Generalized golden ratios in ternary alphabets

Marco Pedicini (Roma Tre University) in collaboration with Vilmos Komornik (Univ. of Strasbourg) and Anna Chiara Lai (Univ. of Rome)

Numeration and Substitution 2014

University of Debrecen, July 7-11, 2014

Abstract

We report on a joint work with V. Komornik and A. C. Lai.

Abstract

We report on a joint work with V. Komornik and A. C. Lai. Given a finite alphabet A and a base q, we consider the univoque numbers x having a unique expansion

$$
x:=\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}} \text { with }\left(c_{i}\right) \in A^{\infty} .
$$

Abstract

We report on a joint work with V. Komornik and A. C. Lai.
Given a finite alphabet A and a base q, we consider the univoque numbers x having a unique expansion

$$
x:=\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}} \text { with }\left(c_{i}\right) \in A^{\infty} .
$$

It was known that for two-letter alphabets there exist nontrivial univoque numbers if and only if $q>(1+\sqrt{5}) / 2$.

Abstract

We report on a joint work with V. Komornik and A. C. Lai.
Given a finite alphabet A and a base q, we consider the univoque numbers x having a unique expansion

$$
x:=\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}} \text { with }\left(c_{i}\right) \in A^{\infty} .
$$

It was known that for two-letter alphabets there exist nontrivial univoque numbers if and only if $q>(1+\sqrt{5}) / 2$.
We explain the solution of this problem for three-letter alphabets.

Expansions

Given a finite alphabet $A=\left\{a_{1}<\cdots<a_{j}\right\}, J \geq 2$, and a real base $q>1$, by an expansion of a real number x we mean a sequence $c=\left(c_{i}\right) \in A^{\infty}$ satisfying the equality

$$
\sum_{i=1}^{\infty} \frac{c}{q}=x
$$

Expansions

Given a finite alphabet $A=\left\{a_{1}<\cdots<a_{J}\right\}, J \geq 2$, and a real base $q>1$, by an expansion of a real number x we mean a sequence $c=\left(c_{i}\right) \in A^{\infty}$ satisfying the equality

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}=x
$$

We denote by $U_{A, q}$ the univoque set of numbers x having a unique expansion and by $U_{A, q}^{\prime}$ the set of the corresponding expansions.

Expansions

Given a finite alphabet $A=\left\{a_{1}<\cdots<a_{J}\right\}, J \geq 2$, and a real base $q>1$, by an expansion of a real number x we mean a sequence $c=\left(c_{i}\right) \in A^{\infty}$ satisfying the equality

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}=x
$$

We denote by $U_{A, q}$ the univoque set of numbers x having a unique expansion and by $U_{A, q}^{\prime}$ the set of the corresponding expansions.
Example
If $A=\{0,1\}$ and $q=2$, then $U_{A, q}$ is the set of numbers
$x \in[0,1]$ except those of the form $x=m 2^{-n}$ with two positive integers m, n, and $U_{A, q}^{\prime}$ is the set of all sequences
$\left(c_{i}\right) \in\{0,1\}^{\infty}$, except those ending with 10^{∞} or 01^{∞}.

Elementary characterization

Proposition

A sequence $c=\left(c_{i}\right) \in A^{\infty}$ belongs to $U_{A, q}^{\prime}$ if and only the following conditions are satisfied:

$$
\sum_{i=1}^{\infty} \frac{c_{n+i}}{q^{i}}<a_{j+1}-a_{j} \quad \text { whenever } \quad c_{n}=a_{j}<a_{J}
$$

and

$$
\sum_{i=1}^{\infty} \frac{a_{J}-c_{n+i}}{q^{i}}<a_{j}-a_{j-1} \quad \text { whenever } \quad c_{n}=a_{j}>a_{1}
$$

Elementary consequences

- If $q_{1}<q_{2}$, then $U_{A, q_{1}}^{\prime} \subset U_{A, q_{2}}^{\prime}$.

Elementary consequences

- If $q_{1}<q_{2}$, then $U_{A, q_{1}}^{\prime} \subset U_{A, q_{2}}^{\prime}$.
- If q is close to 1 , then $U_{A, q}^{\prime}$ has only two elements: the trivial unique expansions a_{1}^{∞} and a_{J}^{∞}.

Elementary consequences

- If $q_{1}<q_{2}$, then $U_{A, q_{1}}^{\prime} \subset U_{A, q_{2}}^{\prime}$.
- If q is close to 1 , then $U_{A, q}^{\prime}$ has only two elements: the trivial unique expansions a_{1}^{∞} and a_{j}^{∞}.
- If q is sufficiently large, then $U_{A, q}^{\prime}=A^{\infty}$: every expansion is unique.

Elementary consequences

- If $q_{1}<q_{2}$, then $U_{A, q_{1}}^{\prime} \subset U_{A, q_{2}}^{\prime}$.
- If q is close to 1 , then $U_{A, q}^{\prime}$ has only two elements: the trivial unique expansions a_{1}^{∞} and a_{j}^{∞}.
- If q is sufficiently large, then $U_{A, q}^{\prime}=A^{\infty}$: every expansion is unique.
- There exists a critical base p_{A} such that

Elementary consequences

- If $q_{1}<q_{2}$, then $U_{A, q_{1}}^{\prime} \subset U_{A, q_{2}}^{\prime}$.
- If q is close to 1 , then $U_{A, q}^{\prime}$ has only two elements: the trivial unique expansions a_{1}^{∞} and a_{j}^{∞}.
- If q is sufficiently large, then $U_{A, q}^{\prime}=A^{\infty}$: every expansion is unique.
- There exists a critical base p_{A} such that
- there exist nontrivial unique expansions if $q>p_{A}$,

Elementary consequences

- If $q_{1}<q_{2}$, then $U_{A, q_{1}}^{\prime} \subset U_{A, q_{2}}^{\prime}$.
- If q is close to 1 , then $U_{A, q}^{\prime}$, has only two elements: the trivial unique expansions a_{1}^{∞} and a_{j}^{∞}.
- If q is sufficiently large, then $U_{A, q}^{\prime}=A^{\infty}$: every expansion is unique.
- There exists a critical base p_{A} such that
- there exist nontrivial unique expansions if $q>p_{A}$,
- there are no nontrivial unique expansions if $q<p_{A}$.

Two-letter alphabets

Theorem

(Daróczy-Kátai 1993, Glendinning-Sidorov 2001)
If A is a two-letter alphabet, then $p_{A}=\frac{1+\sqrt{5}}{2}$.

Two-letter alphabets

Theorem

(Daróczy-Kátai 1993, Glendinning-Sidorov 2001) If A is a two-letter alphabet, then $p_{A}=\frac{1+\sqrt{5}}{2}$.

Idea of the proof. We may assume by an affine transformation that $A=\{0,1\}$. Then an expansion $\left(c_{i}\right) \in\{0,1\}^{\infty}$ is unique \Longleftrightarrow

$$
\sum_{i=1}^{\infty} \frac{c_{n+i}}{q^{i}}<1 \quad \text { whenever } \quad c_{n}=0
$$

and

$$
\sum_{i=1}^{\infty} \frac{1-c_{n+i}}{q^{i}}<1 \text { whenever } c_{n}=1
$$

Two-letter alphabets

Theorem

(Daróczy-Kátai 1993, Glendinning-Sidorov 2001) If A is a two-letter alphabet, then $p_{A}=\frac{1+\sqrt{5}}{2}$.

Idea of the proof. We may assume by an affine transformation that $A=\{0,1\}$. Then an expansion $\left(c_{i}\right) \in\{0,1\}^{\infty}$ is unique \Longleftrightarrow

$$
\sum_{i=1}^{\infty} \frac{c_{n+i}}{q^{i}}<1 \text { whenever } c_{n}=0
$$

and

$$
\sum_{i=1}^{\infty} \frac{1-c_{n+i}}{q^{i}}<1 \text { whenever } c_{n}=1
$$

Every sequence satisfies these conditions if $q>2$. The theorem follows by a similar but finer argument.

Three-letter alphabets

We wish to determine p_{A} for all ternary alphabets

Three-letter alphabets

We wish to determine p_{A} for all ternary alphabets

$$
A=\left\{a_{1}<a_{2}<a_{3}\right\} .
$$

Three-letter alphabets

We wish to determine p_{A} for all ternary alphabets

$$
A=\left\{a_{1}<a_{2}<a_{3}\right\} .
$$

We may assume by scaling that $A=\{0,1, m\}$ with $m \geq 2$, and we write p_{m} instead of p_{A}.

Three-letter alphabets

We wish to determine p_{A} for all ternary alphabets

$$
A=\left\{a_{1}<a_{2}<a_{3}\right\} .
$$

We may assume by scaling that $A=\{0,1, m\}$ with $m \geq 2$, and we write p_{m} instead of p_{A}.

Proposition

(de Vries-Komornik 2009) For $m=2$ we have $p_{2}=2$.

Three-letter alphabets

We wish to determine p_{A} for all ternary alphabets

$$
A=\left\{a_{1}<a_{2}<a_{3}\right\} .
$$

We may assume by scaling that $A=\{0,1, m\}$ with $m \geq 2$, and we write p_{m} instead of p_{A}.

Proposition

(de Vries-Komornik 2009) For $m=2$ we have $p_{2}=2$.
For each fixed $m \geq 2$, we analyse the above characterization of unique expansions ($\bullet \bullet)$.

Three-letter alphabets

We wish to determine p_{A} for all ternary alphabets

$$
A=\left\{a_{1}<a_{2}<a_{3}\right\} .
$$

We may assume by scaling that $A=\{0,1, m\}$ with $m \geq 2$, and we write p_{m} instead of p_{A}.

Proposition

(de Vries-Komornik 2009) For $m=2$ we have $p_{2}=2$.
For each fixed $m \geq 2$, we analyse the above characterization of unique expansions ($\circ \circ$).
This yields an interesting property:

Lemma

If $\left(c_{i}\right) \neq 0^{\infty}$ is a unique expansion in a base
$q \leq P_{m}:=1+\sqrt{\frac{m}{m-1}}$, then $\left(c_{i}\right)$ contains at most finitely many 0 digits.

Numerical tests

For each fixed $m=2,3, \ldots, 65536$ we were searching periodical nontrivial sequences $\left(c_{i}\right) \in\{0,1, m\}^{\infty}$ satisfying the above given characterization ($\bullet \bullet)$ for as small bases $q>1$ as possible. We have found essentially a unique minimal sequence in each case:

m	$\left(c_{i}\right)$
2	1^{∞}
3	$(m 1)^{\infty}$
4	$(m 1)^{\infty}$
5	$(m m 1 m m 1 m 1)^{\infty}$
6	$(m m 1)^{\infty}$
7	$(m m 1)^{\infty}$
8	$(m m 1)^{\infty}$
9	$(m m m 1 m m 1)^{\infty}$

m	$\left(c_{j}\right)$
10	$(m m m 1)^{\infty}$
11	$(m m m 1)^{\infty}$
12	$(m m m 1)^{\infty}$
13	$(m m m 1)^{\infty}$
14	$(m m m 1)^{\infty}$
15	$(m m m 1)^{\infty}$
16	$(m m m 1)^{\infty}$
17	$(m m m 1)^{\infty}$

Numerical tests

We have obtained the following minimal sequences:

Numerical tests

We have obtained the following minimal sequences:

- $\left(m^{\mathrm{h}} 1\right)^{\infty}$ with $\mathrm{h}=\left[\log _{2} m\right]$ for 65495 values;

Numerical tests

We have obtained the following minimal sequences:

- $\left(m^{\mathrm{h}} 1\right)^{\infty}$ with $\mathrm{h}=\left[\log _{2} m\right]$ for 65495 values;
- $\left(m^{\mathrm{h}} 1\right)^{\infty}$ with $\mathrm{h}=\left[\log _{2} m\right]-1$ for 33 values (close to 2-powers);

Numerical tests

We have obtained the following minimal sequences:

- $\left(m^{\mathrm{h}} 1\right)^{\infty}$ with $\mathrm{h}=\left[\log _{2} m\right]$ for 65495 values;
- $\left(m^{\mathrm{h}} 1\right)^{\infty}$ with $\mathrm{h}=\left[\log _{2} m\right]-1$ for 33 values (close to 2-powers);
- seven exceptional values:

m	d
5	$\left(m^{2} 1 m^{2} 1 m 1\right)^{\infty}$
9	$\left(m^{3} 1 m^{2} 1\right)^{\infty}$
130	$\left(m^{1} 1 m^{6} 1\right)^{\infty}$
258	$\left(m^{8} 1 m^{7} 1\right)^{\infty}$
2051	$\left(m^{11} 1 m^{10} 1\right)^{\infty}$
4099	$\left(m^{12} 1 m^{11} 1\right)^{\infty}$
32772	$\left(m^{15} 1 m^{14} 1\right)^{\infty}$

Conjecture and proof

- It was natural to conjecture that p_{m} is the value such that the minimal sequence corresponding to m is univoque for $q>p_{m}$, but not univoque for $q<p_{m}$.

Conjecture and proof

- It was natural to conjecture that p_{m} is the value such that the minimal sequence corresponding to m is univoque for $q>p_{m}$, but not univoque for $q<p_{m}$.
- However, we had to solve the problem for all real values $m \geq 2$, and for this we had to understand the general structure of the minimal sequences, including the exceptional cases.

Conjecture and proof

- It was natural to conjecture that p_{m} is the value such that the minimal sequence corresponding to m is univoque for $q>p_{m}$, but not univoque for $q<p_{m}$.
- However, we had to solve the problem for all real values $m \geq 2$, and for this we had to understand the general structure of the minimal sequences, including the exceptional cases.
- We have observed that none of the minimal sequences contained zero digits.

Conjecture and proof

- It was natural to conjecture that p_{m} is the value such that the minimal sequence corresponding to m is univoque for $q>p_{m}$, but not univoque for $q<p_{m}$.
- However, we had to solve the problem for all real values $m \geq 2$, and for this we had to understand the general structure of the minimal sequences, including the exceptional cases.
- We have observed that none of the minimal sequences contained zero digits.
- Next we have observed that all minimal sequences $\left(c_{i}\right)$ satisfy the lexicographic inequalities

$$
1 c_{2} c_{3} \ldots \leq c_{n+1} c_{n+2} c_{n+3} \ldots \leq c_{1} c_{2} c_{3} \ldots
$$

for all $n=0,1, \ldots$, and we have conjectured that all these sequences played a role in our problem.

Main result

We consider expansions on the alphabets $A_{m}=\{0,1, m\}$ with $m \geq 2$ in bases $q>1$.

- For each $m \geq 2$ there exists a number p_{m} such that

$$
q>p_{m} \Longrightarrow\left|U_{q, m}\right|>2 \Longrightarrow q \geq p_{m} .
$$

Main result

We consider expansions on the alphabets $A_{m}=\{0,1, m\}$ with $m \geq 2$ in bases $q>1$.

- For each $m \geq 2$ there exists a number p_{m} such that

$$
q>p_{m} \Longrightarrow\left|U_{q, m}\right|>2 \Longrightarrow q \geq p_{m}
$$

- The function $m \mapsto p_{m}$ is continuous.

Main result

We consider expansions on the alphabets $A_{m}=\{0,1, m\}$ with $m \geq 2$ in bases $q>1$.

- For each $m \geq 2$ there exists a number p_{m} such that

$$
q>p_{m} \Longrightarrow\left|U_{q, m}\right|>2 \Longrightarrow q \geq p_{m} .
$$

- The function $m \mapsto p_{m}$ is continuous.
- We have $2 \leq p_{m} \leq P_{m}:=1+\sqrt{\frac{m}{m-1}}$ for all m (example 0).

Main result

We consider expansions on the alphabets $A_{m}=\{0,1, m\}$ with $m \geq 2$ in bases $q>1$.

- For each $m \geq 2$ there exists a number p_{m} such that

$$
q>p_{m} \Longrightarrow\left|U_{q, m}\right|>2 \Longrightarrow q \geq p_{m} .
$$

- The function $m \mapsto p_{m}$ is continuous.
- We have $2 \leq p_{m} \leq P_{m}:=1+\sqrt{\frac{m}{m-1}}$ for all m (example 0).
- We have $p_{m}=2 \Longleftrightarrow m \in\{2,4,8,16, \ldots\}$ (example 1).

Main result

We consider expansions on the alphabets $A_{m}=\{0,1, m\}$ with $m \geq 2$ in bases $q>1$.

- For each $m \geq 2$ there exists a number p_{m} such that

$$
q>p_{m} \Longrightarrow\left|U_{q, m}\right|>2 \Longrightarrow q \geq p_{m} .
$$

- The function $m \mapsto p_{m}$ is continuous.
- We have $2 \leq p_{m} \leq P_{m}:=1+\sqrt{\frac{m}{m-1}}$ for all m (example 0).
- We have $p_{m}=2 \Longleftrightarrow m \in\{2,4,8,16, \ldots\}$ (example 1).
- The set $\left\{m \geq 2: p_{m}=P_{m}\right\}$ is a Cantor set (example 2). Its smallest element is $1+x \approx 2.3247$ where x is the first Pisot number, i.e., the positive solution of $x^{3}=x+1$.

Main result

We consider expansions on the alphabets $A_{m}=\{0,1, m\}$ with $m \geq 2$ in bases $q>1$.

- For each $m \geq 2$ there exists a number p_{m} such that

$$
q>p_{m} \Longrightarrow\left|U_{q, m}\right|>2 \Longrightarrow q \geq p_{m} .
$$

- The function $m \mapsto p_{m}$ is continuous.
- We have $2 \leq p_{m} \leq P_{m}:=1+\sqrt{\frac{m}{m-1}}$ for all m (example 0).
- We have $p_{m}=2 \Longleftrightarrow m \in\{2,4,8,16, \ldots\}$ (example 1).
- The set $\left\{m \geq 2: p_{m}=P_{m}\right\}$ is a Cantor set (example 2). Its smallest element is $1+x \approx 2.3247$ where x is the first Pisot number, i.e., the positive solution of $x^{3}=x+1$.
- Each connected component $\left(m_{d}, M_{d}\right)$ of $[2, \infty) \backslash C$ has a point μ_{d} such that p decreases in (m_{d}, μ_{d}) and increases in $\left(\mu_{d}, M_{d}\right)$.

Intervals containing $m=2^{k}$

Complements

- The proof allows us to determine p_{m} explicitly for each given m.

Complements

- The proof allows us to determine p_{m} explicitly for each given m.
- The proof allows us to characterize those values of m for which $\left|U_{q, m}\right|>2$ in the limiting case $q=p_{m}$.

Complements

- The proof allows us to determine p_{m} explicitly for each given m.
- The proof allows us to characterize those values of m for which $\left|U_{q, m}\right|>2$ in the limiting case $q=p_{m}$.
- We do not know the Lebesgue measure and the Hausdorff dimension of the Cantor set $\left\{m \geq 2: p_{m}=P_{m}\right\}$.

