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MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the
sequent calculus,

2. the (strong) cut elimination procedure is purely local: the
reduction of a cut is given by only modifying the nodes
connected to it.

A lot of work has been done to extend (1) and (2) to MALL.

In 1996, Girard proposed a new syntax for MALL PNs:

◮ without additive boxes (sequentiality)

◮ allowing super-positions (weights, slices)
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Proof Nets: state of the art (continues)

... but Girard’s proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize
into two possible PNs with no way to discriminate them.
This problem has been solved (in a perfectly satisfactory way)
by D. Hughes and R. van Glabbeek (2003)

2. w.r.t. cut elimination: Girard’s one is
– lazy: only (ready) cuts not involving additive contractions
are reducible; as consequence, not all proof nets are
normalizable;
– not local;

Our goal here is:
– to provide an answer to the (monomial) cut elimination.
– to allow a new kind of additive super-position (sharing nodes)
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MALL Pre-Proof Structures (PPS)

◮ A PPS π is an oriented graph built on the following nodes
(edges are labelled by a MALL formulas):

⊗ O & C

A ⊗ B AOB A&B A

A B AA⊥

cut

A

ax

A

A BB A B

A ⊕ BA ⊕ B

⊕1 ⊕2

A⊥

...A1 An

◮ in a contraction node C : A = A1 = ... = An≥1

◮ entering edges are premises while the (possibly) emergent
edges are conclusions

◮ two contraction nodes cannot have a common edge

◮ pending edges are called conclusions of π

◮ a link is the graph made by a node together with its
premise(s) and its (possibly) conclusion(s).
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MALL Girard Proof Structures (GPS): weights

◮ a set of Boolean variables denoted by p, q, ...,

◮ a monomial weight w , v , ... is a product “.” (conjunction) of
variables or negation of variables.

◮ ǫp, for a variable p or its negation p;

◮ 1, for the empty product;

◮ 0, for a product where both p and p̄ appear;

◮ two weights, v and w , are disjoint when v .w = 0.

◮ a weight w depends on a variable p when ǫp appears in w ;
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A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each & node of π
(notation &p):

2. we associate a weight w 6= 0 to each node; two nodes have
the same weight if they have a common edge, except when:

w1

C&p

...
wn

w w =
∑n

i=1 wi

∀i∀j , wiwj = 0 (1 ≤ i , j ≤ n)

L1 L2 L1 Ln

pw p̄w

ǫp does not occur in w

3. a conclusion node has weight 1;

4. tech. cond. if w in π depends on p, then w ≤ v , where v is
the weight of the &p node.



Girard MALL Proof Structures: example 1

The following is a GPS:

C

ax

ax

ax

ax

ax

C

qp

q

qp

C

cut

q

q

&q

q&p



Girard MALL Proof Structures: example 2

The following is not a GPS:

C

ax

ax

ax

ax

ax

C

qp

q

qp

C

p

cut

q

p

&q

&p

it violates the technical condition of GPS definition: there exists a
(axiom) node whose weight is p̄ but p 6≤ q, where q is the weight
of the (unique) node &p.
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Correctness Criterion: valuation, slices, switchings

◮ a valuation ϕ for π is a function s.t.:

ϕ : p 7→ {0, 1} ; ϕ : w 7→ {0, 1}

◮ a slice ϕ(π) is the graph obtained from π by keeping only
those nodes (together its emerging edges) whose weight is 1;

◮ a switching S for π is what remains of a slice ϕ(π) after that:

◮ for each O-node we take only one premise and we cut the
remaining one (left or right);

◮ for each &p node we cut the (unique) premise in ϕ(π) and we
add an oriented edge (a jump) from this &p node to a node
whose weight depends on p.
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induced by a valuation ϕ for π, is ACC.



Girard’s Proof Net (GPN)

Definition: a GPS π is correct, it is a GPN, if any switching,
induced by a valuation ϕ for π, is ACC.

Examples: The GPS in the Ex. 1 is correct, while the next one is not so:

C

O

(b&c) ⊗ a

⊗ C

⊕ ⊕&p

ax

ax

ax

ax

O

p

p p

p

1

1 1

p

1

p

p

p

π

(a⊥Oc⊥) ⊕ (a⊥Ob⊥)



Cut Elimination

... Girard’s cut elimination is only the lazy (ready) one!



Ready Cut Elimination: ax-step

cut

ax

wA L′

L′′

A

L′′

A

π, π′ w



Ready Cut Elimination: (⊗/O)-step

cut

cut

B C BB⊥

⊗ O

CC⊥

cut

C⊥B⊥

w

w

wπ  π′



Ready Cut Elimination: (⊕i/&)-step

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

π  π′[p/1]

w

π′ is what is still nonzero in π, once p = 1 (resp., p̄ = 0).

... Girard’s cut elimination stops here!
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Commutative Cut Elimination: (⊗/C )-step

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

⊗

ww w1 wi wn

w A⊥

π

reduces to (the “↔” edges are axiom links):

cut C ⊗ cutB

w w1

cut

cut A⊥

A⊥

A⊥

wi

wn

⊗

⊗CcutC

w

...

...

...

... ...

...

w1

wi

wi

wn

w1

wn

π′

the step (O/C ) is similar
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Commutative Cut Elimination: (C/C )-step

C

A A A A⊥A⊥

C

cut

w

... ... A⊥ ... ...

w1 wi wn v1 vj vm

reduces to:

cut C

cut

cut

cut

C

CCcutA

A

A cut C

...

...

...

...
...

C

...

...

A⊥

...

A⊥

...

A⊥

...

...

w1

wi

wn

w1vj

v1

vj

vm

wivj

wnvj

w1v1

wiv1

wnvm

w1vm

...
wnv1

wivm



Commutative Cut Elimination: (⊕i/C )-step

C

cut

A⊥ ... ...

A

w

B

⊕i
w A⊥

wn

π
w1

A⊥...

...



Commutative Cut Elimination: (⊕i/C )-step

C

cut

A⊥ ... ...

A

w

B

⊕i
w A⊥

wn

π
w1

A⊥...

...

 

cut

ax

cut

⊕i ⊕i

ax

C

A⊥ A⊥

cut

w

B B

B⊥B⊥

A A

w1 wn...

...

...

...

B

π′
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Commutative Cut Elimination: (&/C )-step

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn

w A⊥

&p

wp wp̄

π

two possible solutions:

1. global solution : replace &p by

different pi
︷ ︸︸ ︷

&p1
, ...,&pn

2. local solution : replace &p by

n−times the same p
︷ ︸︸ ︷

&p, ...,&p
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Idea: q-dependency graph: the sub-graph of π depending on q
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(&/C )-Cut Elimination: the global solution

Idea: q-dependency graph: the sub-graph of π depending on q

&p

⊕1

⊕2

C C C C

⊗1

1

1

1

q̄

&qcut

q
p

q

p̄

q̄

reduces to

&p

⊕1

⊕2

C C C

⊗

p̄

1

1

1

cut1

cut2

&q2

&q1

p̄q̄1

p̄q1

pq2

pq̄2

p̄q̄1

p̄q1

pq2

pq̄2
p
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A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn
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(&/C )-Cut Elimination: the local solution

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn

w A⊥

&p

wp wp̄

π

reduces to

cut cutB

w1

cut

cut A⊥

A⊥

A⊥

wi

wn

cutC

...

...

...

... ...

...

C

C

&p

wp

wp̄

pw1

pwi

p̄w1
p̄wi

p̄wn

pwn

&p

&p
π′

but this step does not preserve the notion GPS !



(&/C )-Cut Elimination: problems with the local solution

&p

⊕1

⊕2

C C C C

⊗1

1

1

1

q̄

&qcut

q
p

q

p̄

q̄



(&/C )-Cut Elimination: problems with the local solution

&p

⊕1

⊕2

C C C C

⊗1

1

1

1

q̄

&qcut

q
p

q

p̄

q̄

1) π reduces to a π′ that is not a PS (by technical condition: q ≤?)

&p

⊕1

⊕2

C C C

⊗1

1

1

cut1

cut2

&q

&q

cut3

cut4

C

C

p̄
q̄

p̄q̄

q
pqp

pq̄ p̄q

q̄

q



(&/C )-Cut Elimination: problems with the local solution

&p

⊕1

⊕2

C C C C

⊗1

1

1

1

q̄

&qcut

q
p

q

p̄

q̄

1) π reduces to a π′ that is not a PS (by technical condition: q ≤?)

&p

⊕1

⊕2

C C C

⊗1

1

1

cut1

cut2

&q

&q

cut3

cut4

C

C

p̄
q̄

p̄q̄

q
pqp

pq̄ p̄q

q̄

q

2) π′ reduces (cut1) to π′′[q = 1; q̄ = 0] that is not even a PPS !

&p

⊕2

C C C

⊗1

1

1
cut2 &q

cut4

C
p p

q = 1

p̄

p̄ π′′

cut ′1

?

q = 1
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MALL PS: nouvelle syntax

A MALL proof structure (EPS), is a pair 〈π,E 〉 where:

◮ E = {ǫp.w = 0 | ǫp is a prefix ∧ w is a weight ǫp-free};

◮ π is a GPS with the following modifications:

◮ the eigen weights are not supposed to be different

◮ if v1(&p), ..., vn(&p), then vi .vj = 0 for all 1 ≤ i ≤ j ≤ n

◮ all weights are considered modulo E ;
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MALL PS: nouvelle syntax (continues)

(new) technical condition: if w is a weight depending on p and s.t.

◮ w belongs to a node of π, or

◮ w occurs in an equation of E

then

w ≤ (

n∑

i=1

vi ) mod E

where :

◮ vi , 1 ≤ i ≤ n, is :
◮ either the weight of a node &p

◮ or the suffix of an equation ǫp.vi = 0 of E ;

◮

∑n
i=1 vi is a monomial weight (modulo E );

◮ all weights v1, ...vn are pairwise disjoint.



MALL EPS : example

The pair 〈π, ∅〉 is (now) a proof structure (q or q̄ ≤ p + p̄)

&p

⊕1

⊕2

C C C

⊗1

1

1

cut1

cut2

&q

&q

cut3

cut4

C

C

p̄
q̄

p̄q̄

q
pqp

pq̄ p̄q

q̄

q
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Correctness Criterion: EPNs

Definition (EPN)

An EPS is correct if all local switchings are ACC.

(the notion of local switching is a variant of the Girard’s switching)

Theorem
A EPN with conclusion Γ can be sequentialized into a sequent

proof with same conclusion Γ and vice-versa.

Proof.

◮ we exploit an expansion procedure which allows us to unfold
each EPN into a GPN;

◮ it can be shown that each expansion step preserves the
Girard’s sequentialization.



Cut Elimination

〈π,E 〉 R 〈π′,E 〉

when R is one of the reduction steps defined before for GPS:

◮ axiom-step

◮ (⊗/O)-step

◮ (⊗/C )-step

◮ (O/C )-step

◮ (⊕i/C )-step

◮ (C/C )-step



Cut Elimination: the new (⊕i/&)-step

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

〈π, E 〉 〈π′, E ′〉

w = pw mod E ′



Cut Elimination: the new (⊕i/&)-step

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

〈π, E 〉 〈π′, E ′〉

w = pw mod E ′

◮ E ′ = E ∪ {p̄.w = 0};



Cut Elimination: the new (⊕i/&)-step

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

〈π, E 〉 〈π′, E ′〉

w = pw mod E ′

◮ E ′ = E ∪ {p̄.w = 0};

◮ π′ is what (of π) remains still nonzero modulo E ′:

in particular, we remove all nodes whose weight v ≤E ′ p̄.w ;

(i.e., we remove the slice p̄ rooted at w).



(&/C )-Cut Elimination: example 3

&p

⊕1

⊕2

C C C

⊗1

1

1

cut1

cut2

&q

&q

cut3

cut4

C

C

p̄
q̄

p̄q̄

q
pqp

pq̄ p̄q

q̄

q

〈π, ∅〉 reduces (cut1) to 〈π′, {q̄.p̄ = 0}〉 (that is still an EPS)

&p

⊕2

C C C

⊗1

1

1
cut2 &q

cut3

cut4

C

C q
pqp

cut ′1

p̄ = p̄q pq̄ = q̄

q

q̄



Cut Elimination: the “local” (&/C )-step

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn

w

〈π, E 〉

A⊥

&p

wp wp̄



Cut Elimination: the “local” (&/C )-step

A⊥A⊥

C

cut

A⊥ ... ...

A

B C

w1 wi wn

w

〈π, E 〉

A⊥

&p

wp wp̄

reduces to:

cut cutB

w1

cut

cut A⊥

A⊥

A⊥

wi

wn

cutC

...

...

...

... ...

...

〈π′, E 〉

C

C

&p

wp

wp̄

pw1

pwi

p̄w1
p̄wi

p̄wn

pwn

&p

&p



Stability under the Cut Elimination

Theorem (Stability of EPS)

〈π,E 〉 〈π′,E ′〉 and 〈π,E 〉 is a EPS, then 〈π′,E ′〉 is a EPS too.



Stability under the Cut Elimination

Theorem (Stability of EPS)

〈π,E 〉 〈π′,E ′〉 and 〈π,E 〉 is a EPS, then 〈π′,E ′〉 is a EPS too.

Theorem (Stability of EPN)

〈π,E 〉 〈π′,E ′〉 and 〈π,E 〉 is a EPN, then 〈π′,E ′〉 is a EPN too.
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Strong Cut Elimination

Theorem
We can always reduce a EPN 〈π,E 〉 into a EPN 〈π′,E ′〉 that is

cut-free; this reduction is strongly terminating.

Proof.
The proof is by lexicographic induction on the cut complexity sequence

♯0, ♯1, ..., ♯n

◮ n is the number of Boolean variables occurring in 〈π, E 〉;

◮ ♯i , with 0 ≤ i ≤ n, is the sum of the logical complexities of all cuts
whose depth is i .

◮ the depth δ(L) of a node L is max(|w1|, |w2|), if

◮ w1 and w2 are equivalent (modulo E ) weights of L and
◮ |wj |, for j = 1, 2, is the length (the number of possibly

variables or negations of variables) of wj .



Confluence

Theorem (local confluence)

Let 〈π,E 〉 be a proof net with two cut nodes, L1 and L2, and let

◮ α be the cut reduction 〈π,E 〉 L1
〈π1,E1〉 and

◮ β be the cut reduction 〈π,E 〉 L2
〈π2,E2〉,

then there exists a proof net 〈π∗,E ∗〉 which 〈πi ,Ei 〉, for 1 ≤ i ≤ 2,
reduces to in at most one step.



fine


