Probabilistic logic programming with multiplicative modules

Roberto Maieli

maieli@uniroma3.it

TLLA 2021 - Rome, June 28, 2021

the quest of modularity

[...] all the problems concerning correctness and modularity of programs appeal in a deep way to the syntactic tradition, to proof theory.

[...] Heyting semantics is very original: it does not interpret the logical operations by themselves, but by abstract constructions. Now we can see that these constructions are nothing but typed i.e. modular programs.

J.-Y. Girard, Proofs and Types, 1989.

イロト 不得 トイヨト イヨト

3

OUTLINE (this talk in 6 lines):

- **(**) a multiplicative module is a "piece" of "multiplicative net" \supseteq MLL PNs;
- e the special case of multiplicative bipoles generalize Andreoli's MLL bipoles (LP);
- a multiplicative module is characterized by a behavior (a partitions set);
- a probability distribution function is associated to each multiplicative module;
- we deal with non-determinism of processes but no need for additives &, ⊕;
- **o** correctness of process transition is **LINEAR** (in the size of the behavior).

multiplicative module

DEF: a multiplicative module μ is a triple $\langle I = \{i_1, ..., i_{n>0}\}, O = \{o_1, ..., o_{m>1}\}, \mathcal{B}_{\mu} \rangle$

- I is a possibly empty set of input indexes,
- O is a non empty set of output indexes with $I \cap O = \emptyset$
- \mathcal{B}_{μ} is a set of partitions (the **behavior** of μ) over the border $B = I \cup O$ s.t.:
 - **(**) all partitions $P_1, ..., P_h, ..., P_l$ in \mathcal{B}_{μ} have same size (number of classes/blocks)

2 $\forall i_j, \forall o_k, \exists P_h \in \mathcal{B}_{\mu} \text{ s.t. } i_j \text{ and } o_k \text{ occur together in a class } \alpha_t^h \text{ of } P_h;$

(3) the **orthogonal** $(\mathcal{B}_{\mu})^{\perp}$ of \mathcal{B}_{μ} must be not empty.

э

イロト イヨト イヨト イヨト

orthogonality

DEF: two modules μ, β are orthogonal iff their behaviors (partitions sets) $\mathcal{B}_{\mu}, \mathcal{B}_{\beta}$ are orthogonal, $\mathcal{B}_{\mu} \perp \mathcal{B}_{\beta}$, iff they are pointwise orthogonal:

 $\forall P \in \mathcal{B}_{\mu} \text{ and } \forall \mathcal{Q} \in \mathcal{B}_{\beta}, \mathcal{P} \perp \mathcal{Q}$

"orthogonality" $P \perp Q$ is defined by a topological condition: the bipartite graph obtained by linking together classes/blocks of each partition sharing an element is acyclic and connected.

EXAMPLE.

 $\{(1,2),(3)\}$ is **not** orthogonal to $\{(1,2,3)\}$ see \mathcal{G}_1

 $\{(1,2),(3)\}$ is both orthogonal to $\{(1,3),(2)\}$ and $\{(1),(2,3)\}$ see $\mathcal{G}_2,\mathcal{G}_3$

multiplicative bipole

DEF. A multiplicative bipole is a special case of multiplicative module

$$\beta: \langle I = \{i_1, ..., i_{n \ge 0}\}, O = \{o_1, ..., o_{m \ge 1}\}, \mathcal{B}_\beta \rangle$$

- with the condition that: for each partition P_h in B_β, all the elements of the output set O must belong to a single class (the head class) α^h_t of P_h.
- O is called the head of "method" β: it plays the role of the "trigger" of β;
 I is called the body of "method" β.

$$P_{1} = \{\alpha_{1}^{1} = (...o_{1}, ..., o_{m}, ...), ..., \alpha_{z}^{1}\}$$

$$\vdots$$

$$P_{h} = \{\alpha_{1}^{h}, ..., \alpha_{t}^{h} = (...o_{1}, ..., o_{m}, ...), ..., \alpha_{z}^{h}\}$$

$$P_l = \{\alpha'_1, ..., \alpha'_z = (...o_1, ..., o_m, ...)\}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

orthogonality guarantees bipoles Expansion \sim Resolution

EXAMPLE given:

- module π with behavior \mathcal{B}_{π} over the border $I = \{0, 1, 2, 3, 4\} \cup O = \{0\};$
- bipole β with behavior \mathcal{B}_{β} over the border $I = \{5, 6, 7\} \cup O = \{1, 4\},$

$$\mathcal{B}_{\pi} = \begin{cases} p_1 : (1) & (0,2,3) & (4) \\ p_2 : (2) & (0,1,3) & (4) \\ p_3 : (1) & (2,3) & (0,4) \\ p_4 : (2) & (1,3) & (0,4) \end{cases} \qquad \qquad \mathcal{B}_{\beta} = \begin{cases} q_1 : (6) & (5,7,1,4) \\ q_2 : (5) & (6,7,1,4). \end{cases}$$

- the head $H = O: \{1,4\}$ of β is included in the body $I: \{1,2,3,4\}$ of π
- the restricted behaviors $(\mathcal{B}_{\pi})^{\downarrow H}$ and $(\mathcal{B}_{\beta})^{\downarrow H}$ are orthogonal, $\{(1,4)\} \perp \{(1),(4)\})$

• then, we can expand π by β and build the multiplicative bipolar module/net $\pi \circ \beta$:

$$\mathcal{B}_{\pi\circ\beta} = \begin{cases} q_1.p_1: (6) (5,7) (0,2,3) \\ q_2.p_1: (5) (6,7) (0,2,3) \\ q_1.p_2: (2) (6) (5,7,0,3) := q_1.p_4 \\ q_2.p_2: (2) (5) (6,7,0,3) := q_2.p_4 \\ q_1.p_3: (6) (5,7,0) (2,3) \\ q_2.p_3: (5) (6,7,0) (2,3). \end{cases}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Correctness of expansion is LINEAR in the size of the behavior of π .

multiplicative bipoles that are MLL definable

EXAMPLE 1. β is MLL definable/decomposable:

$$\begin{array}{l} - \text{ border } I = \{a, b, c, d\}, O = \{h_1, h_2\} \\ - \text{ behavior } \mathcal{B}_\beta = \{\{(a, c, h_1, h_2), (b), (d)\}, \{(a, d, h_1, h_2), (b), (c)\}, \\ \{(b, c, h_1, h_2), (a), (d)\}, \{(b, d, h_1, h_2), (a), (c)\}\}. \end{array}$$

 \exists a MLL proof structure *B* (a bipole indeed) s.t. the behavior of β corresponds to the set of partitions of the border of *B* induced by all Danos-Regnier switchings: in a switching *S* for *B*, two points of the border stay in the same class iff they stay in a same connected component of *S*.

 β is a MLL bipole!

EXAMPLE 2. γ is MLL definable: it is an MLL monopole:

- border $I = \emptyset, O = \{h_1, ..., h_n\}$ - behavior $\mathcal{B}_\beta = \{\{(h_1, ..., h_n)\}\}\}$ (a singleton)

multiplicative bipolar net that are MLL definable

three equivalent ways to perform the bipolar proof construction in the MLL case:

- by sets (orthogonal behaviors i.e., partitions sets)
- by graphs (proof net expansion)
- by trees (sequent calculus expansion)

THEOREM Given a set of MLL methods/bipoles $\mathcal{U} = \{\beta_1, .., \beta_n\}$ (LP) and a goal G (a multi-set of atoms $\{a_1, ..., a_m\}$) then $\mathcal{U} \vdash_{MLLfoc} G$ iff $\exists \mu : \langle I : \{i_1, ..., i_{n \ge 0}\}, O : \{o_1, ..., o_{m \ge 1}\}, \mathcal{B}_{\mu} \rangle$ s.t.:

- **0** $O = \{a_1, ..., a_m\}$ and
- **2** \mathcal{B}_{μ} is built by expanding $\beta_1, ..., \beta_n$.

"primitive" multiplicative bipoles that are NOT MLL definable

{MLL bipoles} \subseteq {multiplicative bipoles}

 γ is **NOT** MLL definable.

$$\begin{array}{ccc} i_1 & i_2 \\ \hline & & \\ \hline & & \\ \hline & & \\ \gamma \\ \hline & & \\ \downarrow & & \\ i_1 & i_2 & o_3 & o_4 \end{array} \end{array} \mathcal{B}_{\gamma} = \{ \begin{array}{c} \{(i_1, o_1, o_2), (i_2, o_3, o_4)\}, \\ \{(i_1, o_2, o_3), (i_2, o_4, o_1)\}, \end{array}$$

β is **NOT** MLL definable.

$\mathcal{B}_{\gamma} \perp \mathcal{B}_{\beta}$:

 \mathcal{B}_{γ} restricted to $O_{\gamma} = \{o_1, o_2, o_3, o_4\}$ and \mathcal{B}_{β} , restricted to $I_{\beta} = \{i_1, i_2, i_3, i_4\}$ are orthogonal modulo the unification $I_{\beta} \leftrightarrow O_{\gamma}$: $i_1 = o_1, i_2 = o_2, i_3 = o_3, i_4 = o_4$.

A I > A I > A

the unfolding of "primitive" bipoles

 γ can be interpreted as the union of the behaviors of two pairs of "concurrent" bipoles:

We say that γ can be unfolded in to $\{\gamma_1, \gamma_2\}$ called the unfolding trace/family of γ .

10/18

the unfolding of "primitive" bipoles

Dually, β can be interpreted as the **intersection** of a pair of MLL bipoles, β_1 and β_2 , with the same "skeleton" and whose input borders only differ by the cyclic permutation of the input sequence (i_1, i_2, i_3, i_4) , that is:

$$\mathcal{B}_{\beta} = \mathcal{B}_{\beta_1} \cap \mathcal{B}_{\beta_2}$$

We say that β can be unfolded in to $\{\beta_1, \beta_2\}$ called the unfolding trace/family of β .

Note this unfoldable module expresses a kind of **non-deterministic super-position** (\cap): only one of them or both simultaneously may participate to the net expansion.

logic programming with probabilities

• in standard logic programming, conditional probability values are assigned to method (MLL bipoles) and a-priori probability values are assigned to fact (MLL monopole):

$$H: -B_1, ..., B_n$$
 $p(H \mid \bigcap_i B_i)$ conditional probability
 $H: -.$ $p(H)$ a-priori probability

• with **multiplicative unfoldable modules**, we assign a **probability distribution function** to a unfoldable bipolar module: this function describes all possible values and likelihoods that a random variable can take within a given range.

イロト 不得 トイヨト イヨト 二日

probability distribution function of unfoldable bipoles

• Let β be a multiplicative unfoldable bipole

with behavior \mathcal{B}_{β} over the border $I = \{i_1, ..., i_n\} \uplus O = \{o_1, ..., o_m\};$ Let $\beta_1, ..., \beta_k$ be the **unfolding trace** (the unfolding family of MLL bipoles) of β .

• We call a probability distribution for β a (finite) set of real number values,

 $P(O|I)_{\beta} = \{p(\beta_i) \mid 0 < p(\beta_i) \in \mathbb{R} \le 1 \text{ and } \beta_i \text{ is in the trace of } \beta\}$

with the condition that in case that $\mathcal{B}_{\beta} = \bigcup_{i} \mathcal{B}_{\beta_{i}}$ then, $\sum_{i=1}^{k} p(\beta_{i}) = 1$.

- In particular, if β is a MLL bipole then, $P(O|I) = \{p(\beta)\}$ (a singleton):
 - if β is a method with $I \neq \emptyset$ then $p(\beta)$ is the conditional probability p(O|I),
 - if β is a fact (i.e., $I = \emptyset$) then, $p(\beta)$ is an a-priori probability p(O).

probability distribution of unfoldable bipoles

In case $\mathcal{B}_{\beta} = \bigcup_{i=1}^{k} \mathcal{B}_{\beta_i}$ = then $P_{\beta}(O|I) = \{p(\gamma_1), p(\gamma_2)\}$ s.t. $p(\gamma_1) + p(\gamma_2) = 1$.

p(O|I) expresses the variation of probability over an aleatory variable $O = \{o_1, o_2, o_3, o_4\}$:

EXAMPLE.

Assume for simplification reasons that $I = \emptyset$ then, p(O) expresses the variation of probability over the aleatory "variable" $O = \{o_1, o_2, o_3, o_4\}$:

- *p*(γ₁) denotes the a-priori probability *p*(*E*₁) of the event *E*₁: "resource *o*1 occurs together with *o*2 while resource *o*3 occurs together with resource *o*4";
- $p(\gamma_2)$ denotes the a-priori probability $p(E_2)$ of the event E_2 : "resource o_2 occurs together with resource o_3 while resources o_4 occurs together with o_1 ".

・ロト ・ 同ト ・ ヨト ・ ヨト

probability distribution of unfoldable bipoles

otherwise, in case $\mathcal{B}_{\beta} = \bigcap_{i=1}^{k} \mathcal{B}_{\beta_{i}}$ = then $P_{\beta}(O|I) = \{p(\gamma_{1}), p(\gamma_{2})\}$ where every $p(\beta_{i})$ expresses a condition probability p(O|I)

EXAMPLE.

• $p(\beta_1)$ expresses the conditional probability $p(E|E_1)$ that:

"we observe the event E, in which resource o_5 stays together with resource o_6 , if occurs the event E_1 that resources i_1 stays together with i_2 while i_3 stays together i_4 ";

• $p(\beta_2)$ expresses the conditional probability $p(E|E_2)$ that:

"we observe the event E, in which resource o_5 stays together with resource o_6 , if occurs the event E_2 that resources i_2 stays together with i_3 while i_4 stays together with i_1 ".

There are two directions of the information flow in our net construction model:

- net expansion ↑: the first direction consists in the bottom-up construction of the net, by module expansions;
- info propagation ↓: the second direction intervenes when the net construction is successfully completed; in that case, we can invert the direction of the information and propagate the probability information from the top (that is, the a-priori probabilities associated to the axiom-bipoles/facts) to the bottom.

イロト イヨト イヨト

Net unfolding and Naive Bayesian Classification

An example inspired to Naive Bayesian Classifier (used e.g. in Machine Learning):

- Let us classify a new instance of the event $E = (o_5, o_6)$ according either to event E_1 or to E_2 ;
- Assume the sub-net T_2 is the trained Naive Bayesian model.
- Unfolding the trained model T_2 allows us to calculate the **a-posteriori probabilities** that:

"if event E occurs then, we could expect event E_1 (net T'_2) rather than event E_2 (net T''_2)"

Bayes' Theorem:
$$p(E_1|E) = \frac{p(E|E_1)p(E_1)}{p(E)} : T'_2, \quad p(E_2|E) = \frac{p(E|E_2)p(E_2)}{p(E)} : T''_2$$

where:

 $-p(E) = \sum_{i=1}^{2} p(E|E_i) \cdot p(E_i) \text{ is the absolute probability that event } E \text{ will occur;}$ $-p(E|E_1) \cdot p(E_1) = p(\beta_1) \cdot p(\gamma_1) \text{ and } p(E|E_2) \cdot p(E_2) = p(\beta_2) \cdot p(\gamma_2).$

conclusion & further woks

CONCLUSIONS:

- Probabilistic choice, where each branch of a choice is weighted according to a probability distribution, is an established approach for modelling processes;
- this task is often carried out by using additives &, \oplus ;
- why should I use unfolding modules instead of "standard" additives ?
 - correctness of additive (MALL) proof structure is NON-LINEAR while correctness of generalized multiplicatives is LINEAR (in the behavior size);
 - additives have global effects while here we propose a (non-deterministic) "local choice behavior" inherent in multiplicatives.

FURTHER WORKS:

- connection with Girard's Transcendental Syntax (see yesterday Boris Eng's talk)
- a Naive Bayesian Classifier for Machine Learning based on modules/rules.