Probabilistic logic programming with multiplicative modules

Roberto Maieli
maieli@uniroma3.it

TLLA 2021 - Rome, June 28, 2021

the quest of modularity

[...] all the problems concerning correctness and modularity of programs appeal in a deep way to the syntactic tradition, to proof theory.
[...] Heyting semantics is very original: it does not interpret the logical operations by themselves, but by abstract constructions. Now we can see that these constructions are nothing but typed i.e. modular programs.
J.-Y. Girard, Proofs and Types, 1989.

Outline (this talk in 6 lines):
(1) a multiplicative module is a "piece" of "multiplicative net" \supsetneq MLL PNs;
(2) the special case of multiplicative bipoles generalize Andreoli's MLL bipoles (LP);
(3) a multiplicative module is characterized by a behavior (a partitions set);
(9) a probability distribution function is associated to each multiplicative module;
(9) we deal with non-determinism of processes but no need for additives $\&, \oplus$;
(0) correctness of process transition is LINEAR (in the size of the behavior).

multiplicative module

DEF: a multiplicative module μ is a triple $\left\langle I=\left\{i_{1}, \ldots, i_{n \geq 0}\right\}, O=\left\{o_{1}, \ldots, o_{m \geq 1}\right\}, \mathcal{B}_{\mu}\right\rangle$

- I is a possibly empty set of input indexes,
- O is a non empty set of output indexes with $I \cap O=\emptyset$
- \mathcal{B}_{μ} is a set of partitions (the behavior of μ) over the border $B=I \cup O$ s.t.:
(1) all partitions $P_{1}, \ldots, P_{h}, \ldots, P_{/}$in \mathcal{B}_{μ} have same size (number of classes/blocks)

$$
\begin{gathered}
P_{1}=\left\{\alpha_{1}^{1}, \ldots, \alpha_{z}^{1}\right\} \\
\vdots \\
P_{h}=\left\{\alpha_{1}^{j}, \ldots, \alpha_{z}^{j}\right\} \\
\vdots \\
P_{l}=\left\{\alpha_{1}^{j}, \ldots, \alpha_{z}^{\prime}\right\}
\end{gathered}
$$

(2) $\forall i_{j}, \forall o_{k}, \exists P_{h} \in \mathcal{B}_{\mu}$ s.t. i_{j} and o_{k} occur together in a class α_{t}^{h} of P_{h};

(3) the orthogonal $\left(\mathcal{B}_{\mu}\right)^{\perp}$ of \mathcal{B}_{μ} must be not empty.

orthogonality

DEF: two modules μ, β are orthogonal iff their behaviors (partitions sets) $\mathcal{B}_{\mu}, \mathcal{B}_{\beta}$ are orthogonal, $\mathcal{B}_{\mu} \perp \mathcal{B}_{\beta}$, iff they are pointwise orthogonal:

$$
\forall P \in \mathcal{B}_{\mu} \text { and } \forall \mathcal{Q} \in \mathcal{B}_{\beta}, \mathcal{P} \perp \mathcal{Q}
$$

"orthogonality" $P \perp Q$ is defined by a topological condition: the bipartite graph obtained by linking together classes/blocks of each partition sharing an element is acyclic and connected.

Example.

$\{(1,2),(3)\}$ is not orthogonal to $\{(1,2,3)\}$ see \mathcal{G}_{1}
$\{(1,2),(3)\}$ is both orthogonal to $\{(1,3),(2)\}$ and $\{(1),(2,3)\}$ see $\mathcal{G}_{2}, \mathcal{G}_{3}$

multiplicative bipole

DEF. A multiplicative bipole is a special case of multiplicative module

$$
\beta:\left\langle I=\left\{i_{1}, \ldots, i_{n \geq 0}\right\}, O=\left\{o_{1}, \ldots, o_{m \geq 1}\right\}, \mathcal{B}_{\beta}\right\rangle
$$

- with the condition that: for each partition P_{h} in \mathcal{B}_{β}, all the elements of the output set O must belong to a single class (the head class) α_{t}^{h} of P_{h}.
- O is called the head of "method" β : it plays the role of the "trigger" of β; I is called the body of "method" β.

$$
\begin{aligned}
& P_{1}=\left\{\alpha_{1}^{1}=\left(\ldots o_{1}, \ldots, o_{m}, \ldots\right), \ldots, \alpha_{z}^{1}\right\} \\
& \vdots \\
& P_{h}=\left\{\alpha_{1}^{h}, \ldots, \alpha_{t}^{h}=\left(\ldots o_{1}, \ldots, o_{m}, \ldots\right), \ldots, \alpha_{z}^{h}\right\} \\
& \vdots \\
& P_{l}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{z}^{\prime}=\left(\ldots o_{1}, \ldots, o_{m}, \ldots\right)\right\}
\end{aligned}
$$

orthogonality guarantees bipoles Expansion \sim Resolution

Example given:

- module π with behavior \mathcal{B}_{π} over the border $I=\{0,1,2,3,4\} \cup O=\{0\}$;
- bipole β with behavior \mathcal{B}_{β} over the border $I=\{5,6,7\} \cup O=\{1,4\}$,

$$
\mathcal{B}_{\pi}=\left\{\begin{array}{lll}
p_{1}: & (1) & (0,2,3) \\
p_{2}: & (2) & (0,1,3) \\
p_{3}: & (1) & (2,3) \\
p_{4}: & (2) & (1,3) \\
(0,4) \\
(0,4)
\end{array} \quad \mathcal{B}_{\beta}=\left\{\begin{array}{lll}
q_{1}: & (6) & (5,7,1,4) \\
q_{2}: & (5) & (6,7,1,4) .
\end{array}\right.\right.
$$

- the head $H=O:\{1,4\}$ of β is included in the body $I:\{1,2,3,4\}$ of π
- the restricted behaviors $\left(\mathcal{B}_{\pi}\right)^{\downarrow H}$ and $\left(\mathcal{B}_{\beta}\right)^{\downarrow H}$ are orthogonal, $\left.\{(1,4)\} \perp\{(1),(4)\}\right)$
- then, we can expand π by β and build the multiplicative bipolar module/net $\pi \circ \beta$:

$$
\mathcal{B}_{\pi \circ \beta}=\left\{\begin{array}{lll}
q_{1} \cdot p_{1}: & (6) & (5,7) \\
q_{2} \cdot p_{1}: & (5) & (6,7) \\
q_{1} \cdot p_{2}: & (2) & (6) \\
q_{2} \cdot p_{2}: & (2) & (5) \\
q_{1} \cdot p_{3}: & (6) & (5) \\
q_{2} \cdot p_{3}: & (5) & (5,7,0) \\
(6,7) & (6,7,0) & (2,3) \\
(2,3) & (2,3)
\end{array}\right.
$$

Correctness of expansion is LINEAR in the size of the behavior of π.

multiplicative bipoles that are MLL definable

Example 1. β is MLL definable/decomposable:

- border $I=\{a, b, c, d\}, O=\left\{h_{1}, h_{2}\right\}$
- behavior $\mathcal{B}_{\beta}=\left\{\left\{\left(a, c, h_{1}, h_{2}\right),(b),(d)\right\},\left\{\left(a, d, h_{1}, h_{2}\right),(b),(c)\right\}\right.$,

$$
\left.\left\{\left(b, c, h_{1}, h_{2}\right),(a),(d)\right\},\left\{\left(b, d, h_{1}, h_{2}\right),(a),(c)\right\}\right\} .
$$

\exists a MLL proof structure B (a bipole indeed) s.t. the behavior of β corresponds to the set of partitions of the border of B induced by all Danos-Regnier switchings: in a switching S for B, two points of the border stay in the same class iff they stay in a same connected component of S.

$$
\begin{gathered}
\text { method } \beta \\
{\left[h_{1}, h_{2}\right]:-[a, b],[c, d]} \\
\left(h_{1}^{\perp} \otimes h_{2}^{\perp}\right) \otimes(a \diamond b) \otimes(c 8 d) \\
\left(\left(h_{1} \diamond h_{2}\right) \circ-(a \ngtr b) \otimes(c \ngtr d)\right)^{\perp}
\end{gathered}
$$

β is a MLL bipole!
Example 2. γ is MLL definable: it is an MLL monopole:

- border $I=\emptyset, O=\left\{h_{1}, \ldots, h_{n}\right\}$
- behavior $\left.\mathcal{B}_{\beta}=\left\{\left\{\left(h_{1}, \ldots, h_{n}\right)\right\}\right\}\right\}$ (a singleton)

$$
\begin{gathered}
\text { fact } \gamma \\
{\left[h_{1}, \ldots, h_{n}\right]:-} \\
\left(h_{1} \otimes \ldots \otimes h_{n}\right)
\end{gathered}
$$

γ is a MLL monopole!

multiplicative bipolar net that are MLL definable

$$
\begin{aligned}
& \mathcal{B}_{\pi}=\left\{\begin{array}{lll}
p_{1}:(1) & (0,2,3) & (4) \\
p_{2}:(2) & (0,1,3) & (4) \\
p_{3}:(1) & (2,3) & (0,4) \\
p_{4}:(2) & (1,3) & (0,4)
\end{array} \mathcal{B}_{\beta}=\left\{\begin{array}{lll}
q_{1}:(6) & (5,7,1,4) \\
q_{2}:(5) & (6,7,1,4) .
\end{array} \quad \mathcal{B}_{\pi \circ \beta}=\left\{\begin{array}{lll}
q_{1} \cdot p_{1}:(6) & (5,7) & (0,2,3) \\
q_{2} \cdot p_{1}: & (5) & (6,7) \\
q_{1} \cdot p_{2}:(2) & (6) & (0,2,3) \\
q_{2} \cdot p_{2}:(2) & (5) & (5,7,0,3):=q_{1} \cdot p_{4} \\
q_{1} \cdot p_{3}:(6) & (5,7,0) & (2,7,0,3):=q_{2} \cdot p_{4} \\
q_{2} \cdot p_{3}:(5) & (6,7,0) & (2,3) .
\end{array}\right.\right.\right. \\
& \begin{array}{clll}
\vdash 5,6 & \vdash 7,2 & \vdash 4,4^{\perp} & \vdash 1,1^{\perp} \\
\hline
\end{array} \beta_{3} \quad \vdash 3 \quad \vdash 0,0^{\perp} \beta_{3}, 1,2,4 \mathrm{~F}
\end{aligned}
$$

three equivalent ways to perform the bipolar proof construction in the MLL case:

- by sets (orthogonal behaviors i.e., partitions sets)
- by graphs (proof net expansion)
- by trees (sequent calculus expansion)

Theorem Given a set of MLL methods/bipoles $\mathcal{U}=\left\{\beta_{1}, . ., \beta_{n}\right\}$ (LP) and a goal G (a multi-set of atoms $\left\{a_{1}, \ldots, a_{m}\right\}$) then $\mathcal{U} \vdash_{\text {MLLfoc }} G$ iff $\exists \mu:\left\langle I:\left\{i_{1}, \ldots, i_{n \geq 0}\right\}, O:\left\{o_{1}, \ldots, o_{m \geq 1}\right\}\right.$, $\left.\mathcal{B}_{\mu}\right\rangle$ s.t.:
(1) $O=\left\{a_{1}, \ldots, a_{m}\right\}$ and
(2) \mathcal{B}_{μ} is built by expanding $\beta_{1}, \ldots, \beta_{n}$.
"primitive" multiplicative bipoles that are NOT MLL definable
$\{$ MLL bipoles $\} \subsetneq\{$ multiplicative bipoles $\}$
γ is NOT MLL definable.

$$
\mathcal{B}_{\gamma}=\left\{\begin{array}{l}
\left\{\left(i_{1}, o_{1}, o_{2}\right),\left(i_{2}, o_{3}, o_{4}\right)\right\}, \\
\left\{\left(i_{1}, o_{2}, o_{3}\right),\left(i_{2}, o_{4}, o_{1}\right)\right\},
\end{array}\right\}
$$

β is NOT MLL definable.

$$
\begin{aligned}
\mathcal{B}_{\beta}=\left\{\begin{array}{l}
\left\{\left(i_{1}, i_{3}, o_{5}, o_{6}\right),\left(i_{2}\right),\left(i_{4}\right)\right\}, \\
\\
\\
\left\{\left(i_{2}, i_{4}, o_{5}, o_{6}\right),\left(i_{1}\right),\left(i_{3}\right)\right\}
\end{array}\right\}
\end{aligned}
$$

$\mathcal{B}_{\gamma} \perp \mathcal{B}_{\beta}:$
\mathcal{B}_{γ} restricted to $O_{\gamma}=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$ and \mathcal{B}_{β}, restricted to $I_{\beta}=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ are orthogonal modulo the unification $I_{\beta} \leftrightarrow O_{\gamma}: i_{1}=o_{1}, i_{2}=o_{2}, i_{3}=o_{3}, i_{4}=o_{4}$.

the unfolding of "primitive" bipoles

γ can be interpreted as the union of the behaviors of two pairs of "concurrent" bipoles:

$$
\mathcal{B}_{\gamma}=\mathcal{B}_{\gamma_{1}} \cup \mathcal{B}_{\gamma_{2}} \text { with } \gamma_{1}=\alpha_{1} \ngtr \alpha_{2} \text { and } \gamma_{2}=\alpha_{1}^{\prime} \ngtr \alpha_{2}^{\prime}
$$

$$
\mathcal{B}_{\gamma}=\left\{\begin{array}{l}
\left\{\left(i_{1}, o_{1}, o_{2}\right),\left(i_{2}, o_{3}, o_{4}\right)\right\}, \\
\\
\left\{\left(i_{1}, o_{2}, o_{3}\right),\left(i_{2}, o_{4}, o_{1}\right)\right\},
\end{array}\right\}
$$

We say that γ can be unfolded in to $\left\{\gamma_{1}, \gamma_{2}\right\}$ called the unfolding trace/family of γ.

the unfolding of "primitive" bipoles

Dually, β can be interpreted as the intersection of a pair of MLL bipoles, β_{1} and β_{2}, with the same "skeleton" and whose input borders only differ by the cyclic permutation of the input sequence ($i_{1}, i_{2}, i_{3}, i_{4}$), that is:

$$
\mathcal{B}_{\beta}=\mathcal{B}_{\beta_{1}} \cap \mathcal{B}_{\beta_{2}}
$$

$$
\mathcal{B}_{\beta}=\left\{\begin{array}{l}
\left\{\left(i_{1}, i_{3}, o_{5}, o_{6}\right),\left(i_{i}\right),\left(i_{4}\right)\right\}, \\
\left\{\left(i_{2}, i_{4}, o_{5}, o_{6}\right),\left(i_{1}\right),\left(i_{3}\right)\right\}
\end{array}\right\}=\begin{aligned}
& \mathcal{B}_{\beta_{1}}:\left\{\left\{\left(i_{1}, i_{3}, o_{5}, o_{6}\right),\left(i_{2}\right),\left(i_{4}\right)\right\},\left\{\left(i_{2}, i_{4}, o_{5}, o_{6}\right),\left(i_{1}\right),\left(i_{3}\right)\right\},\left\{\left(i_{1}, i_{4}, o_{5}, o_{6}\right),\left(i_{2}\right),\left(i_{3}\right)\right\},\left\{\left(i_{i_{2}}, i_{3}, i_{4}, o_{5}\right),\left(i_{1}\right),\left(i_{4}\right)\right\}\right\} \\
& \mathcal{B}_{\beta_{2}}:\left\{\left\{\left(i_{1}, i_{3}, o_{5}, o_{6}\right),\left(i_{2}\right),\left(i_{4}\right)\right\},\left\{\left(i_{2}, i_{4}, o_{5}, o_{6}\right),\left(i_{1}\right),\left(i_{3}\right)\right\},\left\{\left(i_{1}, i_{2}, o_{5}, o_{6}\right),\left(i_{3}\right),\left(i_{4}\right)\right\},\left\{\left(i_{3}, i_{4}, 0_{5}, o_{6}\right),\left(i_{1}\right),\left(i_{2}\right)\right\}\right\}
\end{aligned}
$$

We say that β can be unfolded in to $\left\{\beta_{1}, \beta_{2}\right\}$ called the unfolding trace/family of β.
Note this unfoldable module expresses a kind of non-deterministic super-position (\cap): only one of them or both simultaneously may partecipate to the net expansion.

logic programming with probabilities

- in standard logic programming, conditional probability values are assigned to method (MLL bipoles) and a-priori probability values are assigned to fact (MLL monopole):

$$
\begin{gathered}
H:-B_{1}, \ldots, B_{n} \quad p\left(H \mid \bigcap_{i} B_{i}\right) \text { conditional probability } \\
H:-. \quad p(H) \text { a-priori probability }
\end{gathered}
$$

- with multiplicative unfoldable modules, we assign a probability distribution function to a unfoldable bipolar module: this function describes all possible values and likelihoods that a random variable can take within a given range.

probability distribution function of unfoldable bipoles

- Let β be a multiplicative unfoldable bipole
with behavior \mathcal{B}_{β} over the border $I=\left\{i_{1}, \ldots, i_{n}\right\} \uplus O=\left\{o_{1}, \ldots, o_{m}\right\}$;
Let $\beta_{1}, \ldots, \beta_{k}$ be the unfolding trace (the unfolding family of MLL bipoles) of β.
- We call a probability distribution for β a (finite) set of real number values,

$$
P(O \mid I)_{\beta}=\left\{p\left(\beta_{i}\right) \mid 0<p\left(\beta_{i}\right) \in \mathbb{R} \leq 1 \text { and } \beta_{i} \text { is in the trace of } \beta\right\}
$$

with the condition that in case that $\mathcal{B}_{\beta}=\bigcup_{i} \mathcal{B}_{\beta_{i}}$ then, $\sum_{i=1}^{k} p\left(\beta_{i}\right)=1$.

- In particular, if β is a MLL bipole then, $P(O \mid I)=\{p(\beta)\}$ (a singleton):
- if β is a method with $I \neq \emptyset$ then $p(\beta)$ is the conditional probability $p(O \mid I)$,
- if β is a fact (i.e., $\boldsymbol{I}=\emptyset$) then, $p(\beta)$ is an a-priori probability $p(O)$.

probability distribution of unfoldable bipoles

In case $\mathcal{B}_{\beta}=\bigcup_{i=1}^{k} \mathcal{B}_{\beta_{i}}=$ then $P_{\beta}(O \mid I)=\left\{p\left(\gamma_{1}\right), p\left(\gamma_{2}\right)\right\}$ s.t. $p\left(\gamma_{1}\right)+p\left(\gamma_{2}\right)=1$.
$p(O \mid I)$ expresses the variation of probability over an aleatory variable $O=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$:

$$
\mathcal{B}_{\gamma}=\left\{\begin{array}{l}
\left\{\left(i_{1}, o_{1}, o_{2}\right),\left(i_{2}, o_{3}, o_{4}\right)\right\}, \\
\left\{\left(i_{1}, o_{2}, o_{3}\right),\left(i_{2}, o_{4}, o_{1}\right)\right\},
\end{array}\right\}=\left\{\mathcal{B}_{\gamma_{1}}=\left\{\left\{\left(i_{1}, o_{1}, o_{2}\right),\left(i_{2}, o_{3}, o_{4}\right)\right\}\right\} \quad \cup \quad \mathcal{B}_{\gamma_{2}}=\left\{\left\{\left(i_{1}, o_{2}, o_{3}\right),\left(i_{2}, o_{4}, o_{1}\right)\right\}\right\}\right\}
$$

Example.

Assume for simplification reasons that $I=\emptyset$ then, $p(O)$ expresses the variation of probability over the aleatory "variable" $O=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$:

- $p\left(\gamma_{1}\right)$ denotes the a-priori probability $p\left(E_{1}\right)$ of the event E_{1} :
" resource o_{1} occurs together with o_{2} while resource o_{3} occurs together with resource o_{4} ";
- $\boldsymbol{p}\left(\gamma_{2}\right)$ denotes the a-priori probability $p\left(E_{2}\right)$ of the event \boldsymbol{E}_{2} :
" resource o_{2} occurs together with resource o_{3} while resources o_{4} occurs together with o_{1} ".

probability distribution of unfoldable bipoles

otherwise, in case $\mathcal{B}_{\beta}=\bigcap_{i=1}^{k} \mathcal{B}_{\beta_{i}}=$ then $P_{\beta}(O \mid I)=\left\{p\left(\gamma_{1}\right), p\left(\gamma_{2}\right)\right\}$ where every $p\left(\beta_{i}\right)$ expresses a condition probability $p(O \mid I)$

Example.

- $p\left(\beta_{1}\right)$ expresses the conditional probability $p\left(E \mid E_{1}\right)$ that:
"we observe the event E, in which resource o_{5} stays together with resource o_{6}, if occurs the event E_{1} that resources i_{1} stays together with i_{2} while i_{3} stays together i_{4} ";
- $p\left(\beta_{2}\right)$ expresses the conditional probability $p\left(E \mid E_{2}\right)$ that:
"we observe the event E, in which resource o_{5} stays together with resource o_{6}, if occurs the event E_{2} that resources i_{2} stays together with i_{3} while i_{4} stays together with i_{1} ".

net expansion vs info propagation

There are two directions of the information flow in our net construction model:
(1) net expansion \uparrow : the first direction consists in the bottom-up construction of the net, by module expansions;
(2) info propagation \downarrow : the second direction intervenes when the net construction is successfully completed; in that case, we can invert the direction of the information and propagate the probability information from the top (that is, the a-priori probabilities associated to the axiom-bipoles/facts) to the bottom.

Net unfolding and Naive Bayesian Classification

An example inspired to Naive Bayesian Classifier (used e.g. in Machine Learning):

- Let us classify a new instance of the event $E=\left(o_{5}, o_{6}\right)$ according either to event E_{1} or to E_{2};
- Assume the sub-net T_{2} is the trained Naive Bayesian model.
- Unfolding the trained model T_{2} allows us to calculate the a-posteriori probabilities that: "if event E occurs then, we could expect event E_{1} (net T_{2}^{\prime}) rather than event E_{2} (net $T_{2}^{\prime \prime}$)"

$$
\text { Bayes' Theorem: } \quad p\left(E_{1} \mid E\right)=\frac{p\left(E \mid E_{1}\right) p\left(E_{1}\right)}{p(E)}: T_{2}^{\prime}, \quad p\left(E_{2} \mid E\right)=\frac{p\left(E \mid E_{2}\right) p\left(E_{2}\right)}{p(E)}: T_{2}^{\prime \prime}
$$

where:
$-p(E)=\sum_{i=1}^{2} p\left(E \mid E_{i}\right) \cdot p\left(E_{i}\right)$ is the absolute probability that event E will occur;
$-p\left(E \mid E_{1}\right) \cdot p\left(E_{1}\right)=p\left(\beta_{1}\right) \cdot p\left(\gamma_{1}\right)$ and $p\left(E \mid E_{2}\right) \cdot p\left(E_{2}\right)=p\left(\beta_{2}\right) \cdot p\left(\gamma_{2}\right)$.

conclusion \& further woks

CONCLUSIONS:

- Probabilistic choice, where each branch of a choice is weighted according to a probability distribution, is an established approach for modelling processes;
- this task is often carried out by using additives $\&, \oplus$;
- why should I use unfolding modules instead of "standard" additives ?
(1) correctness of additive (MALL) proof structure is NON-LINEAR while correctness of generalized multiplicatives is LINEAR (in the behavior size);
(2) additives have global effects while here we propose a (non-deterministic) "local choice behavior" inherent in multiplicatives.

FURTHER WORKS:

- connection with Girard's Transcendental Syntax (see yesterday Boris Eng's talk)
- a Naive Bayesian Classifier for Machine Learning based on modules/rules.

