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Abstract. This paper concerns a logical approach to natural language
parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear
logic (LL). In particular, it presents a simple and intuitive syntax for PNs
of the cyclic multiplicative fragment of linear logic (CyMLL). The pro-
posed correctness criterion for CyMLL PNs can be considered as the non-
commutative counterpart of the famous Danos-Regnier (DR) criterion for
PNs of the pure multiplicative fragment (MLL) of LL. The main intuition
relies on the fact that any DR-switching (i.e. any correction or test graph
for a given PN) can be naturally viewed as a seaweed, i.e. a rootless pla-
nar tree inducing a cyclic order on the conclusions of the given PN. Dislike
the most part of current syntaxes for non-commutative PNs, our syntax
allows a sequentialization for the full class of CyMLL PNs, without requir-
ing these latter must be cut-free. Moreover, we give a simple characteri-
zation of CyMLL PNs for Lambek Calculus and thus a geometrical (non
inductive) way to parse phrases or sentences by means of Lambek PNs.

Keywords: Categorial grammars · Cyclic orders · Lambek calculus ·
Language parsing · Linear logic · Non-commutative logic · Proof nets ·
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1 Introduction

Proof nets are one of the most innovative inventions of linear logic (LL, [5]):
they are used to represent demonstrations in a geometric (i.e., non inductive)
way, abstracting away from the technical bureaucracy of sequential proofs. Proof
nets quotient classes of derivations that are equivalent up to some irrelevant
permutations of inference rules instances. Following this spirit, we first present a
simple syntax for proof nets of the Cyclic Multiplicative fragment of LL (CyMLL
PNs, Sect. 2). In particular, we introduce a new correctness criterion for CyMLL
PNs which can be considered as the non-commutative counterpart of the famous
Danos-Regnier (DR) criterion for proof nets of linear logic (see [4]). The main
intuition relies on the fact that any DR-switching for a proof structure π (i.e. any
correction or test graph, obtained by mutilating one premise of each disjunction
�-link) can be naturally viewed as a rootless planar tree, called seaweed, inducing
a cyclic ternary relation on the conclusions of the given π (Sect. 2.1). Moreover,
the proposed correctness criterion:
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1. is shown to be stable under (or preserved by) cut elimination (Sect. 2.2);
2. dislike some previous syntaxes (e.g., [15], [2] or [11]) it admits a sequentializa-

tion (that is, a way to associate a (unique) sequent proof to each proof net)
for the full class of CyMLL PNs including those ones with cuts (Sect. 2.3).

CyMLL can be considered as a classical extension of Lambek Calculus (LC,
see [1,9,13]) one of the ancestors of LL. The LC represents the first attempt of
the so called parsing as deduction, i.e., parsing of natural language by means
of a logical system. Following [3], in LC parsing is interpreted as type checking
in the form of theorem proving of Gentzen sequents. Types (i.e. propositional
formulas) are associated to words in the lexicon; when a string w1...wn is tested
for grammaticality, the types t1, ..., tn associated with the words are retrieved
from the lexicon and then parsing reduces to proving the derivability of a one-
sided sequent of the form � t⊥n , ..., t⊥1 , s, where s is the type associated with
sentences. Moreover, forcing constraints on the Exchange rule by allowing only
cyclic permutations over sequents of formulas, gives the required computational
control needed to view theorem proving as parsing in Lambek Categorial Gram-
mar style. Anyway, LC parsing presents some syntactical ambiguity problems;
actually, there may be:

1. (non canonical proofs) more than one cut-free proof for the same sequent;
2. (lexical polymorphism) more than one type associated with a single word.

Now, proof nets are commonly considered an elegant solution to the first problem
of representing canonical proofs; in this sense, in Sect. 3, we give an embedding
of pure Lambek Calculus into Cyclic MLL proof nets; then, in Sect. 4, we show
how to parse some linguistic examples that can be found in [14].

Unfortunately, there is not an equally brilliant solution to the second prob-
lem listed above. However, we retain that, as further work, extending parsing by
means of additive proof nets (MALL) could be a step towards a proof-theoretical
solution to the problem of lexical polymorphism; technically speaking, Cyclic
MALL proof nets allow to manage formulas (types) superposition (polymor-
phism) by means of the additive connectives &and ⊕ (see Sect. 5, also [6,8,12]).

1.1 Cyclic MLL

We briefly recall the necessary background of the Cyclic MLL fragment of LL,
denoted CyMLL, without units. We arbitrarily assume literals a, a⊥, b, b⊥, ...
with a polarity: positive (+) for atoms, a, b, ... and negative (−) a⊥, b⊥... for
their duals. A formula is built from literals by means of two groups of multi-
plicative connectives: negative, � (”par”) and positive, � (”tensor”). For these
connectives we have the following De Morgan laws: (A � B)⊥ = B⊥�A⊥ and
(A�B)⊥ = B⊥

�A⊥. A CyMLL proof is any derivation tree built by the follow-
ing inference rules where sequents Γ,Δ are lists of formulas occurrences endowed
with a total cyclic order (or cyclic permutation) (see the formal Definition 1):
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Naively, a total cyclic order can be thought as follows; consider a set of
points of an oriented circle; the orientation induces a total order on these points
as follows: if a, b and c are three distinct points, then b is either between a and
c (a < b < c) or between c and a (c < b < a). Moreover, a < b < c is equivalent
to b < c < a or c < a < b.

Definition 1 (Total Cyclic Order). A total cyclic order is a pair (X,σ) where
X is a set and σ is a ternary relation over X satisfying the following properties:

1 ∀a, b, c ∈ X,σ(a, b, c) → σ(b, c, a) (cyclic),
2 ∀a, b ∈ X,¬σ(a, a, b) (anti-reflexive),
3 ∀a, b, c, d ∈ X,σ(a, b, c) ∧ σ(c, d, a) → σ(b, c, d) (transitive),
4. ∀a, b, c ∈ X,σ(a, b, c) ∨ σ(c, b, a) (total).

Negative (or asynchronous) connectives correspond to a kind of true determinism
in the way we apply bottom-up their corresponding inference rules (the applica-
tion of � rule is completely deterministic). Vice-versa, positive (or synchronous)
connectives correspond to a kind of true non-determinism in the way we apply
bottom-up their corresponding rules (there is no deterministic way to split the
context Γ,Δ in the � rule).

2 Proof Structures

Definition 2 (Proof Structure). A CyMLL proof-structure (PS) is an ori-
ented graph π, in which edges are labeled by formulas and nodes are labeled by
connectives of CyMLL, built by juxtaposing the following special graphs, called
links, in which incident (resp., emergent) edges are called premises (resp., con-
clusions):

In a PS π each premise (resp., conclusion) of a link must be conclusion (resp.,
premise) of exactly (resp., at most) one link of π. We call conclusion of π any
emergent edge that is not premises of any link.

2.1 Correctness of Proof Structures

We characterize those CyMLL PSs that are images of CyMLL proofs. Actually,
there exist several syntaxes for CyMLL proof nets, like those ones of [2,11]; for
sequentialization reasons we prefer the latter one.
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Definition 3 (Switchings and Seaweeds). Assume π is a CyMLL PS with
conclusions Γ .

– A Danos-Regnier switching S for π, denoted S(π), is the non oriented graph
built on nodes and edges of π with the modification that for each �-node we
take only one premise, that is called left or right �-switch.

– Let S(π) be an acyclic and connected switching for π; S(π) is the rootless
planar tree1 whose nodes are labeled by �-nodes, and whose leaves X1, ...,Xn

(with Γ ⊆ X1, ...,Xn) are the terminal, i.e., pending, edges of S(π); S(π) is
a ternary relation, called seaweed, with support X1, ...,Xn; an ordered triple
(Xi,Xj ,Xk) belongs to the seaweed S(π) iff:

• the intersection of the three paths XiXj, XjXk and XkXi is a node �l;
• the three paths Xi�l,Xj�l and Xk�l are in this cyclic order while mov-

ing anti-clockwise around the �l-node like below

If A is an edge of the seaweed S(π), then Si(π) ↓A is the restriction of the
seaweed S(π), that is, the sub-graph of S(π) obtained as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge A;
2. delete the graph not containing A.

Fact 1 (Seaweeds as Cyclic Orders). Any seaweed S(π) can be viewed as a
cyclic total order (Definition 1) on its support X1, ...,Xn; in other words, if a
triple (Xi,Xj ,Xk) ∈ S(π), then Xi < Xj < Xk are in cyclic order.

Naively, we may contract a seaweed (by associating the �-nodes) until we get
a collapsed single n-ary �-node with n pending edges (its support), like in the
example below:

Definition 4 (CyMLL Proof Net). A PS π is correct, i.e. it is a CyMLL
proof net (PN), iff:

1 In any switching we can consider as a single edge any axiom, cut or �-link obtained
after the mutilation of one of the two premises.
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1. π is a standard MLL PN, that is, any switching S(π) is a connected and
acyclic graph (therefore, S(π) is a seaweed);

2. for any �-link A B
A�B the triple (A,B,C) must occur in this cyclic order in any

seaweed S(π) restricted to A,B, i.e., (A,B,C) ∈ S(π) ↓(A,B), for all pending
leaves C (if any) in the support of the restricted seaweed.

Example 1. We give an instance of CyMLL proof net π1 with its two restricted
seaweeds, S1(π1) ↓(B1,B⊥

2 ) and S2(π1) ↓(B1,B⊥
2 ) both satisfying condition 2 of

Definition 4.

On the opposite, the following instance of proof structures π2 is not cor-
rect (it is not a proof net) since condition 2 of Definition 4 is violated: there
exists a �-link B1 B⊥

2
B1�B⊥

2
and a seaweed S1(π2) s.t. ¬∀C pending, (B1, B

⊥
2 , C) ∈

S1(π2) ↓(B1,B⊥
2 ); actually, if we take C = B⊥

3 then (B1, C,B⊥
2 ) ∈ S1(π2) ↓(B1,B⊥

2 )

as follows

2.2 Cut Reduction

Definition 5 (Cut Reduction). Let L be a cut link in a proof net π whose
premises A and A⊥ are, resp., conclusions of links L′, L′′. Then we define the
result π′ (called reductum) of reducing this cut in π (called redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by removing in π
both formulas A,A⊥ (as well as L) and giving to L′′ (resp., to L′) the other
conclusion of L′ (resp., L′′) as new conclusion.

(�/�)-cut: if L′ is a �-link with premises B and C and L′′ is a �-link with
premises C⊥ and B⊥, then π′ is obtained by removing in π the formulas A
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and A⊥ as well as the cut link L with L′ and L′′ and by adding two new cut
links with, resp., premises B, B⊥ and C,C⊥, as follows:

Theorem 1 (Stability of PNs Under Cut Reduction). If π is a CyMLL
PN that reduces to π′ in one step of cut reduction, π � π′, then π′ is a CyMLL PN.

See proof in Appendix A.1.

Example 2. W.r.t. Example 1, π1 reduces to π′
1 and also π′

1 to π′′
1 as below; both

π′
1 and π′′

1 are correct since condition 2 of Definition 4 is void for both of them:

Moreover, w.r.t. Example 1, π2 is a non correct PS that reduces to the correct
one, π′

2, after a cut reduction step (see the left hand side picture below). This
is an already well known phenomenon in the standard MLL case where we can
easily find non correct MLL PSs that become correct after cut reduction, like
that one on the right hand side below:

We use indexed formulas B1, B2, B3 to distinguish different occurrences of B.

Cut reduction is trivially convergent (i.e., terminating and confluent).

2.3 Sequentialization

We show a correspondence (sequentialization) between CyMLL PNs and sequen-
tial proofs. A first sequentialisation result for non commutative (CyMLL) cut-
free proof nets can be found in [17].
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Lemma 1 (Splitting). Let π be a CyMLL PN with at least a �-link (resp.,
a cut-link) and with conclusions Γ not containing any terminal �-link (so, we
say π is in splitting condition); then, there must exist a �-link A B

A�B (resp., a

cut-link A A⊥
) that splits π in two CyMLL PNs, πA and πB (resp., πA and

πA⊥).

See proof in Appendix A.2.

Lemma 2 (PN Cyclic Order Conclusions). Let π be a CyMLL PN with
conclusions Γ , then all seaweeds Si(π) ↓Γ , restricted to Γ , induce the same cyclic
order σ on Γ , denoted σ(Γ ) and called the (cyclic) order of the conclusions of π.

See proof in Appendix A.3

Next Corollary states that Lemma 2 is preserved by cut reduction.

Corollary 1 (Stability of PN Order Conclusions Under Cut Reduc-
tion). If π, with conclusions σ(Γ ), reduces in one step of cut reduction to π′,
then also π′ has conclusions σ(Γ ).

Theorem 2 (Adequacy of CyMLL PNs). Any CyMLL cut-free proof of a
sequent σ(Γ ) de-sequentializes into a CyMLL PN with same conclusions σ(Γ ).

Proof. By induction on the height of the given sequential proof of σ(Γ ).

Theorem 3 (Sequentialization of CyMLL PNs). Any CyMLL PN with
conclusions σ(Γ ) sequentializes into a CyMLL sequent proof with same cyclic
order conclusions σ(Γ ).

Proof. By induction on the size 〈�vertexes, �edges〉 of π via Lemmas 1 and 2.

Example 3 (Melliès proof structure). Observe that, dislike what happens in the
commutative MLL case, the presence of cut links is ”quite tricky” in the non-
commutative case, since cut links are not equivalent, from a topological point of
view, to tensor links: these latter make appear new conclusions that may disrupt
the original (i.e., in presence of cut links) order of conclusions. By the way, unlike
the most part of correctness criteria for non-commutative proof nets, our syntax
enjoys a sequentialization for the full class of CyMLL PNs without assuming
these must be cut-free. It is enough to require the cut-free condition only in the
adequacy part (Theorem 2). In particular, observe that Melliès proof structure
below is not a correct proof net according to our correctness criterion (thus, it
is not sequentializable) since there exists a A B

A�B link and a switching S(π) s.t.
¬∀C, (A,B,C) ∈ S(π) ↓(A,B), contradicting condition 2 of Definition 4: actually,
following the crossing red dotted lines in right hand side seaweed, you can easily
verify there exists a pending C (a conclusion, indeed) s.t.(A,C,B) ∈ S(π) ↓(A,B).



60 V.M. Abrusci and R. Maieli

Observe that Melliès’s proof structure becomes correct (therefore sequentializ-
able) after cut reduction. Reader may refer to [10,13] (pp. 223-224) for a discus-
sion of this example and to [16] for a discussion about incorrect proof nets that
reduce to correct proof nets from a denotational semantics viewpoint.

3 Embedding Lambek Calculus into CyMLL PNs

In this section we characterize those CyMLL PNs that correspond to Lambek
proofs. The first (sound) notion of Lambek cut-free proof net, without sequen-
tialization, was given in [18]; see also [13,17] for an original discussion on the
embedding of Lambek Calculus into PNs.

Definition 6 ((pure-)Lambek Formulas and Sequents of CyMLL).
Assume A and S are, respectively, a formula and a sequent of CyMLL.

1. A is a (pure) Lambek formula (LF) if it is a CyMLL formula recursively built
according to the following grammar

A := positive atoms | A � A | A⊥�A | A�A⊥.

2. S is a Lambek sequent of CyMLL iff

S = (Γ )⊥, A

where A is a non void LF and (Γ )⊥ is a possibly empty finite sequence of
negations of LFs (i.e., Γ is a possibly empty sequence of LFs and (Γ )⊥ is
obtained by taking the negation of each formula in Γ ).

3. A (pure) Lambek proof is any derivation built by means of the CyMLL infer-
ence rules in which premise(s) and the conclusions are Lambek sequents.

Definition 7 (Lambek CyMLL Proof Net). We call Lambek CyMLL proof
net any CyMLL PN whose edges are labeled by pure LFs or negation of pure LFs
and whose conclusions form a Lambek sequent.

Corollary 2. Any Lambek CyMLL PN π is stable under cut reduction, i.e., if
π reduces in one step to π′, then π′ is a Lambek CyMLL PN too.
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Proof. Consequence of Theorem 1. Any reduction step preserves the property
that each edge (resp., the conclusion) of the reductum is labeled by a Lambek
formula or by a negation of a Lambek formula (resp., by a Lambek sequent).

Theorem 4 (Adequacy of Lambek CyMLL PNs). Any cut-free proof of a
Lambek sequent � σ(Γ⊥, A) can be de-sequentialized in to a Lambek CyMLL PN
with same conclusions σ(Γ⊥, A).

Proof. by induction on the height of the given sequent proof.

Theorem 5 (Sequentialization of Lambek CyMLL PNs). Any Lambek
CyMLL proof net of σ(Γ⊥, A) sequentializes into a Lambek CyMLL proof of the
sequent � σ(Γ⊥, A).

See proof in Appendix A.4.

4 Parsing via Lambek CyMLL PNs

In this section we reformulate, in our syntax, some examples of linguistic parsing
suggested by Richard Moot in his PhD thesis [14]. We use s, np and n as the
types expressing, respectively, a sentence, a noun phrase and a common noun.
According to the “parsing as deduction style”, when a string w1...wn is tested
for grammaticality, the types t1, ..., tn associated with the words are retrieved
from the lexicon and then parsing reduces to proving the derivability of a two-
sided sequent of the form t1, ..., tn � s. Remind that proving a two sided Lambek
derivation t1, ..., tn � s is equivalent to prove the one-sided sequent � t⊥n , ...t⊥1 , s
where t⊥i is the dual (i.e., linear negation) of type ti. Any phrase or sentence
should be read like in a mirror (with opposite direction).

Assume the following lexicon, where linear implication −◦ (resp., ◦−) is tra-
ditionally used for expressing types in two-sided sequent parsing:

1. Vito = np; Sollozzo = np; him = np;
2. trusts = (np −◦s) ◦−np = (np⊥�s)�np⊥.

Cases of lexical ambiguity follow to words with several possible formulas A and
B assigned it. For example, a verb like ”to believe” can express a relation between
two persons, np’s in our interpretation, or between a person and a statement,
interpreted as s, as in the following examples:

Sollozzo believes V ito. (1)

Sollozzo believes V ito trusts him. (2)

We can express this verb ambiguity by two lexical assignments as follows:

3. believes = (np −◦s) ◦−np = (np⊥�s)�np⊥;
4. believes = (np −◦s) ◦−s = (np⊥�s)�s⊥.
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Finally, parsing of sentences (1) and (2) corresponds to the following Lambek
CyMLL proofs with associated their corresponding proof nets:
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5 Conclusions and Further Works

In this paper we presented a correctness criterion for cyclic pure multiplicative
(CyMLL) proof nets satisfying a sequentialization for the full class of proof nets,
including those ones with cut links.

As future work, we aim at studying the complexity of both correctness ver-
ification and sequentialization. Moreover, in order to capture lexical ambiguity
we aim at embedding the extended CyMALL Lambek calculus [1] into MALL
proof nets (see e.g., [6,8,12]). Additive connectives, &and ⊕, allow superposi-
tions of formulas (types); in particular, as suggested by [14], we could collapse
the previous assignments 3 and 4 into the following single additive assignment:

5. believes =
((np −◦s) ◦−np)&((np −◦s) ◦−s) = ((np⊥�s)�np⊥)&((np⊥�s)�s⊥).

Acknowledgements. The authors thank the anonymous reviewers and Richard Moot
for their useful comments and suggestions. This work was partially supported by the
PRIN Project Logical Methods of Information Management.

A Technical Appendices

A.1 Proof of Theorem 1: Stability of PNs under Cut Reduction

Proof. Observe that condition 1 of Definition 4 follows as an almost immediate
consequences of the next graph theoretical property (see pages 250-251 of [7]):

Property 1 (Euler-Poicaré invariance). Given a graph G, then (�CC − �Cy) =
(�V − �E), where �CC, �Cy, �V and �E denotes the number of, respectively,
connected components, cycles, vertices and edges of G.

Condition 2 of Definition 4 follows by calculation. Assume π reduces to π′ after
the reduction of a cut between (X�Y ) and (Y ⊥�X⊥) and assume, by absurdum,
there exist a �-link labeled by a formula A�B s.t. the triple (A,C,B) occurs in
this wrong cyclic order in a seaweed S(π′) restricted to A,B, i.e., S(π′) ↓(A,B),
for a pending leave C occurring in this restriction, i.e., (A,C,B) ∈ S(π′) ↓(A,B).
Then, two of the three paths A�, B� and C� must go through (i.e., they must
contain) the two (sub)cut-links, cut1

X X⊥
and cut2

Y Y ⊥
, resulting from the

cut reduction, otherwise π would already be violating condition 2 of Definition 4;
assume path B� (resp., A�) goes through cut1 link (resp., cut2 link) as follows
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This means there exist a seaweed S′(π), a link Y ⊥�X⊥ and a triple Y ⊥, C,X⊥

s.t. (Y ⊥, C,X⊥) ∈ S′(π) ↓(Y ⊥,X⊥), violating condition 2 and so contradicting
correctness of π (see the right hand side picture above; since any switching of π
is acyclic, deleting the subgraph below Y ⊥�X⊥ does not make disappear C).

The remaining case when path C� goes through cut1 (resp., through cut2)
and either path A� or path B� goes through cut2 (resp., through cut2) is treated
similarly and so omitted.

A.2 Proof of Lemma 1: Splitting

Proof. Assume π is a CyMLL PN in splitting condition, then by the Splitting
Lemma for standard commutative MLL PNs ([5]) π must split either at a �-link
or a cut-link. We reason according these two cases.

1. Assume π splits at A B
A�B in two components πA and πB ; we know that both

components satisfy condition 1 (they eare MLL PNs); assume by absurdum
πA is not a CyMLL PN, i.e., πA violates condition 2 of Definition 4. This
means there exists a X Y

X�Y and a restricted seaweed S(πA) ↓(X,Y ) contain-
ing the triple X,A, Y in the wrong order, i.e., (X,A, Y ) ∈ S(πA) ↓(X,Y ) like
Case 1 in picture below.

This means there exists a restricted seaweed S(π) ↓(X,Y ) containing X, Y and
C (where C = A�B) in the wrong cyclic order, i.e., (X,C, Y ) ∈ S(π) ↓(X,Y ),
contradicting the correctness of π.

2. Assume π splits at the cut link A A⊥
in two components πA and πA⊥ ;

assume by absurdum πA is not a CyMLL PN, hence πA must be violat-
ing condition 2 of Definition 4. Moreover, assume π is such a minimal (w.r.t.
the size, 〈�V, �E〉) PN in cut-splitting condition whose subproof πA is not
a CyMLL PN. This means, as before, there exists a X Y

X�Y and a restricted
seaweed S(πA) ↓(X,Y ) containing the triple X,A, Y in the wrong order, i.e.,
(X,A, Y ) ∈ S(πA) ↓(X,Y ) like Case 2 of the previous picture. Then, by correct-
ness π, πA⊥ must have A⊥ as its unique conclusion, otherwise there exists
a restricted seaweed for π, S(π) ↓(X,Y ), containing a triple X,C, Y in the
wrong order for a conclusion C �= A⊥. Moreover, πA⊥ cannot contain any
cut, otherwise, by Theorem 1, we could replace in π the redex πA⊥ by its
reductum π′

A⊥ , contradicting the minimality of π. Now, observe this equality
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�� − �� = 1, relating the number of �-nodes with the number of �-nodes,
holds for any cut free proof net with an unique conclusion. Therefore, πA⊥

must contain at least a �-link, let us say Z T
Z�T . But then we can easily find

a restricted seaweed for π, S(π) ↓(X,Y ), and a triple (X,Z, Y ) occurring in
S(π) ↓(X,Y ) with the wrong cyclic order, contradicting the correctness of π,
like in Case 2.

A.3 Proof of Lemma 2: Cyclic Order Conclusions of a PN

Proof. By induction on the size 〈�V, �E〉 of π.

1. If π is reduced to an axiom link, then obvious.
2. If π contains at least a conclusion A�B, then Γ = Γ ′, A�B; by hypoth-

esis of induction the sub-proof net π′ with conclusion Γ ′, A,B has cyclic
order σ(Γ ′, A,B), and so, by condition 2 of Definition 4 applied to π, we
know that each restricted seaweed Si(π) ↓(Γ ′,A,B) induces the same cyclic
order σ(Γ ′, A,B); finally, by substituting [A/A�B] (resp., [B/A�B]) in the
restriction Si(π) ↓(Γ ′,A) (resp., Si(π) ↓(Γ ′,B)), we get that each seaweed
Si(π) ↓(Γ ′,A�B) induces the same cyclic order σ(Γ ′, A�B).

3. Otherwise π must contain a terminal splitting �-link or cut-link. Assume π
contains a splitting �-link, A B

A�B , and assume by absurdum that π is such a
minimal (w.r.t. the size) PN with at least two seaweeds Si(π) and Sj(π) s.t.
(X,Y,Z) ∈ Si(π) and (X,Y,Z) �∈ Sj(π). We follow two sub-cases.
(a) It cannot be the case X = B, Y = A and Z = C otherwise, by definition

of seaweeds, Si(π) and Sj(π) will appear as follows:

Now, by hypothesis of induction, all seaweeds on πA (resp., all seaweeds
on πB) induce the same order on Γ1, A (resp., Γ2, B), then in particular,

Si(πA) ↓(Γ1,A)= Sj(πA) ↓(Γ1,A) and Si(πB) ↓(B,Γ2)= Sj(πB) ↓(B,Γ2)

but this implies Si(π) ↓(Γ1,A�B,Γ2)= Sj(π) ↓(Γ1,A�B,Γ2).
(b) Assume both X and Y belong to πA (resp., πB) and Z belongs

to πB (resp., πA); moreover, assume for some i, j, (X,Y,Z) ∈
Si(π) ↓(Γ1,A�B,Γ2) and (X,Y,Z) �∈ Sj(π) ↓(Γ1,A�B,Γ2); by Splitting
Lemma 1, each seaweeds for π, Si(π) and Sj(π), must appear as fol-
lows:
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so, by restriction, (X,Y,A) ∈ Si(πA) ↓Γ1,A and (X,Y,A) �∈ Sj(πA) ↓Γ1,A,
contradicting the assumption (by minimality) that πA is a correct PN
with a cyclic order on its conclusions Γ ′

1,X, Y,A = Γ1, A.
The remaining case, π contains a splitting cut, is similar and so omitted.

A.4 Proof of Theorem 5: Sequentialization of Lambek CyMLL PNs

Proof. Assume by absurdum there exists a pure Lambek CyMLL proof net π
that does not sequentialize into a Lambek CyMLL proof. We can chose π min-
imal w.r.t. the size. Clearly, π cannot be reduced to an axiom link; moreover π
contains neither a negative conclusion of type A⊥�B⊥ nor a positive conclusion
of type A⊥�B (resp., A�B⊥), otherwise, we could remove this terminal �-link
and get a strictly smaller (than π) proof net π′ that is sequentializable, by min-
imality of π; this implies that also π is sequentializable (last inference rule of
the sequent proof will be an instance of �-rule) contradicting the assumption.
For same reasons (minimality), the unique positive conclusion (e.g. A � B) of π
cannot be splitting. Therefore, since π is not an axiom link

A⊥ A
, by Lemmas 1

and 2, there must exist either a (negative) splitting �-link (Case 1) or a splitting
cut-link (Case 2).

Case 1. Assume a negative splitting conclusion A⊥
� B (resp., A � B⊥). By

minimality, π must split like in the next left hand side picture (we use A+, resp.
A−, to denote positive, resp., negative, LF and Γ− for sequence of negative LFs):

Now, let us reason on π1 (reasoning on π2 is symmetric): by minimality of π,
π1 cannot be reduced to an axiom link (otherwise Γ−

1 would not be negative);
moreover, none of Γ−

1 is a (negative) splitting link, like e..g., C � D⊥, otherwise
we could easily restrict to consider the sub-proof-net π′, obtained by erasing from
π the sub-proof-net π′′

1 (with conclusions Γ
′′−
1 , C) together with the C⊥

� D-
link, like the graph enclosed in the dashed line above. Clearly, π′ would be a non
sequentializable Lambek proof net strictly smaller than π. In addition, π1 must
be cut-free, otherwise by minimality, after a cut-step reduction we could easily
build a non sequentializable reductum PN π′, strictly smaller than π, (π′ will
have same conclusions of π). Therefore, there are only two sub-cases:

1. either A⊥ = C⊥�D⊥, then from the PN π on the l.h.s. of the next figure,
we can easily get the non sequentializable PN π′ (on the r.h.s.); π′ is strictly
smaller than π, contradicting the minimality assumption:
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2. or A⊥ = C⊥
� D, then this C⊥

� D-link must split by Lemma 1, since π1 is
a cut-free PN in splitting condition without other �-splitting conclusion in
Γ−
1 ; so from π on the l.h.s., we can easily get the non sequentializable PN π′

on r.h.s.; π′ is strictly smaller of π, contradicting the minimality assumption:

Case 2. Assume π contains a splitting cut link, like the leftmost hand side picture
below, then we proceed like in Case 1. We reason on π1 with two sub-cases:

1. either A⊥ = C⊥�D⊥, then we can easily get, starting from the PN π on the
middle side below, a non sequentializable PN π′, like the rightmost hand side
picture; π′is strictly smaller than π, contradicting the minimality assumption:

2. or A⊥ = C⊥
� D, then this A⊥-link must be splitting by Lemma 1, since

π1 is a cut-free PN in splitting condition without any other �-splitting con-
clusion in Γ−

1 ; so, we can easily get, starting from the PN π on the l.h.s.,
a non sequentializable PN π′ that is strictly smaller than π (on the r.h.s.),
contradicting the minimality assumption.
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16. Retoré, C.: A semantic characterization of the correctness of a proof net. Math.
Struct. Comput. Sci. 7(5), 445–452 (1997)

17. Retoré, C.: Calcul de Lambek et logique linéaire. Traitement Automatique des
Langues 37(2), 39–70 (1996)

18. Roorda, D.: Proof nets for Lambek calculus. J. Logic Comput. 2(2), 211–233 (1992)


	Cyclic Multiplicative Proof Nets of Linear Logic with an Application to Language Parsing
	1 Introduction
	1.1 Cyclic MLL

	2 Proof Structures
	2.1 Correctness of Proof Structures
	2.2 Cut Reduction
	2.3 Sequentialization

	3 Embedding Lambek Calculus into CyMLL PNs
	4 Parsing via Lambek CyMLL PNs
	5 Conclusions and Further Works
	A Technical Appendices
	A.1 Proof of Theorem 1: Stability of PNs under Cut Reduction

	A.2 Proof of Lemma 1: Splitting

	A.3 Proof of Lemma 2: Cyclic Order Conclusions of a PN

	A.4 Proof of Theorem 5: Sequentialization of Lambek CyMLL PNs


	References


