Cut Elimination for Monomial MALL Proof Nets

Roberto Maieli

Università degli Studi "Roma Tre" maieli@uniroma3.it

Rencontre *Journée Additifs* Paris, March, 17th, 2008

MLL PNs are the perfect setting:

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

MLL PNs are the perfect setting:

- 1. a proof net is a canonical representative of a proof of the sequent calculus,
- 2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

MLL PNs are the perfect setting:

- 1. a proof net is a canonical representative of a proof of the sequent calculus,
- 2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.

MLL PNs are the perfect setting:

- 1. a proof net is a canonical representative of a proof of the sequent calculus,
- 2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL. In 1996, Girard proposed a new syntax for MALL PNs:

MLL PNs are the perfect setting:

- 1. a proof net is a canonical representative of a proof of the sequent calculus,
- 2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

- A lot of work has been done to extend (1) and (2) to MALL.
- In 1996, Girard proposed a new syntax for MALL PNs:
 - without additive boxes (sequentiality)

MLL PNs are the perfect setting:

- 1. a proof net is a canonical representative of a proof of the sequent calculus,
- 2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

- A lot of work has been done to extend (1) and (2) to MALL.
- In 1996, Girard proposed a new syntax for MALL PNs:
 - without additive boxes (sequentiality)
 - allowing super-positions (weights, slices)

... but Girard's proposal was not as good as for MLL:

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them.

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. w.r.t. cut elimination: Girard's one is

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
 - 2. w.r.t. cut elimination: Girard's one is
 - lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
 - 2. w.r.t. cut elimination: Girard's one is
 - lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;

– not local;

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
 - 2. w.r.t. cut elimination: Girard's one is
 - lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;

– not local;

Our goal here is:

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
 - 2. w.r.t. cut elimination: Girard's one is
 - lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;

– not local;

Our goal here is:

- to provide an answer to the (monomial) cut elimination.

- ... but Girard's proposal was not as good as for MLL:
 - w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
 - 2. w.r.t. cut elimination: Girard's one is
 - lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
 - not local;

Our goal here is:

- to provide an answer to the (monomial) cut elimination.
- to allow a new kind of additive super-position (sharing nodes)

 A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

< ロ > < 同 > < 回 > < 回 > < □ > <

A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

▲日▼▲□▼▲□▼▲□▼ □ のので

▶ in a contraction node *C*: $A = A_1 = ... = A_{n \ge 1}$

A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

▲日▼▲□▼▲□▼▲□▼ □ のので

▶ in a contraction node *C*: $A = A_1 = ... = A_{n \ge 1}$

 entering edges are premises while the (possibly) emergent edges are conclusions

A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

▲日▼▲□▼▲□▼▲□▼ □ のので

▶ in a contraction node *C*: $A = A_1 = ... = A_{n \ge 1}$

- entering edges are premises while the (possibly) emergent edges are conclusions
- two contraction nodes cannot have a common edge

A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

▲日▼▲□▼▲□▼▲□▼ □ のので

- ▶ in a contraction node *C*: $A = A_1 = ... = A_{n \ge 1}$
- entering edges are premises while the (possibly) emergent edges are conclusions
- two contraction nodes cannot have a common edge
- pending edges are called **conclusions** of π

A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- ▶ in a contraction node *C*: $A = A_1 = ... = A_{n \ge 1}$
- entering edges are premises while the (possibly) emergent edges are conclusions
- two contraction nodes cannot have a common edge
- pending edges are called **conclusions** of π
- a link is the graph made by a node together with its premise(s) and its (possibly) conclusion(s).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▶ a set of Boolean variables denoted by p, q, ...,

- ▶ a set of Boolean variables denoted by *p*, *q*, ...,
- ▶ a **monomial weight** *w*, *v*, ... is a product "." (conjunction) of variables or negation of variables.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- ▶ a set of Boolean variables denoted by *p*, *q*, ...,
- ▶ a **monomial weight** *w*, *v*, ... is a product "." (conjunction) of variables or negation of variables.

• ϵ_p , for a variable *p* or its negation \overline{p} ;

- ▶ a set of Boolean variables denoted by *p*, *q*, ...,
- ▶ a **monomial weight** *w*, *v*, ... is a product "." (conjunction) of variables or negation of variables.

- ϵ_p , for a variable *p* or its negation \overline{p} ;
- 1, for the empty product;

- ▶ a set of Boolean variables denoted by *p*, *q*, ...,
- ▶ a **monomial weight** *w*, *v*, ... is a product "." (conjunction) of variables or negation of variables.

- ϵ_p , for a variable *p* or its negation \overline{p} ;
- 1, for the empty product;
- ▶ 0, for a product where both p and \bar{p} appear;

- ▶ a set of Boolean variables denoted by *p*, *q*, ...,
- ▶ a **monomial weight** *w*, *v*, ... is a product "." (conjunction) of variables or negation of variables.

- ϵ_p , for a variable p or its negation \overline{p} ;
- 1, for the empty product;
- ▶ 0, for a product where both p and \bar{p} appear;
- two weights, v and w, are **disjoint** when v.w = 0.

- ▶ a set of Boolean variables denoted by *p*, *q*, ...,
- ▶ a **monomial weight** *w*, *v*, ... is a product "." (conjunction) of variables or negation of variables.
- ϵ_p , for a variable p or its negation \overline{p} ;
- 1, for the empty product;
- ▶ 0, for a product where both p and \bar{p} appear;
- two weights, v and w, are **disjoint** when v.w = 0.
- a weight w depends on a variable p when ϵ_p appears in w;

A MALL GPS π is a PPS with associated weights as follows:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

A MALL GPS π is a PPS with associated weights as follows:

 we associate a (different) *eigen weight p*, to each & node of π (notation &_p):

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A MALL GPS π is a PPS with associated weights as follows:

- 1. we associate a (different) eigen weight p, to each & node of π (notation $\&_p$):
- 2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

A MALL GPS π is a PPS with associated weights as follows:

- 1. we associate a (different) eigen weight p, to each & node of π (notation $\&_p$):
- 2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

▲日▼▲□▼▲□▼▲□▼ □ のので

3. a conclusion node has weight 1;

A MALL GPS π is a PPS with associated weights as follows:

- 1. we associate a (different) eigen weight p, to each & node of π (notation $\&_p$):
- 2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

- 3. a conclusion node has weight 1;
- 4. **tech. cond.** if w in π depends on p, then $w \le v$, where v is the weight of the $\&_p$ node.

Girard MALL Proof Structures: example 1

The following is a GPS:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Girard MALL Proof Structures: example 2

The following is not a GPS:

it violates the *technical condition* of GPS definition: there exists a (axiom) node whose weight is \overline{p} but $\overline{p} \leq q$, where q is the weight of the (unique) node $\&_p$.

• a valuation φ for π is a function s.t.:

$$arphi: \pmb{p} \mapsto \{\pmb{0}, \pmb{1}\}$$
 ; $arphi: \pmb{w} \mapsto \{\pmb{0}, \pmb{1}\}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• a valuation φ for π is a function s.t.:

$$arphi: \pmb{\rho} \mapsto \{ \pmb{0}, \pmb{1} \}$$
 ; $arphi: \pmb{w} \mapsto \{ \pmb{0}, \pmb{1} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

► a slice φ(π) is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1;

• a valuation φ for π is a function s.t.:

$$arphi: \mathbf{p} \mapsto \{\mathbf{0}, \mathbf{1}\}$$
 ; $arphi: \mathbf{w} \mapsto \{\mathbf{0}, \mathbf{1}\}$

- a slice φ(π) is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1;
- a switching S for π is what remains of a slice $\varphi(\pi)$ after that:
 - ▶ for each ⊗-node we take only one premise and we cut the remaining one (left or right);

• a valuation φ for π is a function s.t.:

$$arphi: \mathbf{p} \mapsto \{\mathbf{0}, \mathbf{1}\}$$
 ; $arphi: \mathbf{w} \mapsto \{\mathbf{0}, \mathbf{1}\}$

- a slice φ(π) is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1;
- a switching S for π is what remains of a slice $\varphi(\pi)$ after that:
 - ▶ for each %-node we take only one premise and we cut the remaining one (left or right);
 - for each &_p node we cut the (unique) premise in φ(π) and we add an oriented edge (a jump) from this &_p node to a node whose weight depends on p.

Girard's Proof Net (GPN)

Definition: a GPS π is **correct**, it is a GPN, if any switching, induced by a valuation φ for π , is ACC.

Girard's Proof Net (GPN)

Definition: a GPS π is correct, it is a GPN, if any switching, induced by a valuation φ for π , is ACC.

Examples: The GPS in the Ex. 1 is correct, while the next one is not so:

Cut Elimination

... Girard's cut elimination is only the lazy (ready) one!

Ready Cut Elimination: ax-step

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ @

Ready Cut Elimination: (\otimes / \otimes) -step

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ready Cut Elimination: $(\oplus_i/\&)$ -step

 π' is what is still nonzero in π , once p = 1 (resp., $\bar{p} = 0$).

... Girard's cut elimination stops here!

(日)

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

reduces to (the " \leftrightarrow " edges are axiom links):

the step (\otimes/C) is similar

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

reduces to:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶▲□▶▲□▶▲□▶ □ のへで

▲□▶ ▲御▶ ▲臣▶ ★臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

two possible solutions:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

two possible solutions:

1. global solution : replace
$$\&_p$$
 by $\overbrace{\&_{p_1},...,\&_{p_n}}^{different p_i}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

two possible solutions:

1. global solution : replace
$$\&_p$$
 by $\overbrace{\&_{p_1},...,\&_{p_n}}^{different p_i}$

2. local solution : replace
$$\&_p$$
 by $\overbrace{\&_p, ..., \&_p}^{n-times the same p}$

(&/C)-Cut Elimination: the global solution

Idea: *q-dependency graph*: the sub-graph of π depending on *q*

(&/C)-Cut Elimination: the global solution

Idea: *q-dependency graph*: the sub-graph of π depending on *q*

reduces to

(&/C)-Cut Elimination: the local solution

(&/C)-Cut Elimination: the local solution

reduces to

but this step does not preserve the notion GPS !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(&/C)-Cut Elimination: problems with the local solution

(&/C)-Cut Elimination: problems with the local solution

1) π reduces to a π' that is not a PS (by technical condition: $q \leq ?$)

<ロ> (日) (日) (日) (日) (日)

э

(&/C)-Cut Elimination: problems with the local solution

1) π reduces to a π' that is not a PS (by technical condition: $q \leq$?)

2) π' reduces (cut_1) to $\pi''[q = 1; \bar{q} = 0]$ that is not even a PPS !

< □ > < 同 > < 三 >

- A MALL proof structure (*EPS*), is a pair $\langle \pi, E \rangle$ where:
 - $E = \{\epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free}\};$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• π is a GPS with the following modifications:

- A MALL proof structure (*EPS*), is a pair $\langle \pi, E \rangle$ where:
 - $E = \{\epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free}\};$
 - π is a GPS with the following modifications:
 - the eigen weights are not supposed to be different

- A MALL proof structure (*EPS*), is a pair $\langle \pi, E \rangle$ where:
 - $E = \{\epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free}\};$
 - π is a GPS with the following modifications:
 - the eigen weights are not supposed to be different
 - if $v_1(\&_p), ..., v_n(\&_p)$, then $v_i.v_j = 0$ for all $1 \le i \le j \le n$

- A MALL proof structure (*EPS*), is a pair $\langle \pi, E \rangle$ where:
 - $E = \{\epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free}\};$
 - π is a GPS with the following modifications:
 - the eigen weights are not supposed to be different
 - if $v_1(\&_p), ..., v_n(\&_p)$, then $v_i . v_j = 0$ for all $1 \le i \le j \le n$

all weights are considered modulo E;

MALL PS: *nouvelle syntax* (continues)

(new) technical condition: if w is a weight depending on p and s.t.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

MALL PS: *nouvelle syntax* (continues)

(new) technical condition: if w is a weight depending on p and s.t.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• w belongs to a node of π , or

(new) technical condition: if w is a weight depending on p and s.t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- w belongs to a node of π , or
- w occurs in an equation of E

(new) technical condition: if w is a weight depending on p and s.t.

• w belongs to a node of π , or

▶ w occurs in an equation of E

then

$$w \leq (\sum_{i=1}^n v_i) \mod E$$

A D M 4 目 M 4 日 M 4 1 H 4

where :

(new) technical condition: if w is a weight depending on p and s.t.

• w belongs to a node of π , or

▶ w occurs in an equation of E

then

$$w \leq (\sum_{i=1}^n v_i) \mod E$$

where :

- \blacktriangleright v_i , $1 \le i \le n$, is :
 - either the weight of a node &_p
 - or the suffix of an equation $\epsilon_p . v_i = 0$ of E;

(new) technical condition: if w is a weight depending on p and s.t.

• w belongs to a node of π , or

▶ w occurs in an equation of E

then

$$w \leq (\sum_{i=1}^n v_i) \mod E$$

where :

- \blacktriangleright v_i , $1 \le i \le n$, is :
 - either the weight of a node &_p
 - or the suffix of an equation $\epsilon_p . v_i = 0$ of E;

• $\sum_{i=1}^{n} v_i$ is a monomial weight (modulo *E*);

(new) technical condition: if w is a weight depending on p and s.t.

• w belongs to a node of π , or

w occurs in an equation of E

then

$$w \leq (\sum_{i=1}^n v_i) \mod E$$

where :

- \blacktriangleright v_i , $1 \le i \le n$, is :
 - either the weight of a node &_p
 - or the suffix of an equation $\epsilon_p . v_i = 0$ of E;

• $\sum_{i=1}^{n} v_i$ is a monomial weight (modulo *E*);

> all weights $v_1, \dots v_n$ are pairwise disjoint.

MALL EPS : example

The pair $\langle \pi, \emptyset \rangle$ is (now) a proof structure (q or $\bar{q} \leq p + \bar{p}$)

Definition (EPN)

An EPS is correct if all local switchings are ACC.

(the notion of *local switching* is a variant of the Girard's switching)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Definition (EPN)

An EPS is correct if all local switchings are ACC.

(the notion of *local switching* is a variant of the Girard's switching)

Theorem

A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition (EPN)

An EPS is correct if all local switchings are ACC.

(the notion of *local switching* is a variant of the Girard's switching)

Theorem

A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

Proof.

 we exploit an *expansion procedure* which allows us to unfold each EPN into a GPN;

Definition (EPN)

An EPS is correct if all local switchings are ACC.

(the notion of *local switching* is a variant of the Girard's switching)

Theorem

A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

Proof.

 we exploit an *expansion procedure* which allows us to unfold each EPN into a GPN;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 it can be shown that each expansion step preserves the Girard's sequentialization.

Cut Elimination

 $\langle \pi, E \rangle \rightsquigarrow_R \langle \pi', E \rangle$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

when R is one of the reduction steps defined before for GPS:

- axiom-step
- ▶ (⊗/⊗)-step
- ► (⊗/C)-step
- ▶ (%/C)-step
- (\oplus_i/C) -step
- ▶ (*C*/*C*)-step

Cut Elimination: the new $(\oplus_i/\&)$ -step

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

€ 990

Cut Elimination: the new $(\oplus_i/\&)$ -step

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

€ 990

►
$$E' = E \cup \{\bar{p}.w = 0\};$$

Cut Elimination: the new $(\oplus_i/\&)$ -step

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

►
$$E' = E \cup \{\bar{p}.w = 0\};$$

π' is what (of π) remains still nonzero modulo E':
in particular, we remove all nodes whose weight v ≤_{E'} p̄.w;
(i.e., we remove the slice p̄ rooted at w).

(&/C)-Cut Elimination: example 3

 $\langle \pi, \emptyset \rangle$ reduces (*cut*₁) to $\langle \pi', \{ \bar{q}. \bar{p} = 0 \} \rangle$ (that is still an EPS)

< ロ > < 同 > < 回 > < 回 >

э

Cut Elimination: the "local" (&/C)-step

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Cut Elimination: the "local" (&/C)-step

reduces to:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Stability under the Cut Elimination

Theorem (Stability of EPS) $\langle \pi, E \rangle \rightsquigarrow \langle \pi', E' \rangle$ and $\langle \pi, E \rangle$ is a EPS, then $\langle \pi', E' \rangle$ is a EPS too.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Stability under the Cut Elimination

Theorem (Stability of EPS) $\langle \pi, E \rangle \rightsquigarrow \langle \pi', E' \rangle$ and $\langle \pi, E \rangle$ is a EPS, then $\langle \pi', E' \rangle$ is a EPS too.

Theorem (Stability of EPN) $\langle \pi, E \rangle \rightsquigarrow \langle \pi', E' \rangle$ and $\langle \pi, E \rangle$ is a EPN, then $\langle \pi', E' \rangle$ is a EPN too.

A D M 4 目 M 4 日 M 4 1 H 4

Theorem

We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

A D M 4 目 M 4 日 M 4 1 H 4

Theorem

We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

 $\sharp 0, \sharp 1, ..., \sharp n$

A D M 4 目 M 4 日 M 4 1 H 4

Theorem

We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

 $\sharp 0, \sharp 1, ..., \sharp n$

A D M 4 目 M 4 日 M 4 1 H 4

• *n* is the number of Boolean variables occurring in $\langle \pi, E \rangle$;

Theorem

We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

 $\sharp 0, \sharp 1, ..., \sharp n$

- *n* is the number of Boolean variables occurring in $\langle \pi, E \rangle$;
- ▶ $\ddagger i$, with $0 \le i \le n$, is the sum of the logical complexities of all cuts whose *depth* is *i*.

Theorem

We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

 $\sharp 0, \sharp 1, ..., \sharp n$

- *n* is the number of Boolean variables occurring in $\langle \pi, E \rangle$;
- ▶ #i, with $0 \le i \le n$, is the sum of the logical complexities of all cuts whose *depth* is *i*.
- the depth $\delta(L)$ of a node L is max($|w_1|, |w_2|$), if
 - w_1 and w_2 are equivalent (modulo E) weights of L and
 - ► |w_j|, for j = 1, 2, is the length (the number of possibly variables or negations of variables) of w_j.

Confluence

Theorem (local confluence)

Let $\langle \pi, E \rangle$ be a proof net with two cut nodes, L_1 and L_2 , and let

- α be the cut reduction $\langle \pi, E \rangle \rightsquigarrow_{L_1} \langle \pi_1, E_1 \rangle$ and
- ▶ β be the cut reduction $\langle \pi, E \rangle \rightsquigarrow_{L_2} \langle \pi_2, E_2 \rangle$,

then there exists a proof net $\langle \pi^*, E^* \rangle$ which $\langle \pi_i, E_i \rangle$, for $1 \le i \le 2$, reduces to in at most one step.

fine