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◮ Topic : we compare the Parallel Syntax (proof-nets, graphs)
w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs
of Linear Logic (Girard, 1987).

◮ Question : finding an intrinsic (geometrical, non inductive)
criterion for detecting those graphs (proof-nets) that
correspond to sequential proofs of the purely multiplicative
and additive fragment of linear logic (MALL)

◮ Answer : a correctness criterion formulated like an algorithm

which implements simple graph rewriting rules.

◮ Hint : an initial idea of a retraction correctness criterion for
proof nets of MLL, the purely multiplicative fragment of linear
logic (Danos, 1990).
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◮ identity: ax
A, A⊥
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cut

Γ, ∆

◮ multiplicatives:
Γ, A ∆, B

⊗
Γ, ∆, A ⊗ B

Γ, A, B
O

Γ, AOB

◮ additives:
Γ, A Γ, B

&
Γ, A&B

Γ, A
⊕1

Γ, A ⊕ B

Γ, B
⊕2

Γ, A ⊕ B
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◮ We would like consider equivalent (in some sense) two
sequent proofs (trees) when they differ only for the order in
which the derivation rules are applied.

◮ This idea leads to the notion of proof structure (graph).

◮ In particular, some proof structures (proof nets) can be seen
as quotients of classes of sequent proofs that are equivalent

modulo irrelevant permutation of sequent rules.
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A PS is an oriented graph s.t. each edge is labelled by a MALL
formula and built on the set of nodes according to the following
typing constraints:

⊗ O & C

A ⊗ B AOB A&B A

A B A A BB A B A A

A ⊕ B

ax

A A⊥ A ⊕ B

⊕1 ⊕2

Figure: MALL Links

◮ entering (resp., exiting) edges are premises (resp., conclusions)

◮ pending edges are called conclusions of PS
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Request for a Correctness Criterion

◮ We are interested in finding an intrinsic (geometrical, non
inductive) criterion for detecting those proof structures that
are correct, i.e. that correspond to proofs of MALL.

◮ For doing that we need to go trough some more abstract
objects (Abstract Proof Structures) which allow us to get rid
of some concrete matters of proof structures
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– an APS is a non oriented graph G equipped with a set C(G ) of
pairwise disjoint pairs of coincident edges labelled by formulas;
– a base of a pair is a common vertex, labelled by a O,& or C -arc;
– a PN is mapped into an APS as follows:

⊗

O

&

C7→

7→

7→

7→

7→

Ai

A ⊗ B A ⊗ B

B

A B

AOB AOB

BA

B

A&BA&B

A B

BA
A A

A A C

&

O

A

A A

A

A⊥A
7→

ax

A A⊥

Ai=1,2

A1 ⊕ A2

⊕

A1 ⊕ A2
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The Correctness Criterion: Proof Nets

A PS π with conclusions A1, ...,An, with n ≥ 1, is correct (i.e., it
is a proof net) if its corresponding APS π

∗ retracts to a single
node •, by iterating the following retraction rules (R1, ...,R5)

a PS π is a PN iff its corresponding APS π
∗
 

∗ •
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′
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O

v1
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e1 e2 v1π  R2
π
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Additive Retraction Rules: R3 and R4

π
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v2 v3

v1

a

a

π
′

v1

v2 v3
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C
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π
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v2 v3
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a

a

π
′
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v2 v3

&

 R3
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&

C
e1

π

v3

e1 e2

v2

v1  R4

π
′

v1
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Distributive Retraction Rule: R5

v5

v6

v3v2v1

v7

v8

O

&

C

 R5

v8

v6

v3v2v1

O

&

e1

e2

v4

O
e4

e3

e5

e6

e7 e8

e7

e8

e5e6

(bOc)&(bOd) ⊢ bO(c&d)



An example of Proof Net π (1/2)

ax

ax
A⊥

B

A

⊗

ax

O

A&B

B⊥

C

C⊥C

(B⊥ ⊕ A⊥) ⊗ (COC⊥)

& ⊕1 ⊕2
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Proof.
We associate a link to each derivation rule, then we proceed by
induction on π.
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A
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C
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p̄
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p

&p

1
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1

1

p

⊕1 ⊕2
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1

(B⊥ ⊕ A⊥) ⊗ (COC⊥)(B⊥ ⊕ A⊥) ⊗ (COC⊥) (B⊥ ⊕ A⊥) ⊗ (COC⊥)

1

⊗1 1

⊕2 ⊕1



A slicing squentialization: & first (bottom-up)

ax
A⊥

A

ax

O

⊗

B

ax

B⊥

O

ax
C C⊥C⊥C

1

(B⊥ ⊕ A⊥) ⊗ (COC⊥)(B⊥ ⊕ A⊥) ⊗ (COC⊥) (B⊥ ⊕ A⊥) ⊗ (COC⊥)

1

⊗1 1

⊕2 ⊕1

A, A⊥
⊕2

A, B⊥ ⊕ A⊥

C , C⊥
O

COC⊥
⊗

A, (B⊥ ⊕ A⊥) ⊗ (COC⊥)

B, B⊥
⊕1

B, B⊥ ⊕ A⊥

C , C⊥
O

COC⊥
⊗

B, (B⊥ ⊕ A⊥) ⊗ (COC⊥)
&

A&B , (B⊥ ⊕ A⊥) ⊗ (COC⊥)



Confluence

Theorem
If a PN π retracts to •, then all retraction sequences start with π

∗

and terminate with •.
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Conclusions

Retractile Correctness Criteria for PN :

◮ can be seen as concurrent (parsing) algorithms for
proof-search;

◮ alternative to sequential algorithms performed on sequent
calculi;

◮ more efficient and compact, since they are performed on PN
(class of equivalent proofs, modulo permutability of rules);

◮ with low complexity (linear, quadratic, ...)

◮ lead to possible applications like Transactional Systems,
navigation of Formal Ontologies ...
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