connectives) a
bipole F is naturally associated to a set of inferences F1, ...,Fm+1, where m is the number of⊕ connectives
presents in F . For instance, in the purely multiplicative fragment of LL, the bipole F = a⊥⊗ b⊥⊗
(cOd)⊗ e, where a,b,c,d,e are (negative) A -atoms, yields the inference on the left-hand side (more
compact w.r.t. the explicit one on the right hand side):

Γ,c,d ∆,e
F

Γ,∆,a,b
⇔

Γ,c,d
O

Γ,cOd ∆,e ⊗
Γ,∆,(cOd)⊗ e b,b⊥ a,a⊥

⊗
Γ,∆,a,b,a⊥⊗b⊥⊗ (cOd)⊗ e

where Γ,∆ rage over a multiset of negative A -atoms. Note that the identity axioms a,a⊥ and b,b⊥ are
omitted in the bipolar sequent proof for simplicity sake. The couple a,b here plays the role of a trigger
or mutlifocus of the F-inference; more generally, a trigger of a bipole is a multiset of duals of the positive
atoms which occurs in it. The main feature of the bipolar focussing sequent calculus is that its inferences
are triggered by multiple focus (like in Forum [8]).
The bipolar focussing sequent calculus is proved (Theorem 1, see [1]) to be isomorphic to the focussing
sequent calculus, so that proof construction can be performed indifferently in the two systems. The main
idea exploited in the proof of Theorem 1 is the bipolarisation technique, that is a simple procedure that
allows to transform a provable formula F in the LL sequent calculus into a set of bipoles (belonging to an
“universal program” in the bipolar sequent calculus). For our purpose, we briefly illustrate this technique
only for the MALL fragment, with an instance given in the Example1.

A naming scheme is a triple 〈A ,A ′,η〉 where A ⊂ A ′ are sets of negative atoms and η is a bijection
from the A -formulas into A ′ such that ηa = a for all a ∈ A . The universal program for a naming
scheme 〈A ,A ′,η〉 is the set of A ′-bipoles of the form ν(F) where F ranges over the A -formulas not
reduced to a negative atom. The ν-mapping on A -formulas is defined in three steps as follows:

1. (negative layer) mapping ν↑ from A -formulas to A ′-monopoles

ν↑(F1OF2) = ν↑(F1)Oν↑(F2)
ν↑(F1&F2) = ν↑(F1)&ν↑(F2)

ν↑(F) = ηF in all the other cases;

2. (positive layer) mapping ν↓ from A -formulas to A ′-bipoles or monopoles

ν↓(F1⊗F2) = ν↓(F1)⊗ν↓(F2)
ν↓(F1⊕F2) = ν↓(F1)⊕ν↓(F2)

ν↓(a⊥) = a⊥ if a is a negative atom
ν↓(F) = ν↑(F) in all the other cases;

3. mapping ν from A -formulas to A ′-bipoles

ν(F) = η⊥F ⊗ν↓(F).

Theorem 1 (universal program) Given a naming scheme 〈A ,A ′,η〉, let U be its universal program.
For any A -formula F there is an isomorphism between the focussing proofs of F in linear logic and the
proofs of ηF in the bipolar focussing sequent calculus Σ[A ′,U ].
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Example 1 Assume an A -formula F = (a&b)O((a⊥⊕ b⊥)⊗ c⊥)O(c⊗ (d⊥⊕ e⊥))O(d&e) with sub-
formulas G = (a⊥⊕b⊥)⊗c⊥ and H = c⊗(d⊥⊕e⊥) and negative atoms a,b,c,d,e. After bipolarisation
of F we get the following bipoles of the universal program U :

ν(F) = η⊥F ⊗ ((a&b)OηGOηHO(d&e))
ν(G) = η⊥G ⊗ ((a⊥⊕b⊥)⊗ c⊥)
ν(H) = η⊥H ⊗ c⊗ (d⊥⊕ e⊥);

– the bipole ν(F) corresponds to the unique inference ν(F):

Γ,ηG,ηH ,a,d Γ,ηG,ηH ,a,e Γ,ηG,ηH ,b,d ηG,ηH ,b,e
Γ,ηF

ν(F)

– the bipole ν(G) is associated to a pair of inferences:

Γ
ν(G)1

Γ,ηG,a,c
and Γ

ν(G)2
Γ,ηG,b,c

– similarly, the bipole ν(H) is associated to a pair of inferences:

Γ,c
ν(H)1

Γ,ηH ,d
and Γ,c

ν(H)2
Γ,ηH ,e

Finally, here is the complete bipolar focussing proof of ηF that is isomorphic, by Theorem 1, to the
(omitted) proof of F in the LL focussing sequent calculus:

ν(G)1ηG,a,c
ν(H)1

ηG,ηH ,a,d

ν(G)1ηG,a,c
ν(H)2ηG,ηH ,a,e

ν(G)2
ηG,b,c

ν(H)1
ηG,ηH ,b,d

ν(G)2
ηG,b,c

ν(H)2
ηG,ηH ,b,e

ηF
ν(F)

Observe that while the above derivation is quite compact, it still presents a lot of structural inconvenient
such as duplications of sub-trees; phenomena like these are crucial when we want to modelize the behav-
ior of distributed systems. For these reasons, in the next section, we move to more flexible (geometrical
indeed) proof structures.

3 Bipolar Focussing Proof Structures

In this section we introduce the sequentialized version of the bipolar focussing sequent calculus, i.e. a
graphical representation of bipolar proofs as proof-structures (eventually correct, i.e. proof nets) which
preserves only essential sequentializations.

Definition 1 (links) Assume an infinite set L of resource places l1, l2, ... (also addresses or loci like in
Ludics [6]); the special untyped place ? is called jump place. A link consists in two disjoint sets of loci,
top and bottom, together with a polarity p, positive or negative, and with the conditions that:

• a positive link must have at least one bottom place; it may contain no more than one jump place
among its bottom places;

• a negative link must have exactly one bottom place; it may contain no more than one jump place
among its top places.

If the set of top places is not empty, then a link is said transitional.
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Top places

bottom places

negative positive

O ⊗

bottom places

AO(B&C) = (AOB)&(AOC)

A CB

O O
&

((A⊗D⊥)⊕C))⊗B⊗E⊥ = (A⊗D⊥⊗B⊗E⊥)⊕ (C⊗B⊗E⊥)

⊗ ⊗

A B C

ED

⊕

Figure 1: links and hyperlinks

Graphically links are represented like in the left hand side picture of Figure 1 and distinguished by their
shape: triangular for negative and round for positive links. We use variables xp,yp,zp, ... with polarity
p ∈ {+,−} for links.
Intuitively, negative links correspond to generalized (n-ary) O-links while positive links correspond to
generalized ⊗-links. In order to capture the additive behavior (a non-deterministic ”sharing nature”) we
need to allow superposition of links; this will naturally bring us to the next notion of hyperlinks.

Definition 2 (hyperlinks) An hyperlink is a set of links that share some (at least one) places as follows:

• a negative hyperlink contains only negative links and an unique bottom place; all its jump places
must be distinguished (i.e., its negative links have no jump places in common).

• a positive hyperlink contains only positive links and at least one bottom place; all its jump places
must be distinguished (i.e., its positive links have no jump places in common).

Analogously to (multiplicative) links, negative hyperlinks correspond to generalized &-links (additive
conjunction) while positive links correspond to generalized ⊕-links (additive sum). Recall that in lin-
ear logic the additive connectives capture non deterministic computational phenomena (typically of dis-
tributed middleware systems). An example of negative (resp. positive) hyperlink is depicted in the middle
(resp., right) hand side of Figure 1. Observe that these links represent, graphically, the distributive law of
negative O/& (resp., positive ⊗/⊕) connectives. The notation X+ (resp., X−) denotes a positive (resp.,
a negative) hyperlink. Moreover we say that:

• an edge is called a jump edge (simply jump) when it goes from a positive jump place to a negative
jump place;

• a (positive) link x+ depends on a (negative) link y− when there exists a jump edge that goes from
x+ to y−;

• a pair of positive links x+1 and x+2 belonging to a same +hyperlink X+ is toggled by a negative
hyperlink Y−, if there exist two negative links y−1 ,y

−
2 in Y−, s.t. there is a jump from x+1 to y−1 and

a jump from x+2 to y−2 .
A graphical interpretation of the toggling condition with jump edges is then given in the picture on
the left hand side of Figure 2.

Observe that jumps play here the same role (dependency) eigen weights play in [5].

Definition 3 (bipolar focussing proof structures) A MALL focussing proof structure (shortly, BPS) is
a set π of hyperlinks satisfying the following conditions:

1. the sets of top (bottom) places of any pair of hyperlinks are disjoint;
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y−2

⊗ ⊗

OO

?

?

?

?

x+1 x+2

y−1 ⊗
⊕

O O O
&

⊗
x−

T T

x−

Figure 2: toggling (left side), bipole (middle side) and singularities (right side)

2. if two hyperlinks are adjacent, then they have opposite polarity;

3. in any +hyperlink every pair of links is toggled by a −hyperlink;

4. jump places are distinguished (links do not share jump places).

Finally, π is said to be elementary if it is bipolar and contains exactly a positive hyperlink: each elemen-
tary focussing proof structure corresponds to a bipole (see the picture in the middle side of Figure 2).
We are interested on those (correct) proof structures that correspond to bipolar focussing sequent proofs:
these are called bipolar proof nets. Before introducing these, we need some technical stuff.
A hyperlink X (or simply, a link) is said to be just below (resp., just above) an hyperlink Y if there exists
a place that is both at the top (resp., bottom) of X and at the bottom (resp., top) of Y . Two hyperlinks are
said adjacent if one is just below (resp., just above) the other. Then, fixed a BPS π:

• a &-resolution is a choice of exactly one negative link for each negative hyperlink (all the other
negative links will be erased);

• a slice S(π) for π is the graph obtained from π after the erasing induced by a &-resolution, as
follow: (i) a place is erased if all the top (bottom) links sharing it are erased; (ii) a link is erased
when at least one of its places is erased.

• a trip T in a slice S(π) for π is a non-empty binary relation on |S| (the set of link of S) which is
finite, connected and s.t. any link x ∈ |S| has at most one successor (resp., one predecessor), if it
exists. Then, a negative middle link x (with a predecessor and a successor) of a proper trip T (not
reduced to a loop with only two links) is a singularity for T iff T enters x downwards and exists x
upwards (graphically, T bounces on x, like in the right hand side picture of Figure 2).

Definition 4 (bipolar focussing proof net) A BPS π of MALL is correct, i.e., it is a bipolar proof net
(BPN) iff any proper loop trip in any slice S(π) contains at least a singularity.

An instance of BPN is given in the left hand side picture of Figure 3. It is not difficult to check that any
proper loop trip in any slice contains at least a singularity, in particular that is true for the slice depicted
in the right hand side of Figure 3. In order to simplify the reading of these pictures, jumps from positive
to negative links are drawn as oriented (colored) curved edges.
We can set a precise correspondence between sequent proofs and proof nets: in the literature this corre-
spondence is called ”sequentialization”.
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⊕

ηF

a b ηG ηH d e

νF

c

νH

νG

&

⊗ ⊗

⊗ ⊗

⊗

O O O O

O

⊕

⇒S

O

ηF

a b ηG ηH d

νF

c

νH

νG

⊗

⊗

⊗

O

Figure 3: a bipolar poof net (left hand side) with a slice (right hand side)

Theorem 2 ((de-)sequentialization) A bipolar focussing sequent proof Π of Γ can be de-sequentialized
in a canonical way into a bipolar focussing proof net π with same conclusion Γ and vice versa, a proof
net π can be sequentialized into a sequent proof Π with same conclusions.

The de-sequentialization part of Theorem 2 is proved by induction on the size of the given sequent proof
(i.e. the number of bipoles). For the base of the induction, there exists precise correspondence between
a bipole and an elementary proof proof structure which is trivially correct (i.e. a proof net). As an
instance, observe the focussing bipolar sequent proof of ηF of the Example 1 de-sequentializes into the
bipolar proof net drawn in the left hand side picture of Figure 3 and vice versa. Actually, in order for
the bipole ν(H) to correspond to an elementary focussing proof structure, there is need to introduce a
dummy negative link with one top place for c. This could have been avoided by explicitly introducing a
polarity inverter, as usually done in strictly polarized syntax (see [7]).
The sequentialization part is proved by induction on the number of slices of π; observe that a BPN
reduced to a single slice is trivially a MLL BPN which can be shown that sequentializes into a MLL
sequential proof. The crucial task is to show how to gluing the multiplicative (MLL) sequential slices
into an additive (MALL) sequential proof.

In the next section we study the problem of constructing a proof net by a juxtaposition of concurrent
bipoles (agents). This proof net construction can be viewed as a computational paradigm for middleware
(infrastructure) programming.

4 Proof Net Construction as a Middleware Paradigm

In building a proof net, places (except ?) are decorated by type informations (occurrences of negative
atoms); each bipole is viewed as a disjoint sum of collaborative agents which continuously attempt to
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y−3

a

d e f g

expansion
step

cb

proof net

a bipolar

x+1 x+2

y−1 v−2

T

...

...

...

...

...

S(π)

z+

x+

y−

⇒

S(π)

...

...

...

...

...

z+

x+

y−

maximal
switching

T ′

Figure 4: expansion step (left hand side) and maximal switching (right hand side)

perform a construction step, that is, an expansion of the proof net obtained by adding an elementary
bipolar proof structure (a bipole) from the places whose types match the trigger of the given bipole.
Bipoles always drive the construction bottom-up like in the left hand picture of Figure 4.
An expansion step is correct if it preserves the property of being a proof net. Checking correctness
(singularity-free trips) is a task which may involve visiting a large portion of the expanded proof struc-
ture. Now, since this construction is performed collaboratively and concurrently by a cluster of bipoles
for true concurrency we need to:
1) restrict the traveling region (reducing possible conflicts among agents);
2) protect (lock) the gathered information against attempts of other concurrent agents;
3) increment/update, in case of success, the locked information for transition.
Good bounds for these tasks are necessary; however, in the following two sub-sections 4.1 and 4.2 we
mainly focus on the task 1.

4.1 Maximal switchings

First we show that, in order to detect singularity-free trips we may restrict us to consider only particular
subgraphs of switchings, these are called maximal switchings.

Definition 5 (maximal switching) A jump edge from x+ to y− is said maximal in a switching S(π) if
there not exists in such a switching a positive link z+ such that it depends on y− too and it is above x+ in
π; then a maximal switching is a switching containing only maximal jump edges.

Lemma 1 (maximal switchings) A proof structure π is correct iff any proper loop of any maximal
switching S for π contains at least a singularity.

By Definition 5, if there exist in S(π) two positive links, x+ and z+, both depending on y− and with z+

above x+, then there must exist in S(π) a path going from x+ upwards to z+; clearly, if there exists a
singularity-free loop T in S(π) containing a jump from x+ to y−, there will also exist a singularity-free
loop T ′ in S(π) containing a jump from z+ to y− (see the right hand side of picture of Figure 4).
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4.2 Expansion under domination

We fix once for all a maximal switching S for π , then we show (Lemma 2) that, w.r.t. a candidate
expansion, only certain negative links must be explored (isolated and locked); the other ones are available
for other possible expansions (or transactions).

Definition 6 (domination order) Assume x,y are two negative links in a switching S for π; a root of S
is any (positive) link of S that has no link below it. Then, x≤ y (x dominates y) if any singularity-free trip
starting at a root and stopping upwards at y visits x upwards.

Proposition 1 (forest order) The relation ≤ on negative links of S is a forest order; it is reflexive, anti-
symmetric, transitive and it satisfies the following property on negative links:

∀x,y,z i f (x≤ z ∧ y≤ z) then (x≤ y ∨ y≤ x).

The joint dominator of N,
∧
(N), is the greatest lower bound (g.l.b., when it exists), by ≤, of a set of

negative links N.
If the set of the predecessor by < of a negative link x is not empty, then it has a greatest element, by ≤,
called the immediate dominator D(x) of a negative link x.

Lemma 2 (isolation property) Let x,y be two negative links and T be a singularity-free trip of a switch-
ing S for π starting downwards at x and stopping upwards at y; then, any negative link z visited by T is
strictly dominated by the joint dominator

∧
{λ1,λ2} (if defined):

∀z− ∈ |T |,
∧
{x,y}< z.

Clearly, w.r.t. an expansion of a proof net π by a bipole β , Lemma 2 gives a good (lower) bound to
the region to be explored in order to detect a singularity-free trip in a switching S(π ∗β ) (where π ∗β

denotes the juxtaposition of β over π). An instance of a candidate multiplicative expansion that is not
correct is given in Figure 5: grey (or red) negative links denote all those negative links that (according
to Lemma 2) must be visited in order to look for a singularity-free loop inside a top switching; while the
light grey (or green) ones are unexplored and so available for other transactions.
We propose in the next (last) subsection some applications of Lemmas 1 and 2 to the theoretical inter-
pretation of distributed transactional systems.

4.3 Transactional Systems

A transaction combines a group of independent actions into a single action with a set of predictable out-
comes. Traditionally, transactions are required to adhere to the ACID properties of Atomicity (ensuring
that all actions in the transaction either complete successfully, or revert to a state where none of them
were run), Consistency (ensuring that the system is not put into an illegal state), Isolation (letting concur-
rent transactions run as if they were the only transaction being processed), and Durability (ensuring that
any completed transaction has its stable outcome and cannot be undone, even by accidental hardware
or software failure). However, while transaction management in traditional systems typically offers an
acceptable level of service, the same cannot be said for transactions achieved by combining services of-
fered by multiple systems. Such multi-databases transactions often run for much longer periods of time
than traditional transactions, so locking any data may block other transactions for an unacceptable length
of time. Because of this, the traditional ACID properties are typically reduced in strength, helping to



10 Proceedings of the PCC 2012 Conference

δ (x)

x y

S

candidate +expansion

δ (y)

isolated points

free points

N = {x,y}

∧
{x,y}

Figure 5: proof net interpretation of the isolation property

ensure that the entire system maintains an acceptable level of service. Typically, in the Web Services en-
vironment, traditional ACID transactions are not always sufficient to support the activities that businesses
would like to process. Transactions that involve multiple service providers can run for long periods of
time. This can result in negative side-effects when combined with traditional transaction-based concur-
rency control mechanisms. While Web Services transactions standards do exist, it is still difficult (e.g.,
for an end-user) to combine services from loosely-coupled providers so that they are used as a single
co-operative transaction ([9]).

Under this respect, the paradigm of proof net construction can be put in correspondence with transac-
tional systems paradigms. That can be seen as an analogous of the well known Curry-Howard corre-
spondence between the cut-reduction paradigm and the functional programming paradigm. Any correct
expansion step can be seen as a transaction; more precisely:

• Lemma 2 captures the multiplicative behavior of proof nets and corresponds to the isolation prop-
erty of ACID transactions. For instance, Figure 5 can be interpreted as a candidate multiplicative
expansion that is not an ACID transaction (it is not correct);

• Lemmas 1 captures the additive behavior of proof nets and corresponds to co-operative transac-
tions: actually, we can additively ”slice” a transaction in to a sum of interacting (or cooperative)
ACID transactions; maximality of switching guarantees that only certain resources will be locked.
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