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Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the
sequent calculus,

2. the (strong) cut elimination procedure is purely local: the
reduction of a cut is given by only modifying the nodes
connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
In 1996, Girard proposed a new syntax for MALL PNs:
» without additive boxes (sequentiality)

» allowing super-positions (weights, slices)
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Proof Nets: state of the art (continues)

... but Girard's proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize
into two possible PNs with no way to discriminate them.
This problem has been solved (in a perfectly satisfactory way)
by D. Hughes and R. van Glabbeek (2003)

2. w.r.t. cut elimination: Girard's one is
— lazy: only (ready) cuts not involving additive contractions
are reducible; as consequence, not all proof nets are
normalizable;
— not local;

Our goal here is:

— to provide an answer to the (monomial) cut elimination.
— to allow a new kind of additive super-position (sharing nodes)
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MALL Pre-Proof Structures (PPS)

» A PPS 7 is an oriented graph built on the following nodes
(edges are labelled by a MALL formulas):

T Y WY

A®B  A®B ALB A®B AGB

n

> in a contraction node C: A= A; = ... = Ap>1

> entering edges are premises while the (possibly) emergent
edges are conclusions

» two contraction nodes cannot have a common edge
» pending edges are called conclusions of 7

» a link is the graph made by a node together with its
premise(s) and its (possibly) conclusion(s).
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v

a set of Boolean variables denoted by p,q, ...,

a monomial weight w, v, ... is a product “.
variables or negation of variables.

v

(conjunction) of

€p, for a variable p or its negation p;
1, for the empty product;
0, for a product where both p and p appear;

two weights, v and w, are disjoint when v.w = 0.

vV v v v Y

a weight w depends on a variable p when ¢, appears in w;
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Girard MALL Proof Structures (GPS)

A MALL GPS 7 is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each & node of 7
(notation &p):

2. we associate a weight w # 0 to each node; two nodes have
the same weight if they have a common edge, except when:

&5 w

€p does not occur in w  ViVj,wiw; =0 (1 <i,j < n)

3. a conclusion node has weight 1;

4. tech. cond. if w in w depends on p, then w < v, where v is
the weight of the &, node.
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The following is a GPS:




Girard MALL Proof Structures: example 2
The following is not a GPS:

it violates the technical condition of GPS definition: there exists a
(axiom) node whose weight is p but p £ q, where q is the weight
of the (unique) node &,.
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Correctness Criterion: valuation, slices, switchings

» a valuation ¢ for 7 is a function s.t.:

e:p {01} o :wr—{0,1}
> a slice ¢(7) is the graph obtained from 7 by keeping only
those nodes (together its emerging edges) whose weight is 1;
» a switching S for 7 is what remains of a slice p() after that:

» for each *9-node we take only one premise and we cut the
remaining one (left or right);

» for each &, node we cut the (unique) premise in ¢(m) and we
add an oriented edge (a jump) from this &, node to a node
whose weight depends on p.
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Girard's Proof Net (GPN)

Definition: a GPS 7 is correct, it is a GPN, if any switching,
induced by a valuation ¢ for 7, is ACC.

Examples: The GPS in the Ex. 1 is correct, while the next one is not so:




Cut Elimination

... Girard’s cut elimination is only the lazy (ready) one!



Ready Cut Elimination: ax-step
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Ready Cut Elimination: (®;/&)-step

B B+
L»@J

7’ is what is still nonzero in 7, once p =1 (resp., p = 0).

™~ [p/1]

... Girard’s cut elimination stops here!



Commutative Cut Elimination: (®/C)-step

A\

A w

AL AL AL




Commutative Cut Elimination: (®/C)-step

the step (’g/C) is similar
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Commutative Cut Elimination: (&/C)-step

B C AL AL AL

two possible solutions:

different p;

1. global solution : replace &, by &p,, ..., &,

n—times the same p

2. local solution : replace &, by  &p, ..., &p
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Idea: g-dependency graph: the sub-graph of w depending on g
)
U oo
( —
1 J q
P

reduces to

fL
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(&/C)-Cut Elimination: the local solution

reduces to
wp
B cut, AL
' AL
wp
C cut, AL

but this step does not preserve the notion GPS !
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(&/C)-Cut Elimination: problems with the local solution

g

Lo oy

1) 7 reduces to a 7’ that is not a PS (by technical condition: g <7)

2) 7’ reduces (cuty) to ©'[q = 1; § = 0] that is not even a PPS !

”L@/@”@ \/@W
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MALL PS: nouvelle syntax

A MALL proof structure (EPS), is a pair (m, E) where:
> E = {e,.w =0]¢pis a prefix A w is a weight e,-free};
» 7 is a GPS with the following modifications:

» the eigen weights are not supposed to be different
> if vi(&p), ..., vn(&p), then vi.vy; =0forall 1 <i<j<n
> all weights are considered modulo E;
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MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

» w belongs to a node of 7, or
» w occurs in an equation of E
then

n

w < (Z vi) mod E

i=1
where :
> v, 1 <i<n,is:
> either the weight of a node &,
» or the suffix of an equation €,.v; = 0 of E;

» > 7, viis a monomial weight (modulo E);

» all weights vy, ...v, are pairwise disjoint.



MALL EPS : example

The pair (7, 0) is (now) a proof structure (g or § < p+ p)

ma@w@@ @

WL@% q \’/KO@W
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Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.

(the notion of local switching is a variant of the Girard's switching)

Theorem
A EPN with conclusion T can be sequentialized into a sequent
proof with same conclusion I and vice-versa.

Proof.

» we exploit an expansion procedure which allows us to unfold
each EPN into a GPN:

» it can be shown that each expansion step preserves the
Girard's sequentialization.



Cut Elimination

(m,E) ~g (7' E)

when R is one of the reduction steps defined before for GPS:

> axiom-step



Cut Elimination: the new (®;/&)-step




Cut Elimination: the new (®;/&)-step

B B+

(. ) ~ (!, EY) L*@J

w = pw mod E’
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Cut Elimination: the new (&;/&)-step

B B+

(1, E) ~ (', EY)

w = pw mod E’

> E'=EU{p.w =0};
» 7’ is what (of 7) remains still nonzero modulo E’:

in particular, we remove all nodes whose weight v <g p.w;

(i.e., we remove the slice p rooted at w).



(&/C)-Cut Elimination: example 3

(m,0) reduces (cuty) to (7', {g.p = 0}) (that is still an EPS)

p=hq pi =3

o 2By
‘ oGP
g of o Y



Cut Elimination: the “local” (&/C)-step
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reduces to:

AL

AL

AL
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Stability under the Cut Elimination

Theorem (Stability of EPS)
(m,E) ~ (7', E") and (m, E) is a EPS, then (n', E’) is a EPS too.

Theorem (Stability of EPN)
(m,E) ~ (7', E"Y and (7, E) is a EPN, then (x',E’) is a EPN too.
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Strong Cut Elimination

Theorem
We can always reduce a EPN (rr, E) into a EPN (7' E') that is
cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

40,¢1, ..., tn

» 1 is the number of Boolean variables occurring in (m, E);

» i, with 0 < i < n, is the sum of the logical complexities of all cuts
whose depth is i.

» the depth §(L) of a node L is max(|wy|, |ws|), if

» w; and ws are equivalent (modulo E) weights of L and
> |wj|, for j = 1,2, is the length (the number of possibly
variables or negations of variables) of w;.



Confluence

Theorem (local confluence)

Let (7, E) be a proof net with two cut nodes, Ly and Ly, and let
> « be the cut reduction (7, E) ~», (m1, E1) and
» [ be the cut reduction (m, E) ~, (72, E2),

then there exists a proof net (m*, E*) which (m;, E;), for 1 <i <2,
reduces to in at most one step.



fine



