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@ Since its inception linear logic (LL, Girard 1987) has changed
the proof theoretical way of dealing with cut elimination.
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Proof Theory & Linear Logic

@ Since its inception linear logic (LL, Girard 1987) has changed
the proof theoretical way of dealing with cut elimination.

@ This task was traditionally carried out by means of sequent
calculi with the consequence that the most part of these
works were engrossed by tedious commutations of rules.
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)

@ Formulas A, B, ... are built from literals by the binary connectives ®
(tensor), @ (par), & (with) and & (plus).
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)

@ Formulas A, B, ... are built from literals by the binary connectives ®
(tensor), @ (par), & (with) and & (plus).

@ Negation (.) extends to any formula by de Morgan laws:
(A® B)* = (B19AY) (AB)* = (B @ AY)
(A&B)*t = (Bt @ AY) (A® B)t = (B+&AY)
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)

@ Formulas A, B, ... are built from literals by the binary connectives ®
(tensor), @ (par), & (with) and & (plus).
@ Negation (.) extends to any formula by de Morgan laws:
(A® B)* = (B19AY) (AB)* = (B @ AY)
(A&B)t = (Bt @ A) (A® B)*t = (B+&A1)
@ Sequents ', A are sets of formula occurrences Ay, ..., Ay>1, proved
using the following rules:
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)

@ Formulas A, B, ... are built from literals by the binary connectives ®
(tensor), @ (par), & (with) and & (plus).
@ Negation (.) extends to any formula by de Morgan laws:
(A® B)* = (B19AY) (AB)* = (B @ AY)
(A&B)t = (Bt @ A) (A® B)*t = (B+&A1)
@ Sequents ', A are sets of formula occurrences Ay, ..., Ay>1, proved
using the following rules:
ax rA A, A+

@ identity: 1
y A A A cut

3
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)

@ Formulas A, B, ... are built from literals by the binary connectives ®
(tensor), @ (par), & (with) and & (plus).
@ Negation (.) extends to any formula by de Morgan laws:
(A® B)* = (B19AY) (AB)* = (B @ AY)
(A&B)t = (Bt @ A) (A® B)*t = (B+&A1)
@ Sequents ', A are sets of formula occurrences Ay, ..., Ay>1, proved
using the following rules:

ax rA A A+

o identity: A AL — cut
o multiplicatives: r,A A B A B
’ ' rAA®B r,AsB
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MALL Seq uent Calculus (The Multiplicative-Additive fragment of LL)

@ Formulas A, B, ... are built from literals by the binary connectives ®
(tensor), @ (par), & (with) and & (plus).
@ Negation (.) extends to any formula by de Morgan laws:
(A® B)* = (B19AY) (AB)* = (B @ AY)
(A&B)t = (Bt @ A) (A® B)*t = (B+&A1)
@ Sequents ', A are sets of formula occurrences Ay, ..., Ay>1, proved
using the following rules:

ax rA A A+

o identity: A,T A cut
o multiplicatives: r,A AB A B
NNAA®R B r,AsB

e additives: A r,B & A @, r,B B
I, A&B NnNA®B MNA® B
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Cut-elimination with the SC is problematic
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Cut-elimination with the SC is problematic

A AL A AL % A AL
A&A, A+ A AL @ Bt
A&A, A+ @ BL

D1

cut

it may reduce to:
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Cut-elimination with the SC is problematic

AAL At AAL
ARA, AL AALeBE
cut
ARA AL @ BE
it may reduce to:
A AL A AL
AAL AATeBE Y oaal aAlgBl T
A AL G BT cut A AL G BT cut
ARA, AL @ BT &
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Cut-elimination with the SC is problematic

A At A At % A At o
ALA, A AALoBL
cut
A&A, AL @ B+
it may reduce to:
A At A A+
A AL A AL @ BT Clt AAL A AT @ BT Clt
u u
A At @ Bt A At @ Bt %
A&A, AL @ B+
or to (according to permutability of rules):
A At A At %
A&A, A+ A AL
cut
A&A, A+
ARA AL o B !
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Proof Nets (PNs): a possible solution
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Proof Nets (PNs): a possible solution

@ PNs are parallel presentations of sequential proofs

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Outline Proof Theor: Linear Logic
Sequent Cal
Proof Nets

Proof Nets (PNs): a possible solution

@ PNs are parallel presentations of sequential proofs

@ they quotient classes of equivalent proofs, modulo
permutations of derivation rules.
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Proof Nets (PNs): a possible solution

@ PNs are parallel presentations of sequential proofs

@ they quotient classes of equivalent proofs, modulo
permutations of derivation rules.

MLL: The Multiplicative Fragment of LL is the perfect setting:
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Proof Nets (PNs): a possible solution

@ PNs are parallel presentations of sequential proofs

@ they quotient classes of equivalent proofs, modulo
permutations of derivation rules.

MLL: The Multiplicative Fragment of LL is the perfect setting:
@ a PN is a canonical representative of a proof of the SC;
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Proof Nets (PNs): a possible solution

@ PNs are parallel presentations of sequential proofs
@ they quotient classes of equivalent proofs, modulo
permutations of derivation rules.
MLL: The Multiplicative Fragment of LL is the perfect setting:
@ a PN is a canonical representative of a proof of the SC;

© the (strong) cut elimination procedure is purely local: reducing
a cut consists in to modifying only the nodes connected to it.
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Proof Nets (PNs): a possible solution

@ PNs are parallel presentations of sequential proofs
@ they quotient classes of equivalent proofs, modulo
permutations of derivation rules.
MLL: The Multiplicative Fragment of LL is the perfect setting:
@ a PN is a canonical representative of a proof of the SC;

© the (strong) cut elimination procedure is purely local: reducing
a cut consists in to modifying only the nodes connected to it.

MALL: A lot of work has been done in order to extend (1) and (2)
[Girard'96, Hughes-Van Glabbeek'03...]
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Proof Nets of MALL
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:

@ without additive boxes (sequentiality)
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
@ without additive boxes (sequentiality)

@ allowing graph super-positions (weights, slices)
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
@ without additive boxes (sequentiality)
@ allowing graph super-positions (weights, slices)

But Girard's proposal was not as good as for MLL:
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
@ without additive boxes (sequentiality)
@ allowing graph super-positions (weights, slices)
But Girard's proposal was not as good as for MLL:

@ no canonicity: there exist proofs which de-sequentialize into
two possible PNs with no way to discriminate them.
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
@ without additive boxes (sequentiality)
@ allowing graph super-positions (weights, slices)
But Girard's proposal was not as good as for MLL:

@ no canonicity: there exist proofs which de-sequentialize into
two possible PNs with no way to discriminate them.
This problem has been solved by Hughes-Van Glabbeek (LICS52003)
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
@ without additive boxes (sequentiality)
@ allowing graph super-positions (weights, slices)
But Girard's proposal was not as good as for MLL:

@ no canonicity: there exist proofs which de-sequentialize into
two possible PNs with no way to discriminate them.
This problem has been solved by Hughes-Van Glabbeek (LICS52003)

@ no full cut elimination: only the logical (ready) cuts are
reduced in a non-local way
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:
@ without additive boxes (sequentiality)
@ allowing graph super-positions (weights, slices)
But Girard's proposal was not as good as for MLL:

@ no canonicity: there exist proofs which de-sequentialize into
two possible PNs with no way to discriminate them.
This problem has been solved by Hughes-Van Glabbeek (LICS52003)

@ no full cut elimination: only the logical (ready) cuts are
reduced in a non-local way

Our Goal

To provide a New Syntax for Monomial MALL PNs with a
(local) full strong cut elimination.
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Ready Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (MALL Pre-Proof Structure)
A PPS 7 is an oriented graph built on the following links:

A ...

e Y W4T

AR B  A®B A&B A®B A®B

n
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Girard's MALL Proof Structures _ . A
Commutativ imination

Definition (MALL Pre-Proof Structure)
A PPS 7 is an oriented graph built on the following links:

A A,

fwg@g\(\f ?é% A/

AR B  A®B A&B A®B A®B

@ entering (premisses) and exiting (conclusions) edges are
labelled by MALL formulas;
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Ready Cut-E!

Girard's MALL Proof Structures _ . A
Commutativ imination

Definition (MALL Pre-Proof Structure)
A PPS 7 is an oriented graph built on the following links:

A A,

fwg@g\(\f ?é% A/

AR B  A®B A&B A®B A®B

@ entering (premisses) and exiting (conclusions) edges are
labelled by MALL formulas;

@ a contraction node C has A= A; = ... = Ap>1
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Ready Cut-E!

Girard's MALL Proof Structures _ . A
Commutativ imination

Definition (MALL Pre-Proof Structure)
A PPS 7 is an oriented graph built on the following links:

A A,

fwg@g\(\f ?é% A/

AR B  A®B A&B A®B A®B

@ entering (premisses) and exiting (conclusions) edges are
labelled by MALL formulas;

@ a contraction node C has A= A; = ... = Ap>1
@ two C nodes have no common edges (they are maximal).

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Ready Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Weights)

a monomial weight w, v, ... is a product “." (conjunction) of
Boolean variables or negations of Boolean variables p, p, q,q, ...
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Ready Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Weights)

a monomial weight w, v, ... is a product “." (conjunction) of
Boolean variables or negations of Boolean variables p, p, q,q, ...

® ¢p, for a variable p or its negation p;
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Ready Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Weights)

a monomial weight w, v, ... is a product “." (conjunction) of
Boolean variables or negations of Boolean variables p, p, q,q, ...

® ¢p, for a variable p or its negation p;

@ 1, for the empty product;
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Ready Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Weights)

a monomial weight w, v, ... is a product “." (conjunction) of
Boolean variables or negations of Boolean variables p, p, q,q, ...

® ¢p, for a variable p or its negation p;
@ 1, for the empty product;
@ 0, for a product where both p and p appear;
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Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Weights)

a monomial weight w, v, ... is a product “." (conjunction) of
Boolean variables or negations of Boolean variables p, p, q,q, ...

® ¢p, for a variable p or its negation p;
@ 1, for the empty product;
@ 0, for a product where both p and p appear;

@ two weights, v and w, are disjoint when v.w = 0.
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Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Weights)

a monomial weight w, v, ... is a product “." (conjunction) of
Boolean variables or negations of Boolean variables p, p, q,q, ...

€p, for a variable p or its negation p;
1, for the empty product;
0, for a product where both p and p appear;

two weights, v and w, are disjoint when v.w = 0.

e & ¢ ¢ ¢

a weight w depends on a variable p when ¢, appears in w;
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Girard's MALL Proof Structures

Definition (Girard's MALL Proof Structure)
A MALL GPS 7 is a PPS with weights associated as follows:
o
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Girard's MALL Proof Structures

Definition (Girard's MALL Proof Structure)
A MALL GPS 7 is a PPS with weights associated as follows:
©Q a & node is equipped with a (different) eigen weight p;

Q
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Girard's MALL Proof Structures Commutative Cut-Elimination

Definition (Girard's MALL Proof Structure)
A MALL GPS 7 is a PPS with weights associated as follows:
O a & node is equipped with a (different) eigen weight p;

© a conclusion node has weight 1;

o
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Girard's MALL Proof Structures

Definition (Girard's MALL Proof Structure)

A MALL GPS 7 is a PPS with weights associated as follows:
©Q a & node is equipped with a (different) eigen weight p;
@ a conclusion node has weight 1;

© a node is equipped with a weight w # 0: two nodes have the
same weight if they have a common edge, except when

&5 w

€p does not occur in w  ViVj,wiw; =0 (1 < i,j < n)
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Girard's MALL Proof Structures

Definition (Girard's MALL Proof Structure)

A MALL GPS 7 is a PPS with weights associated as follows:
Q a & node is equipped with a (different) eigen weight p;
@ a conclusion node has weight 1;

© a node is equipped with a weight w # 0: two nodes have the
same weight if they have a common edge, except when

&5 w

€p does not occur in w  ViVj,wiw; =0 (1 < i,j < n)

@ dependency condition: if v depends on p and w is the weight
of the &, node, then v < w.
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Ready Cut-Elimination
Commutative Cut-Elimination

Girard's MALL Proof Structures

Example (1)
This is a GPS:
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Girard's MALL Proof Structures

Example

This is not a GPS: it violates the dependency condition, p,p % q
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Girard's MALL Proof Structures Commutative Cut-Elimination

Cut Elimination

The original Girard's cut elimination is only lazy !
i.e., it only reduces the logical (or ready) cuts
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Girard's MALL Proof Structures . .
Commuta Cut-Elimir

Ready Cut Elimination: ax-step

LS

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Ready Cut-Elimination

Girard's MALL Proof Structures . .
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Ready Cut Elimination: (®/°9)-step
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Ready Cut-Elimination
Commutative Cut-Elimination

Girard's MALL Proof Structures

Ready Cut Elimination: (,/&)-step

7 /1]

7’ is obtained by erasing the p slice in 7 (i.e., p =1 resp., p = 0).
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Ready Cut-Elimination
Commutative Cut-Elimination

Girard's MALL Proof Structures

Ready Cut Elimination: (,/&)-step

7 /1]

7’ is obtained by erasing the p slice in 7 (i.e., p =1 resp., p = 0).

Girard's cut elimination stops here!
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Ready Cut-Elimination
Commutative Cut-Elimination

Girard's MALL Proof Structures

Ready Cut Elimination: (,/&)-step

7 /1]

7’ is obtained by erasing the p slice in 7 (i.e., p =1 resp., p = 0).
Girard's cut elimination stops here!

...in the following we fix this problem
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Cut-Elimination

Girard's MALL Proof Structures Utative Gut-Elimination

Commutative Cut Elimination: (®/C)-step

B w1 At
. . . / E
Wi
® @ /a/ AL
™
c " AL

the ("2/C)-step is similar

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Commutative Cut Elimination: (®/C)-step

the “«<" edges are axiom links
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Cut-Elimination

Girard's MALL Proof Structures Utative Gut-Elimination

Commutative Cut Elimination: (C/C)-step

A wq Vi A =
w w w
w; Vi
A C @ C . AL
A 7 W - vm AL
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Cut-Elimination
utative Cut-Elimination

Girard's MALL Proof Structures

Commutative Cut Elimination: (C/C)-step

AL

AL

=

Vm

AL

I
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Girard's MALL Proof Structures Commutative Cut-Elimination

Commutative Cut Elimination: (&;/C)-step
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Cut-Elimination

Girard's MALL Proof Structures Utative Gut-Elimination

Commutative Cut Elimination: (&;/C)-step
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y Cut-Elimination

Girard's MALL Proof Structures Co mutative Cut-Elimination

Commutative Cut Elimination: the local (&/C)-step

B %1 AL
wp
. y . / |
4
_ ™
wp Whn

AJ_
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Girard's MALL Proof Structures QiR Cut—EI}mination

Commutative Cut Elimination: the local (&/C)-step
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Ready Cut-Elimination

Girard's MALL Proof Structures N e

Problems with the local (&/C) reduction step

Let us reduce the (C/&4) cut of the above GPS 7

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Ready Cut-Elimination
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Girard's MALL Proof Structures

Problems with the local (&/C) reduction step

Example (4)

We get a 7’ that is not a PS!

e.g. two axioms, with weights g and @, do not satisfy the GPS
dependency condition (q,q £ p, resp., q,q £ p)
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Ready Cut-Elimination

Girard's MALL Proof Structures Commutative Cut-Elimination

Problems with the local (&/C) reduction step

Example (4)

7' may reduce the (©1/&,) cut to ©” that is not even a PPS!

e.g., erasing the g slice induces a “degenerated” &g-link
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Full Cut Elimination
Correctness Criterion

New MALL Proof Structures

it-Elimination

Definition (New Monomial MALL Proof Structure)
A MALL proof structure (PS), is a pair (7, E) s.t.:
@ £E={ew =0 | wis a weight e,-free};
o 7 is a GPS with these modifications:

e two & nodes may have the same eigen weight p;
o all weights vi(&p), ..., va(&p) are pairwise disjoint (v;.v; = 0);
@ the weight of each contraction (C) is taken modulo E:

w1 Wh

Vi, j, wiw; =0and w; <w (1 <i,j <n)
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Full Cut Elimination
Correctness Criterion
Stability

New MALL Proof Structures Strong Cut-Elimination

Definition (...continues)

new dependency condition: if w occurs in (7, E), then

w < (Z vi) mod E
i=1

@ each v; is:

o either the weight of a node &,
o or the suffix of an equation €,.v; = 0 of E;

@ > 7, vj is a monomial weight (modulo E);

@ all weights vy, ...v, are pairwise disjoint.
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Full Cut Elimination
Correctness Criterion

New MALL Proof Structures

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Full Cut Elimination
Correctness Criterion

New MALL Proof Structures Strong Cut-Elimination

Full Cut Elimination: the (&®;/&)-step

o E'=Eu{pw=0}
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Full Cut Elimination
Correctness Criterion

New MALL Proof Structures

Strong Cut-Elimination

Full Cut Elimination: the (&®;/&)-step

(m, E) ~ (', E") )

o E'=Eu{pw=0}

@ 7’ is obtained from 7 by :
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Full Cut Elimination
Corr ss Criterion
Stability

Strong Cut-Elimination

New MALL Proof Structures

Full Cut Elimination: the (&®;/&)-step

(m, E) ~ (', E") )

o E'=Eu{pw=0}
@ 7’ is obtained from 7 by :

— erasing the slice p rooted at w
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Full Cut Ellmlnatlon
Co erio

(m, E) ~ (', E") )

o E'=Eu{pw=0}
@ 7’ is obtained from 7 by :

— erasing the slice p rooted at w

— replacing weight pw with w (resp., pw with 0)
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Full Cut Elimination

New MALL Proof Structures

Full Cut Elimination

The below reduction steps R are performed like before with GPS
@ axiom-step
° (®/®)-step
(®/C)-step
('2/C)-step
(6i/C)-step
(&/C)-step
(C/C)-step

<7I‘, E> R <7I‘/, E>

— 7 ~g 7 like before with GPS
— E remains unchanged.
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Example

the (7, () above is (now) a PS
(it satisfies the new dependency condition: g, < p+ p)
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Example

Let us reduce the cut; (®1/&q).
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We get the PS (7, {pg = 0}) above.

0
modulo {pg = 0}, g = pg and g = (p + pq)
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Definition (Proof Nets)
A PS is correct (it is a Proof Net) if all local switchings are ACC.

(the notion of local switching is a variant of the Girard's switching)
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New MALL Proof Structures

Definition (Proof Nets)
A PS is correct (it is a Proof Net) if all local switchings are ACC.

(the notion of local switching is a variant of the Girard's switching)

Theorem (Sequentialization)

A PN with conclusion I can be sequentialized into a sequent proof
with same conclusion ' and vice-versa.
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Definition (Proof Nets)

A PS is correct (it is a Proof Net) if all local switchings are ACC.

(the notion of local switching is a variant of the Girard's switching)

Theorem (Sequentialization)

A PN with conclusion I can be sequentialized into a sequent proof
with same conclusion ' and vice-versa.

@ we exploit an expansion procedure which allows us to unfold
each PN into a GPN:;

@ it can be shown that each expansion step preserves the
Girard’s sequentialization.
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Stability under the Cut Elimination
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Stability under the Cut Elimination

Theorem (Stability of proof structures)
(m,E) ~ (n',E")y and (7, E) is a PS, then (n', E') is a PS too.
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Stability under the Cut Elimination

Theorem (Stability of proof structures)
(m,E) ~ (n',E")y and (7, E) is a PS, then (n', E') is a PS too.

Theorem (Stability of the correctness criterion)

(m, E) ~ (7', E'Y and (7, E) is a PN, then (z’, E') is a PN too.
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Strong Cut Elimination and Confluence
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Strong Cut Elimination and Confluence

Theorem (Strong Cut Elimination)

We can always reduce a PN (, E) into a PN (7' E') that is
cut-free; this reduction is strongly terminating.
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Strong Cut Elimination and Confluence

Theorem (Strong Cut Elimination)

We can always reduce a PN (, E) into a PN (7' E') that is
cut-free; this reduction is strongly terminating.

Theorem (local confluence)

Assume a PN (7, E) s.t.
o <7T7 E> “’")cutl <7T17 E1>
° <7T, E> M cuty <7T2) E2>r

with cuty # cuty, then there exists PN (m*, E*) to which (m;, E;),
for 1 < i < 2, reduces in at most one cut reduction step.
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questions 7

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



	Outline
	Proof Theory & Linear Logic
	Sequent Calculus
	Proof Nets

	Girard's MALL Proof Structures
	Ready Cut-Elimination
	Commutative Cut-Elimination

	New MALL Proof Structures
	Full Cut Elimination
	Correctness Criterion
	Stability
	Strong Cut-Elimination


