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Abstract

We report on a joint work with V. Komornik and A. C. Lai.

Given a finite alphabet A and a base q, we consider the
univoque numbers x having a unique expansion

x :=
∞∑

i=1

ci

q i with (ci ) ∈ A∞.

It was known that for two-letter alphabets there exist nontrivial
univoque numbers if and only if q > (1 +

√
5)/2.

We explain the solution of this problem for three-letter
alphabets.
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Expansions
Given a finite alphabet A = {a1 < · · · < aJ}, J ≥ 2, and a real
base q > 1, by an expansion of a real number x we mean a
sequence c = (ci ) ∈ A∞ satisfying the equality

∞∑
i=1

ci

q i = x .

We denote by UA,q the univoque set of numbers x having a
unique expansion and by U ′A,q the set of the corresponding
expansions.

Example
If A = {0,1} and q = 2, then UA,q is the set of numbers
x ∈ [0,1] except those of the form x = m2−n with two positive
integers m,n, and U ′A,q is the set of all sequences
(ci ) ∈ {0,1}∞, except those ending with 10∞ or 01∞.
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Elementary characterization

Proposition

A sequence c = (ci ) ∈ A∞ belongs to U ′A,q if and only the
following conditions are satisfied:

∞∑
i=1

cn+i

q i < aj+1 − aj whenever cn = aj < aJ ,

and (• • •)

∞∑
i=1

aJ − cn+i

q i < aj − aj−1 whenever cn = aj > a1.



Elementary consequences

• If q1 < q2, then U ′A,q1
⊂ U ′A,q2

.

• If q is close to 1, then U ′A,q has only two elements: the
trivial unique expansions a∞1 and a∞J .

• If q is sufficiently large, then U ′A,q = A∞: every expansion
is unique.

• There exists a critical base pA such that

• there exist nontrivial unique expansions if q > pA,
• there are no nontrivial unique expansions if q < pA.



Elementary consequences

• If q1 < q2, then U ′A,q1
⊂ U ′A,q2

.

• If q is close to 1, then U ′A,q has only two elements: the
trivial unique expansions a∞1 and a∞J .

• If q is sufficiently large, then U ′A,q = A∞: every expansion
is unique.

• There exists a critical base pA such that

• there exist nontrivial unique expansions if q > pA,
• there are no nontrivial unique expansions if q < pA.



Elementary consequences

• If q1 < q2, then U ′A,q1
⊂ U ′A,q2

.

• If q is close to 1, then U ′A,q has only two elements: the
trivial unique expansions a∞1 and a∞J .

• If q is sufficiently large, then U ′A,q = A∞: every expansion
is unique.

• There exists a critical base pA such that

• there exist nontrivial unique expansions if q > pA,
• there are no nontrivial unique expansions if q < pA.



Elementary consequences

• If q1 < q2, then U ′A,q1
⊂ U ′A,q2

.

• If q is close to 1, then U ′A,q has only two elements: the
trivial unique expansions a∞1 and a∞J .

• If q is sufficiently large, then U ′A,q = A∞: every expansion
is unique.

• There exists a critical base pA such that

• there exist nontrivial unique expansions if q > pA,
• there are no nontrivial unique expansions if q < pA.



Elementary consequences

• If q1 < q2, then U ′A,q1
⊂ U ′A,q2

.

• If q is close to 1, then U ′A,q has only two elements: the
trivial unique expansions a∞1 and a∞J .

• If q is sufficiently large, then U ′A,q = A∞: every expansion
is unique.

• There exists a critical base pA such that
• there exist nontrivial unique expansions if q > pA,

• there are no nontrivial unique expansions if q < pA.



Elementary consequences

• If q1 < q2, then U ′A,q1
⊂ U ′A,q2

.

• If q is close to 1, then U ′A,q has only two elements: the
trivial unique expansions a∞1 and a∞J .

• If q is sufficiently large, then U ′A,q = A∞: every expansion
is unique.

• There exists a critical base pA such that
• there exist nontrivial unique expansions if q > pA,
• there are no nontrivial unique expansions if q < pA.



Two-letter alphabets
Theorem

(Daróczy–Kátai 1993, Glendinning–Sidorov 2001)
If A is a two-letter alphabet, then pA = 1+

√
5

2 .

Idea of the proof. We may assume by an affine transformation
that A = {0,1}. Then an expansion (ci ) ∈ {0,1}∞ is unique
⇐⇒

∞∑
i=1

cn+i

q i < 1 whenever cn = 0,

and
∞∑

i=1

1− cn+i

q i < 1 whenever cn = 1.

Every sequence satisfies these conditions if q > 2. The
theorem follows by a similar but finer argument.
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Three-letter alphabets
We wish to determine pA for all ternary alphabets

A = {a1 < a2 < a3}.

We may assume by scaling that A = {0,1,m} with m ≥ 2, and
we write pm instead of pA.

Proposition

(de Vries–Komornik 2009) For m = 2 we have p2 = 2.

For each fixed m ≥ 2, we analyse the above characterization of
unique expansions (• • •).
This yields an interesting property:

Lemma

If (ci ) 6= 0∞ is a unique expansion in a base
q ≤ Pm := 1 +

√
m

m−1 , then (ci ) contains at most finitely many
0 digits.
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Numerical tests
For each fixed m = 2,3, . . . ,65536 we were searching
periodical nontrivial sequences (ci ) ∈ {0,1,m}∞ satisfying the
above given characterization (• • •) for as small bases q > 1 as
possible. We have found essentially a unique minimal
sequence in each case:

m (ci )

2 1∞

3 (m1)∞

4 (m1)∞

5 (mm1mm1m1)∞

6 (mm1)∞

7 (mm1)∞

8 (mm1)∞

9 (mmm1mm1)∞

m (ci )

10 (mmm1)∞

11 (mmm1)∞

12 (mmm1)∞

13 (mmm1)∞

14 (mmm1)∞

15 (mmm1)∞

16 (mmm1)∞

17 (mmm1)∞



Numerical tests
We have obtained the following minimal sequences:

• (mh1)∞ with h = [log2 m] for 65495 values;
• (mh1)∞ with h = [log2 m]− 1 for 33 values (close to

2-powers);
• seven exceptional values:

m d
5 (m21m21m1)∞

9 (m31m21)∞

130 (m71m61)∞

258 (m81m71)∞

2051 (m111m101)∞

4099 (m121m111)∞

32772 (m151m141)∞
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Conjecture and proof
• It was natural to conjecture that pm is the value such that

the minimal sequence corresponding to m is univoque for
q > pm, but not univoque for q < pm.

• However, we had to solve the problem for all real values
m ≥ 2, and for this we had to understand the general
structure of the minimal sequences, including the
exceptional cases.

• We have observed that none of the minimal sequences
contained zero digits.

• Next we have observed that all minimal sequences (ci )
satisfy the lexicographic inequalities

1c2c3 . . . ≤ cn+1cn+2cn+3 . . . ≤ c1c2c3 . . .

for all n = 0,1, . . . , and we have conjectured that all these
sequences played a role in our problem.
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Main result
We consider expansions on the alphabets Am = {0,1,m} with
m ≥ 2 in bases q > 1.

• For each m ≥ 2 there exists a number pm such that

q > pm =⇒ |Uq,m| > 2 =⇒ q ≥ pm.

• The function m 7→ pm is continuous.

• We have 2 ≤ pm ≤ Pm := 1 +
√

m
m−1 for all m (example 0).

• We have pm = 2⇐⇒ m ∈ {2,4,8,16, . . .} (example 1).
• The set {m ≥ 2 : pm = Pm} is a Cantor set (example 2).

Its smallest element is 1 + x ≈ 2.3247 where x is the first
Pisot number, i.e., the positive solution of x 3 = x + 1.

• Each connected component (md ,Md ) of [2,∞) \ C has a
point µd such that p decreases in (md , µd ) and increases
in (µd ,Md ).
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Intervals containing m = 2k

5 10 15 20
2.0

2.1

2.2

2.3

2.4



Complements

• The proof allows us to determine pm explicitly for each
given m.

• The proof allows us to characterize those values of m for
which |Uq,m| > 2 in the limiting case q = pm.

• We do not know the Lebesgue measure and the Hausdorff
dimension of the Cantor set {m ≥ 2 : pm = Pm}.
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