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Since its inception linear logic (LL, Girard 1987) has changed
the proof theoretical way of dealing with cut elimination.

This task was traditionally carried out by means of sequent
calculi with the consequence that the most part of these
works were engrossed by tedious commutations of rules.
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MALL Sequent Calculus (The Multiplicative-Additive fragment of LL)

Formulas A, B, ... are built from literals by the binary connectives ⊗
(tensor), O (par), & (with) and ⊕ (plus).

Negation (.)⊥ extends to any formula by de Morgan laws:

(A ⊗ B)⊥ = (B⊥
OA⊥) (AOB)⊥ = (B⊥ ⊗ A⊥)

(A&B)⊥ = (B⊥ ⊕ A⊥) (A ⊕ B)⊥ = (B⊥&A⊥)

Sequents Γ, ∆ are sets of formula occurrences A1, ..., An≥1, proved
using the following rules:

identity:
ax

A, A⊥
Γ, A ∆, A⊥

cut
Γ, ∆

multiplicatives:
Γ, A ∆, B

⊗
Γ, ∆, A ⊗ B

Γ, A, B
O

Γ, AOB

additives:
Γ, A Γ, B

&
Γ, A&B

Γ, A
⊕1

Γ, A ⊕ B

Γ, B
⊕2

Γ, A ⊕ B
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Cut-elimination with the SC is problematic

A, A⊥ A, A⊥

&
A&A, A⊥

A, A⊥

⊕1
A, A⊥ ⊕ B⊥

cut
A&A, A⊥ ⊕ B⊥

it may reduce to:

A, A⊥

A, A⊥

⊕1
A, A⊥ ⊕ B⊥

cut
A, A⊥ ⊕ B⊥

A, A⊥

A, A⊥

⊕1
A, A⊥ ⊕ B⊥

cut
A, A⊥ ⊕ B⊥

&
A&A, A⊥ ⊕ B⊥

or to (according to permutability of rules):

A, A⊥ A, A⊥

&
A&A, A⊥ A, A⊥

cut
A&A, A⊥

⊕1
A&A, A⊥ ⊕ B⊥
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Proof Nets (PNs): a possible solution

PNs are parallel presentations of sequential proofs

they quotient classes of equivalent proofs, modulo
permutations of derivation rules.

MLL: The Multiplicative Fragment of LL is the perfect setting:

1 a PN is a canonical representative of a proof of the SC;

2 the (strong) cut elimination procedure is purely local: reducing

a cut consists in to modifying only the nodes connected to it.

MALL: A lot of work has been done in order to extend (1) and (2)
[Girard’96, Hughes-Van Glabbeek’03...]
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Proof Nets of MALL

In 1996, Girard proposed a new syntax for MALL PNs:

without additive boxes (sequentiality)

allowing graph super-positions (weights, slices)

But Girard’s proposal was not as good as for MLL:

1 no canonicity: there exist proofs which de-sequentialize into
two possible PNs with no way to discriminate them.
This problem has been solved by Hughes-Van Glabbeek (LICS2003)

2 no full cut elimination: only the logical (ready) cuts are
reduced in a non-local way

Our Goal

To provide a New Syntax for Monomial MALL PNs with a
(local) full strong cut elimination.
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reduced in a non-local way

Our Goal

To provide a New Syntax for Monomial MALL PNs with a
(local) full strong cut elimination.
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Ready Cut-Elimination
Commutative Cut-Elimination

Definition (MALL Pre-Proof Structure)

A PPS π is an oriented graph built on the following links:

⊗ O & C

A ⊗ B AOB A&B A

A B AA⊥

cut

A

ax

A

A BB A B

A ⊕ BA ⊕ B

⊕1 ⊕2

A⊥

...A1 An

entering (premisses) and exiting (conclusions) edges are
labelled by MALL formulas;

a contraction node C has A = A1 = ... = An≥1

two C nodes have no common edges (they are maximal).
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Ready Cut-Elimination
Commutative Cut-Elimination

Definition (Weights)

a monomial weight w , v , ... is a product “.” (conjunction) of
Boolean variables or negations of Boolean variables p, p̄, q, q̄, ...

ǫp, for a variable p or its negation p;

1, for the empty product;

0, for a product where both p and p̄ appear;

two weights, v and w , are disjoint when v .w = 0.

a weight w depends on a variable p when ǫp appears in w ;
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Definition (Girard’s MALL Proof Structure)

A MALL GPS π is a PPS with weights associated as follows:

1
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Definition (Girard’s MALL Proof Structure)
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1 a & node is equipped with a (different) eigen weight p;

2
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Ready Cut-Elimination
Commutative Cut-Elimination

Definition (Girard’s MALL Proof Structure)

A MALL GPS π is a PPS with weights associated as follows:

1 a & node is equipped with a (different) eigen weight p;

2 a conclusion node has weight 1;

3 a node is equipped with a weight w 6= 0: two nodes have the
same weight if they have a common edge, except when

w1

C&p

...
wn

w w =
∑n

i=1 wi

∀i∀j , wiwj = 0 (1 ≤ i , j ≤ n)

L1 L2 L1 Ln

pw p̄w

ǫp does not occur in w

4
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Definition (Girard’s MALL Proof Structure)

A MALL GPS π is a PPS with weights associated as follows:

1 a & node is equipped with a (different) eigen weight p;

2 a conclusion node has weight 1;

3 a node is equipped with a weight w 6= 0: two nodes have the
same weight if they have a common edge, except when

w1

C&p

...
wn

w w =
∑n

i=1 wi

∀i∀j , wiwj = 0 (1 ≤ i , j ≤ n)

L1 L2 L1 Ln

pw p̄w

ǫp does not occur in w

4 dependency condition: if v depends on p and w is the weight
of the &p node, then v ≤ w .
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New MALL Proof Structures

Ready Cut-Elimination
Commutative Cut-Elimination

Example (1)

This is a GPS:

C

ax

ax

ax

ax

ax

C

qp

q

qp

C

cut

q

q

&q

q&p

π
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New MALL Proof Structures

Ready Cut-Elimination
Commutative Cut-Elimination

Example (2)

This is not a GPS: it violates the dependency condition, p, p̄ 6≤ q

C

ax

ax

ax

ax

ax

C

qp

q

qp

C

cut

&q

π

p̄

p

&p q

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Outline
Girard’s MALL Proof Structures

New MALL Proof Structures

Ready Cut-Elimination
Commutative Cut-Elimination

Cut Elimination

The original Girard’s cut elimination is only lazy !
i.e., it only reduces the logical (or ready) cuts
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Ready Cut-Elimination
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Ready Cut Elimination: ax-step

cut

ax

wA L′

L′′

A

L′′

A

π, π′ w
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Ready Cut-Elimination
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Ready Cut Elimination: (⊗/O)-step

cut

cut

B C BB⊥

⊗ O

CC⊥

cut

C⊥B⊥

w

w

wπ  π′
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Ready Cut Elimination: (⊕i/&)-step

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

π  π′[p/1]

w

π′ is obtained by erasing the p̄ slice in π (i.e., p = 1 resp., p̄ = 0).

Girard’s cut elimination stops here!

...in the following we fix this problem
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Commutative Cut Elimination: (⊗/C )-step

B

A⊥

A⊥

A⊥

C

...

...

cut⊗ C

w w w

w1

wn

wi

π

the (O/C )-step is similar
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Commutative Cut Elimination: (⊗/C )-step

cut C ⊗ cutB

w w1

cut

cut A⊥

A⊥

A⊥

wi

wn

⊗

⊗CcutC

w

...

...

...

... ...

...

w1

wi

wi

wn

w1

wn

π′

the “↔” edges are axiom links
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Commutative Cut Elimination: (C/C )-step

cut C

w w w

A

A

A

...

...

π

w1

C
wi

wn

v1

vm

vj

A⊥

...

A⊥

A⊥

...
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Commutative Cut Elimination: (C/C )-step

cut C

cut

cut

cut

C

CCcutA

A

A cut C

...

...

...

...
...

C

...

...

A⊥

...

A⊥

...

A⊥

...

...

w1

wi

wn

w1vj

v1

vj

vm

wivj

wnvj

w1v1

wiv1

wnvm

w1vm

...
wnv1

wivm

π′
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Commutative Cut Elimination: (⊕i/C )-step

C

cut

A⊥ ... ...

A

w

B

⊕i
w A⊥

wn

π
w1

A⊥...

...
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Commutative Cut Elimination: (⊕i/C )-step

cut

ax

cut

⊕i ⊕i

ax

C

A⊥ A⊥

cut

w

B B

B⊥B⊥

A A

w1 wn...

...

...

...

B

π′
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Commutative Cut Elimination: the local (&/C )-step

B

A⊥

A⊥

A⊥

C

...

...

cut C

w w w

π

w1

wn

wi
&p

wp

wp̄
π
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Commutative Cut Elimination: the local (&/C )-step

cut cutB

w1

cut

cut A⊥

A⊥

A⊥

wi

wn

cutC

...

...

...

... ...

...

C

C

&p

wp

wp̄

pw1

pwi

p̄w1
p̄wi

p̄wn

pwn

&p

&p
π′
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Problems with the local (&/C ) reduction step

Example (4)

&p

⊕1

⊕2

C C C

⊗1

1

1

1

cut

p

p̄

q q

q̄ q̄

C &q

π

Let us reduce the (C/&q) cut of the above GPS π
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Problems with the local (&/C ) reduction step

Example (4)

&p

⊕1

⊕2

C C C

⊗1

1

1

cut1

cut2

&q

&q

cut3

cut4

C

C

p̄
q̄

p̄q̄

q
pqp

pq̄ p̄q

q̄

q

π′

(1) We get a π′ that is not a PS!

e.g. two axioms, with weights q and q̄, do not satisfy the GPS
dependency condition (q, q̄ 6≤ p, resp., q, q̄ 6≤ p̄)

Roberto Maieli Cut Elimination for Monomial MALL Proof Nets



Outline
Girard’s MALL Proof Structures

New MALL Proof Structures

Ready Cut-Elimination
Commutative Cut-Elimination

Problems with the local (&/C ) reduction step

Example (4)

&p

⊕2

C C C

⊗1

1

1
cut2 &q

cut4

C
p p

q = 1

p̄

p̄ π′′

cut ′1

?

q = 1

(2) π′ may reduce the (⊕1/&q) cut to π′′ that is not even a PPS!

e.g., erasing the q̄ slice induces a “degenerated” &q-link
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New MALL Proof Structures

Full Cut Elimination
Correctness Criterion
Stability
Strong Cut-Elimination

Definition (New Monomial MALL Proof Structure)

A MALL proof structure (PS), is a pair 〈π,E 〉 s.t.:

E = {ǫp.w = 0 | w is a weight ǫp-free};

π is a GPS with these modifications:

two & nodes may have the same eigen weight p;
all weights v1(&p), ..., vn(&p) are pairwise disjoint (vi .vj = 0);
the weight of each contraction (C ) is taken modulo E :

w1

C

...
wn

L1 Ln

w =
∑n

i=1 wi mod E

∀i , j , wiwj = 0 and wi ≤ w (1 ≤ i , j ≤ n)
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Definition (...continues)

new dependency condition: if w occurs in 〈π,E 〉, then

w ≤ (

n∑

i=1

vi ) mod E

each vi is :

either the weight of a node &p

or the suffix of an equation ǫp.vi = 0 of E ;
∑n

i=1 vi is a monomial weight (modulo E );

all weights v1, ...vn are pairwise disjoint.
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Full Cut Elimination: the (⊕i/&)-step

cut

&p ⊕1

B C B⊥

w

pw p̄w

cut

B B⊥

〈π, E 〉 〈π′, E ′〉

w

E ′ = E ∪ {p̄.w = 0};

π′ is obtained from π by :

– erasing the slice p̄ rooted at w

– replacing weight pw with w (resp., p̄w with 0)
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Full Cut Elimination

The below reduction steps R are performed like before with GPS

axiom-step

(⊗/O)-step

(⊗/C )-step

(O/C )-step

(⊕i/C )-step

(&/C )-step

(C/C )-step

〈π,E 〉 R 〈π′,E 〉

– π  R π′ like before with GPS
– E remains unchanged.
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Correctness Criterion
Stability
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Example (5)

&p

⊕1

⊕2

C C

1 1
cut2

cut3

cut4

q̄C

C

p̄

q̄

q

&q

&q

pq̄ p̄q

p̄q̄

pq
p

cut1

⊗

1

q

C

Observe: the 〈π, ∅〉 above is (now) a PS
(it satisfies the new dependency condition: q, q̄ ≤ p + p̄)
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Example (5)

&p

⊕1

⊕2

C C

1 1
cut2

cut3

cut4

q̄C

C

p̄

q̄

q

&q
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Let us reduce the cut1 (⊕1/&q).
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We get the PS 〈π′, {p̄q̄ = 0}〉 above.

Observe: modulo {p̄q̄ = 0}, q̄ = pq̄ and q = (p̄ + pq)
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Definition (Proof Nets)

A PS is correct (it is a Proof Net) if all local switchings are ACC.

(the notion of local switching is a variant of the Girard’s switching)

Theorem (Sequentialization)

A PN with conclusion Γ can be sequentialized into a sequent proof
with same conclusion Γ and vice-versa.

Proof.

we exploit an expansion procedure which allows us to unfold
each PN into a GPN;

it can be shown that each expansion step preserves the
Girard’s sequentialization.
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Stability under the Cut Elimination

Theorem (Stability of proof structures)

〈π,E 〉 〈π′,E ′〉 and 〈π,E 〉 is a PS, then 〈π′,E ′〉 is a PS too.

Theorem (Stability of the correctness criterion)

〈π,E 〉 〈π′,E ′〉 and 〈π,E 〉 is a PN, then 〈π′,E ′〉 is a PN too.
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Strong Cut Elimination and Confluence

Theorem (Strong Cut Elimination)

We can always reduce a PN 〈π,E 〉 into a PN 〈π′,E ′〉 that is
cut-free; this reduction is strongly terminating.

Theorem (local confluence)

Assume a PN 〈π,E 〉 s.t.

〈π,E 〉 cut1 〈π1,E1〉

〈π,E 〉 cut2 〈π2,E2〉,

with cut1 6= cut2, then there exists PN 〈π∗,E ∗〉 to which 〈πi ,Ei 〉,
for 1 ≤ i ≤ 2, reduces in at most one cut reduction step.
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questions ?
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