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Abstract
We revisit sequentialization proofs associated with the Danos-Regnier correctness criterion in the
theory of proof nets of linear logic. Our approach relies on a generalization of Yeo’s theorem for
graphs, based on colorings of half-edges. This happens to be the appropriate level of abstraction to
extract sequentiality information from a proof net without modifying its graph structure. We thus
obtain different ways of recovering a sequent calculus derivation from a proof net inductively, by
relying on a splitting `-vertex, on a splitting ⊗-vertex, on a splitting terminal vertex, etc.

The proof of our Yeo-style theorem relies on a key lemma that we call cusp minimization. Given
a coloring of half-edges, a cusp in a path is a vertex whose adjacent half-edges in the path have
the same color. And, given a cycle with at least one cusp and subject to suitable hypotheses, cusp
minimization constructs a cycle with strictly less cusps. In the absence of cusp-free cycles, cusp
minimization is then enough to ensure the existence of a splitting vertex, i.e. a vertex that is a cusp
of any cycle it belongs to. Our theorem subsumes several graph-theoretical results, including some
known to be equivalent to Yeo’s theorem. The novelty is that they can be derived in a straightforward
way, just by defining a dedicated coloring, again without any modification of the underlying graph
structure (vertices and edges) – similar results from the literature required more involved encodings.
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1 Introduction

Proof nets are a major contribution from linear logic [14]. Contrary to the usual representation
of proofs as derivation trees in sequent calculus, proof nets represent proofs as general graphs
respecting some correctness criterion [7], which imposes the absence of a particular kind of
cycle. Proof nets identify derivations of the sequent calculus up to rule commutations and,
as a consequence of this canonicity, results like cut elimination become easier to prove in
this formalism. A key theorem in this approach is the fact that each proof net is indeed the
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graph representation of a derivation of sequent calculus: the process of recovering such a
derivation tree is called sequentialization. Many proofs of this result can be found in the
literature [14, 7, 16, 18, 5, etc.], but proving sequentialization is still considered as not easy.

Not only many proofs but more generally many equivalent correctness criteria have been
introduced in the last 40 years, based on the existence or absence of particular paths in an
associated graph (long trips, switching cycles, alternating-elementary-cycles) [14, 7, 34], on
the success of a rewriting procedure (contractibility, parsing) [6, 26, 21, 8], on homological [30]
or topological [29] properties, etc. They all describe the same set of valid graphs (those
which are the image of a sequent calculus derivation) but through very different statements
of properties characterizing the appropriate structure. The diversity of these approaches
reflects both the central nature of the concept of proof net in linear logic, and the variety
of motivations in the design of correctness criteria: some ensure tight complexity bounds
(especially those based on contractibility), some weave connexions with other fields (e.g.,
topology or graph theory), some are more naturally generalized to other logical systems, etc.

On the other hand, when it comes to the study of the theory of proof nets (confluence,
normalization, reduction strategies, etc.) most of those approaches are hardly usable in
practice. This gives the Danos-Regnier criterion [7] a special status: the absence of switching
cycles is of direct use for proving results about proof nets. For instance, it forbids the
occurrence of axiom-cut cycles along cut elimination [17]; it ensures the confluence of
reduction in multiplicative-exponential linear logic [33]; it provides the existence of so-called
closed cuts [27], which play a crucial rôle in geometry of interaction [15]; it allows for the
definition of a parallel procedure of cut elimination for multiplicative-exponential linear
logic [20]; etc. This means in particular that, based on this criterion, it becomes possible
to develop the theory of proof nets without referring to the sequent calculus anymore. For
this reason, we are interested in a better understanding of this precise criterion and its links
with the sequential structure of tree derivations, via sequentialization. Following previous
lines of work on relating graph theory and proof net theory [34, 10, 32], we looked for a
direct link between graph properties and the sequential structure of proof nets: splitting
vertices. Indeed the key step for extracting a sequent calculus derivation from a proof net is
to inductively decompose it into sub-graphs themselves satisfying the correctness condition.

In graph theory, it is common to have several (equivalent) characterizations for a same class
of graphs, and an inductive characterization may allow for simpler proofs – see e.g., cographs,
k-trees or graphs with a unique perfect matching. Such an inductive characterization may be
deduced from the existence of a vertex or an edge separating the graph in a “nice” manner
(e.g. a bridge [3]). Five theorems yielding such a vertex or edge have been shown equivalent
by Szeider [38], meaning they can be deduced from each other using an encoding of the graph
under consideration. Among those five are Yeo’s theorem on colored graphs [39], Kotzig’s
theorem on unique perfect matchings [25], but also Shoesmith and Smiley’s theorem on
turning vertices [37] – interestingly the approach of the latter bears striking resemblance
with our own work, that we discuss more in detail in the last part of the paper.

On the proof net side, Rétoré remarked that perfect matchings provided an alternative
presentation of proof nets [34]: in this context, he recovered sequentialization proofs based on
different notions of splitting vertex, in the spirit of Kotzig’s theorem. Remarkably, Nguyễn
later established that Kotzig’s theorem is in fact equivalent to the sequentialization theorem
of unit-free multiplicative proof nets with mix [32], again through graph encodings.

In the present paper, we focus on Yeo’s theorem [39] instead, which is about edge-colored
undirected graphs. Our goal is to obtain the existence of splitting vertices in proof nets by
a direct application of a Yeo-style statement to an edge-coloring of the proof net (with no
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Figure 1 Example of Yeo’s theorem with a filled splitting vertex and dotted connected components.

modification of the graph structure at all). In an edge-colored graph, a cycle is alternating
when all its consecutive edges have different colors. Yeo’s theorem states that an edge-colored
graph G with no alternating cycle has a splitting vertex v, i.e. such that no connected
component of G− v (the removal of v) is joined to v with edges of more than one color – see
Figure 1. This decomposition can be carried on, so as to give an inductive representation of
graphs with no alternating cycle. This important structural result on edge-colored graphs
has been used extensively in the literature (see e.g. the book [3] or papers such as [1, 12]).

To allow a direct application to proof nets, we generalize Yeo’s theorem in two directions.
First, we consider a more general notion of edge-coloring, that we called local coloring: it
associates a color with each endpoint of each edge (this is equivalent to coloring half-edges,
but we avoid to introduce half-edges formally, just to stick to more basic graph-theoretic
notions). Second, we introduce a parameter (a set of vertex-color pairs, i.e. a set of vertices
labeled with colors) which gives us finer control over the obtained splitting vertex.

Our proof of this new result is elementary and based on a key lemma we call cusp
minimization, as well as on the definition of an ordering on vertex-color pairs induced by
local coloring. Formally, a cusp in a path of a locally colored graph is a pair of two successive
edges, such that the color associated with the middle vertex is the same for both edges. The
ordering on vertex-color pairs is induced by particular cusp-free paths. Moreover, given a
cycle ω containing a cusp, and a non-cusp vertex v of ω, satisfying some additional technical
conditions, our cusp minimization result (Lemma 6) yields either a cusp-free cycle, or another
cycle with strictly less cusps than ω, but also having v as a non-cusp vertex. In a locally
colored graph without cusp-free cycle, our generalization of Yeo’s theorem then follows easily
by considering a maximal vertex-color pair among those in the parameter.

Cusp minimization also provides a proof of the original version of Yeo’s theorem, as
simple as known short proofs from the literature [28, 31]. While the generalization to local
colorings gives a statement that we prove equivalent to Yeo’s theorem, it seems difficult
to reduce the parametrized version to the non-parametrized one. We moreover show how
the local and parametrized generalization of Yeo’s theorem allows to deduce each of the
statements considered in [38] (as well as [13, Theorem 2]), simply by choosing appropriate
colorings, without modifying the sets of vertices and edges of the graph under consideration.

Back to linear logic and the theory of proof nets, it is possible to derive the existence of a
splitting vertex (in the sense of sequentialization) from the generalization of Yeo’s theorem,
and we are even able to modularly focus on a particular kind of splitting vertex: an arbitrary
splitting vertex, a splitting multiplicative vertex (` or ⊗), a splitting ` (a.k.a. section [7]),
a terminal splitting multiplicative vertex, etc. From any of these choices, a sequentialization
procedure is easy to deduce. Notably, this proof of the sequentialization theorem applies
directly in the presence of the mix rules, and the mix-free case can be easily deduced.

Putting everything together, we get a direct simple proof of sequentialization for the Danos-
Regnier criterion, assuming no prerequisite in graph theory. The path to sequentialization in
linear logic that we propose starts from cusp minimization then goes to the generalization of
Yeo’s theorem and concludes with the extraction of an inductive decomposition of proof nets.
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Outline. This paper is organized into three parts: first a purely graph-theoretical part
leading to our generalization of Yeo’s theorem; then two independent segments leveraging
this result, one about proof nets of linear logic and sequentialization, and another on graph
theory comparing our generalization to other graph statements. We start by recalling usual
notions (graphs, paths, . . . ) and with our definition of local coloring (Section 2). Then
we state and prove our generalization of Yeo’s theorem (Theorem 8), through the cusp
minimization lemma (Section 3). Next comes the part about logic, with a definition of
unit-free multiplicative linear logic with the mix rules and the associated notion of proof net
(Section 4). We then give various proofs of the sequentialization theorem for these proof nets,
leveraging our generalization of Yeo’s theorem (Section 5). Last, we go back to graph theory
and show the parameter-free version of our Yeo-style result is equivalent to the original
one, and how to use it to deduce, in a straightforward way by only defining an appropriate
coloring, the four other equivalent theorems from [38] as well as a generalization of Yeo’s
theorem to H-colored graphs [13, Theorem 2] (Section 6).

2 Graphs and Cusps

2.1 Partial Undirected Graphs and Paths
As we take interest in proof nets and Yeo’s theorem in this paper, we study undirected paths
in finite undirected partial multigraphs. We recall here quickly some basic notions from
graph theory, for more details we refer the reader to [2].

A (finite undirected multi) partial graph (without loop) is a triple (V, E , ψ) where V
(vertices) and E (edges) are finite sets and ψ (the incidence function) associates to
each edge a set of at most two vertices. An edge e is total when ψ(e) is of cardinal two,
and a total graph (or simply a graph) is one whose edges are total. Many notions lift
immediately from total graphs to partial graphs, e.g. isomorphisms – that we denote ≃. An
edge e is incident to a vertex v if v ∈ ψ(e), in which case v is an endpoint of e.

A path p is a finite alternating sequence of vertices and edges (v0, e1, v1, e2, v2, . . . , en, vn)
such that for all i ∈ {1; . . . ;n}, the endpoints of ei are exactly vi−1 and vi (which are distinct).
A path always has at least one vertex, but it can have no edge and be reduced to a single
vertex (v0), in which case it is called an empty path. With the notation above, v0 is the
source of p, vn is its target and both make the endpoints of p. Since a given vertex may
occur more than once in a path, we may have to talk about occurrences of vertices in a
path to distinguish these equal values. We use the following notations:

the concatenation of two paths p1 = (v0, e1, . . . , ek, vk) and p2 = (vk, ek+1, . . . , en, vn)
is the path p1 · p2 = (v0, e1, . . . , ek, vk, ek+1, . . . , en, vn);
the reverse of a path p = (v0, e1, v1, . . . , ek, vk) is p = (vk, ek, vk−1, . . . , e1, v0);
if v and u are two (occurrences of) vertices of a path p, with v occurring before u, p(v,u)
is the unique sub-path (i.e. sub-sequence that is a path) of p with source v and target u.

A path is simple if its edges are pairwise distinct and its vertices are pairwise distinct
except possibly its endpoints which may be equal. A path is closed if it has equal endpoints,
otherwise it is open. A cycle is a non-empty simple closed path.

Given a partial graph G = (V, E , ψ), a sub-graph of G is a partial graph G′ = (V ′, E ′, ψ′)
such that V ′ ⊆ V, E ′ ⊆ E and ψ′ is the restriction of ψ to E ′ in its domain and sets of V ′

in its codomain. Connectedness is not immediate to define in partial graphs because paths
go from vertices to vertices. Two vertices v and u are connected when there exists a path
with endpoints v and u. Two edges are connected if they are incident to two connected
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vertices. An edge e and a vertex v are connected if e is incident to a vertex connected to v.
A partial graph G is connected when any two different vertices or edges of G are connected.
A connected component is a non-empty connected sub-graph maximal for the inclusion.

2.2 Local Coloring and Cusps
Let G be a (partial) graph. A local coloring of G is a function c taking as arguments an
edge e and one of its endpoints v. By convention, the elements c(e, v) are called colors. The
intuition is that given an edge e and one of its endpoints v, c(e, v) is the color of e according
to v. A local coloring can also be seen as a coloring of half-edges, i.e. c(e, v) is the color of
the half of e near v. When drawing a graph, we therefore represent c(e, v) by coloring the
part of e touching v, with colors also given by the shape of the edges (solid, dashed, . . . ). We
recover the standard notion of edge-coloring, which maps edges to colors, when for every
edge e, c(e,_) has the same value for all endpoints of e. An example of locally colored graph
is given on Figure 2, where c(e, v) = solid, c(e, u) = solid, c(f, u) = solid, c(f, w) = dashed,
c(g, v) = dashed, c(g, w) = solid and c(h, v) = dotted.

A cusp at v of color α is a triple (e, v, f) where e and f are distinct edges such that v
is an endpoint of both of these edges and c(e, v) = α = c(f, v). In this case, v is called the
vertex of the cusp, α the color of the cusp and (v, α) is called a cusp-point. More
generally, we will consider in this paper vertex-color pairs which are pairs made of a vertex
and a color, and a cusp-point is a particular instance of a vertex-color pair. The locally
colored graph in Figure 2 has two cusps, (e, u, f) and (f, u, e), both of vertex u and color
solid, so that (u, solid) is the only cusp-point of this graph.

A cusp of a path p is a cusp made by a sub-sequence (e, v, f) of this path or, in case
p is closed, a cusp (en, v0, e1) made by its last edge en, its source (and target) v0 and its
first edge e1. Remark that the reverse of a path contains the same number of cusps as this
path. A cusp-free path, also called an alternating path, is one without cusp. Given a
non-empty path p, whose source is v0 and first edge is e1, its starting color is c(e1, v0).
Similarly, if its target is vn and its last edge is en, then the ending color of p is c(en, vn).
Remark the starting (resp. ending) color of p is the ending (resp. starting) color of p. For
instance, in the graph depicted on Figure 2 the path (v, e, u, f, w) has one cusp at u of color
solid, its starting color is solid and its ending one is dashed.

▶ Fact 1. Let ω be a cycle with no cusp at its source, and α a color. Then α is not the
starting color of ω or α is not the starting color of ω.

We call splitting a vertex v such that any cycle containing it has a cusp at v. We will
show in Section 6.1 that this fits the notion at play in the conclusion of Yeo’s theorem [39].
▶ Remark 2. We invented this “local coloring”, which is not standard in the literature, and
the name “cusp”. When used only through the notions of cusps and splitting vertices, that a
given color is used on different vertices has no impact. Hence, we could use different sets of
colors depending on each vertex, or not use more colors than the maximal degree of the graph.
Equivalently, a local coloring is an equivalence relation on the edges incident to v, for each
vertex v. We keep the idea of local coloring as it is a direct generalization of edge-coloring.

3 A Generalization of Yeo’s Theorem

We prove a version of Yeo’s theorem [39] for locally colored partial graphs, which is moreover
parametrized by the choice of a set of vertex-color pairs (subject to a technical condition):
Theorem 8. We first fix a partial graph G with a local coloring c.

FSCD 2025
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Figure 2 Example of locally colored graph.
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Figure 3 Illustration of Lemma 6.

The main idea is to follow a path that is an evidence of progression, i.e. a strict partial
order ↱: a vertex is smaller than another when there is a path from the first to the second,
and we will prove that a maximal vertex is splitting. As the hypothesis of the theorem is
about cusp-free cycles, it makes sense to consider cusp-free paths in this ordering. However,
two issues prevent ↱ from being an order. First, the concatenation of two cusp-free paths
may not be cusp-free. To have ↱ transitive, we impose a condition on the starting and ending
colors of the cusp-free path – which is why we consider vertex-color pairs and not simply
vertices. Second, there is no reason for this relation ↱ of “being linked by a cusp-free path”
to not loop. Hence, we add a condition on the path that there is no way to go back on it,
yielding from ↱ a relation ◁ which will be our strict partial order. This entails the following:

▶ Definition 3. Given vertices v and u, and colors α and β, we write (v, α)
p

↱ (u, β) if p is a
simple open cusp-free path from v to u with starting color not α and with ending color β.
We note (v, α)

p
◁ (u, β) when (v, α)

p

↱ (u, β) and for all vertex w, color τ and path q such that
(u, β)

q

↱ (w, τ), w is not in p. We simply write (v, α)◁ (u, β) when such a path exists.

▶ Lemma 4. Let v, u and w be vertices, α, β and τ be colors, and p and q be paths. If
(v, α)

p
◁ (u, β) and (u, β)

q

↱ (w, τ) then (v, α)
p·q
↱ (w, τ).

▶ Lemma 5. The relation ◁ is a strict partial order on vertex-color pairs.

The key ingredient for proving our Yeo-style theorem is showing that for any pair (v, α)
maximal for the strict partial order ◁, v is splitting. It is a consequence of the following:

▶ Lemma 6 (Cusp Minimization). Fix a partial graph G with a local coloring. Assume ω is a
cycle starting from a vertex v, with no cusp at v but containing a cusp of vertex u and color
α. If (u, α)

q

↱ (w, β) with w a vertex of ω, then either there exists a cusp-free cycle or there
exists a cycle ω′ starting from v, with no cusp at v and strictly less cusps than ω.

Proof. Use Figure 3 as a reference for notations. W.l.o.g. q has no vertex in common with
ω other than its endpoints u and w. We use the notation v1 for the occurrence of v at the
source of ω, and v2 for its occurrence at the target of ω.

By symmetry (considering the reverse of ω if necessary), we can assume that w is in
ω(u,v2) and if w = v2 then β is not the starting color of ω. Indeed, if w /∈ ω(u,v2), we reverse
ω. Otherwise and if w = v2, we apply Fact 1 to ω and β to get that ω or ω respects our
assumption.

Consider the cycles ω′ = ω(v1,u) · q ·ω(w,v2) and d = q ·ω(w,u) (see Figure 3). We count the
cusps in ω, ω′ and d. Recall that u is a cusp of ω of color α, q is cusp-free and its starting
color is not α, and that ω′ has no cusp at v (by our symmetry argument above). Thus, there
are n1 + 1 + n2 + bω

w + n3 cusps in ω, n1 + bω′

w + n3 in ω′, and bd
w + n2 in d, where:
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n1 (resp. n2, n3) is the number of cusps of ω(v1,u) (resp. ω(u,w), ω(w,v2));
bω

w (resp. bω′

w , bd
w) is 1 if ω (resp. ω′, d) has a cusp at w and 0 otherwise.

If ω′ has strictly less cusps than ω we are done, otherwise bω′

w ≥ 1 + n2 + bω
w. Hence, n2 = 0,

bω
w = 0 and bω′

w = 1. But the latter two imply bd
w = 0, so that d is a cusp-free cycle. ◀

▶ Proposition 7. Let v be a non-splitting vertex of a locally colored partial graph which has
no cusp-free cycle. For any color α there exists a cusp-point (u, β) such that (v, α)◁ (u, β).

Proof. Since v is not splitting, it is the source (and target) of a cycle ω which has no cusp
at v. W.l.o.g. ω has a minimal number of cusps among all such cycles, and has not α as a
starting color (thanks to Fact 1 and as reversing a path preserves the number and vertices of
cusps). For ω cannot be cusp-free, it contains at least one cusp: denote by u the vertex of the

first cusp of ω, and by β its color. We have (v, α)
ω(v,u)

↱ (u, β), and conclude (v, α)
ω(v,u)
◁ (u, β)

by Lemma 6, the minimal number of cusps of ω and the absence of cusp-free cycles. ◀

A set P of vertex-color pairs dominates cusp-points if for any cusp-point (v, α), either
(v, α) ∈ P or there is (u, β) ∈ P with (v, α)◁ (u, β). Our main result follows by Proposition 7.

▶ Theorem 8 (Parametrized Local Yeo). Take G a partial graph with a local coloring and
pose P a set of vertex-color pairs which dominates cusp-points. If G has no cusp-free cycle,
the vertex of any ◁-maximal element of P is splitting.

4 Multiplicative Proof Nets

4.1 Unit-Free Multiplicative Linear Logic with Mix

We focus on unit-free multiplicative linear logic whose formulas are given by:

A ::= X | X⊥ | A⊗A | A`A

The dual operator (_)⊥ is extended to an involution on all formulas by De Morgan duality:
(X⊥)⊥ = X, (A⊗B)⊥ = A⊥ `B⊥ and (A`B)⊥ = A⊥ ⊗B⊥. We consider the deduction
system MLL0,2

hyp of open derivations in cut-free multiplicative linear logic with mix rules:

(ax)
⊢ A⊥, A

⊢ A,Γ ⊢ B,∆
(⊗)

⊢ A⊗B,Γ,∆
⊢ A,B,Γ

(`)
⊢ A`B,Γ

⊢ Γ ⊢ ∆
(mix2)

⊢ Γ,∆
(mix0)

⊢
(hyp)

⊢ A

The (hyp) rule introduces an hypothesis A in a derivation, with A a single formula. We
restrict ourselves to a single formula not because we consider the (mix2) rule but because
substitution of proof structures along more than one edge is much more complex. In this
restricted setting, it is clear that all hypotheses formulas of a proof belong to distinct
sequents and that we only need substitution of one hypothesis at a time. If π is a derivation
with hypotheses ⊢ A1, . . . , ⊢ An and conclusion ⊢ B1, . . . , Bk, we call π a derivation of
A1, . . . , An ⊢ B1, . . . , Bk. If π1 is a derivation of Σ ⊢ Γ, A and π2 is a derivation of A,Θ ⊢ ∆,
the substitution of π1 in π2 is a derivation of Σ,Θ ⊢ Γ,∆: it is obtained from π2 by
replacing the (hyp) rule on ⊢ A with π1 (this adds Γ to all sequents of π2 below ⊢ A).

To be formal, we should be more precise on how we handle occurrences of formulas (e.g.
considering sequents as lists and having an explicit exchange rule) but we keep this implicit.

FSCD 2025
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ax

` ⊗
axXX⊥

X⊥ ` X

Y

(X⊥ ` X) ⊗ Y

Y ⊥

Figure 4 Example of proof structure.

ax

` ⊗
ax

Figure 5 Locally colored proof structure.

We also consider the following rewriting of derivations which we call mix-Rétoré reduc-
tion (due to its similarity to Rétoré’s reduction on the exponential connective ? [6, page 77],
with contraction and weakening forming a monoid):

⊢ Γ
(mix0)

⊢
(mix2)

⊢ Γ
⇝ ⊢ Γ

(mix0)
⊢ ⊢ Γ

(mix2)
⊢ Γ

⇝ ⊢ Γ

It defines a confluent and strongly normalizing rewriting system on derivations.

▶ Lemma 9 (Mix-Rétoré Normal Forms). If π is a derivation in mix-Rétoré normal form,
either it is

(mix0)
⊢ , or it does not contain the (mix0) rule and it proves a non-empty sequent.

4.2 Proof Structures
A proof structure is a partial graph with labeled vertices and edges. Edges are labeled
with formulas, and vertices with names of the three following rules: ax , ⊗ or `. Vertices are
named according to their label: ax-vertices, ⊗-vertices and `-vertices. Some additional
local constraints are required depending on the label of vertices, also pictured below:

ax
A⊥ A

⊗
A B

A ⊗ B

`
A B

A ` B

each ax-vertex has two incident edges, called its conclusions, labeled with dual formulas;
each ⊗-vertex has three incidents edges, labeled by A, B and A⊗B for some formulas A
and B; the first two edges are its premises, the last one is its conclusion;
each `-vertex has three incidents edges, labeled by A, B and A`B for some formulas A
and B; the first two edges are its premises, the last one is its conclusion;
an edge is the premise of at most one vertex and the conclusion of at most one vertex.

An example of proof structure is given on Figure 4. A vertex is terminal when all its
conclusions have exactly one endpoint (or equivalently, are not premises). An edge that is the
premise of no vertex is a conclusion of the proof structure. An edge that is the conclusion
of no vertex is an hypothesis of the proof structure.

▶ Remark 10. There are many ways to define proof structures. In the typed multiplicative
case considered here, it is easy to check our definition is equivalent to others in the literature
(e.g. [14, 32]). To strictly recover the usual notion of proof structure, and to distinguish for
example the two proof structures with two conclusions typed X⊥`X⊥ and X⊗X, we should
impose an order on the premises of vertices, as well as on the hypotheses and conclusions:
we do not do so since this has no impact on correctness nor on (proofs of) sequentialization.
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To identify proof structures corresponding to proofs, and create a distinction between ⊗-
and `-vertices, it is usual to ask for a proof structure to respect a correctness criterion. As
explained in the introduction, we use one due to Danos and Regnier [7]. A path in a proof
structure is called switching when it does not contain the two premises of any `-vertex. A
proof structure is DR-correct (and is called a proof net) if it has no switching cycle.
▶ Remark 11. The original definition of the acyclicity condition in the Danos-Regnier
correctness criterion [7] (extended to (mix2) in [11]) is in fact slightly different. They consider
correctness graphs: graphs obtained by removing one of the two premises of each `-vertex.
A proof structure is correct when all its correctness graphs are acyclic (and connected in
the original work without the mix rules). This condition is equivalent to the fact that any
cycle in the proof structure must contain the two premises of some `-vertex (i.e. no cycle
is feasible in the sense of [11]). This is also equivalent to the apparently weaker condition
that any cycle in the proof structure must go through the two premises of some `-vertex
consecutively:

▶ Lemma 12 (Local-Global Principle). A simple path that never goes through the two premises
of a `-vertex consecutively (including as last and first edges for a cycle) is a switching path.

4.3 Desequentialization
We define, by induction on a derivation π of A1, . . . , An ⊢ B1, . . . , Bk, its desequentializa-
tion D(π) which is a DR-correct proof structure with hypotheses labeled A1, . . . , An and
conclusions labeled B1, . . . , Bk.

If π is reduced to an (ax) rule with conclusion ⊢ A⊥, A, then D(π) is the proof structure
with one ax-vertex v and two edges labeled A⊥ and A, both with unique endpoint v.

(ax)
⊢ A⊥, A 7→ ax

A⊥ A

If the last rule of π is a (⊗) rule applied to two derivations π1 and π2 then D(π) is
obtained from the disjoint union of D(π1) and D(π2) by adding a new ⊗-vertex v. The
conclusions of D(π1) and D(π2) labeled by the principal formulas A and B of the (⊗)
rule now have v as an additional endpoint, and we add a new edge, labeled A⊗B, with
v as unique endpoint.

π1
⊢ A, Γ

π2
⊢ B, ∆

(⊗)
⊢ A ⊗ B, Γ, ∆

7→

D(π1) D(π2)

⊗
A B

A ⊗ B

If the last rule of π is a (`) rule applied to a derivation π1 then D(π) is obtained from
D(π1) by adding a new `-vertex v. The conclusions of D(π1) labeled by the principal
formulas A and B of the (`) rule now have v as an additional endpoint, and we add a
new edge, labeled A`B, whose unique endpoint is v.

π1
⊢ A, B, Γ

(`)
⊢ A ` B, Γ

7→

D(π1)

`
A B

A ` B
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If the last rule of π is a (mix2) rule applied to two derivations π1 and π2 then D(π) is
the disjoint union of D(π1) and D(π2).

π1
⊢ Γ

π2
⊢ ∆

(mix2)
⊢ Γ, ∆

7→ D(π1) D(π2)

If π is reduced to a (mix0) rule, D(π) is the empty proof structure (no vertex, no edge).
(mix0)

⊢ 7→

If π is reduced to a (hyp) rule on ⊢ A, then D(π) is the proof structure with no vertex
and a single edge with no endpoint, labeled A.

(hyp)
⊢ A 7→ A

There is a bijection between the (ax), (⊗) and (`) rules of π and the vertices of D(π).
Moreover, if π2 is obtained from π1 by a mix-Rétoré reduction then D(π1) ≃ D(π2).

▶ Lemma 13 (Desequentialization of a substitution). If π is the substitution of a derivation
π1 for a hypothesis A in a derivation π2, then D(π) is obtained from the disjoint union of
D(π1) and D(π2) by identifying the conclusion e of D(π1) labeled A with the hypothesis e′ of
D(π2) labeled A. The obtained edge has label A and endpoints the union of those of e and e′.

5 Sequentialization from Parametrized Local Yeo

This section is dedicated to show how sequentialization results (see [14, 7, 6, 11] for example)
can be deduced from Theorem 8. We provide several proofs of the known statement:

▶ Theorem 14 (Sequentialization [14, 7, 6, 11]). Given a DR-correct proof structure ρ, there
exists a derivation π in MLL0,2

hyp such that ρ ≃ D(π); π is called a sequentialization of ρ.

The first step is to define the following local coloring c (see Figure 5 for an example):
for an ax-vertex v of conclusions e1 and e2, set c(e1, v) = solid and c(e2, v) = dashed;
for a ⊗-vertex v of premises e1 and e2 and conclusion f , set c(e1, v) = solid,
c(e2, v) = dotted and c(f, v) = dashed;
for a `-vertex v of premises e1 and e2 and conclusion f , set c(e1, v) = c(e2, v) = solid
and c(f, v) = dashed.

Note the cusp-points of a colored proof structure are exactly the pairs (v, solid) where v is a
`-vertex – which is in fact the only condition we need and requires a local coloring (see the
left ax in Figure 5). In all this section, we assume proof structures to be colored this way.
Then, the absence of switching cycles means there is no cusp-free cycle. Theorem 8 gives a
splitting vertex for any set P dominating cusp-points – i.e. pairs (v, solid) with v a `-vertex.

Observe that, with the local coloring we have fixed, we recover the notions of splitting ⊗-
or `-vertex which play a crucial rôle in most of the sequentialization results for DR-correct
proof structures: finding such a vertex allows to decompose a proof net in smaller components,
and to deduce sequentialization inductively. Indeed, for v a splitting vertex:

If v is a ⊗-vertex with conclusion labeled A ⊗ B, its premises and conclusion are not
connected, except through v. By removing v, we obtain three disjoint proof structures: ρ1
with a conclusion A, ρ2 with a conclusion B, and ρ0 with a hypothesis A⊗B. By induction
hypothesis, we get corresponding derivations π1, π2 and π0. By adding a (⊗) rule to π1
and π2, and substituting the obtained derivation in π0, we get a sequentialization of ρ.
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If v is a `-vertex with conclusion labeled A ` B, its premises are not connected to
its conclusion, except through v. By removing v from ρ, we obtain two disjoint proof
structures: ρ1 with conclusions A and B, and ρ0 with a hypothesis A`B. By induction
hypothesis, we get two corresponding derivations π1 and π0. By adding a (`) rule to π1
and substituting the obtained derivation in π0, we obtain a sequentialization of ρ.
If v is an ax-vertex with conclusions labeled A⊥ and A, its conclusions are not connected,
except through v. By removing v from ρ, we obtain two disjoint proof structures: ρ1
with a hypothesis A⊥ and ρ2 with a hypothesis A. By induction hypothesis, we get two
corresponding derivations π1 and π2. By first substituting a derivation reduced to a single
(ax) rule into π1, and then substituting the result in π2, we get a sequentialization of ρ.

We fix a DR-correct proof structure ρ: ρ has no cusp-free cycle. We review how natural
choices for the parameter P in Theorem 8 yield various proofs of Theorem 14, differing only in
the order in which splitting vertices are selected along the sequentialization procedure. Each
of these choices satisfies the hypothesis of Theorem 8 trivially: P contains all cusp-points.
General splitting vertices. Take P the set of all vertex-color pairs. By Theorem 8, for each
◁-maximal element (v, α) ∈ P , the vertex v is splitting. As described above, v allows
to decompose ρ and to go on by induction. It remains only to treat the case P = ∅, i.e.
without vertex. If ρ is empty (no vertex, no edge), it is the desequentialization of the
derivation reduced to a (mix0) rule. If ρ is a single edge (with no endpoint), it is the
desequentialization of a derivation reduced to a (hyp) rule. Else, decomposing ρ into
connected components corresponds to applying (mix2) rules on the sequent calculus side.

Splitting `- or ⊗-vertices. Let P := {(v, α) | v is a ⊗- or `-vertex and α is a color in ρ}.
By Theorem 8, each ◁-maximal element (v, α) ∈ P yields a splitting vertex v, which must
be a `- or ⊗-vertex. We reason inductively as before, which leaves only the case P = ∅: all
vertices must be ax-vertices and we reason as above, splitting along connected components
that can be an ax-vertex with its two conclusions or an edge without endpoint.

Splitting `-vertices (a.k.a. sections) [7]. Let P be the set of all cusp-points: a ◁-maximal
element of P is (v, α) with v a splitting `-vertex by Theorem 8, so we can reason
inductively. It remains only to treat the case P = ∅ (i.e. no `-vertex, hence no cusp in
ρ): by DR-correctness, ρ is cycle-free, and all the remaining vertices are splitting.

Splitting terminal vertices [14]. Let P := {(v, solid) | v is a ⊗- or `-vertex}∪{(v,dotted) |
v is a ⊗-vertex}, and let (v, α) ∈ P be maximal for ◁. Then v is not only splitting by
Theorem 8, but it is also terminal. Indeed, otherwise its conclusion e has another endpoint
u. This u must be a ⊗- or `-vertex (as e can only be one of its premises, and these are

the only vertices with premises). Then (v, α)
(v,e,u)
↱ (u, c(e, u)) since c(e, v) = dashed ̸= α.

Moreover, we cannot have (u, c(e, u))
p

↱ (v, β) for a color β as this would yield a cusp-free
cycle (v, e, u) ·p. We obtain (v, α)◁ (u, c(e, u)), contradicting the maximality of (v, α). So,
if P ̸= ∅, we obtain a splitting terminal ⊗- or `-vertex. The sequentialization procedure
is then the same as before, except that we can focus on terminal vertices all along.

Now having sequentialization for MLL0,2
hyp, we consider some restrictions and characterize

sub-systems of the sequent calculus by means of properties of their image in proof structures.
Hypothesis-free derivations. A derivation π contains no (hyp) rule if and only if D(π) is

hypothesis-free (i.e. each edge is the conclusion of some vertex). We thus recover the
usual sequentialization result of (hypothesis-free) proof nets into ((hyp)-free) derivations.
Note that following the splitting terminal vertices procedure above, we never need to
consider (hyp) rules nor hypotheses in proof structures. Indeed, if ρ is hypothesis-free
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and v is a splitting terminal vertex: the components associated with the premises of v
are also hypothesis-free; and those associated with its conclusions are reduced to a single
hypothesis edge, so there is no need to perform a substitution.

Connected proof structures. Another important sub-system is obtained by removing the
mix rules, which is captured by a connectedness property of DR-correct proof structures.
Given some DR-correct proof structure ρ, the DR-connectedness degree d(ρ) is the
number of connected components of any its correctness graphs (see Remark 11). Note that,
thanks to acyclicity, d(ρ) does not depend on the choice of the correctness graph. We say
ρ is DR-connected if d(ρ) = 1 (in particular it is not empty). Given a derivation π, one
can check that d(D(π)) = 1+#mix2 −#mix0, where #mixi is the number of (mixi) rules
in π. In particular, derivations without mix have a DR-connected desequentialization.
Conversely, depending on d(ρ), we can transform the derivations π such that ρ ≃ D(π) to
obey some constraints on mix-rules, without changing their image by D. By Lemma 9, if
π is a mix-Rétoré normal form, then π contains (mix0) if and only if D(π) is empty, and
π contains (mix2) if and only if d(D(π)) > 1. Combined with Theorem 14, we obtain:

▶ Theorem 15 (Connected sequentialization). Given a DR-connected and DR-correct proof
structure ρ ( i.e. d(ρ) = 1), there exists a mix-free derivation π such that ρ ≃ D(π).

6 Comparison of our Generalized Yeo’s Theorem with the Literature

6.1 Local and Global Colorings

First, remark our parametrized version implies a simpler one, closer to Yeo’s theorem.

▶ Theorem 16 (Local Yeo). Take G a partial graph equipped with a local coloring and with
at least one vertex. If G has no cusp-free cycle, then there exists a splitting vertex in G.

Proof. The set P of all vertex-color pairs of G is finite and non-empty (if we only consider
colors used in G, plus a dummy one if there is no such color), and thus contains a maximal
element (v, α) with respect to ◁ (Lemma 5). The vertex v is splitting (Theorem 8). ◀

As an example, the graph depicted on Figure 2 has no cusp-free cycle, and u is its only
splitting vertex. We now bridge the gap with the terminology from Yeo’s theorem [39] and
prove it is a direct consequence of our local version. For G a partial graph and v a vertex
of G, the partial graph G \ v is the sub-graph obtained by removing v from the vertices of
G (same edges with possibly less endpoints). This gives an alternative characterization of
splitting vertices: a vertex v is splitting if and only if any two edges with endpoint v and
connected in G \ v have the same color on v. Let us move to the terminology for total graphs:

As G\ v leads in general to a partial graph, it has to be replaced with the operation G− v

on total graphs, which removes not only v but also all its incident edges. Connectedness
on partial graphs gives the standard notion when restricted to total graphs.
Recall the standard notion of edge-coloring that maps edges to colors. An alternating
cycle for an edge-coloring is the restriction of the same notion for a local coloring: a
cycle whose consecutive edges are of different colors, including its last and first edges.

▶ Theorem 17 (Yeo’s Theorem). If G is a non-empty edge-colored (total) graph with no
alternating cycle, then there exists a vertex v of G such that no connected component of
G− v is joined to v with edges of more than one color.
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7→

Figure 6 Example of encoding of local coloring as edge-coloring, where filled vertices are splitting
ones and square vertices represent added ones.

Proof. Call c the edge-coloring of G, we set a local coloring c′ by c′(e, v) = c(e). Alternating
cycles with respect to c′ are those with respect to c. Theorem 16 yields a splitting vertex v,
so no connected component of G− v is joined to v with edges of more than one color. ◀

While Theorem 16 seems more general than Theorem 17, we deduce the first from the
second by a graph encoding. Partial edges play no role, so we consider only total graphs.
Take G a graph with local coloring c, we associate with it a graph G with an edge-coloring c:

all vertices of G are considered as vertices of G (and some are going to be added);
with each edge e of G of endpoints v and u such that c(e, v) = c(e, u), we associate one
edge f in G with the same endpoints as e and c(f) = c(e, v);

v

u

v

u

e 7→ f

with each edge e of G of endpoints v and u such that c(e, v) ̸= c(e, u) and e is in a cycle,
we associate two edges f1 and f2 and a new vertex w, the endpoints of f1 being v and w,
and the endpoints of f2 being w and u, with c(f1) = c(e, v) and c(f2) = c(e, u);

v

u

v

u

we 7→
f1

f2

with each edge e of G of endpoints v and u such that c(e, v) ̸= c(e, u) and e is not in a
cycle (i.e. e is a bridge), we associate one edge f in G with the same endpoints as e and
an arbitrary color c(f).

v

u

v

u

e 7→ f

An example of this encoding is on Figure 6. The key properties of this encoding are that:
alternating cycles in the obtained graph G correspond to those of G;
a vertex of G is splitting in G if and only if the corresponding one is splitting in G;
no added vertex is splitting in G.

Using these properties, one easily deduces Theorem 16 for a graph G with a local coloring c
from Theorem 17 applied to G and c.
▶ Remark 18. The encoding (_) is not stable by sub-graph, e.g. after removing the leftmost
splitting (filled) vertex in the graph on Figure 6, the unique solid-dashed edge should not be
encoded with a vertex in its middle anymore, because it is no longer in a cycle. An encoding
stable by sub-graph seems hard to come by. In particular, an idea that cannot work is adding
a same “gadget” graph in the middle of each edge (or of each “bicolored” edge) so as to
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v

u w x

yϕ(u) e

f ϕ(w) = ϕ(x)

ϕ(v) = ϕ(y)

Figure 7 No edge-coloring for Theorem 20.

v

u

w

e

f

g

Figure 8 No edge-coloring for Theorem 22.

duplicate each edge and color them correspondingly – whether this gadget is simply a single
vertex or a more complex graph. Indeed, the gadget to add must not have any cusp-free cycle
so as to be able to apply Theorem 17, nor should it have any splitting vertex as one wants to
find a splitting vertex in the original graph. Such a graph cannot exist by Theorem 17 itself!

6.2 Variants of Yeo’s Theorem
It is known that Yeo’s theorem is equivalent to various other graph-theoretical results. In
particular, Szeider [38] exhibited four such alternative statements. One of them is Kotzig’s
theorem, proved equivalent to the sequentialization of unit-free multiplicative proof nets with
mix [32]. We will also consider the generalization of Yeo’s theorem to H-coloring from [13].

In [38] are given non-trivial encodings of graphs into graphs such that applying one
theorem on an encoding allows to prove another theorem on the initial graph. We show here
that Theorem 8 provides a natural unifying principle subsuming all these results (Theorems 17,
19–22, and 25). Indeed, we prove each of these results by applying Theorem 8 to a well-chosen
local coloring of the graph with no modification of its structure (vertices and edges), giving
somehow “encoding-less” proofs. Besides, this implies that our proof of Theorem 8 via cusp
minimization is also a proof of each of these results, just by adapting the definition of a cusp.

A perfect matching (or 1-factor) of an undirected total graph G is a set of edges F
such that every vertex has a unique edge in F incident to it. It is well known that a perfect
matching F in a graph G is unique if and only if G contains no F -alternating cycle, which
is a cycle whose edges are alternatively in and out of F , including the last and first ones (it is
e.g. a simple variant of [4, Theorem 1] which considers F -alternating open paths). A bridge
is an edge whose removal increases the number of connected components of the graph.

▶ Theorem 19 (Kotzig [25]). If a graph G has a unique perfect matching F , then G has a
bridge which belongs to F .

Proof. It suffices to define an edge-coloring c of G into {0, 1} by c(e) = 1 iff e ∈ F . Then
F -alternating cycles are exactly cusp-free cycles, so by Theorem 16 (here even Theorem 17
would suffice) there is a splitting vertex v. The unique edge of F incident to v is a bridge. ◀

▶ Theorem 20 ([35]). Take a graph G and a function ϕ from its vertices to its edges such
that ϕ(v) is incident to v for all vertex v. If G has no cycle ω satisfying ϕ(v) ∈ ω for every
v ∈ ω, then there exists a vertex u such that ϕ(u) is a bridge.

Proof. Set a local coloring into {0, 1} by c(e, v) = 1 iff e = ϕ(v). With this local coloring, G
has no cusp-free cycle, so Theorem 16 gives a splitting vertex v: ϕ(v) is a bridge. ◀

Note that an edge-coloring c cannot prove Theorem 20 without changing the structure of
the graph: consider the graph drawn on Figure 7. For the cycle ω = (u, f, w, e, v, ϕ(u), u) to
have exactly cusps corresponding to vertices z such that ϕ(z) /∈ ω, we need c(f) = c(e) (at
w), c(e) = c(ϕ(u)) (at v) and c(ϕ(u)) ̸= c(f) (at u), absurd.
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▶ Theorem 21 ([19]). Any 2-edge-colored graph has a splitting vertex or an alternating cycle.

Proof. This is just the particular case of Theorem 17 restricted to two colors. ◀

The next theorem considers undirected paths in directed graphs. A directed graph
is the same as a graph defined in this paper, except the incidence function ψ yields an
ordered pair (v, u) given a directed edge a: v is the source of a, while u is its target. An
undirected path is a path in the underlying graph where one forgets the orientation of the
edges. (See [2] for more details.) In a directed graph, a vertex v of a cycle ω is a turning
vertex of ω if all directed edges incident to v in ω are either all of source v or all of target v.

▶ Theorem 22 (Shoesmith and Smiley [37]). If a non-empty set S of vertices of a directed
graph G contains a turning vertex of each undirected cycle of G, then S contains a vertex
which is a turning vertex of every undirected cycle it belongs to.

Proof. Forget the orientation of the graph, but let c(e, v) = 0 if v ∈ S is the source of e,
c(e, v) = 1 if v ∈ S is the target of e and c(e, v) = e /∈ {0; 1} otherwise. Cycles with no turning
vertex in S are exactly cusp-free cycles, so Theorem 8 with P := {(v, α) | v ∈ S, α ∈ {0; 1}}
yields a splitting vertex v ∈ S, which is a turning vertex of every cycle it belongs to. ◀

We need the parametrized version of our result to deal in a simple way with the parameter
S. Here again, an edge-coloring c is not enough for proving Theorem 22 without changing the
structure of the graph: look at Figure 8 with all vertices in S. To have the equivalence between
cycles without turning vertex and cusp-free cycles, one needs c(f) = c(g) ̸= c(e) = c(f).
▶ Remark 23. Shoesmith and Smiley’s stated and proved Theorem 22 to handle a particular
kind of proofs represented as graphs [36], sharing striking similarities with proof nets of
multiplicative linear logic (notably, forbidding some classes of cycles).1 Moreover, Theorem 22
can be used directly to obtain a splitting ` in a proof net by instantiating S as the set of all
`-vertices. Furthermore, Shoesmith and Smiley’s proof of this theorem is quite similar to our
proof by cusp minimization: the key idea of both proofs is to look at cycles with a minimal
number of cusps (or turning vertices). Still, there are important differences: we construct an
explicit order relation on vertex-color pairs, while their proof builds an infinite path to reach
a contradiction; besides, the association of colors with vertices in our parameter makes our
result more modular. This is particularly relevant for proof nets: Theorem 22 seems limited
to giving a splitting `, without the unifying character of Theorem 8 seen in Section 5.

Theorem 16 implies another generalization of Yeo’s theorem [13]. An H-coloring is an
edge-coloring with colors the vertices of a graph H. An H-cycle is a cycle where the colors
of consecutive edges (including the last and first ones) are linked by an edge in H. When
H is a complete graph, we recover the standard edge-coloring and H-cycles correspond to
alternating cycles. A complete multipartite graph R has vertices S1 ⊎ . . . ⊎ Sk (disjoint
union) where each Si is an independent set of vertices (no edge in R between vertices of Si)
and if v ∈ Si and u ∈ Sj (with i ̸= j) then there is exactly one edge between them in R.

▶ Definition 24. Given a graph G with an H-coloring c, and v a vertex of G, Gv is the
graph with vertices the edges of G incident to v, and one edge between e and f if and only if
their colors c(e) and c(f) are linked by an edge in H.

1 We were not aware of this work during the research leading to the present paper: it only came to our
attention via Szeider’s equivalence results [38]. As far as we know, 46 years after the publication of [36]
and 37 years after the publication of [14], the first line of work has been ignored by the linear logic
community: it would certainly be of interest to investigate further connexions with proof nets.
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▶ Theorem 25 ([13, Theorem 2]). Take H a graph and G a non-empty H-colored graph.
Assume G has no H-cycle and that, for every vertex v of G, Gv is a complete multipartite
graph. Then there exists a vertex v of G such that every connected component D of G− v

satisfies that the set of edges of G between v and vertices of D is an independent set in Gv.

Proof. Define a local coloring c by c(e, v) is the independent set in Gv to which e belongs. For
G has no H-cycle, it has no cusp-free cycle for c, and the result follows by Theorem 16. ◀

As far as we know, this theorem was not known to be equivalent to Yeo’s theorem before.

7 Conclusion

We gave a new simple proof of sequentialization, as a corollary of a generalization of Yeo’s
theorem (Theorem 8), by defining an appropriate coloring. This new theorem is very modular:
it can give a splitting terminal vertex, a splitting `-vertex, or a general splitting vertex. This
generalization has a simple proof, that can be reformulated as a proof of sequentialization
just by defining what is a cusp in proof structures. It also allows to deduce theorems known
to be equivalent (Theorems 17, 19–22, and 25), again just by defining a coloring. Thus, our
simple proof can also be adapted as one of any of these results by defining what is a cusp.

Focusing on proof nets, this approach can be extended to richer systems than cut-free
MLL. As usual, dealing with cuts is easy once we know how to deal with (⊗) rules. Dealing
with multiplicative units is also straightforward, as long as we allow for mix-rules and forget
about DR-connectedness [11]: those just amount to the introduction of premise-free vertices,
without any particular treatment. Our approach is also successful without the mix-rules, in
a framework with a jump edge for each ⊥-vertex (linking it with another vertex) [18, 23, 22].
One should only take care that cusps are exactly made by the non-jump premises of `-vertices;
this can be done e.g. by giving a new color to each jump edge.

Similarly, sequentialization in presence of exponentials – with structural rules (weakening,
contraction, dereliction for the ? modality) and promotion – is also easy to deduce from
the multiplicative case: contraction is treated as a `-vertex, and promotion boxes allow to
sequentialize inductively. Again, this works both with the mix-rules or with jump edges [18].

Dealing with additive connectives in the spirit of the unit-free multiplicative-additive
proof nets from Hughes and van Glabbeek [24] requires more work, but our approach can be
adapted, yielding a proof of sequentialization in a much more involved context. The main
price to pay is establishing a further generalization of Theorem 8 allowing some cusp-free
cycles – whose proof also reposes on the cusp minimization lemma. The argumentation for
the additives then follows the same idea as the one for MLL: a non-splitting vertex cannot be
maximal for ◁. As in MLL, the approach is robust enough to also enable sequentialization
through terminal vertices, as opposed to what is done in [24]. Nevertheless, the technical
details are a bit more involved, making this result out of scope for the present paper.

More details about the results presented in this paper and in particular regarding the
extension to the additive connectives can be found in [9, Part II].
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