Cut Elimination for Monomial MALL Proof Nets

Roberto Maieli

Università degli Studi “Roma Tre”
maieli@uniroma3.it

Rencontre Journée Additifs
Paris, March, 17th, 2008
Proof Nets: state of the art

MLL PNs are the perfect setting:
MLL PNs are the perfect setting:

1. a proof net is a **canonical representative of a proof** of the sequent calculus,
Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a **canonical representative of a proof** of the sequent calculus,

2. the **(strong) cut elimination procedure** is purely local: the reduction of a cut is given by only modifying the nodes connected to it.
Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,

2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL.
Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,
2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL. In 1996, Girard proposed a new syntax for MALL PNs:
Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a canonical representative of a proof of the sequent calculus,

2. the (strong) cut elimination procedure is purely local: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL. In 1996, Girard proposed a new syntax for MALL PNs:

- without additive boxes (sequentiality)
Proof Nets: state of the art

MLL PNs are the perfect setting:

1. a proof net is a **canonical representative of a proof** of the sequent calculus,

2. the **(strong) cut elimination procedure is purely local**: the reduction of a cut is given by only modifying the nodes connected to it.

A lot of work has been done to extend (1) and (2) to MALL. In 1996, Girard proposed a new syntax for MALL PNs:

- without additive boxes (sequentiality)
- allowing super-positions (weights, slices)
Proof Nets: state of the art (continues)

... but Girard’s proposal was not as good as for MLL:
Proof Nets: state of the art (continues)

... but Girard’s proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them.
... but Girard’s proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)
... but Girard’s proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. w.r.t. cut elimination: Girard’s one is
... but Girard’s proposal was not as good as for MLL:

1. **w.r.t. canonicity**: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. **w.r.t. cut elimination**: Girard’s one is
 – lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
... but Girard’s proposal was not as good as for MLL:

1. **w.r.t. canonicity**: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. **w.r.t. cut elimination**: Girard’s one is
 – lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
 – not local;
Proof Nets: state of the art (continues)

... but Girard’s proposal was not as good as for MLL:

1. w.r.t. canonicity: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. w.r.t. cut elimination: Girard’s one is
 – lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
 – not local;

Our goal here is:
... but Girard’s proposal was not as good as for MLL:

1. **w.r.t. canonicity**: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. **w.r.t. cut elimination**: Girard’s one is
 – lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
 – not local;

Our goal here is:

– to provide an answer to the (monomial) cut elimination.
... but Girard’s proposal was not as good as for MLL:

1. **w.r.t. canonicity**: there exist proofs which de-sequentialize into two possible PNs with no way to discriminate them. This problem has been solved (in a perfectly satisfactory way) by D. Hughes and R. van Glabbeek (2003)

2. **w.r.t. cut elimination**: Girard’s one is
 – lazy: only (ready) cuts not involving additive contractions are reducible; as consequence, not all proof nets are normalizable;
 – not local;

Our goal here is:
– to provide an answer to the (monomial) cut elimination.
– to allow a new kind of additive super-position (sharing nodes)
A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- \otimes (tensor product)
- $\&$ (multiplication)
- \perp (cut)
- \oplus (disjunction)
- \bot (false)
- \top (true)

Diagram:

```
ax       cut
A   A⊥   A       A       A       A       A       A       A1 ... An
    |      |       |       |       |       |       |       |
    ↓      ↓       ↓       ↓       ↓       ↓       ↓       ↓
A ⊗ B   A & B   A & B   A ⊕ B   A ⊕ B   A ⊕ B   A ⊕ B   A
    |      |       |       |       |       |       |       |
    ↓      ↓       ↓       ↓       ↓       ↓       ↓       ↓
A       A       A       A       A
```
MALL Pre-Proof Structures (PPS)

- A **PPS** π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

 - in a contraction node C: $A = A_1 = ... = A_{n\geq 1}$
A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- in a contraction node C: $A = A_1 = ... = A_{n \geq 1}$
- entering edges are *premises* while the (possibly) emergent edges are *conclusions*
A PPS π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- in a contraction node C: $A = A_1 = \ldots = A_{n \geq 1}$
- entering edges are **premises** while the (possibly) emergent edges are **conclusions**
- two contraction nodes cannot have a common edge
A **PPS** π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- $A \otimes B$
- $A \Box B$
- $A & B$
- $A \oplus B$
- $A \perp$
- \perp
A **PPS** π is an oriented graph built on the following nodes (edges are labelled by a MALL formulas):

- **ax**
- **cut**
- $A \otimes B$
- $A \& B$
- $A \oplus B$
- $A \bot$
- $A_1 \ldots A_n$

- In a contraction node C: $A = A_1 = \ldots = A_{n \geq 1}$
- Entering edges are **premises** while the (possibly) emergent edges are **conclusions**
- Two contraction nodes cannot have a common edge
- Pending edges are called **conclusions** of π
- A **link** is the graph made by a node together with its premise(s) and its (possibly) conclusion(s).
MALL Girard Proof Structures (GPS): weights
MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by $p, q, ...$,
- a **monomial weight** $w, v, ...$ is a product “.” (conjunction) of variables or negation of variables.
MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by p, q, \ldots,
- a **monomial weight** w, v, \ldots is a product “.” (conjunction) of variables or negation of variables.
- ϵ_p, for a variable p or its negation \overline{p};
- a set of Boolean variables denoted by p, q, \ldots,
- a **monomial weight** w, ν, \ldots is a product “.” (conjunction) of variables or negation of variables.
- ϵ_p, for a variable p or its negation \overline{p};
- 1, for the empty product;
MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by $p, q, ...$,
- a monomial weight $w, v, ...$ is a product “.” (conjunction) of variables or negation of variables.
- ϵ_p, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0, for a product where both p and \bar{p} appear;
MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by $p, q, ...$,
- a **monomial weight** $w, v, ...$ is a product “.” (conjunction) of variables or negation of variables.
- ε_p, for a variable p or its negation \overline{p};
- 1, for the empty product;
- 0, for a product where both p and \overline{p} appear;
- two weights, v and w, are **disjoint** when $v \cdot w = 0$.
MALL Girard Proof Structures (GPS): weights

- a set of Boolean variables denoted by $p, q, ...$
- a **monomial weight** $w, v, ...$ is a product “.” (conjunction) of variables or negation of variables.
- ϵ_p, for a variable p or its negation \bar{p};
- 1, for the empty product;
- 0, for a product where both p and \bar{p} appear;
- two weights, v and w, are **disjoint** when $v . w = 0$.
- a weight w **depends on a variable** p when ϵ_p appears in w;
Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:
A MALL π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each $\&$ node of π (notation $\&_p$):
A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) *eigen weight* p, to each \& node of π (notation $\&_p$):

2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

$$\epsilon_p \text{ does not occur in } w \quad \forall i \forall j, w_i w_j = 0 \ (1 \leq i, j \leq n)$$
A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each $\&$ node of π (notation $\&_p$):

2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

\[
\forall i, \forall j, w_i w_j = 0 \quad (1 \leq i, j \leq n)
\]

3. a conclusion node has weight 1;
Girard MALL Proof Structures (GPS)

A MALL GPS π is a PPS with associated weights as follows:

1. we associate a (different) eigen weight p, to each $\&$ node of π (notation $\&_p$):

2. we associate a weight $w \neq 0$ to each node; two nodes have the same weight if they have a common edge, except when:

 \[\sum_{i=1}^{n} w_i = \epsilon_p \text{ does not occur in } w \quad \forall i \forall j, w_i w_j = 0 \quad (1 \leq i, j \leq n) \]

3. a conclusion node has weight 1;

4. **tech. cond.** if w in π depends on p, then $w \leq \nu$, where ν is the weight of the $\&_p$ node.
The following is a GPS:
The following is not a GPS:

![Diagram of a proof structure]

It violates the *technical condition* of GPS definition: there exists a (axiom) node whose weight is \bar{p} but $\bar{p} \not\leq q$, where q is the weight of the (unique) node $\&_p$.
Correctness Criterion: valuation, slices, switchings
Correctness Criterion: valuation, slices, switchings

- a valuation φ for π is a function s.t.:
 $$\varphi : p \mapsto \{0, 1\} ; \varphi : w \mapsto \{0, 1\}$$
Correctness Criterion: valuation, slices, switchings

- **valuation** \(\varphi \) for \(\pi \) is a function s.t.:
 \[
 \varphi : p \mapsto \{0, 1\} \; ; \; \varphi : w \mapsto \{0, 1\}
 \]

- **slice** \(\varphi(\pi) \) is the graph obtained from \(\pi \) by keeping only those nodes (together its emerging edges) whose weight is 1;
Correctness Criterion: valuation, slices, switchings

- **a valuation** φ for π is a function s.t.:
 $$\varphi : p \mapsto \{0, 1\} ; \varphi : w \mapsto \{0, 1\}$$

- **a slice** $\varphi(\pi)$ is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1;

- **a switching** S for π is what remains of a slice $\varphi(\pi)$ after that:
 - for each \otimes-node we take only one premise and we cut the remaining one (left or right);
Correctness Criterion: valuation, slices, switchings

- A **valuation** φ for π is a function s.t.:
 \[\varphi : p \mapsto \{0, 1\} ; \varphi : w \mapsto \{0, 1\} \]

- A **slice** $\varphi(\pi)$ is the graph obtained from π by keeping only those nodes (together its emerging edges) whose weight is 1;

- A **switching** S for π is what remains of a slice $\varphi(\pi)$ after that:
 - for each \exists-node we take only one premise and we cut the remaining one (left or right);
 - for each $\&_p$ node we cut the (unique) premise in $\varphi(\pi)$ and we add an oriented edge (a **jump**) from this $\&_p$ node to a node whose weight depends on p.
Girard’s Proof Net (GPN)

Definition: a GPS \(\pi \) is **correct**, it is a GPN, if any switching, induced by a valuation \(\varphi \) for \(\pi \), is ACC.
Girard’s Proof Net (GPN)

Definition: a GPS π is **correct**, it is a GPN, if any switching, induced by a valuation φ for π, is ACC.

Examples: The GPS in the Ex. 1 is correct, while the next one is not so:
... Girard’s cut elimination is only the lazy (ready) one!
Ready Cut Elimination: \(ax \)-step

\[
\begin{aligned}
L'' & \xrightarrow{w} A \quad \text{cut} \\
L' & \xrightarrow{ax} L' \\
\pi, \rightsquigarrow \pi' & \\
L'' & \xrightarrow{w} A
\end{aligned}
\]
Ready Cut Elimination: \((\otimes/\otimes\otimes)-\text{step}\)
Ready Cut Elimination: $(\oplus_i/\&)$-step

\[\pi \rightsquigarrow \pi'[p/1] \]

π' is what is still nonzero in π, once $p = 1$ (resp., $\bar{p} = 0$).

... Girard’s cut elimination stops here!
Commutative Cut Elimination: \((\otimes/C)\)-step
Commutative Cut Elimination: \((\otimes/C)\)-step

\[
\begin{align*}
B & \quad C \\
w & \quad w \\
\otimes & \quad \pi \\
A & \quad w \\
\text{cut} & \\
A & \quad \quad A^\perp \\
\end{align*}
\]

reduces to (the “\(\leftrightarrow\)” edges are axiom links):

\[
\begin{align*}
B & \quad \quad \quad C \\
w & \quad w_1 \\
\text{cut} & \quad \otimes \\
A^\perp & \quad \quad \quad \quad \quad A^\perp \\
\pi' & \quad \qed
Commutative Cut Elimination: \((C/C)\)-step
Commutative Cut Elimination: \((C/C)\)-step

reduces to:
Commutative Cut Elimination: (\oplus_i/C)-step
Commutative Cut Elimination: (\oplus_i/C)-step
Commutative Cut Elimination: ($\&/C$)-step
Commutative Cut Elimination: $(\& / C)$-step

two possible solutions:
Commutative Cut Elimination: $(\&/C)$-step

two possible solutions:

1. global solution: replace $\&_p$ by $\&_{p_1}, \ldots, \&_{p_n}$
Commutative Cut Elimination: $(\&/C)$-step

two possible solutions:

1. **global solution**: replace $\&_p$ by $\&_{p_1}, \ldots, \&_{p_n}$

2. **local solution**: replace $\&_p$ by $\&_p, \ldots, \&_p$
(&/C)-Cut Elimination: the global solution

Idea: **q-dependency graph**: the sub-graph of π depending on q
(&/C)-Cut Elimination: the global solution

Idea: q-dependency graph: the sub-graph of π depending on q

reduces to
(\&/C)-Cut Elimination: the local solution

\[\begin{align*}
& \text{B} \quad \text{C} \\
& \text{wp} \quad \text{w\bar{p}} \\
& \text{\&}_p \\
& \text{A} \\
& \text{\text{cut}} \\
& \pi \\
& A^\perp \quad \cdots \\
\end{align*} \]
(&/C)-Cut Elimination: the local solution

reduces to

but this step does not preserve the notion GPS!
(&/C)-Cut Elimination: problems with the local solution
(&/C)-Cut Elimination: problems with the local solution

1) π reduces to a π' that is not a PS (by technical condition: $q \leq ?$)
(&/C)-Cut Elimination: problems with the local solution

1) π reduces to a π' that is not a PS (by technical condition: $q \leq ?$)

2) π' reduces (cut_1) to $\pi''[q = 1; \bar{q} = 0]$ that is not even a PPS!
MALL PS: nouvelle syntax

A MALL proof structure \((EPS)\), is a pair \(\langle \pi, E \rangle\) where:

- \(E = \{ \epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free} \}\);
- \(\pi\) is a GPS with the following modifications:
MALL PS: *nouvelle syntax*

A MALL proof structure (*EPS*), is a pair $\langle \pi, E \rangle$ where:

- $E = \{ \epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free} \}$;
- π is a GPS with the following modifications:
 - the eigen weights are not supposed to be different
A MALL proof structure \((EPS)\), is a pair \(\langle \pi, E \rangle \) where:

- \(E = \{\epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free}\}\);
- \(\pi\) is a GPS with the following modifications:
 - the eigen weights are not supposed to be different
 - if \(v_1(\&_p), \ldots, v_n(\&_p)\), then \(v_i.v_j = 0\) for all \(1 \leq i \leq j \leq n\)
MALL PS: *nouvelle syntax*

A MALL *proof structure* \((EPS)\), is a pair \(\langle \pi, E \rangle\) where:

- \(E = \{ \epsilon_p.w = 0 \mid \epsilon_p \text{ is a prefix } \land w \text{ is a weight } \epsilon_p\text{-free} \}\);
- \(\pi\) is a GPS with the following modifications:
 - the eigen weights are not supposed to be different
 - if \(v_1(\&_p), \ldots, v_n(\&_p)\), then \(v_i.v_j = 0\) for all \(1 \leq i \leq j \leq n\)
 - all weights are considered \textit{modulo} \(E\);
(new) technical condition: if w is a weight depending on p and s.t.
(new) technical condition: if \(w \) is a weight depending on \(p \) and s.t.

- \(w \) belongs to a node of \(\pi \), or
(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E
If w is a weight depending on p and s.t.

1. w belongs to a node of π, or
2. w occurs in an equation of E

then

\[w \leq \left(\sum_{i=1}^{n} v_i \right) \mod E \]

where:
(new) technical condition: if \(w \) is a weight depending on \(p \) and s.t.

- \(w \) belongs to a node of \(\pi \), or
- \(w \) occurs in an equation of \(E \)

then

\[
w \leq \left(\sum_{i=1}^{n} v_i \right) \mod E
\]

where:

- \(v_i, 1 \leq i \leq n \), is:
 - either the weight of a node \(\&_p \)
 - or the suffix of an equation \(\epsilon_p.v_i = 0 \) of \(E \);
(new) technical condition: if \(w \) is a weight depending on \(p \) and s.t.

- \(w \) belongs to a node of \(\pi \), or
- \(w \) occurs in an equation of \(E \)

then

\[
\sum_{i=1}^{n} v_i \mod E
\]

where:

- \(v_i, 1 \leq i \leq n \), is:
 - either the weight of a node \(\&_p \)
 - or the suffix of an equation \(\epsilon_p.v_i = 0 \) of \(E \);

- \(\sum_{i=1}^{n} v_i \) is a monomial weight (modulo \(E \));
(new) technical condition: if w is a weight depending on p and s.t.

- w belongs to a node of π, or
- w occurs in an equation of E

then

$$w \leq \left(\sum_{i=1}^{n} v_i \right) \mod E$$

where:

- v_i, $1 \leq i \leq n$, is:
 - either the weight of a node $&_p$
 - or the suffix of an equation $\epsilon_p.v_i = 0$ of E;
- $\sum_{i=1}^{n} v_i$ is a monomial weight (modulo E);
- all weights v_1, \ldots, v_n are pairwise disjoint.
The pair \((\pi, \emptyset) \) is (now) a proof structure (\(q \) or \(\bar{q} \leq p + \bar{p} \))
Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard’s switching)
Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard’s switching)

Theorem
A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.
Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard’s switching)

Theorem
A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

Proof.
- we exploit an expansion procedure which allows us to unfold each EPN into a GPN;
Correctness Criterion: EPNs

Definition (EPN)
An EPS is correct if all local switchings are ACC.
(the notion of local switching is a variant of the Girard’s switching)

Theorem
A EPN with conclusion Γ can be sequentialized into a sequent proof with same conclusion Γ and vice-versa.

Proof.
- we exploit an expansion procedure which allows us to unfold each EPN into a GPN;
- it can be shown that each expansion step preserves the Girard’s sequentialization.
Cut Elimination

\[\langle \pi, E \rangle \leadsto_R \langle \pi', E \rangle \]

when \(R \) is one of the reduction steps defined before for GPS:

- **axiom-step**
- \((\otimes/\otimes)\)-step
- \((\otimes/C)\)-step
- \((\otimes/C)\)-step
- \((\otimes/C)\)-step
- \((\otimes/C)\)-step
- \((C/C)\)-step
Cut Elimination: the new $(⊕_i/&)\text{-step}$

\begin{align*}
B & \rightarrow \&_p & C & \rightarrow \&_p \\
Pw & \rightarrow w & \bar{p}w & \rightarrow w \\
\text{cut} & & \text{cut} \\
B^\perp & \rightarrow \oplus_1 & B^\perp & \rightarrow \oplus_1
\end{align*}

\[\langle \pi, E \rangle \sim \langle \pi', E' \rangle\]

\[w = pw \mod E'\]
Cut Elimination: the new $(\oplus_i/\&)$-step

\[
\begin{align*}
B & \rightarrow C \qquad B^\perp \\
\&_p & \quad \oplus_1 \\
\text{cut} & \\
\end{align*}
\]

\[
\langle \pi, E \rangle \rightsquigarrow \langle \pi', E' \rangle
\]

\[
w = pw \mod E'
\]

\[
E' = E \cup \{ \bar{p}.w = 0 \};
\]
Cut Elimination: the new $(\oplus_i/\&)$-step

\[\langle \pi, E \rangle \rightsquigarrow \langle \pi', E' \rangle \]

- \(E' = E \cup \{ \bar{p}.w = 0 \}; \)
- \(\pi' \) is what (of \(\pi \)) remains still nonzero modulo \(E' \): in particular, we remove all nodes whose weight \(v \leq_{E'} \bar{p}.w; \) (i.e., we remove the slice \(\bar{p} \) rooted at \(w \)).
(\&/C)-Cut Elimination: example 3

\[\langle \pi, \emptyset \rangle \text{ reduces } (cut_1) \text{ to } \langle \pi', \{ \bar{q} \cdot \bar{p} = 0 \} \rangle \text{ (that is still an EPS)} \]
Cut Elimination: the “local” ($\&/C$)-step
Cut Elimination: the “local” ($\&/C$)-step

\[\langle \pi, E \rangle \]

reduces to:

\[\langle \pi', E \rangle \]
Stability under the Cut Elimination

Theorem (Stability of EPS)
\[\langle \pi, E \rangle \rightsquigarrow \langle \pi', E' \rangle \text{ and } \langle \pi, E \rangle \text{ is a EPS, then } \langle \pi', E' \rangle \text{ is a EPS too.} \]
Stability under the Cut Elimination

Theorem (Stability of EPS)
\[\langle \pi, E \rangle \sim \langle \pi', E' \rangle \text{ and } \langle \pi, E \rangle \text{ is a EPS, then } \langle \pi', E' \rangle \text{ is a EPS too.} \]

Theorem (Stability of EPN)
\[\langle \pi, E \rangle \sim \langle \pi', E' \rangle \text{ and } \langle \pi, E \rangle \text{ is a EPN, then } \langle \pi', E' \rangle \text{ is a EPN too.} \]
Strong Cut Elimination

Theorem

We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.
Strong Cut Elimination

Theorem
We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

Proof.
The proof is by lexicographic induction on the cut complexity sequence $\#0, \#1, \ldots, \#n$.
Strong Cut Elimination

Theorem
We can always reduce a EPN $\langle \pi, E \rangle$ into a EPN $\langle \pi', E' \rangle$ that is cut-free; this reduction is strongly terminating.

Proof.
The proof is by lexicographic induction on the *cut complexity sequence* $\#0, \#1, \ldots, \#n$

- n is the number of Boolean variables occurring in $\langle \pi, E \rangle$;
Strong Cut Elimination

Theorem

We can always reduce a EPN \(\langle \pi, E \rangle \) into a EPN \(\langle \pi', E' \rangle \) that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the cut complexity sequence

\[\#0, \#1, ..., \#n \]

- \(n \) is the number of Boolean variables occurring in \(\langle \pi, E \rangle \);
- \(\#i \), with \(0 \leq i \leq n \), is the sum of the logical complexities of all cuts whose depth is \(i \).
Strong Cut Elimination

Theorem

We can always reduce a EPN \(\langle \pi, E \rangle \) into a EPN \(\langle \pi', E' \rangle \) that is cut-free; this reduction is strongly terminating.

Proof.

The proof is by lexicographic induction on the *cut complexity sequence*

\[\#0, \#1, \ldots, \#n \]

- \(n \) is the number of Boolean variables occurring in \(\langle \pi, E \rangle \);
- \(\#i \), with \(0 \leq i \leq n \), is the sum of the logical complexities of all cuts whose depth is \(i \).
- the depth \(\delta(L) \) of a node \(L \) is \(\max(|w_1|, |w_2|) \), if
 - \(w_1 \) and \(w_2 \) are equivalent (modulo \(E \)) weights of \(L \) and
 - \(|w_j| \), for \(j = 1, 2 \), is the length (the number of possibly variables or negations of variables) of \(w_j \).
Theorem (local confluence)

Let \(\langle \pi, E \rangle \) be a proof net with two cut nodes, \(L_1 \) and \(L_2 \), and let

1. \(\alpha \) be the cut reduction \(\langle \pi, E \rangle \rightarrow_{L_1} \langle \pi_1, E_1 \rangle \) and
2. \(\beta \) be the cut reduction \(\langle \pi, E \rangle \rightarrow_{L_2} \langle \pi_2, E_2 \rangle \),

then there exists a proof net \(\langle \pi^*, E^* \rangle \) which \(\langle \pi_i, E_i \rangle \), for \(1 \leq i \leq 2 \), reduces to in at most one step.
fine