Generalized golden ratios in ternary alphabets

<u>Marco Pedicini</u> (Roma Tre University) in collaboration with Vilmos Komornik (Univ. of Strasbourg) and Anna Chiara Lai (Univ. of Rome)

Numeration and Substitution 2014

University of Debrecen, July 7-11, 2014

We report on a joint work with V. Komornik and A. C. Lai.

Abstract

We report on a joint work with V. Komornik and A. C. Lai. Given a finite alphabet A and a base q, we consider the *univoque* numbers x having a unique expansion

$$x:=\sum_{i=1}^\infty rac{c_i}{q^i}$$
 with $(c_i)\in A^\infty.$

Abstract

We report on a joint work with V. Komornik and A. C. Lai. Given a finite alphabet A and a base q, we consider the *univoque* numbers x having a unique expansion

$$x:=\sum_{i=1}^\infty rac{c_i}{q^i} \quad ext{with} \quad (c_i)\in \mathcal{A}^\infty.$$

It was known that for two-letter alphabets there exist nontrivial univoque numbers if and only if $q > (1 + \sqrt{5})/2$.

Abstract

We report on a joint work with V. Komornik and A. C. Lai. Given a finite alphabet A and a base q, we consider the *univoque* numbers x having a unique expansion

$$x:=\sum_{i=1}^\infty rac{c_i}{q^i} \quad ext{with} \quad (c_i)\in \mathcal{A}^\infty.$$

It was known that for two-letter alphabets there exist nontrivial univoque numbers if and only if $q > (1 + \sqrt{5})/2$. We explain the solution of this problem for three-letter alphabets.

Expansions

Given a finite alphabet $A = \{a_1 < \cdots < a_J\}, J \ge 2$, and a real base q > 1, by an **expansion** of a real number x we mean a sequence $c = (c_i) \in A^{\infty}$ satisfying the equality

$$\sum_{i=1}^{\infty} \frac{c_i}{q^i} = x.$$

Expansions

Given a finite *alphabet* $A = \{a_1 < \cdots < a_J\}, J \ge 2$, and a real *base* q > 1, by an **expansion** of a real number x we mean a sequence $c = (c_i) \in A^{\infty}$ satisfying the equality

$$\sum_{i=1}^{\infty} \frac{c_i}{q^i} = x$$

We denote by $U_{A,q}$ the **univoque set** of numbers *x* having a unique expansion and by $U'_{A,q}$ the set of the corresponding expansions.

Expansions

Given a finite alphabet $A = \{a_1 < \cdots < a_J\}, J \ge 2$, and a real base q > 1, by an **expansion** of a real number x we mean a sequence $c = (c_i) \in A^{\infty}$ satisfying the equality

$$\sum_{i=1}^{\infty} \frac{c_i}{q^i} = x$$

We denote by $U_{A,q}$ the **univoque set** of numbers *x* having a unique expansion and by $U'_{A,q}$ the set of the corresponding expansions.

Example

If $A = \{0, 1\}$ and q = 2, then $U_{A,q}$ is the set of numbers $x \in [0, 1]$ except those of the form $x = m2^{-n}$ with two positive integers m, n, and $U'_{A,q}$ is the set of all sequences $(c_i) \in \{0, 1\}^{\infty}$, except those ending with 10^{∞} or 01^{∞} .

Elementary characterization

Proposition

A sequence $c = (c_i) \in A^{\infty}$ belongs to $U'_{A,q}$ if and only the following conditions are satisfied:

$$\sum_{i=1}^{\infty} rac{c_{n+i}}{q^i} < a_{j+1} - a_j$$
 whenever $c_n = a_j < a_J$,

and

$$\sum_{i=1}^{\infty} \frac{a_J - c_{n+i}}{q^i} < a_j - a_{j-1} \quad \text{whenever} \quad c_n = a_j > a_1.$$

• If $q_1 < q_2$, then $U'_{A,q_1} \subset U'_{A,q_2}$.

- If $q_1 < q_2$, then $U'_{A,q_1} \subset U'_{A,q_2}$.
- If *q* is close to 1, then $U'_{A,q}$ has only two elements: the trivial unique expansions a_1^{∞} and a_J^{∞} .

- If $q_1 < q_2$, then $U'_{A,q_1} \subset U'_{A,q_2}$.
- If *q* is close to 1, then $U'_{A,q}$ has only two elements: the trivial unique expansions a_1^{∞} and a_J^{∞} .
- If q is sufficiently large, then $U'_{A,q} = A^{\infty}$: every expansion is unique.

- If $q_1 < q_2$, then $U'_{A,q_1} \subset U'_{A,q_2}$.
- If *q* is close to 1, then $U'_{A,q}$ has only two elements: the trivial unique expansions a_1^{∞} and a_J^{∞} .
- If q is sufficiently large, then $U'_{A,q} = A^{\infty}$: every expansion is unique.
- There exists a critical base p_A such that

- If $q_1 < q_2$, then $U'_{A,q_1} \subset U'_{A,q_2}$.
- If *q* is close to 1, then $U'_{A,q}$ has only two elements: the trivial unique expansions a_1^{∞} and a_J^{∞} .
- If q is sufficiently large, then $U'_{A,q} = A^{\infty}$: every expansion is unique.
- There exists a critical base p_A such that
 - there exist nontrivial unique expansions if $q > p_A$,

- If $q_1 < q_2$, then $U'_{A,q_1} \subset U'_{A,q_2}$.
- If *q* is close to 1, then $U'_{A,q}$ has only two elements: the trivial unique expansions a_1^{∞} and a_J^{∞} .
- If q is sufficiently large, then $U'_{A,q} = A^{\infty}$: every expansion is unique.
- There exists a critical base p_A such that
 - there exist nontrivial unique expansions if $q > p_A$,
 - there are no nontrivial unique expansions if $q < p_A$.

Two-letter alphabets

Theorem

(Daróczy–Kátai 1993, Glendinning–Sidorov 2001) If A is a two-letter alphabet, then $p_A = \frac{1+\sqrt{5}}{2}$.

Two-letter alphabets

Theorem

(Daróczy–Kátai 1993, Glendinning–Sidorov 2001) If A is a two-letter alphabet, then $p_A = \frac{1+\sqrt{5}}{2}$.

Idea of the proof. We may assume by an affine transformation that $A = \{0, 1\}$. Then an expansion $(c_i) \in \{0, 1\}^{\infty}$ is unique

$$\sum_{i=1}^{\infty} \frac{c_{n+i}}{q^i} < 1 \quad \text{whenever} \quad c_n = 0,$$

and

$$\sum_{i=1}^{\infty} \frac{1-c_{n+i}}{q^i} < 1 \quad \text{whenever} \quad c_n = 1.$$

Two-letter alphabets

Theorem

(Daróczy–Kátai 1993, Glendinning–Sidorov 2001) If A is a two-letter alphabet, then $p_A = \frac{1+\sqrt{5}}{2}$.

Idea of the proof. We may assume by an affine transformation that $A = \{0, 1\}$. Then an expansion $(c_i) \in \{0, 1\}^{\infty}$ is unique

$$\sum_{i=1}^{\infty} \frac{c_{n+i}}{q^i} < 1 \quad \text{whenever} \quad c_n = 0,$$

and

$$\sum_{i=1}^{\infty} \frac{1-c_{n+i}}{q^i} < 1 \quad \text{whenever} \quad c_n = 1.$$

Every sequence satisfies these conditions if q > 2. The theorem follows by a similar but finer argument.

▲□▶▲@▶▲콜▶▲콜▶ 콜 ∽의익이

 $A = \{a_1 < a_2 < a_3\}.$

 $A = \{a_1 < a_2 < a_3\}.$

We may assume by scaling that $A = \{0, 1, m\}$ with $m \ge 2$, and we write p_m instead of p_A .

 $A = \{a_1 < a_2 < a_3\}.$

We may assume by scaling that $A = \{0, 1, m\}$ with $m \ge 2$, and we write p_m instead of p_A .

Proposition

(de Vries–Komornik 2009) For m = 2 we have $p_2 = 2$.

◆□▶▲□▶▲□▶▲□▶▲□

 $A = \{a_1 < a_2 < a_3\}.$

We may assume by scaling that $A = \{0, 1, m\}$ with $m \ge 2$, and we write p_m instead of p_A .

Proposition

(de Vries–Komornik 2009) For m = 2 we have $p_2 = 2$.

For each fixed $m \ge 2$, we analyse the above characterization of unique expansions (•••).

 $A = \{a_1 < a_2 < a_3\}.$

We may assume by scaling that $A = \{0, 1, m\}$ with $m \ge 2$, and we write p_m instead of p_A .

Proposition

(de Vries–Komornik 2009) For m = 2 we have $p_2 = 2$.

For each fixed $m \ge 2$, we analyse the above characterization of unique expansions (•••).

This yields an interesting property:

Lemma

If $(c_i) \neq 0^{\infty}$ is a unique expansion in a base $q \leq P_m := 1 + \sqrt{\frac{m}{m-1}}$, then (c_i) contains at most finitely many 0 digits.

For each fixed m = 2, 3, ..., 65536 we were searching periodical nontrivial sequences $(c_i) \in \{0, 1, m\}^{\infty}$ satisfying the above given characterization (•••) for as small bases q > 1 as possible. We have found essentially a unique minimal sequence in each case:

т	(C_i)	m	(C_i)
2	1∞	10	$(mmm1)^{\infty}$
3	$(m1)^{\infty}$	11	$(mmm1)^{\infty}$
4	$(m1)^{\infty}$	12	$(mmm1)^{\infty}$
5	$(mm1mm1m1)^{\infty}$	13	$(mmm1)^{\infty}$
6	$(mm1)^{\infty}$	14	$(mmm1)^{\infty}$
7	$(mm1)^{\infty}$	15	$(mmm1)^{\infty}$
8	$(mm1)^{\infty}$	16	$(mmm1)^{\infty}$
9	$(mmm1mm1)^{\infty}$	17	$(mmm1)^{\infty}$

We have obtained the following minimal sequences:

We have obtained the following minimal sequences:

• $(m^{h}1)^{\infty}$ with $h = [\log_2 m]$ for 65495 values;

We have obtained the following minimal sequences:

- $(m^{h}1)^{\infty}$ with $h = [\log_2 m]$ for 65495 values;
- $(m^{h}1)^{\infty}$ with $h = [\log_2 m] 1$ for 33 values (close to 2-powers);

We have obtained the following minimal sequences:

- $(m^{h}1)^{\infty}$ with $h = [\log_2 m]$ for 65495 values;
- $(m^{h}1)^{\infty}$ with $h = [\log_2 m] 1$ for 33 values (close to 2-powers);
- seven exceptional values:

т	d
5	$(m^2 1 m^2 1 m 1)^{\infty}$
9	$(m^3 1 m^2 1)^{\infty}$
130	$(m^7 1 m^6 1)^{\infty}$
258	$(m^8 1 m^7 1)^{\infty}$
2051	$(m^{11}1m^{10}1)^{\infty}$
4099	$(m^{12}1m^{11}1)^{\infty}$
32772	$(m^{15}1m^{14}1)^{\infty}$

• It was natural to conjecture that p_m is the value such that the **minimal sequence** corresponding to *m* is univoque for $q > p_m$, but not univoque for $q < p_m$.

- It was natural to conjecture that p_m is the value such that the **minimal sequence** corresponding to *m* is univoque for $q > p_m$, but not univoque for $q < p_m$.
- However, we had to solve the problem for all real values m ≥ 2, and for this we had to understand the general structure of the minimal sequences, including the exceptional cases.

- It was natural to conjecture that p_m is the value such that the **minimal sequence** corresponding to *m* is univoque for $q > p_m$, but not univoque for $q < p_m$.
- However, we had to solve the problem for all real values m ≥ 2, and for this we had to understand the general structure of the minimal sequences, including the exceptional cases.
- We have observed that **no**ne of the minimal sequences contained **zero digits**.

- It was natural to conjecture that p_m is the value such that the **minimal sequence** corresponding to *m* is univoque for $q > p_m$, but not univoque for $q < p_m$.
- However, we had to solve the problem for all real values m ≥ 2, and for this we had to understand the general structure of the minimal sequences, including the exceptional cases.
- We have observed that **no**ne of the minimal sequences contained **zero digits**.
- Next we have observed that all minimal sequences (c_i) satisfy the lexicographic inequalities

 $1c_2c_3\ldots \leq c_{n+1}c_{n+2}c_{n+3}\ldots \leq c_1c_2c_3\ldots$

for all n = 0, 1, ..., and we have conjectured that all these sequences played a role in our problem.

We consider expansions on the alphabets $A_m = \{0, 1, m\}$ with $m \ge 2$ in bases q > 1.

• For each $m \ge 2$ there exists a number p_m such that

$$q > p_m \Longrightarrow |U_{q,m}| > 2 \Longrightarrow q \ge p_m.$$

We consider expansions on the alphabets $A_m = \{0, 1, m\}$ with $m \ge 2$ in bases q > 1.

• For each $m \ge 2$ there exists a number p_m such that

$$q > p_m \Longrightarrow |U_{q,m}| > 2 \Longrightarrow q \ge p_m.$$

We consider expansions on the alphabets $A_m = \{0, 1, m\}$ with $m \ge 2$ in bases q > 1.

• For each $m \ge 2$ there exists a number p_m such that

$$q > p_m \Longrightarrow |U_{q,m}| > 2 \Longrightarrow q \ge p_m.$$

• We have
$$2 \le p_m \le P_m := 1 + \sqrt{rac{m}{m-1}}$$
 for all m (example 0).

We consider expansions on the alphabets $A_m = \{0, 1, m\}$ with $m \ge 2$ in bases q > 1.

• For each $m \ge 2$ there exists a number p_m such that

$$q > p_m \Longrightarrow |U_{q,m}| > 2 \Longrightarrow q \ge p_m.$$

- We have $2 \le p_m \le P_m := 1 + \sqrt{\frac{m}{m-1}}$ for all m (example 0).
- We have $p_m = 2 \iff m \in \{2, 4, 8, 16, \ldots\}$ (example 1).

We consider expansions on the alphabets $A_m = \{0, 1, m\}$ with $m \ge 2$ in bases q > 1.

• For each $m \ge 2$ there exists a number p_m such that

$$q > p_m \Longrightarrow |U_{q,m}| > 2 \Longrightarrow q \ge p_m.$$

- We have $2 \le p_m \le P_m := 1 + \sqrt{\frac{m}{m-1}}$ for all m (example 0).
- We have $p_m = 2 \iff m \in \{2, 4, 8, 16, \ldots\}$ (example 1).
- The set { $m \ge 2$: $p_m = P_m$ } is a Cantor set (example 2). Its smallest element is $1 + x \approx 2.3247$ where x is the first Pisot number, i.e., the positive solution of $x^3 = x + 1$.

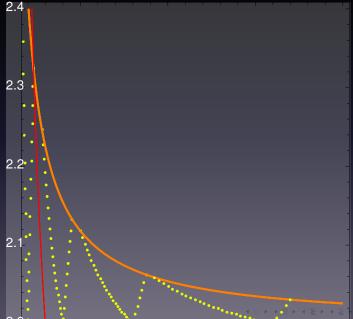
We consider expansions on the alphabets $A_m = \{0, 1, m\}$ with $m \ge 2$ in bases q > 1.

• For each $m \ge 2$ there exists a number p_m such that

$$q > p_m \Longrightarrow |U_{q,m}| > 2 \Longrightarrow q \ge p_m.$$

- We have $2 \le p_m \le P_m := 1 + \sqrt{\frac{m}{m-1}}$ for all m (example 0).
- We have $p_m = 2 \iff m \in \{2, 4, 8, 16, \ldots\}$ (example 1).
- The set $\{m \ge 2 : p_m = P_m\}$ is a Cantor set (example 2). Its smallest element is $1 + x \approx 2.3247$ where x is the first Pisot number, i.e., the positive solution of $x^3 = x + 1$.
- Each connected component (m_d, M_d) of $[2, \infty) \setminus C$ has a point μ_d such that p decreases in (m_d, μ_d) and increases in (μ_d, M_d) .

Intervals containing $m = 2^k$



Complements

• The proof allows us to determine *p_m* explicitly for each given *m*.

Complements

- The proof allows us to determine *p_m* explicitly for each given *m*.
- The proof allows us to characterize those values of *m* for which $|U_{q,m}| > 2$ in the limiting case $q = p_m$.

Complements

- The proof allows us to determine *p_m* explicitly for each given *m*.
- The proof allows us to characterize those values of *m* for which $|U_{q,m}| > 2$ in the limiting case $q = p_m$.
- We do not know the Lebesgue measure and the Hausdorff dimension of the Cantor set {*m* ≥ 2 : *p_m* = *P_m*}.