Retractile Proof Nets of MALL (Purely Multiplicative and Additive Fragment of Linear Logic)

Roberto Maieli

Università degli Studi "Roma Tre" maieli@uniroma3.it

LPAR'07 Conference - Yerevan, 19th October 2007

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 め�?

Topic : we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Topic : we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).
- Question : finding an intrinsic (geometrical, non inductive) criterion for detecting those graphs (*proof-nets*) that correspond to sequential proofs of the purely multiplicative and additive fragment of linear logic (*MALL*)

- Topic : we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).
- Question : finding an intrinsic (geometrical, non inductive) criterion for detecting those graphs (*proof-nets*) that correspond to sequential proofs of the purely multiplicative and additive fragment of linear logic (*MALL*)
- Answer : a correctness criterion formulated like an *algorithm* which implements simple *graph rewriting rules*.

- Topic : we compare the Parallel Syntax (proof-nets, graphs) w.r.t. the Sequential Syntax (sequent-proofs, trees) for proofs of Linear Logic (Girard, 1987).
- Question : finding an intrinsic (geometrical, non inductive) criterion for detecting those graphs (*proof-nets*) that correspond to sequential proofs of the purely multiplicative and additive fragment of linear logic (*MALL*)
- Answer : a correctness criterion formulated like an algorithm which implements simple graph rewriting rules.
- Hint : an *initial idea* of a retraction correctness criterion for proof nets of MLL, the purely multiplicative fragment of linear logic (Danos, 1990).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 - のへの

Formulas A, B,... are built from literals by the binary connectives ⊗ (tensor), ⊗ (par), & (with) and ⊕ (plus).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Formulas A, B, ... are built from literals by the binary connectives ⊗ (tensor), ⊗ (par), & (with) and ⊕ (plus).
- Negation (.)^{\perp} extends to any formula by de Morgan laws:

$$(A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) \qquad (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) (A \& B)^{\perp} = (B^{\perp} \oplus A^{\perp}) \qquad (A \oplus B)^{\perp} = (B^{\perp} \& A^{\perp})$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Formulas A, B,... are built from literals by the binary connectives ⊗ (tensor), ⊗ (par), & (with) and ⊕ (plus).
- Negation $(.)^{\perp}$ extends to any formula by de Morgan laws:

$$(A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) \qquad (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) (A \& B)^{\perp} = (B^{\perp} \oplus A^{\perp}) \qquad (A \oplus B)^{\perp} = (B^{\perp} \& A^{\perp})$$

Sequents Γ, Δ are sets of formula occurrences A₁, ..., A_{n≥1}, proved using the following rules (we omit ⊢):

- Formulas A, B, ... are built from literals by the binary connectives ⊗ (tensor), ⊗ (par), & (with) and ⊕ (plus).
- Negation $(.)^{\perp}$ extends to any formula by de Morgan laws:

$$(A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) \qquad (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) (A \& B)^{\perp} = (B^{\perp} \oplus A^{\perp}) \qquad (A \oplus B)^{\perp} = (B^{\perp} \& A^{\perp})$$

Sequents Γ, Δ are sets of formula occurrences A₁, ..., A_{n≥1}, proved using the following rules (we omit ⊢):

▶ identity:
$$A, A^{\perp}$$
 ax $\Gamma, A \quad \Delta, A^{\perp}$ cut

- Formulas A, B, ... are built from literals by the binary connectives ⊗ (tensor), ⊗ (par), & (with) and ⊕ (plus).
- Negation $(.)^{\perp}$ extends to any formula by de Morgan laws:

$$\begin{array}{ll} (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) & (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) \\ (A \& B)^{\perp} = (B^{\perp} \oplus A^{\perp}) & (A \oplus B)^{\perp} = (B^{\perp} \& A^{\perp}) \end{array}$$

Sequents Γ, Δ are sets of formula occurrences A₁, ..., A_{n≥1}, proved using the following rules (we omit ⊢):

- Formulas A, B, ... are built from literals by the binary connectives ⊗ (tensor), ⊗ (par), & (with) and ⊕ (plus).
- Negation $(.)^{\perp}$ extends to any formula by de Morgan laws:

$$\begin{array}{ll} (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) & (A \otimes B)^{\perp} = (B^{\perp} \otimes A^{\perp}) \\ (A \& B)^{\perp} = (B^{\perp} \oplus A^{\perp}) & (A \oplus B)^{\perp} = (B^{\perp} \& A^{\perp}) \end{array}$$

Sequents Γ, Δ are sets of formula occurrences A₁, ..., A_{n≥1}, proved using the following rules (we omit ⊢):

Examples of proofs

▲日▼▲雪▼▲雪▼▲目▼ 回 ものぐら

Examples of proofs

▲日▼▲□▼▲□▼▲□▼ □ のので

Examples of proofs

・ロ ・ ・ ヨ ・ ・ ヨ ・ ・ ・ ヨ ・ う へ つ ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We would like consider equivalent (in some sense) two sequent proofs (*trees*) when they differ only for the order in which the derivation rules are applied.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

We would like consider equivalent (in some sense) two sequent proofs (*trees*) when they differ only for the order in which the derivation rules are applied.

► This idea leads to the notion of proof structure (graph).

- We would like consider equivalent (in some sense) two sequent proofs (*trees*) when they differ only for the order in which the derivation rules are applied.
- ► This idea leads to the notion of proof structure (graph).
- In particular, some proof structures (proof nets) can be seen as quotients of classes of sequent proofs that are equivalent modulo irrelevant permutation of sequent rules.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof Structures (PS)

A PS is an oriented graph s.t. each edge is labelled by a MALL formula and built on the set of nodes according to the following typing constraints:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Proof Structures (PS)

A PS is an oriented graph s.t. each edge is labelled by a MALL formula and built on the set of nodes according to the following typing constraints:

Figure: MALL Links

entering (resp., exiting) edges are *premises* (resp., *conclusions*)
pending edges are called *conclusions* of PS

Request for a Correctness Criterion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Request for a Correctness Criterion

We are interested in finding an intrinsic (geometrical, non inductive) criterion for detecting those proof structures that are correct, i.e. that correspond to proofs of MALL.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Request for a Correctness Criterion

- We are interested in finding an intrinsic (geometrical, non inductive) criterion for detecting those proof structures that are correct, i.e. that correspond to proofs of MALL.
- For doing that we need to go trough some more abstract objects (*Abstract Proof Structures*) which allow us to get rid of some concrete matters of proof structures

- * ロ * * 母 * * き * き * の < @

- an APS is a non oriented graph G equipped with a set C(G) of pairwise disjoint pairs of coincident edges labelled by formulas;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- an *APS* is a non oriented graph *G* equipped with a set C(G) of pairwise disjoint pairs of coincident edges labelled by formulas; - a base of a pair is a common vertex, labelled by a \otimes , & or *C*-arc;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- an *APS* is a non oriented graph *G* equipped with a set C(G) of pairwise disjoint pairs of coincident edges labelled by formulas; - a base of a pair is a common vertex, labelled by a \otimes , & or *C*-arc; - a PN is mapped into an APS as follows:

イロト 不同 トイヨト イヨト

ъ

The Correctness Criterion: Proof Nets

A PS π with conclusions $A_1, ..., A_n$, with $n \ge 1$, is *correct* (i.e., it is a proof net) if its corresponding APS π^* retracts to a single node •, by iterating the following retraction rules $(R_1, ..., R_5)$

▲日▼▲□▼▲□▼▲□▼ □ のので

The Correctness Criterion: Proof Nets

A PS π with conclusions $A_1, ..., A_n$, with $n \ge 1$, is *correct* (i.e., it is a proof net) if its corresponding APS π^* retracts to a single node •, by iterating the following retraction rules $(R_1, ..., R_5)$

a PS π is a PN iff its corresponding APS $\pi^* \leadsto^* \bullet$

▲日▼▲□▼▲□▼▲□▼ □ のので

Multiplicative Retraction Rules: R_1 and R_2

Multiplicative Retraction Rules: R_1 and R_2

・ロト・西・・田・・田・ うらの

Additive Retraction Rules: R_3 and R_4

<ロ> <問> <問> < 回> < 回>

æ

Additive Retraction Rules: R_3 and R_4

Distributive Retraction Rule: R_5

 $(b \otimes c) \& (b \otimes d) \vdash b \otimes (c \& d)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

An example of Proof Net π (1/2)

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

996

æ

De-squentialization Theorem

Theorem

A proof π of a sequent Γ can be de-sequentialized in to a proof net π^- with same conclusion.

De-squentialization Theorem

Theorem

A proof π of a sequent Γ can be de-sequentialized in to a proof net π^- with same conclusion.

Proof.

We associate a link to each derivation rule, then we proceed by induction on π .

▲日▼▲□▼▲□▼▲□▼ □ のので

Squentialization Theorem

A proof net π of a sequent Γ can be sequentialized in to a proof

 π^- with same conclusion.

Squentialization Theorem

A proof net π of a sequent Γ can be sequentialized in to a proof π^- with same conclusion.

Proof: we use weights, i.e. elements $\neq 0$ of the Boolean Algebra generated by the set eigen variables indexing the &-nodes of π .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Squentialization Theorem

A proof net π of a sequent Γ can be sequentialized in to a proof π^- with same conclusion.

Proof: we use weights, i.e. elements $\neq 0$ of the Boolean Algebra generated by the set eigen variables indexing the &-nodes of π .

A splitting squentialization: \otimes first (bottom-up)

< ロ > < 同 > < 回 > < 回 >

э

A splitting squentialization: \otimes first (bottom-up)

A slicing squentialization: & first (bottom-up)

< ロ > < 同 > < 回 > < 回 >

э

A slicing squentialization: & first (bottom-up)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 日 ・

Confluence

Theorem

If a PN π retracts to \bullet , then all retraction sequences start with π^* and terminate with \bullet .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Retractile Correctness Criteria for PN :

Retractile Correctness Criteria for PN :

 can be seen as concurrent (parsing) algorithms for proof-search;

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
 - alternative to sequential algorithms performed on sequent calculi;

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
 - alternative to sequential algorithms performed on sequent calculi;
 - more efficient and compact, since they are performed on PN (class of equivalent proofs, modulo permutability of rules);

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
 - alternative to sequential algorithms performed on sequent calculi;
 - more efficient and compact, since they are performed on PN (class of equivalent proofs, modulo permutability of rules);

with low complexity (linear, quadratic, ...)

Retractile Correctness Criteria for PN :

- can be seen as concurrent (parsing) algorithms for proof-search;
 - alternative to sequential algorithms performed on sequent calculi;
 - more efficient and compact, since they are performed on PN (class of equivalent proofs, modulo permutability of rules);

- with low complexity (linear, quadratic, ...)
- lead to possible applications like Transactional Systems, navigation of Formal Ontologies ...