Cut Elimination for Monomial MALL Proof Nets

Roberto Maieli
Università degli Studi "Roma Tre" maieli@uniroma3.it
Rencontre Journée Additifs
Paris, March, 17th, 2008

Proof Nets: state of the art

MLL PNs are the perfect setting:

Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,

Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.

Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL. In 1996, Girard proposed a new syntax for MALL PNs:

Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:

- without additive boxes (sequentiality)

Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:

- without additive boxes (sequentiality)
- allowing super-positions (weights, slices)

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them.

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them.
This problem has been solved (in a perfectly satisfactory way)
by D. Hughes and R. van Glabbeek (2003)
2. w.r.t. cut elimination: Girard's one is

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
2. w.r.t. cut elimination: Girard's one is

- lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
2. w.r.t. cut elimination: Girard's one is

- lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
- not local;

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
2. w.r.t. cut elimination: Girard's one is

- lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
- not local;

Our goal here is:

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them.
This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
2. w.r.t. cut elimination: Girard's one is

- lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
- not local;

Our goal here is:

- to provide an answer to the (monomial) cut elimination.

Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them.
This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
2. w.r.t. cut elimination: Girard's one is

- lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
- not local;

Our goal here is:

- to provide an answer to the (monomial) cut elimination.
- to allow a new kind of additive super-position (sharing nodes)

MALL Pre-Proof Structures (PPS)

- A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

MALL Pre-Proof Structures (PPS)

- A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- in a contraction node C : $A=A_{1}=\ldots=A_{n \geq 1}$

MALL Pre-Proof Structures (PPS)

- A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- in a contraction node C : $A=A_{1}=\ldots=A_{n \geq 1}$
- entering edges are premises while the (possibly) emergent edges are conclusions

MALL Pre-Proof Structures (PPS)

- A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- in a contraction node C : $A=A_{1}=\ldots=A_{n \geq 1}$
- entering edges are premises while the (possibly) emergent edges are conclusions
- two contraction nodes cannot have a common edge

MALL Pre-Proof Structures (PPS)

- A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

$A \otimes B$

$A \curvearrowright B$

A\&B

- in a contraction node C : $A=A_{1}=\ldots=A_{n \geq 1}$
- entering edges are premises while the (possibly) emergent edges are conclusions
- two contraction nodes cannot have a common edge
- pending edges are called conclusions of π

MALL Pre-Proof Structures (PPS)

- A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

$A \otimes B$

$A \curvearrowright B$

$A \& B$

- in a contraction node C : $A=A_{1}=\ldots=A_{n \geq 1}$
- entering edges are premises while the (possibly) emergent edges are conclusions
- two contraction nodes cannot have a common edge
- pending edges are called conclusions of π
- a link is the graph made by a node together with its premise(s) and its (possibly) conclusion(s).

MALL Girard Proof Structures (GPS): weights

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0 , for a product where both p and \bar{p} appear;

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0, for a product where both p and \bar{p} appear;
- two weights, v and w, are disjoint when $v . w=0$.

MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a monomial weight w, v, \ldots is a product "." (conjunction) of variables or negation of variables.
- ϵ_{p}, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0, for a product where both p and \bar{p} appear;
- two weights, v and w, are disjoint when $v . w=0$.
- a weight w depends on a variable p when ϵ_{p} appears in w;

Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:

Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each \& node of π (notation $\&_{p}$):

Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each \& node of π (notation $\&_{p}$):
2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

ϵ_{p} does not occur in w

$\forall i \forall j, w_{i} w_{j}=0(1 \leq i, j \leq n)$

Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each \& node of π (notation $\&_{p}$):
2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

ϵ_{p} does not occur in w

$$
\forall i \forall j, w_{i} w_{j}=0(1 \leq i, j \leq n)
$$

3. a conclusion node has weight 1 ;

Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each \& node of π (notation $\&_{p}$):
2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

ϵ_{p} does not occur in w

$\forall i \forall j, w_{i} w_{j}=0(1 \leq i, j \leq n)$
3. a conclusion node has weight 1 ;
4. tech. cond. if w in π depends on p, then $w \leq v$, where v is the weight of the $\&_{p}$ node.

Girard MALL Proof Structures: example 1

The following is a GPS:

Girard MALL Proof Structures: example 2

The following is not a GPS:

it violates the technical condition of GPS definition: there exists a (axiom) node whose weight is \bar{p} but $\bar{p} \not \leq q$, where q is the weight of the (unique) node $\&_{p}$.

Correctness Criterion: valuation, slices, switchings

Correctness Criterion: valuation, slices, switchings

- a valuation φ for π is a function s.t.:

$$
\varphi: p \mapsto\{0,1\} ; \varphi: w \mapsto\{0,1\}
$$

Correctness Criterion: valuation, slices, switchings

- a valuation φ for π is a function s.t.:

$$
\varphi: p \mapsto\{0,1\} ; \varphi: w \mapsto\{0,1\}
$$

- a slice $\varphi(\pi)$ is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1 ;

Correctness Criterion: valuation, slices, switchings

- a valuation φ for π is a function s.t.:

$$
\varphi: p \mapsto\{0,1\} ; \varphi: w \mapsto\{0,1\}
$$

- a slice $\varphi(\pi)$ is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1 ;
- a switching S for π is what remains of a slice $\varphi(\pi)$ after that:
- for each \oslash-node we take only one premise and we cut the remaining one (left or right);

Correctness Criterion: valuation, slices, switchings

- a valuation φ for π is a function s.t.:

$$
\varphi: p \mapsto\{0,1\} ; \varphi: w \mapsto\{0,1\}
$$

- a slice $\varphi(\pi)$ is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1 ;
- a switching S for π is what remains of a slice $\varphi(\pi)$ after that:
- for each 8 -node we take only one premise and we cut the remaining one (left or right);
- for each $\&_{p}$ node we cut the (unique) premise in $\varphi(\pi)$ and we add an oriented edge (a jump) from this $\&_{p}$ node to a node whose weight depends on p.

Girard's Proof Net (GPN)

Definition: a GPS π is correct, it is a GPN, if any switching, induced by a valuation φ for π, is ACC.

Girard's Proof Net (GPN)

Definition: a GPS π is correct, it is a GPN, if any switching, induced by a valuation φ for π, is ACC.

Examples: The GPS in the Ex. 1 is correct, while the next one is not so:

Cut Elimination

... Girard's cut elimination is only the lazy (ready) one!

Ready Cut Elimination: ax-step

Ready Cut Elimination: (\otimes / \diamond)-step

Ready Cut Elimination: $\left(\oplus_{i} / \&\right)$-step

π^{\prime} is what is still nonzero in π, once $p=1$ (resp., $\bar{p}=0$).
... Girard's cut elimination stops here!

Commutative Cut Elimination: (\otimes / C)-step

Commutative Cut Elimination: (\otimes / C)-step

reduces to (the " \leftrightarrow " edges are axiom links):

the step $(૪ / C)$ is similar

Commutative Cut Elimination: (C / C)-step

Commutative Cut Elimination: (C / C)-step

reduces to:

Commutative Cut Elimination: $\left(\oplus_{i} / C\right)$-step

Commutative Cut Elimination: $\left(\oplus_{i} / C\right)$-step

Commutative Cut Elimination: $(\& / C)$-step

Commutative Cut Elimination: $(\& / C)$-step

two possible solutions:

Commutative Cut Elimination: $(\& / C)$-step

two possible solutions:

1. global solution : replace $\&_{p}$ by $\overbrace{\&_{p_{1}}, \ldots, \&_{p_{n}}}^{\text {different } p_{i}}$

Commutative Cut Elimination: $(\& / C)$-step

two possible solutions:

1. global solution : replace $\&_{p}$ by $\overbrace{\&_{p_{1}}, \ldots, \&_{p_{n}}}^{\text {different } p_{i}}$

$$
\overbrace{\&_{p}, \ldots, \&_{p}}^{n-\text { times the same } p}
$$

2. local solution : replace $\&_{p}$ by

(\&/C)-Cut Elimination: the global solution

Idea: q-dependency graph: the sub-graph of π depending on q

(\&/C)-Cut Elimination: the global solution

Idea: q-dependency graph: the sub-graph of π depending on q

reduces to

$(\& / C)$-Cut Elimination: the local solution

(\&/C)-Cut Elimination: the local solution

reduces to

but this step does not preserve the notion GPS !

(\&/C)-Cut Elimination: problems with the local solution

$(\& / C)$-Cut Elimination: problems with the local solution

1) π reduces to a π^{\prime} that is not a PS (by technical condition: $q \leq$?)

$(\& / C)$-Cut Elimination: problems with the local solution

2) π reduces to a π^{\prime} that is not a PS (by technical condition: $q \leq$?)

3) π^{\prime} reduces $\left(c u t_{1}\right)$ to $\pi^{\prime \prime}[q=1 ; \bar{q}=0]$ that is not even a PPS !

MALL PS: nouvelle syntax

A MALL proof structure $(E P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} \cdot w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a GPS with the following modifications:

MALL PS: nouvelle syntax

A MALL proof structure $(E P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} \cdot w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\}$;
- π is a GPS with the following modifications:
- the eigen weights are not supposed to be different

MALL PS: nouvelle syntax

A MALL proof structure $(E P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} \cdot w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a GPS with the following modifications:
- the eigen weights are not supposed to be different
- if $v_{1}\left(\&_{p}\right), \ldots, v_{n}\left(\&_{p}\right)$, then $v_{i} \cdot v_{j}=0$ for all $1 \leq i \leq j \leq n$

MALL PS: nouvelle syntax

A MALL proof structure $(E P S)$, is a pair $\langle\pi, E\rangle$ where:

- $E=\left\{\epsilon_{p} \cdot w=0 \mid \epsilon_{p}\right.$ is a prefix $\wedge w$ is a weight ϵ_{p}-free $\} ;$
- π is a GPS with the following modifications:
- the eigen weights are not supposed to be different
- if $v_{1}\left(\&_{p}\right), \ldots, v_{n}\left(\&_{p}\right)$, then $v_{i} \cdot v_{j}=0$ for all $1 \leq i \leq j \leq n$
- all weights are considered modulo E;

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E then

$$
w \leq\left(\sum_{i=1}^{n} v_{i}\right) \quad \bmod E
$$

where :

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E
then

$$
w \leq\left(\sum_{i=1}^{n} v_{i}\right) \quad \bmod E
$$

where:

- $v_{i}, 1 \leq i \leq n$, is :
- either the weight of a node $\&_{p}$
- or the suffix of an equation $\epsilon_{p} \cdot v_{i}=0$ of E;

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E
then

$$
w \leq\left(\sum_{i=1}^{n} v_{i}\right) \quad \bmod E
$$

where:

- $v_{i}, 1 \leq i \leq n$, is :
- either the weight of a node $\&_{p}$
- or the suffix of an equation $\epsilon_{p} \cdot v_{i}=0$ of E;
- $\sum_{i=1}^{n} v_{i}$ is a monomial weight (modulo E);

MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E then

$$
w \leq\left(\sum_{i=1}^{n} v_{i}\right) \quad \bmod E
$$

where:

- $v_{i}, 1 \leq i \leq n$, is :
- either the weight of a node $\&_{p}$
- or the suffix of an equation $\epsilon_{p} \cdot v_{i}=0$ of E;
- $\sum_{i=1}^{n} v_{i}$ is a monomial weight (modulo E);
- all weights $v_{1}, \ldots v_{n}$ are pairwise disjoint.

MALL EPS : example

The pair $\langle\pi, \emptyset\rangle$ is (now) a proof structure (q or $\bar{q} \leq p+\bar{p}$)

Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard's switching)

Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard's switching)

Theorem
A EPN with conclusion 「 can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

Correctness Criterion: EPNs

Definition (EPN)

An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard's switching)

Theorem
A EPN with conclusion 「 can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

Proof.

- we exploit an expansion procedure which allows us to unfold each EPN into a GPN;

Correctness Criterion: EPNs

Definition (EPN)

An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard's switching)

Theorem
A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion 「 and vice-versa.

Proof.

- we exploit an expansion procedure which allows us to unfold each EPN into a GPN;
- it can be shown that each expansion step preserves the Girard's sequentialization.

Cut Elimination

$$
\langle\pi, E\rangle \rightsquigarrow_{R}\left\langle\pi^{\prime}, E\right\rangle
$$

when R is one of the reduction steps defined before for GPS:

- axiom-step
- $(\otimes />)$-step
- (\otimes / C)-step
- $(8 / C)$-step
- $\left(\oplus_{i} / C\right)$-step
- (C / C)-step

Cut Elimination: the new $\left(\oplus_{i} / \&\right)$-step

$\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle$

Cut Elimination: the new $\left(\oplus_{i} / \&\right)$-step

$\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle$

- $E^{\prime}=E \cup\{\bar{p} \cdot w=0\} ;$

Cut Elimination: the new $\left(\oplus_{i} / \&\right)$-step

$$
\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle
$$

- $E^{\prime}=E \cup\{\bar{p} \cdot w=0\}$;
- π^{\prime} is what (of π) remains still nonzero modulo E^{\prime} :
in particular, we remove all nodes whose weight $v \leq_{E^{\prime}} \bar{p} . w$;
(i.e., we remove the slice \bar{p} rooted at w).

(\&/C)-Cut Elimination: example 3

$\langle\pi, \emptyset\rangle$ reduces $\left(c u t_{1}\right)$ to $\left\langle\pi^{\prime},\{\bar{q} \cdot \bar{p}=0\}\right\rangle$ (that is still an EPS)

Cut Elimination: the "local" (\&/C)-step

Cut Elimination: the "local" (\&/C)-step

reduces to:

Stability under the Cut Elimination

Theorem (Stability of EPS)
$\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ and $\langle\pi, E\rangle$ is a $E P S$, then $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ is a $E P S$ too.

Stability under the Cut Elimination

Theorem (Stability of EPS)
$\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ and $\langle\pi, E\rangle$ is a $E P S$, then $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ is a $E P S$ too.

Theorem (Stability of EPN)
$\langle\pi, E\rangle \rightsquigarrow\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ and $\langle\pi, E\rangle$ is a $E P N$, then $\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ is a $E P N$ too.

Strong Cut Elimination

Theorem
We can always reduce a $E P N\langle\pi, E\rangle$ into a $E P N\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free; this reduction is strongly terminating.

Strong Cut Elimination

Theorem
We can always reduce a $E P N\langle\pi, E\rangle$ into a $E P N\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free; this reduction is strongly terminating.

Proof.
The proof is by lexicographic induction on the cut complexity sequence

$$
\sharp 0, \sharp 1, \ldots, \sharp n
$$

Strong Cut Elimination

Theorem
We can always reduce a $E P N\langle\pi, E\rangle$ into a $E P N\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

$$
\sharp 0, \sharp 1, \ldots, \sharp n
$$

- n is the number of Boolean variables occurring in $\langle\pi, E\rangle$;

Strong Cut Elimination

Theorem
We can always reduce a $E P N\langle\pi, E\rangle$ into a $E P N\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

$$
\sharp 0, \sharp 1, \ldots, \sharp n
$$

- n is the number of Boolean variables occurring in $\langle\pi, E\rangle$;
- $\sharp i$, with $0 \leq i \leq n$, is the sum of the logical complexities of all cuts whose depth is i.

Strong Cut Elimination

Theorem

We can always reduce a $E P N\langle\pi, E\rangle$ into a $E P N\left\langle\pi^{\prime}, E^{\prime}\right\rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

$$
\sharp 0, \sharp 1, \ldots, \sharp n
$$

- n is the number of Boolean variables occurring in $\langle\pi, E\rangle$;
- $\sharp i$, with $0 \leq i \leq n$, is the sum of the logical complexities of all cuts whose depth is i.
- the depth $\delta(L)$ of a node L is $\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)$, if
- w_{1} and w_{2} are equivalent (modulo E) weights of L and
- $\left|w_{j}\right|$, for $j=1,2$, is the length (the number of possibly variables or negations of variables) of w_{j}.

Confluence

Theorem (local confluence)
Let $\langle\pi, E\rangle$ be a proof net with two cut nodes, L_{1} and L_{2}, and let

- α be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{1}\left\langle\pi_{1}, E_{1}\right\rangle$ and
- β be the cut reduction $\langle\pi, E\rangle \rightsquigarrow L_{2}\left\langle\pi_{2}, E_{2}\right\rangle$,
then there exists a proof net $\left\langle\pi^{*}, E^{*}\right\rangle$ which $\left\langle\pi_{i}, E_{i}\right\rangle$, for $1 \leq i \leq 2$, reduces to in at most one step.
fine

