Erratum to the paper “The relational model is injective for Multiplicative Exponential Linear Logic (without weakenings)”

Daniel de Carvalho and Lorenzo Tortora de Falco

In Definition 17, the set \(b(v) \) has to contain only ports of the PS that are minimal in \(B_v \) w.r.t. the order relation \(\leq \), i.e. we have to add the following condition on the function \(b \):

for any \(v \in C'(\Phi) \), for any \(p_1, p_2 \in b(v) \), we have \(p_1 \leq \Phi p_2 \Rightarrow p_1 = p_2 \),

which yields the following definition:

Definition 17 A Proof-Structure (PS) is a pair \(R = (\Phi, b) \) where \(\Phi \in LPS \) and \(b \) is a function \(C'(\Phi) \rightarrow \mathcal{P}(\text{Auxdoors}(\Phi)) \) such that for any \(p \in \text{Auxdoors}(\Phi) \), \(\#_\Phi(p) = \text{Card}\{l \in C'(\Phi) | p \in b(l)\} \) and, for any \(v \in C'(\Phi) \), for any \(p_1, p_2 \in b(v) \), we have \(p_1 \leq \Phi p_2 \Rightarrow p_1 = p_2 \). Proof-Structures are defined by induction on the number of \(! \)-cells: we ask that with every \(v \in C'(\Phi) \) is associated a PS called the box of \(v \) (denoted by \(B(R)(v) \)), and defined from the following subset \(B_v \) of \(\mathcal{P}(\Phi) \):

\[
B_v = \{ q \in \mathcal{P}(\Phi) | (\exists p \in P^{aux}_\Phi(v) \cup b(v)) \ p \leq \Phi q \}.
\]

We ask that for \(v, v' \in C'(\Phi) \) either \(B_v \cap B_{v'} = \emptyset \) or \(B_v \subseteq B_{v'} \) or \(B_{v'} \subseteq B_v \).

In order to define \(B(R)(v) \) one first defines \(\Psi \in \text{PLPS} \), starting from two sets \(L_0 \) and \(P_0 \) and from two bijections \(p_1 : L_0 \rightarrow b(v) \) and \(p_0 : L_0 \rightarrow P_0 \), by setting:

- \(C(\Psi) = L_0 \sqcup (\mathcal{P}(C_\Phi)(B_v) \setminus \mathcal{P}(C_\Phi)(b(v))) \)
- \(\mathcal{P}(\mathcal{C}(\Psi)) = (B_v \cup \{ P^{\psi!}_\Phi(v) \}) \sqcup P_0 \)
- \(\mathcal{C}_\Psi(p) = \begin{cases} C_\Phi(p) & \text{if } p \in B_v \setminus b(v); \\ l & \text{if } p = p_1(l) \text{ for } p \in b(v); \\ l & \text{if } p = p_0(l) \text{ for } p \in P_0; \\ v & \text{if } p = P^{\psi!}_\Phi(v); \end{cases} \)
- \(P^{\psi!}_\Psi(l) = \begin{cases} P^{\psi!}_\Phi(l) & \text{if } l \notin L_0; \\ p_0(l) & \text{if } l \in L_0; \end{cases} \)
\(P_{\Psi}^\text{left} = P_{\Psi}^\text{left} \mid C_{m(\Phi)} \cap C_{\Phi}(B_v) \):

- \#_{\Psi}(p) = \text{Card}\{w \in C^1(\Phi) \cap P_{\Phi}(B_v) \mid w \neq v \text{ and } p \in b(w)\}:
- \mathcal{I}(\Psi) = \emptyset:
- \mathcal{W}(\Psi) = \{\{p, q\} \in \mathcal{W}(\Phi) \mid p, q \in B_v\}.

The box of \(v \), denoted by \(B(R)(v) \), is the pair \((\Phi_v, b_v)\), where \(\Phi_v \) is obtained from \(\Psi \) by eliminating the terminal link \(v \) (Definition 85) and \(b_v = b|_{C(\Phi_v)} \).

We set \(LPS(R) = \Phi, b(R) = b \) and we will write the ports of \(R \) (resp. the cells of \(R \)) meaning the ports of \(\Phi \) (resp. the cells of \(\Phi \)).