Retractile Proof Nets of MALL
 (Purely Multiplicative and Additive Fragment of Linear Logic)

Roberto Maieli
Università degli Studi "Roma Tre"
maieli@uniroma3.it

LPAR'07 Conference - Yerevan, 19th October 2007

Overview

Overview

- Topic: we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).

Overview

- Topic: we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).
- Question : finding an intrinsic (geometrical, non inductive) criterion for detecting those graphs (proof-nets) that correspond to sequential proofs of the purely multiplicative and additive fragment of linear logic (MALL)

Overview

- Topic: we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).
- Question : finding an intrinsic (geometrical, non inductive) criterion for detecting those graphs (proof-nets) that correspond to sequential proofs of the purely multiplicative and additive fragment of linear logic (MALL)
- Answer : a correctness criterion formulated like an algorithm which implements simple graph rewriting rules.

Overview

- Topic : we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).
- Question : finding an intrinsic (geometrical, non inductive) criterion for detecting those graphs (proof-nets) that correspond to sequential proofs of the purely multiplicative and additive fragment of linear logic (MALL)
- Answer : a correctness criterion formulated like an algorithm which implements simple graph rewriting rules.
- Hint : an initial idea of a retraction correctness criterion for proof nets of MLL, the purely multiplicative fragment of linear logic (Danos, 1990).

MALL

MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus($ plus $)$.

MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus($ plus $)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \diamond B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):

MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):
- identity: $\frac{{ }_{A}, A^{\perp}}{}$ ax $\frac{\Gamma, A \quad \Delta, A^{\perp}}{\Gamma, \Delta}$ cut

MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p / u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):
- identity: $\quad \overline{A, A^{\perp}} \mathrm{ax} \quad \frac{\Gamma, A \quad \Delta, A^{\perp}}{\Gamma, \Delta}$ cut
- multiplicatives: $\quad \frac{\Gamma, A \Delta, B}{\Gamma, \Delta, A \otimes B} \otimes \frac{\Gamma, A, B}{\Gamma, A \not B B} \oslash$

MALL

- Formulas A, B, \ldots are built from literals by the binary connectives \otimes (tensor), $>($ par $), \&($ with $)$ and $\oplus(p l u s)$.
- Negation (. $)^{\perp}$ extends to any formula by de Morgan laws:

$$
\begin{array}{ll}
(A \otimes B)^{\perp}=\left(B^{\perp} 8 A^{\perp}\right) & (A \& B)^{\perp}=\left(B^{\perp} \otimes A^{\perp}\right) \\
(A \& B)^{\perp}=\left(B^{\perp} \oplus A^{\perp}\right) & (A \oplus B)^{\perp}=\left(B^{\perp} \& A^{\perp}\right)
\end{array}
$$

- Sequents Γ, Δ are sets of formula occurrences $A_{1}, \ldots, A_{n \geq 1}$, proved using the following rules (we omit \vdash):
- identity: $\quad \overline{A, A^{\perp}} \mathrm{ax} \quad \frac{\Gamma, A \quad \Delta, A^{\perp}}{\Gamma, \Delta}$ cut
- multiplicatives: $\quad \frac{\Gamma, A \Delta, B}{\Gamma, \Delta, A \otimes B} \otimes \frac{\Gamma, A, B}{\Gamma, A \not B} \ngtr$
- additives: $\quad \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \& B} \& \frac{\Gamma, A}{\Gamma, A \oplus B} \oplus_{1} \frac{\Gamma, B}{\Gamma, A \oplus B} \oplus_{2}$

Examples of proofs

Examples of proofs

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1}}{\frac{A \& B, B^{\perp} \oplus A^{\perp}}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{C, C^{\perp}}{C \gtrdot C^{\perp}}} \otimes
$$

Examples of proofs

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1}}{\frac{A \& B, B^{\perp} \oplus A^{\perp}}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{C, C^{\perp}}{C 8 C^{\perp}}} \otimes
$$

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{C, C^{\perp}}{C 8 C^{\perp}} \oslash \quad \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1} \quad \frac{C, C^{\perp}}{C 8 C^{\perp}} \otimes}{\frac{A,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)}{B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)}} \otimes \%
$$

Equivalence of proofs

Equivalence of proofs

- We would like consider equivalent (in some sense) two sequent proofs (trees) when they differ only for the order in which the derivation rules are applied.

Equivalence of proofs

- We would like consider equivalent (in some sense) two sequent proofs (trees) when they differ only for the order in which the derivation rules are applied.
- This idea leads to the notion of proof structure (graph).

Equivalence of proofs

- We would like consider equivalent (in some sense) two sequent proofs (trees) when they differ only for the order in which the derivation rules are applied.
- This idea leads to the notion of proof structure (graph).
- In particular, some proof structures (proof nets) can be seen as quotients of classes of sequent proofs that are equivalent modulo irrelevant permutation of sequent rules.

Proof Structures (PS)

A PS is an oriented graph s.t. each edge is labelled by a MALL formula and built on the set of nodes according to the following typing constraints:

Proof Structures (PS)

A PS is an oriented graph s.t. each edge is labelled by a MALL formula and built on the set of nodes according to the following typing constraints:

Figure: MALL Links

- entering (resp., exiting) edges are premises (resp., conclusions)
- pending edges are called conclusions of PS

Request for a Correctness Criterion

Request for a Correctness Criterion

- We are interested in finding an intrinsic (geometrical, non inductive) criterion for detecting those proof structures that are correct, i.e. that correspond to proofs of MALL.

Request for a Correctness Criterion

- We are interested in finding an intrinsic (geometrical, non inductive) criterion for detecting those proof structures that are correct, i.e. that correspond to proofs of MALL.
- For doing that we need to go trough some more abstract objects (Abstract Proof Structures) which allow us to get rid of some concrete matters of proof structures

Towards a Correctness Criterion: Abstract Proof Structures

Towards a Correctness Criterion: Abstract Proof Structures

- an APS is a non oriented graph G equipped with a set $\mathcal{C}(G)$ of pairwise disjoint pairs of coincident edges labelled by formulas;

Towards a Correctness Criterion: Abstract Proof Structures

- an APS is a non oriented graph G equipped with a set $\mathcal{C}(G)$ of pairwise disjoint pairs of coincident edges labelled by formulas;
- a base of a pair is a common vertex, labelled by a $8, \&$ or C-arc;

Towards a Correctness Criterion: Abstract Proof Structures

- an $A P S$ is a non oriented graph G equipped with a set $\mathcal{C}(G)$ of pairwise disjoint pairs of coincident edges labelled by formulas;
- a base of a pair is a common vertex, labelled by a $\nless, \&$ or C-arc;
- a PN is mapped into an APS as follows:

The Correctness Criterion: Proof Nets

A PS π with conclusions A_{1}, \ldots, A_{n}, with $n \geq 1$, is correct (i.e., it is a proof net) if its corresponding APS π^{*} retracts to a single node \bullet, by iterating the following retraction rules $\left(R_{1}, \ldots, R_{5}\right)$

The Correctness Criterion: Proof Nets

A PS π with conclusions A_{1}, \ldots, A_{n}, with $n \geq 1$, is correct (i.e., it is a proof net) if its corresponding APS π^{*} retracts to a single node \bullet, by iterating the following retraction rules $\left(R_{1}, \ldots, R_{5}\right)$
a PS π is a PN iff its corresponding APS $\pi^{*} \rightsquigarrow * \bullet$

Multiplicative Retraction Rules: R_{1} and R_{2}

Multiplicative Retraction Rules: R_{1} and R_{2}

Additive Retraction Rules: R_{3} and R_{4}

Additive Retraction Rules: R_{3} and R_{4}

Distributive Retraction Rule: R_{5}

$(b \not c) \&(b \gtrdot d) \vdash b \gtrdot(c \& d)$

An example of Proof Net $\pi(1 / 2)$

An example of retraction sequence for $\pi^{*}(2 / 2)$

An example of retraction sequence for $\pi^{*}(2 / 2)$

An example of retraction sequence for $\pi^{*}(2 / 2)$

An example of retraction sequence for $\pi^{*}(2 / 2)$

An example of retraction sequence for $\pi^{*}(2 / 2)$

An example of retraction sequence for $\pi^{*}(2 / 2)$

De-squentialization Theorem

Theorem
A proof π of a sequent Γ can be de-sequentialized in to a proof net π^{-}with same conclusion.

De-squentialization Theorem

Theorem
A proof π of a sequent Γ can be de-sequentialized in to a proof net π^{-}with same conclusion.

Proof.
We associate a link to each derivation rule, then we proceed by induction on π.

Squentialization Theorem

A proof net π of a sequent Γ can be sequentialized in to a proof π^{-}with same conclusion.

Squentialization Theorem

A proof net π of a sequent Γ can be sequentialized in to a proof π^{-}with same conclusion.
Proof: we use weights, i.e. elements $\neq 0$ of the Boolean Algebra generated by the set eigen variables indexing the \&-nodes of π.

Squentialization Theorem

A proof net π of a sequent Γ can be sequentialized in to a proof π^{-}with same conclusion.
Proof: we use weights, i.e. elements $\neq 0$ of the Boolean Algebra generated by the set eigen variables indexing the \&-nodes of π.

A splitting squentialization: \otimes first (bottom-up)

A splitting squentialization: \otimes first (bottom-up)

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1}}{\frac{A \& B, B^{\perp} \oplus A^{\perp}}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{C, C^{\perp}}{C 8 C^{\perp}} 8} \otimes
$$

A slicing squentialization: \& first (bottom-up)

A slicing squentialization: \& first (bottom-up)

$$
\frac{\frac{A, A^{\perp}}{A, B^{\perp} \oplus A^{\perp}} \oplus_{2} \quad \frac{C, C^{\perp}}{C 8 C^{\perp}} \oslash}{\frac{A,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)}{A \& B,\left(B^{\perp} \oplus A^{\perp}\right) \otimes\left(C 8 C^{\perp}\right)} \frac{B, B^{\perp}}{B, B^{\perp} \oplus A^{\perp}} \oplus_{1} \quad \frac{C, C^{\perp}}{C 8 C^{\perp}} \oslash} \otimes \otimes
$$

Confluence

Theorem
If a $P N \pi$ retracts to \bullet, then all retraction sequences start with π^{*} and terminate with \bullet.

Conclusions

Retractile Correctness Criteria for PN :

Conclusions

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;

Conclusions

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
- alternative to sequential algorithms performed on sequent calculi;

Conclusions

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
- alternative to sequential algorithms performed on sequent calculi;
- more efficient and compact, since they are performed on PN (class of equivalent proofs, modulo permutability of rules);

Conclusions

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
- alternative to sequential algorithms performed on sequent calculi;
- more efficient and compact, since they are performed on PN (class of equivalent proofs, modulo permutability of rules);
- with low complexity (linear, quadratic, ...)

Conclusions

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
- alternative to sequential algorithms performed on sequent calculi;
- more efficient and compact, since they are performed on PN (class of equivalent proofs, modulo permutability of rules);
- with low complexity (linear, quadratic, ...)
- lead to possible applications like Transactional Systems, navigation of Formal Ontologies ...

