
Strong Normalization Property
for Second Order Linear Logic

Michele Pagania,1, Lorenzo Tortora de Falcob

aDipartimento di Informatica – Università di Torino
Corso Svizzera 185, 10149 Torino, Italy

bDipartimento di Filosofia – Università Roma Tre
Via Ostiense 231, 00144 Roma, Italy

Abstract

The paper contains the first complete proof of strong normalization (SN) for full second
order linear logic (LL): Girard’s original proof uses a standardization theorem which is
not proven. We introduce sliced pure structures (sps), a very general version of Girard’s
proof-nets, and we apply to sps Gandy’s method to inferSN from weak normalization
(WN). We prove a standardization theorem for sps: ifWN without erasing steps
holds for an sps, then it enjoysSN. A key step in our proof of standardization is a
confluence theorem for sps obtained by using only a very weak form of correctness,
namely acyclicity slice by slice. We conclude by showing howstandardization for sps
allows to proveSN of LL, using as usual Girard’s reducibility candidates.

Key words: (weak strong) normalization, confluence, standardization, linear logic,
proof-nets, additive connectives, sliced pure structures

1. Introduction

In every abstract approach to computation, the distinctionbetween terminating and
non-terminating processes is crucial. A rewriting system enjoys weak normalization
(WN) if every term of the system can be executed in a finite number of steps.

In the λ-calculus, non terminating computations start fromλ-terms that strongly
exploit self-application: everyλ-term can be applied to itself (see for example [13]).
Termination fails for theλ-calculus (even in its weak formWN), but holds for some of
its most remarkable subsystems: the simply typedλ-calculus and its extension Girard’s
system F ([6]). The proofs ofWN for these calculi have a deep logical content: they
correspond to proofs of consistency in the logical sense, ashighlighted by theproofs-
as-programsparadigm. This paradigm is also calledCurry-Howard isomorphismand
establishes a correspondence between a fragment of intuitionistic natural deduction

Email addresses:pagani@di.unito.it (Michele Pagani),tortora@uniroma3.it (Lorenzo
Tortora de Falco)

1This work has been supported by the postdoc fellowship “Ricerche sulla geometria della logica”, Dipar-
timento di Filosofia, Università Roma Tre

Preprint submitted to Elsevier June 19, 2009

and the typedλ-calculus, so that basically: (i) a type can be seen as a formula (and
vice versa); (ii) aλ-term can be seen as a proof (and vice versa); and (iii) theβ-
reduction of aλ-term can be seen as the application of the cut-elimination procedure
to the corresponding proof (and vice versa). Theβ-redexes correspond to the cuts of
the natural deduction (i.e. to the pairs of an introduction rule and an elimination rule
of the same connective [19]), hence theβ-reduction to a normal form is equivalent
to a strategy for eliminating the cuts in a proof:WN corresponds exactly to cut-
elimination. In traditional proof-theory (dating back to Gentzen) cut-elimination is a
key property of a logical system, from which the consistencyof the system immediately
follows2: WN of the simply typedλ-calculus (resp. of system F) corresponds then to a
consistency proof for the implicational fragment of intuitionistic natural deduction NJ
(resp. second order natural deduction NJ2).

The proofs-as-programs approach is a way to put constraintson the possibility of
building λ-terms, and more precisely on self-application: from the logical point of
view, these constraints are sufficient conditions to prove the consistency of the cor-
responding logical system3. While in the simply typedλ-calculus self-application is
simply forbidden, in system F a (weak) form of self-application is accepted. System
F combines then computational strength and termination (here is the remarkable in-
terest ofWN for F). Gödel’s second incompleteness theorem sheds then anew light
on the “difficulty” (and the deep meaning) of the terminationproperty. Indeed, Peano
Arithmetic PA can be translated into NJ2, so thatWN for F cannot be proven within
NJ2 (and of course this holds for any subsystem of theλ-calculus whose corresponding
logical system contains PA).

The terms of system F actually enjoystrong normalization(SN), a much stronger
termination property thanWN: whatever execution strategy one applies to F’s terms
one eventually reaches a normal form.SN corresponds to saying that the tree of the
computations starting from a term is well-founded. Severaltechniques to inferSN
from WN have been proposed (see for example [21]). In [8] (p.150-159), the author
adapted Gandy’s proof for Gödel’s system T (see [5]) to NJ. The general method pro-
posed by Gandy can be applied to any logical system S as follows:

1. modify S in such a way that “nothing is lost” during normalization4 (rewriting
steps never erase pieces of proofs): let’s denote by

¬e
−→ the rewriting rule of S

“without erasing steps”;
2. proveWN for

¬e
−→ (we ’ll often write in the sequel that S enjoysWN¬e) and

confluence5 for
¬e
−→;

2Things went actually the other way round: cut-elimination was proven by Gentzenin order to prove
consistency of Peano Arithmetic PA.

3A term associated with a proof in a logical system is often said to betyped, the conclusion of the proof
is atypeof the term.

4Thanks to the Curry-Howard isomorphism one can use the language ofλ-terms for proofs, and vice
versa.

5A rewriting system enjoys the confluence property when ift
∗
−→ t1 andt

∗
−→ t2, there always existst′

such thatt1
∗
−→ t′ andt2

∗
−→ t′, wheret, t1, t2, t′ are terms and

∗
−→ is the reflexive and transitive closure of

the rewriting rule of the system, see Section2.2.

2

3. define on the proofs of S a size function| · |, which is strictly increasing with
respect to

¬e
−→;

4. conclude that S enjoysSN.

Notice that the size function| · | “computes” an upper bound for the length of the
¬e
−→ reduction sequences starting from any proofπ of S: it is the value of| · | on the
¬e-normal form ofπ.

Linear Logic (LL [7]) is a refinement of intuitionistic logic and of classical logic,
which gives alogical status to the operations of erasing and copying (corresponding to
thestructural rulesof intuitionistic logic and of classical logic). This change of view-
point on structural operations has striking consequences:one of the most important
is the introduction of proof-nets (simply callednetsin this paper). Proof-nets yield a
graph-theoretical representation of computation, where the strict distinction between
inputs and outputs completely vanishes (this is a sharp difference between nets andλ-
terms). In LL, cut-elimination is defined directly for proof-structures (general graphs
which are not necessarily proofs), and nets are the “correct” proof-structures (the ones
satisfying acorrectnesscondition). The presence of proof-structures as new computa-
tional objects widens the space of possible interactions between logical agents: this
makes the system much richer and more complicated. We’ll show how, for the termina-
tion property of LL proof-structures, not only the distinction typed/untyped is relevant
(this was already the case forλ-terms), but also the one correct/noncorrect (which is
independent from the typed/untyped one). Indeed this idea underlies much of Girard’s
work, since [7]: the correspondence between logical correctness and termination prop-
erty.

We present the first complete proof ofSN for full second order LL: we proveSN
for Girard’s nets as presented in [24]. BecauseSN of full second order LL entails the
consistency of (second order) PA, its proof cannot be carried out within PA: it uses Gi-
rard’s reducibility candidates (introduced in [6] and already used for LL in [7]). How-
ever, by applying Gandy’s method to LL, we show that strong principles are needed
only to proveWN (more preciselyWN¬e).

Some readers might be surprised that so many years after the discovery of LL (and
after so many papers on the subject) no complete proof ofSN for LL has been given.
In [7] Girard gives a “proof” ofSN based on a theorem calledstandardization theorem
(theorem 4.25 p.72 of [7]), which is not proven in the paper6. Intuitively, the theorem
states that if a net can be transformed into a¬e-normal form “without applying erasing
steps”, then it enjoysSN. This basically corresponds to achieving all the tasks of
Gandy’s method, except the proof ofWN¬e.

In LL, the absence of a unique output (actually the vanishingof the distinction be-
tween inputs and outputs) entails the absence of a distinguished cut (something like a
“head cut”). There still exists some kind of hierarchy on cuts in LL nets (namely the

6Let us point out here that the word “standardization” used byGirard might be misleading w.r.t. theλ-
calculus literature: the “standardization property” of theλ-calculus refers to a different well-known theorem,
while Girard’s standardization theorem is calledconservation theorem(see e.g. [1]); moreover, Girard’s
standardization is called “propriété de striction” by Danos in [2] (théorème 8.31 p.64). In the present paper
we will adopt Girard’s terminology, however.

3

so-calledexponential depth), but no difference can be made between two cuts with the
same depth. Worse, the reduction of a cut may seriously affect the status (and thus
the potential reduction) of other cuts at the same exponential depth. There is no ana-
logue of such a meddling of cuts in the life of their fellows with the same exponential
depth in theλ-calculus: theβ-reduction of a redex may affect other redexes only if
these last ones are deeper than the former one (in LL terminology: the affected redexes
must have a greater exponential depth than that of the reduced one). The reader can
refer to Subsection3.2 (where the notion ofexponential dependenceis introduced to
overcome this difficulty) for a more precise discussion. Allthis makes the standard-
ization theorem an essential ingredient of theSN proof for second order LL, whichis
not a straightforward adaptation of theWN proof. This is in sharp contrast with what
happens for Girard’s system F (see [6]). The presence of an head redex in F’s terms
makes it easy to turn the proof ofWN into a proof ofSN (by a slight modification of
the definition of reducibility candidate): the proof ofSN is an easy variant of the proof
of WN in system F. One might find more elegant (following Gandy) to distinguish the
logical part of theSN proof (the proof ofWN) from the purely combinatorial part (the
proof of the standardization theorem) but in F it is still possible to mix them without
loosing control on the combinatorial part of the proof. Thisbecomes very difficult in
LL, where a subtle theorem of standardization is needed to turn WN into SN. Some-
thing similar to what we have in LL can be found inλ-calculi with explicit substitution
(see for example [4]).

In [2], Danos proves standardization (théorème 8.31 p.64) forsecond order multi-
plicative and exponential LL (MELL2), a significant fragment of LL containing sys-
tem F: Danos’ result achieved the proof ofSN for MELL 2. Later on,SN of several
other classical and linear systems has been proven thanks toappropriate embeddings
in MELL 2 (see for example [3] and [15]). But up to now, no proof ofSN was avail-
able for the full system, essentially because of the presence of the additive connectives,
whose computational behaviour is difficult to handle (for example, cut-elimination is
not confluent in presence of the additives, at least in the traditional syntax). The main
goal of the paper is to finally fill this (rather big) gap in LL’sliterature. For the sake
of completeness, we mention here two previous attempts to prove this result: annexe
A of [23] and [18]. In annexe A of [23] a proof of a variant of the standardization
theorem is given but, as explained in that paper, it is not sufficient to proveSN for full
LL. In [18], a nice approach to termination using phase semantics is proposed, which
is suitable forWN (at least in the fragment MELL2) but not forSN: on the one hand
the proof of standardization for MELL2 is not convincing (it is only “sketched” as the
author writes) and on the other hand in presence of the additives the considered cut-
elimination procedure is not the full one (see Subsection5.2 for a detailed discussion
on [18]).

Our approach is to start from scratch, having in mind the two following guidelines:

• as soon as the system is powerful enough, the combinatorial part of theSN proof
(standardization or any of its variants) should be split from the part involving
logically strong principles (WN or any of its variants);

• it should be stressed where logic (more precisely types and correctness) comes

4

into the picture: to which extent is it possible to compute with untyped proof-
structures?

Our main contribution is actually a standardization theorem (Theorem4.2), proven
for “sliced pure structures” (sps) — a notion of proof-structure which yields a better
account of additive cut-elimination than the nets of [7]. Section5 studies the transla-
tion from nets to sps, proving in particular that a net isSN whenever its translation into
sps isSN. The notion of “slice” was introduced in [7] in order to reduce the diffi-
culty of dealing with the additive connectives. In the polarized framework, its variant
“sliced proof-structure” is proven to enjoy nice properties [16]. The main reason why
we use slices in this paper is that we need to prove a confluenceproperty (remember
it is part of Gandy’s method), and it is the only known syntax of LL for which one
can hope to prove such a property. Our sps are an extension of sliced proof-structures
to full untypedLL. Indeed, following the idea that types and correctness should be
used only when necessary, we start our analysis with the mostgeneral kind of graph
we have: untyped and noncorrect. We show in Section2 how one can always com-
pute with such general structures. This is a first novelty of our paper: both in [7]
and [24], in presence of the additives, computations are defined only for nets (typed
and correct proof-structures). However, without any kind of correctness, computation
behaves very badly (and this is not related to the presence/absence of types): we give
a counterexample to bothWN and confluence for such general (noncorrect) sps (see
Figure12). We then introduce the correctness condition “acyclicityslice by slice” (AC
condition, Definition2.15). It is well-known that this condition is far too weak to char-
acterize proofs (see [10]), and there is a wealth of papers presenting criteria stronger
than the correctness slice by slice in order to characterizelogical correctness (see for
instance [10, 11]). What we show here is that, despite its weakness, theAC condition
is sufficient to prove confluence (Theorem4.18) and standardization (Theorem4.2):
from the computational point of view only a very weak form of correctness is needed.

Let us now describe more precisely the structure of the paper. As the connection
between the different results is rather delicate and complex, we conclude the introduc-
tion by a graphical representation of the logical structureof the paper (see Figure1).
Also, the whole paper is scattered with examples and figures:we hope this will help
the reader.

Section2 is devoted to sps. In Subsection2.1 we define sps (Definition2.2) and
their cut-elimination (Definition2.12). Subsection2.4is entirely devoted to motivating
our results and choices by several examples and counterexamples. In Subsection2.5
we introduce the weak form of correctness used in the paper and expressed by theAC
condition of Definition2.15.

Section3 achieves a first essential step of our proof: Definition3.1 splits the cut-
elimination rewriting rule (denoted by

cut
−−→) into two strongly normalizing reductions,

the logical reduction (
log
−−→, proven to enjoySN in Proposition3.4) and the structural

reduction (
str
−−→, proven to enjoySN in Proposition3.10). These two reductions are

disjoint and their union is
cut
−−→; they both enjoySN on sps satisfyingAC, even if their

union
cut
−−→ does not even enjoyWN (the untypedλ-calculus can be embedded in sps

satisfyingAC, see in particular the example of Fig.10). Propositions3.4and3.10are

5

essential ingredients in the proof of confluence (Theorem4.18) of the next section.
In Section4 we apply Gandy’s method to sps: we distinguish the erasing cuts from

the non erasing ones and we define the
¬e
−→ rewriting rule for sps (Definition4.1).

We then explain (Subsection4.1) why SN of
¬e
−→ entailsSN of

cut
−−→: a postponement

lemma (Lemma4.4) allows to “delay” erasing steps after any non-erasing one,from
which the result easily follows (Proposition4.5). Subsection4.2shows that fromWN
of

¬e
−→ one can deduceSN of

¬e
−→: the key point here is the confluence theorem (The-

orem4.18), proven for alabelledversion of sps (see Definitions4.6and4.7). We first
prove that labels allow to define an increasing size on (labelled) sps7, and that (assum-
ing confluence holds) this allows to proveWN¬e = SN¬e for sps satisfyingAC: from
this equality and Subsection4.1, our main result (standardization, Theorem4.2) im-
mediately follows. The rest of Section4 is devoted to the proof of confluence, based
on the following results:

1. confluence of the labelled version of the logical reduction
log
−−→ of Section3: it

follows from local confluence (Lemma4.12) andSN (immediate consequence
of Proposition3.4of Section3);

2. confluence of the labelled version of the structural reduction
str
−−→ of Section3:

it follows from local confluence (Lemma4.14) andSN (immediate consequence
of Proposition3.10of Section3);

3. commutation of the labelled versions of
log
−−→ and

str
−−→ (Lemma4.17);

4. Hindley-Rosen lemma (see [12]): a rewriting rule which is the union of two
confluent rewriting rules which commute is itself confluent.

It is important to stress the fact that confluence (so as the main result of the paper, The-
orem4.2) is far from being an immediate consequence of the same result for MELL.
It is only partially true that sps allow to work “slice by slice”: the additive commu-
tative normalization step (the nightmare of normalizationin presence of the additives,
see Section5 and Figure19) is not explicitely present in our syntax, but it is hidden
in other normalization steps (the(!/?d) and the(!/!) steps of Definition2.12). Indeed
the exponential connectives are the bridge between the additive and the multiplicative
worlds through the isomorphism!(A&B) = !A⊗ !B.

Last, Section5 introduces the nets of [24] with units, and it turns a proof ofWN¬e

for sps into a proof ofSN for the nets of [24]. The syntax of [24] is described in
Subsection5.1 and it generalizes Girard’s notion of net, [7]. As already mentioned,
confluence (even local confluence) fails for nets, hence to apply Gandy’s method one
must pass through a confluent syntax, in our case the syntax ofsps. Subsection5.2
contains the motivations for our choice of sps and relates our results to previous at-
tempts (namely [7] and [18]). Subsection5.3gives a translation of nets into sps, called
slicing, and it shows that the slicing of a netβ satisfiesAC (Proposition5.1), and that
β enjoysSN whenever its slicing does (Proposition5.6). Finally in Subsection5.4we
prove that the slicing of any net enjoyWN¬e (Theorem5.11). Standardization for sps
(Theorem4.2) allows then to concludeSN for nets (Theorem5.12). Actually, the proof

7Notice that theAC condition is not needed here.

6

of Theorem5.11is given in a terse and sketchy style (using a simple variant of Girard’s
reducibility candidates): this is because there is no doubtabout this result, and no real
point in giving more details in the present paper.

Added in print. During the last revision of the paper, we realized that the proof of our
main Theorem (Theorem4.2) can be simplified thanks to a result of Bezem and Klop.
Indeed item (iii) of Theorem 1.2.3 p. 18 of [22] says that an abstract rewriting system
enjoying local confluence,WN and such that it is possible to define an increasing
size, enjoys alsoSN. In our framework, this means that in order to proveWN¬e =
SN¬e (Proposition4.10) we only need local confluence instead of confluence. This
essentially means that in order to prove Theorem4.2 one can omit Section3. Indeed
Lemmata4.12, 4.14and4.16suffice to prove the local confluence of the labelled cut-
elimination. By the way, notice that this holds for the fragment MELL2 too, so that
Danos’ standardization theorem (théorème 8.31 p.64 of [2]), and thusSN for MELL 2,
can be proven using local confluence instead of confluence.

However, we decided to keep the present version of the paper since we believe
that confluence for sps (Theorem4.18and Remark4.19), so as confluence for Danos’
nets , are interesting results by themselves. Furthermore,thestr-measure defined in
Section3 is rather sharp and can be generalized to other notions of net(like for example
differential nets [25], [26]); it should be a useful tool also forλ-calculus with explicit
substitutions (see for example [4]).

Let us also mention that correctness is used in our proof ofSN in three points:
under the form of theAC condition, (i) to prove theSN of structural reduction (Propo-
sition 3.10), (ii) to prove the local confluence of structural reduction(Lemma4.14),
hence confluence of cut-elimination (Theorem4.18); under the form of sequentializa-
tion, (iii) to proveWN¬e (Theorem5.11). The simplified proof just mentioned uses
only (ii) and (iii).

Contents

1 Introduction 1

2 Definitions 10
2.1 Sliced pure structures. 10
2.2 Compendium of rewriting theory. 12
2.3 Cut-elimination . 14
2.4 Examples of reductions. 19
2.5 Switching acyclicity. 23

3 Two results of strong normalization 25

3.1 The strong normalization of
log
−−→ . 25

3.2 The strong normalization of
str
−−→ . 27

7

4 Standardization for sliced pure structures 38
4.1 SN is a consequence ofSN¬e . 38
4.2 SN¬e is a consequence ofWN¬e . 39

4.2.1 Confluence of
ℓ
−→ . 41

5 Strong Normalization for Linear Logic 49
5.1 The syntax of nets. 49
5.2 A digression on standardization. 51
5.3 Slicing nets . 53
5.4 Strong normalization for nets. 56

8

Th. 5.12
SN

Th. 5.11
WN¬e

Prop.5.9

Th. 4.2
standardization
WN¬e ⇔ SN

Prop.4.5
SN¬e ⇔ SN

Lemma4.4

Lemma4.3

Prop.4.10
WN¬e ⇔ SN¬e

Lemma4.9 Th. 4.18
ℓ-confluence

Prop.4.13
logℓ-confluence

Prop.3.4 Lemma4.12

Lemma2.7
Newman

Prop.4.15
strℓ-confluence

Prop.3.10

Fact3.6 Fact3.9

Lemma4.14

Prop.2.16
AC stability

Lemma4.17
commutation

logℓ/strℓ

Lemma4.16

Prop.5.1 Prop.5.6

Lemma5.3

Lemma2.8
Hindley-Rosen

Lemma5.5

Lemma2.9
Di Cosmo-Piperno-Geser

9

for i ∈ {1, 2}

ax cut ?w ?d ?c !

· · ·

&i ⊤

· · ·
⊥ 1 ` ⊗⊕i

Figure 2: Sps links

2. Definitions

In this section we introduce the main tools used in the sequelof the paper. In Sub-
section2.1 we define sliced pure structures (sps), Subsection2.2 is devoted to recall
some standard results in rewriting theory that will be applied to cut-elimination of sps,
and in Subsection2.3 we define cut-elimination for sps. After the main definitions,
we illustrate by means of several examples the notions previously introduced (Subsec-
tion 2.4); we then conclude by presenting theAC condition (Subsection2.5).

2.1. Sliced pure structures

We start by extending to full LL the definition of “sliced proof-structure” given
in [16] for the polarized fragment. In the style of [17], we work in an untyped frame-
work.

Definition 2.1 (Flat). A flat is a finite (possibly empty) labelled directed graph whose
nodes (also called links) are defined together with an arity and a coarity, that is a given
number of incident edges called thepremisesof the node and a given number of emer-
gent edges called theconclusionsof the node. The valid nodes are pictured in Figure2.

The !-links and the⊤-links have a distinguished conclusion (denoted in Figure2
by a bold arrow) calledmainconclusion of the link; the other conclusions, if any, are
theauxiliary conclusions. We allow edges with a source but no target, theyare called
conclusionsof the flat.

Links will be denoted by Latin lettersl, m, . . . Flats will be denoted by initial Greek
lettersα, β, . . .

Notice that every edge must beconclusion of a link, but it needs not beconclusion
of a flat. When drawing flats we represent edges oriented downwards and we will
omit to write explicitly the orientation of the edges. Moreover, we speak of moving
“downwards” or “upwards” in the graph, and of nodes or edges “above” or “under” a
given node/edge.

Sliced pure structures are, basically, multisets of slices, and slices are flats having
the !-links parameterized by sliced pure structures. This meansthat slices and sliced
pure structures must be defined simultaneously by inductionon the exponential depth,
i.e. on the numberd of nesting of!-links.

10

Definition 2.2 (Sliced pure structure). A slice of depth at most0 is simply a flat with-
out !-links. A slice of depth at mostd + 1 is a flatα such that with every!-link o of α
with no + 1 conclusions is associated a sliced pure structure of depth at mostd, called
the box ofo and denoted byπo, with no auxiliary conclusions corresponding to the
no auxiliary conclusions ofo and another conclusion, themainconclusion of the box,
corresponding to the main conclusion ofo.

A sliced pure structure, sps for short,of depth at mostd is a finite (possibly empty)
multiset of slices of depth at mostd with the same conclusions: we mean that an sps
comes equipped with an equivalence relation on the conclusions of its slices s.t. every
equivalence class contains exactly one conclusion for eachslice. The conclusions of
the sps are the equivalence classes of the conclusions of itsslices.

We denote slices by initial Greek lettersα, β, . . . , sps by final Greek lettersπ, σ, . . .
The depth of a sliceα (resp. an spsπ) is the leastd such thatα (resp.π) is of depth

at mostd. A flat α at depthd in an spsπ is a flat at depthd in a sliceβ of π; α is at
depthd in β if d = 0 andα is β (considered as a flat), ord > 0 andα is a flat at depth
d− 1 in a box associated with a!-link of β (considered as a flat). A linkl at depthd in
π is a link l of a flatα at depthd in π. We denote bydepthπ(l) the depthd of l in π.
We refer more generally to a link/flat ofπ meaning a link/flat at some depth inπ. We
use the same terminology for the edges ofπ. We denote by!0(π) the set of!-links at
depth0 in π. Thesizeof π, denotedsize(π), is the number of links (at any depth) ofπ.

Given a linkl of an spsπ, we will often speak of “the flat ofl” always meaning
the flat at some depth inπ containingl. The reader should notice that our sps are
multisets of slices, and not simply sets, as it is in [16], [17]: this quibble is needed to
avoid an unnatural erasing of slices during cut-elimination. We refer to Subsection2.4
for examples of this phenomenon. We use the additive notation for multisets:0 is the
empty multiset,π + σ is the disjoint union ofπ andσ (repetitions do matter); an sps
π can also be written as

∑

α∈π α. As a consequence, when we writeα ∈ π, we are
considering an occurence ofα in the multisetπ, and when that expression binds an
operator, as for example in

∑

α∈π, we mean that
∑

α∈π varies on the set of occurences
of π’s slices.

Figure3 is an example of sps of depth1; the correspondence between the conclu-
sions of the box of a!-link and the conclusions of the!-link is given in the figure by the
order of the edges (from left to right).

Remark 2.3. Notice that, by definition, the boxes of an sps satisfy anesting condition:
two boxes are either disjoint or contained one in the other.

Remark 2.4. Once the decision to work without types has been taken, the question
arising is: to which extent? A possibility was to use recursive types (like in [2], [20]),
another one to type only?-edges (like in [17]). In the general LL case that we con-
sider here, none of the answers is completely satisfactory and we decided to work in a
strongly untyped framework. There are little surprises following this choice: the main
one is that a clash (Definition2.10) might become reducible after some cut-elimination
steps (Definition2.12): for example, the cuts of Figure3 is a clash, but it becomes
reducible after the reduction of the cutr (see Subsection2.4). However such oddities
cause no problem w.r.t. our purposes.

11

+

?d

1

cut
r

!m
⊥

cut
s

cut

&1

ax ax

⊕1

p

ax

cut

⊕2

ax

&2

q

!

cut
t

o

ax ax

⊕2

cut

&1

u

ax

cut

⊕1

ax

&2

v

+

Figure 3: An example of sps

Remark 2.5. In order to have a very general result we had to use all the links of [7],
including⊤. A possible (and rather natural) choice was to rule out that link and to
represent the⊤ rule as empty sps (like in [14]). Indeed, such a choice would realize
a greater quotient on proofs: this notion of sps is “closer” to denotational semantics.
However, the absence of⊤ in sps makes it more difficult to infer strong normalization
of LL nets from strong normalization of sps (Proposition5.6). More precisely, we
would lose Lemma5.3: this is the reason for our choice.

Anyway all the properties we prove for our sps still hold for⊤-free sps (in particular
Theorem4.2).

Remark 2.6. Concerning the presence of empty structures, notice that:

• the empty flat does exist (and so do the empty slice and sps containing the empty
slice), and it has no conclusion. Its presence is required bythe cut-elimination
procedure (Definition2.12): the procedure applied (for example) to the sps con-
taining a unique flat consisting of a1-link a cut and a⊥-link yields the empty
graph;

• with a !-link o of an sps, it isneverpossible to associate an sps containing the
empty slice:o has at least one conclusion and this has also to be the case forthe
sps associated witho;

• empty sps (that is empty multisets of slices) do exist: thereis one such sps for
every set of conclusions.

The reader should notice the difference between the empty slice, that is the empty
graph, and empty sps, that is empty multisets of slices. Theyare two different kinds
of emptyness, the first one is multiplicative (it can be produced by eliminating a mul-
tiplicative cut), while the second one is additive (it can beproduced by eliminating an
additive cut).

2.2. Compendium of rewriting theory

Before introducing the cut-elimination on sps, we give a short reminder of some
standard terminology and results in rewriting theory, which will be used in the sequel.
Our references will be [12] and [22].

12

π
x //

x

��

π1

x∗

��
π2

x∗ // π3

(a) local confl.

π
x∗ //

x∗

��

π1

x∗

��
π2

x∗ // π3

(b) confluence

π
x //

x

��

π1

x

��
π2

x // π3

(c) strong confl.

π
x∗ //

y∗

��

π1

y∗

��
π2

x∗ // π3

(d) commutation

π
x //

y

π1
y

// π2

π3

x∗

==

(e) postponement

Figure 4: Diagrams for confluence, commutation and postponement

Let
x
−→ be a binary relation on sps, then

x=
−−→,

x+
−−→ and

x∗
−→ denote, respectively, the

reflexive, transitive and reflexive/transitive closure of
x
−→.

Let π be a sps:π is ax-normal form whenever there is no spsπ1 with π
x
−→ π1;

π is weaklyx-normalizablewhenever there is ax-normal formπ1 s.t. π
x∗
−→ π1; π is

stronglyx-normalizablewhenever there is no infinite sequence(πi)i∈N s.t.π0 = π and
πi

x
−→ πi+1. We denote byWNx andSNx the sets of, respectively, weakly and strongly

x-normalizable sps. Clearly we haveSNx ⊆ WNx. We say that
x
−→ is weakly(resp.

strongly) normalizingon a setS of sps, ifS ⊆WNx (resp.S ⊆ SNx).
The relation

x
−→ is locally confluentif for everyπ, π1, π2 s.t. π1

x
←− π

x
−→ π2, there

is π3 s.t. π1
x∗
−→ π3

x∗
←− π2 (see Figure4(a));

x
−→ is confluentif for everyπ, π1, π2 s.t.

π1
x∗
←− π

x∗
−→ π2, there isπ3 s.t. π1

x∗
−→ π3

x∗
←− π2 (see Figure4(b));

x
−→ is strongly

confluentif for every π, π1, π2 s.t. π1
x
←− π

x
−→ π2, there isπ3 s.t. π1

x
−→ π3

x
←− π2

(see Figure4(c)). Strong confluence implies confluence and confluence implies local
confluence, and none of the converse implications holds (as it is well-known).

Two relations
x
−→ and

y
−→ commute, if for everyπ, π1, π2 s.t.π1

x∗
←− π

y∗
−→ π2, there

is π3 s.t.π1
y∗
−→ π3

x∗
←− π2 (see Figure4(d)); the relation

x
−→ can be postponedw.r.t. the

relation
y
−→, when for everyπ, π1, π2 s.t.π

x
−→ π1

y
−→ π2, there isπ3 s.t.π

y
−→ π3

x∗
−→ π2

(see Figure4(e)).

Lemma 2.7 (Newman).A locally confluent and strongly normalizing relation is con-
fluent.

Lemma 2.8 (Hindley-Rosen).If two relations
x
−→,

y
−→ are confluent and commute, then

their union
x
−→∪

y
−→ is confluent.

Lemma 2.9 (Di Cosmo-Piperno-Geser).Let
x
−→,

y
−→ be two relations s.t.

x
−→ is strongly

normalizing and for everyπ, π1, π2 s.t.π1
y
←− π

x
−→ π2, there isπ3 s.t. π1

x+
−−→ π3 and

13

π2
y∗
−→ π3, that is the following diagram holds

π
x //

y

��

π2

y∗

��
π1

x+
// π3

(1)

then
x
−→ and

y
−→ commute.

2.3. Cut-elimination

We now define the binary relation of cut-elimination
cut
−−→ on sps. Before the details

let us give an idea of how
cut
−−→works: to eliminate a cut at depth0 in a sliceα means in

general to transformα in an spsπα =
∑

i∈I α′
i, s.t. every sliceα′

i is obtained fromα
by substituting a specific subgraphβ of α with a subgraphβi having the same pending
edges (i.e. edges with no target or no source) asβ, as pictured below:

α =

ω

· · ·

· · ·
β

· · ·

cut
−−→ πα = · · ·

· · ·

· · ·

· · ·

· · ·
β1

· · ·

ω

βn

· · ·

ω

+ +

The numbern and the subgraphsβ, β1, . . . , βn depend on the cut we want to re-
duce. Definition2.11formalizes the notion of substituting a subgraph in a sps intro-
ducing the notion of module and one-hole context; Definition2.12and Figure5 give
the substitutions which define the cut-elimination.

As mentioned in the introduction, our sps are very general structures: they are
untyped and they may be incorrect (w.r.t. the proofs of LL). Even in such a general
setting cut-elimination can be defined and nice properties hold, as we will show in the
sequel of the paper. However, one has to handle carefully some strange phenomenons
related to this rather “wild” situation, like the presence of cuts which are not reducible:

Definition 2.10 (Clash and deadlock).The two edges premises of a cut link aredual
when one of the following conditions holds:

• they are conclusions of a⊗-node and of à -node,

• they are conclusions of a⊕i-node and of a&j-node (fori, j ∈ {1, 2}),

• they are conclusions of a1-node and of a⊥-node,

• one is the main conclusion of a!-node and the other one is either an auxiliary
conclusion of a!-node, or the conclusion of one of the following nodes:?c, ?w,
?d.

A cut node of an sps is:

14

• a clash, when the premises of the cut node are not dual edges and none of the
two is the conclusion of anax-link nor an auxiliary conclusion of a⊤-link;

• a deadlock, when the two premises of the cut link are conclusions of the same
ax-link (resp.!-link, ⊤-link);

• reducible, otherwise.

In Figure3, for example,t is a deadlock,s is a clash and the five other cuts are
reducible.

Definition 2.11 (Module, context closure, substitution).A moduleµ is an sps whose
slices at depth0 may have edges without source, calledhypotheses. In addition to hav-
ing the same conclusions, the slices of a module are requiredto have the same hypothe-
ses, i.e. a module comes equipped with an equivalence relation on the hypotheses of its
slices at depth0 s.t. every equivalence class contains exactly one hypothesis for each
slice at depth08.

A one-hole contextω[] is an sps having exactly one occurrence of a special cell, the
hole, which has an arbitrary arity and coarity. This formally means thatω[] = σ +α[],
whereσ is an sps andα[] is a slice having at depth0 either exactly one occurrence of
the hole or a!-link o such that witho is associated a one-hole contextρ[].

Given a one-hole contextω[] = σ + α[] and a moduleµ equipped with a bijection
between the hypotheses (resp. conclusions) ofµ and the premises (resp. conclusions)
of the hole inω[], we define the spsω[µ] by induction on the depth of the hole inω[]:

• if the hole has depth0 in α[], thenω[µ] = σ +
∑

β∈µ α[β], whereα[β] is
the slice obtained by substituting inα[] the sliceβ for the hole, i.e. identifying
the hypotheses (resp. conclusions) ofβ with the corresponding premises (resp.
conclusions) of the hole;

• if the hole is a cell of the one-hole contextρ[] associated with a!-link o at depth
0 in α, thenω[µ] is obtained by associating witho the spsρ[µ].

Thecontext closureof a binary relationR between modules is the smallest relation
containingR and such that for every one-hole contextω[], µRµ′ impliesω[µ]Rω[µ′].
We also say thatω[µ′] is the result ofsubstitutingµ′ for µ in ω[µ].

Definition 2.12 (Types of cut and cut-elimination).We define thereduction stepsas
the following relations between a single slice moduleβ, the redex, containing a re-
ducible cutt and a module

∑

i βi, the contractum. Apart from the cases(&i/⊕j),
(!/?d), the contractum is a single sliceβ′, too. All reduction steps are pictured in
Figure5.

(ax): β is made oft and two distinct linksl,n, each of them having one premise oft
as conclusion; moreover, one link betweenl,n, sayl, is anax-link and if n is a
⊤-link, then the edge shared byn andt is the main conclusion ofn. In this case
the contractumβ′ is simply the linkn.

8Of course since the slices at depth0 of a module have the same conclusions, there is also an equivalence
relation on the conclusions of the slices at depth0 of a module, as explained in Definition2.2.

15

(1/⊥): β is made oft, a 1-link and a⊥-link; a premise oft is the conclusion of the
1-link and the other is the conclusion of the⊥-link. In this case the contractum
β′ is the empty graph.9

(⊗/`): β is made oft, a`-link and a⊗-link; a premise oft is the conclusion of the
⊗-link and the other is the conclusion of thè-link. In this case the contractum
β′ is obtained fromβ by erasing thè -link, the⊗-link and the cut linkt (and
its premises) and by putting two new cut links between the twoleft (resp. right)
premises of thè -link and of the⊗-link10.

(⊤/cc): β is made oft, a⊤-link l having one premise oft among its auxiliary con-
clusions and a sliceγ (not containingl) having the other premise oft among its
conclusions. Let us calla (resp.b) the edge shared byt andl (resp.t andγ). The
contractumβ′ is a⊤-link, which we still calll, with conclusions the conclusions
of l different froma and the conclusions ofγ different fromb.

(⊕i/&j): β is made oft, a⊕i-link, and a&j-link; a premise oft is the conclusion
of the⊕i-link and the other is the conclusion of the&j-link. If i = j, then the
contractumβ′ is obtained fromβ by erasing the two links (and their conclusions)
and by moving up the cut link to their premises. Ifi 6= j, then the contractum is
the empty multiset.

(!/?d): β is made oft, a !-link with main conclusion a premise oft and a?d-link with
conclusion the other premise oft. Letρ be the sps associated with the!-link. If ρ
is the empty multiset, then so it is the contractum. Otherwise, with each sliceγ
of ρ, we associate the sliceγ′ defined by cuttingγ’s main conclusion11 with the
premise of the?d-link: the contractum is then

∑

γ∈ρ γ′.

(!/?w): β is made oft, a!-link with main conclusion a premise oft and a?w-link with
conclusion the other premise oft. In this case, the contractumβ′ is made of as
many?w-links as the auxiliary conclusions of the!-link12.

(!/?c): β is made oft, a !-link l with main conclusion a premise oft and a?c-link n
with conclusion the other premise oft. In this case, the contractumβ′ is obtained
from β as follows: let’s calla1 anda2 the two edges premises of the?c-link n.
We create a new!-link l′ by copying the linkl, and we pairwise contract the
auxiliary conclusions ofl andl′: the conclusions of these new?c-links substitute
the auxiliary conclusions ofl in β. We then erasen (and its conclusion) andt,
and we connect the main conclusion ofl (resp.l′) with a1 (resp.a2) by means of
a cut link. The sps associated withl andl′ are the same.

9This case yields thesingletonof the empty graph, that has not to be confused with theempty multiset,
contractum of the(⊕i/&j) redex.

10Notice that this means that the premises of the⊗/`-links areordered; we shall see in the transformation
associated with the(!/?c) cut link that this is not the case of the premises of the?c-links (nor of the premises
of the cut links).

11We extend here the notion of “main conclusion of a box” to every slice of the box.
12In case the!-link has no auxiliary conclusion, the contractum is the singleton of the empty graph, like in

the(1/⊥) case.

16

(!/!): β is made oft, a!-link l with main conclusion a premise oft and a!-link l′ having
the other premise oft among its auxiliary conclusions. Let us calla′ the edge
shared byl′ andt, andρ the sps associated withl′. The contractumβ′ is a!-link,
which we still denote byl′, having as conclusions the conclusions ofl′ different
from a′ and the auxiliary conclusions ofl, and having as box the sps

∑

γ∈ρ γ′,
whereγ′ is obtained by cutting the auxiliaryγ’s conclusion corresponding toa′

with the main conclusion ofl (the sps associated withl remains unchanged)13.

Thecut-elimination
cut
−−→ is the context closure of the union of the reduction steps.

Given a spsπ and a reducible cutt in π, we denote byt(π) the sps14 obtained by
replacing the redex associated witht by its contractum. We will also refer tot(π) as a
one step reduct ofπ. We say thatx is the type oft wheneverπ

x
−→ t(π). In the sequel

we will denote the setWNcut (resp.SNcut) of weakly (resp. strongly) normalizable
sps w.r.t.

cut
−−→ simply byWN (resp.SN).

Remark 2.13.

• Notice that the cut-elimination procedure is defined without any reference to
correctness.

• Observe the restriction imposed in the(ax) case: in order for a cut to be of type
(ax), not only one premise oft must be conclusion of an axiom, but also the other
premise cannot be an auxiliary conclusion of a⊤-link. This restriction makes
every cut link of an sps of a unique type: in the absence of it, there would be a
(unique) case in which a reducible cut linkt of an sps might have two different
types ((ax) and(⊤/cc)). Notice that this little problem would not occur if⊤
were rejected from sps links (see Remark2.5). Anyway, this constraint does not
restrict the possible reductions starting from a sps, because there is an obvious
(⊤/cc) reduction step having exactly the same effect as the(ax) reduction step:
choose the axiom link as theγ in the redex of(⊤/cc) (see Figure5). Working
with reducible cut links having a unique type is simpler and useful in Section4,
when we define the notion of erasing cut (Definition4.1).

• Notice that the(⊤/cc) step gives rise to non deterministic (and non confluent)
reductions: for example, a cut whose premises are auxiliaryconclusions of two
distinct⊤-links l, l′ can be reduced by erasing eitherl or l′. Anyway such
phenomena disappear when one considers only non erasing reductions (see Def-
inition 4.1).

We now give a precise definition of the notions of ancestor andresidue of a node:
the point is to know whether a node oft(π) has been created by the cut-elimination
procedure or was already a node ofπ.

13Notice that ifρ is the empty multiset, so is the box associated withl′.
14The fact thatt(π) is indeed an sps can be easlily checked.

17

n

ax

cutl
t

ax
−→

n
1 ⊥

cut

t 1/⊥
−−→

empty
graph

cut

t⊗ `
⊗/`
−−−→

cut

cut
a

cut
γ

b.

⊤
l

t ⊤/cc
−−−→

.

⊤
l

&i ⊕i

cut

t &i/⊕i
−−−−→ cut

for i ∈ {1, 2}

&i ⊕j

cut

t &i/⊕j
−−−−→

empty
multiset

for i, j ∈ {1, 2}, i 6= j

γ ∈ρ

?d

cut

t !
. . .

l

γ

. . .

∑

!/?d
−−→

γ ∈ρ

cut

γ

. . .

∑

ρ

!

cut

t
?w

. . .

!/?w
−−−→

?w?w
. . .

ρ

?c

cut

!
. . .

t

ln

a1 a2

!/?c
−−→

ρ

cut

cut

!

?c

!

?c
. . .

.l l′

ρ

σ

!

cut

!
.l′

γ

. . .

a′ l

t

∑

γ ∈ρ

!/!
−→

γ∈ρ

!

!

.

cut

σ

γ

. . .

l′

l . . .

∑

Figure 5: The reduction steps for cut-elimination

18

Definition 2.14 (Ancestor, residue).Let π be an sps,t be a cut link ofπ andt(π) be
a one step reduct ofπ associated witht. When a nodel of t(π) comes from a (unique)

node
←−
l of π, we say that

←−
l is theancestorof l in π and thatl is a residueof

←−
l in

t(π). If this is not the case, thenl has no ancestor inπ, and we say it is acreatednode.
We indicate, for every type of cut nodet of Definition2.12, which links are created in
t(π) (meaning that the other nodes oft(π) are residues of someπ’s node). We use the
notations of Definition2.12and Figure5:

(ax): there are no created nodes int(π);

(1/⊥): there are no created nodes int(π);

(⊗/`): the two new cut links between the two left (resp. right) premises of thè -link
and of the⊗-link are created nodes;

(⊤/cc): there are no created nodes int(π);

(⊕i/&j): if i = j, then the cut link between the two premises of the⊕i/&i-links is a
created node. Ifi 6= j, there are no created nodes int(π);

(!/?d): every cut link betweenγi’s main conclusion and the premise of the?d-link is
a created node;

(!/?w): all the?w-links added during this step are created links;

(!/?c): the new?c-links having as premises the auxiliary conclusions ofl andl′ are
created nodes. The two cut links having among their premisesthe main conclu-
sions ofl andl′ are created nodes;15

(!/!): every cut link between the auxiliaryγ’s conclusion corresponding toa′ andl’s
main conclusion is a created link. (Notice that the “new”!-link l′ is considered
a residue of the corresponding!-link of π, even though it might have different
conclusions).

2.4. Examples of reductions

After so many definitions, some examples might be useful. . . .Let us apply cut-
elimination to the spsπ of Figure3. If one reduces the(&1/⊕1) cut p, the(&2/⊕2)
cutq, and then the two created cuts of typeax, one obtains the spsπ′ of Figure6. Notice
that the spsπm associated with the!-link m has now two occurences of the same slice
(consisting of anax-link): if we had defined the sps assetsof slices, we would have
missed one occurence of the slice inπm, so giving an “erasing” feature to the(&i/⊕i)
step which is quite unnatural. As already mentioned in the Introduction, it is crucial
in order to apply Gandy’s method to have a good notion oferasingcut-elimination
step: this will appear clear in Section4, where we split

cut
−−→ into the erasing and the

non-easing reduction (see Definition4.1).

15Notice thatl andl′ are both residues ofl.

19

+ &2

ax

cut

⊕1

!

cut cut
s

ax1
⊥

⊕2

ax

&1

ax

cut

!

cut
t

o

ax

v

mr
?d

2·

u

Figure 6: The result of applying cut-elimination to the sps of Figure3

Let us go on in the elimination of the cuts in the spsπ′ of Figure6. If one reduces
the (!/?d) cut r, then one gets the spsπ′′ of Figure 7. Notice that this reduction
duplicates the unique slice ofπ′, since it opens a box containing two slices. This is
a tricky feature of sps (due to the presence of additive slices): the reduction of a cut
of type (!/?d) (like r) may duplicate other cuts at the same exponential depth (like
the cutst and s in π′). We tame this kind of duplication in Section3, where we
prove that the “logical” subreduction of

cut
−−→ (Definition 3.1) is strongly normalizing

(Proposition3.4).
Yet another remark on the reduction ofr: notice that the residues of the clashs

of Figure6 are reducible cuts of Figure7. Thus, let us reduce these residues ofs, the
(1/⊥) cuts so obtained and the two(&i/⊕j) (i 6= j) cutsu andv in the box associated
with o: we obtain the spsπ′′′ of Figure8. Notice that the two reduction steps of type
(&i/⊕j) (i 6= j) have erased both the slices of the sps associated witho, transforming
it in the empty multiset of slices. This is really different from the reduction of the cut
of type(1/⊥), which has transformed the subgraph consisting in the1-link, the⊥-link
and the cut in the empty graph: pay attention not to confuse empty sps (i.e. empty
multiset of slices) with the empty slice (see also Remark2.6). The spsπ′′′ of Figure8
is a cut-normal form. Notice however thatπ′′′ contains the deadlockt: in general
cut-normal forms may contain non-reducible cuts, i.e. clashesor deadlocks.

Let us come now to the problem of normalization. The cut-elimination procedure
applied to an spsπ may lead to infinite reduction sequences basically in two distinct
cases: (i) either becauseπ is not typable (by LL formulas, see the grammar in Fig-

+

!

cut
t

o
ax1

cut cut

⊥
s

ax ax

⊕2

cut

&1

u

ax

cut

⊕1

ax

&2

v
2·

Figure 7: The result of applying cut-elimination to the sps of Figure6

20

2· !

cut
t

0

o

Figure 8: The result of applying cut-elimination to the sps of Figure7

ure 17) or (ii) becauseπ is not correct (w.r.t. a notion of correctness which will be
introduced in the following Subsection2.5). We give an example of (i) in Figure9, and
examples of (ii) are in Figure11and in Figure12. Let us comment a bit each of them.

The spsδδ of Figure9 is taken from [18]: it is a simplification in the setting of
nets of the most famousλ-term which is not normalizable,∆∆, with ∆ = λx.xx.
Figure10shows thatδδ reduces to itself. The spsδδ is not even weakly normalizable,
and it is not typable by LL formulas, even if it is correct in the sense that it satisfies the
AC condition of Definition2.15.

Let us now consider the sliceα of Figure11: α is typable by LL formulas, but it
is not switching acyclic (Definition2.15) owing to the cycle crossing the cut, the!-link
and the?c-link. Such a cycle is the actual reason for the loop picturedin Figure11.

We can use the sliceα of Figure 11 to show a last intriguing example of cut-
elimination. Letγ be the slice obtained fromα by erasing the cut link, then consider
the sliceβ defined in Figure12: β is a counter-example both to the confluence and to
the normalization of cut-elimination for sps which are not correct (they don’t satisfy
the AC condition of Definition2.15). On the one hand, if one reduces the(!/!) cut
t, then the created cut(!/?d) and last the created(⊗/`) cut, one obtains the sliceβ1

of Figure12, which is not weakly normalizable since reducing the cutt′ leads to a
looping cut-elimination, similar to the one described in Figure11. On the other hand,
if one reduces the cutu in β, then one obtains the sliceβ2 of Figure12, which is even
strongly normalizable: its (unique) normal form isβ3 (notice that the cutt has become
a deadlock, so it is not reducible any more). This example clearly shows that if we drop
theAC condition, we loose both confluence and weak (thus strong) normalizationeven

δ := b!

?d

?c

ax

?d

d

a

c

δδ :=
d

δ

!

cut

δ

e

Figure 9: The sliceδδ which is notWN

21

d

δ

!

cut

δ

e

!/?c
−−→

δ

cut

?d

ax

!!

δ

?d

!

cut

!/!
−→

cut

?d

ax
δ

!

!

?d

cut

δ

!

!/?d
−−→

cut

!

?d

cut

δ

!

δ ax

ax
−→

δ

!

?d

cut

δ

! !/?d
−−→

δ

!

cut

δ

Figure 10: A proof thatδδ
cut+
−−−→ δδ

for typable sps.
The main result of this paper is the standardization theoremfor correct sps (i.e. for

sps satisfyingAC, Definition2.15): for correct spsWN¬e impliesSN (Theorem4.2).
One crucial step in the proof of Theorem4.2 is Proposition4.10: for correct sps non-
erasing weak normalization coincides with non-erasing strong normalization. Observe
that the sliceβ of Figure12gives a counter-example to this equivalence for sps which
are not correct (which don’t satisfy theAC condition of Definition2.15): β can be
normalized without applying erasing steps (in the precise sense of Definition4.1), but
it is not strongly normalizable. More in detail, this counter-example is due to (i) the
presence of deadlocks (the cutt is not erased by one reduction step ofβ, but it becomes

α :=

!

cut

1

?d

⊥

?c

?w !/?c
−−→

?c

!

1

?d

⊥

1

?d

⊥

cut

!?w

cut

!/?w
−−−→

!

cut

1

?d

⊥

?c

?w

Figure 11: An example of sliceα s.t.α
cut+
−−−→ α. The sliceα is typable by LL formulas

22

β :=

u

!

⊗

?d
⊥

ax

cut

!

`?d

1

cut

t

γ

cut+
−−−→ β1 :=

u
!

⊥
cut

γ

?d

1

cut

t′
cut
−−→ . . .

c
u
t
−−→

β2 :=

u′
cut

cut
t

!

⊥

⊗

?d

?d

1

ax

`

γ

!

cut+
−−−→ β3 :=

γ

!

`

cut
t

ax

⊗

?d

Figure 12: A counter-example to normalization and confluence of cut-elimination. The
sliceγ is obtained by removing the cut from the sliceα pictured in Figure11

a deadlock), (ii) the failure of the confluence of
cut
−−→ for general sps (indeed one of the

main ingredients in the proof of Proposition4.10is the confluence of (a labelled variant
of) cut-elimination on correct sps, Theorem4.18).

2.5. Switching acyclicity

Cut-elimination can be performed without any reference to correctness. However
we noticed in the previous subsection that in presence of cyclic sps there are “bad”
computations (even without additives and even for typable sps): the weak (and the
strong) normalization property fails, so as the confluence property (recall the example
of Figure12).

We will then use in this paper the weakest (standard) notion of correctness known
in the litterature, requiring to our sps to be “switching acyclic”. Switching acyclicity
is required “slice by slice” (Definition2.15). We use this condition to avoid cyclic sps
(not enjoyingWN), and to prove Theorem4.18.

Definition 2.15 (AC condition). A switchingof a flatα is an undirected subgraph of
α obtained by forgetting the orientation ofα’s edges and by deleting one of the two
premises of each̀ -node and?c-node ofα.

23

We say that an spsπ is switching acyclic, or, equivalently, thatπ satisfiesAC, if
every switching of every flat ofπ is an acyclic graph.

Examples of sps satisfyingAC are the sps of Figures9, 10 and all sps pictured in
Section5.

The following proposition is an important property of sps, which will be used in
this paper to proveSN and confluence of thestr-reduction (Prop.3.10and Prop.4.15):

Proposition 2.16. Letπ be an sps andt be a cut link ofπ which is not of type(⊤/cc)16.
If π satisfiesAC thent(π) satisfiesAC.

PROOF. Standard (see [2]). �

16One has to refuse(⊤/cc) steps, essentially because they are not “local”; for the same reason(⊤/cc)
and(ccad) steps of [7] and [24] can be performed only in presence of correctness, and of a much stronger
notion of correctness thenAC.

24

3. Two results of strong normalization

In this section we define two notable subreductions of
cut
−−→: the logical reduction

log
−−→ and thestructural reduction

str
−−→ (Definition 3.1). The union of the logical and

structural reductions is
cut
−−→. A basic fact, crucial in the next Section4, is that both

log
−−→

and
str
−−→ areSN on sps satisfyingAC (Proposition3.4 and Proposition3.10), even if

their union
cut
−−→ is not evenWN (see the example of Fig.10). More precisely, we

define two measures on sps,|π|log and|π|str (Definition 3.3 and Definition3.8), and
we prove that|π|log (resp.|π|str) shrinks after every logical (resp. structural) reduction
step. In addition, we briefly discuss how the structural reduction increases|π|log and
conversely how the logical reduction increases|π|str, in accordance with the fact that
cut-elimination is notWN.

Let us stress that thestr-measure is really sharp and it can be generalized to other
notions of net (like for example differential nets [25], [26]).

Definition 3.1. The logical reduction, denoted by
log
−−→, is the context closure of the

reduction steps(ax), (1/⊥), (⊗/`), (⊤/cc), (⊕i/&j), and(!/?d). The structural

reduction, denoted by
str
−−→, is the context closure of the reduction steps(!/?w), (!/?c)

and(!/!).

Notice that
log
−−→ and

str
−−→ have no reduction step in common and their union is

cut
−−→.

3.1. The strong normalization of
log
−−→

We now prove that
log
−−→ enjoys strong normalization: indeedSNlog containsevery

sps, regardless its correctness. This is a sharp differencewith the case of
str
−−→, where

strongstr-normalization holds only for sps satisfyingAC: for example the sliceα of
Figure11 does not satisfyAC, and it is not stronglystr-normalizable (actually not
even weaklystr-normalizable).

Consider an spsπ which has at most one slice, and recursively s.t. every box of

π has at most one slice. For such aπ, the proof that
log
−−→ is SN is immediate: every

reduction step of
log
−−→ strictly decreases the number of links ofπ and keeps the property

of having at most one slice in each box. However, in the general case the links of an

sps might increase after a
log
−−→ reduction: ifπ has a boxπo associated with a!-link

o and containing more than one slice, then a(!/?d) step “opening”o will (additively)
duplicate the links at the same depth aso, as many times as the number of slices ofπo.
This means we need to find a sharper measure on sps than their sizes, in order to point

out what is decreasing under
log
−−→. In some sense, the previous remark concerning a

very special case of sps can also be used in the general case, thanks to the notion of
single-threaded sliceintroduced in [16].

Definition 3.2 (Single-threaded slice, [16]). 17 A single-threaded slice, sgth for short,
of depth at mostd is a sliceα of depth at mostd s.t. with every!-link at depth0 of α is

17There are actually two differences w.r.t. [16]: in that paper the authors define thesetof sgth of a proof-

25

cut

!?d

1

cut

⊥

ax

cut

&i ⊕i

!

cut

ax

cut

⊕j&h

axax

Figure 13: The multisetsgth(π), whereπ is the sps of Fig.3, consists of four single-
threaded slices, given by the above picture takingi, h, j ∈ {1, 2}, h 6= j.

associated either the empty sps (with the appropriate conclusion) or a single-threaded
slice of depth at mostd− 1.

Given an spsπ we definesgth(π), themultiset ofsgth of π, by induction on the
depth ofπ. In caseπ has depth0, thensgth(π) = [π]; in caseπ has depthd + 1, then
α ∈ sgth(π) iff α is obtained from a sliceα′ of π by choosing for every!-link o at
depth0 of α′:

• the empty sps (with the appropriate conclusion), in case this sps is associated
with o in π,

• a sgth of the sps associated witho, otherwise.

For an example see Figure13, which shows thesgth of the spsπ of Figure3.

Definition 3.3 (log-measure). Thelog-measure of an spsπ is a natural number, de-
noted by|π|log and defined as follows:

|π|log :=
∑

α∈sgth(π)

size(α)

For example, consider the spsπ of Figure3: it has foursgth and each of them
has18 links (see Figure13), so |π|log = 18 × 4 = 72. Notice that for every spsπ,
thelog-measure ofπ is the sum of thelog-measures of the slices ofπ, i.e. |π|log =
∑

α∈π |α|log.

Proposition 3.4. The reduction
log
−−→ is SN on the sps.

PROOF. We prove thatπ
log
−−→ π implies |π|log > |π|log. First, let us restrict to the

caseπ has exactly one sliceα, from which the general case follows, as showed at the
end of the proof.

net, we are instead interested in themultisetof sgth of an sps (this difference is due to the fact that our sps
are multisets of slices and not simply sets, as it is in [16]); the other difference is that while in [16] there is
exactlyone slice associated with every!-link, we have hereat mostone slice (this difference is necessary to
deal with the case of!-links having an empty sps inside in Proposition3.4).

26

Let α
log
−−→ πα, we prove|α|log > |πα|log. The proof splits in the six cases asso-

ciated with the types of the
log
−−→ steps: we treat in detail only the case of a(!/?d) cut

at depth0 in α, the other cases being immediate. Remember Figure5 and the notation
of Definition 2.12in the (!/?d) step. LetΣi≤nγi (n ≥ 0) be the sps associated with
the !-link l of α, so thatπα = Σi≤nα′

i. If n = 0, thenπα is empty (α is erased) and
clearly |α|log > |πα|log18. Otherwise, leti ∈ {1, . . . , n} and letsgth(α)i be the
multiset ofsgth of α choosing the sliceγi for l (thussgth(α)i ⊆ sgth(α)). Notice that
sgth(α) =

∑

i≤n sgth(α)i, so in particular|α|log =
∑

i≤n | sgth(α)i|log; moreover to
everyi and everyβ ∈ sgth(α)i it corresponds exaclty one elementβ′ ∈ sgth(α′

i) and
size(β) = size(β′) + 2 (in β′ the!-link l and the?d-link abovet have been erased), so
| sgth(α)i|log > |α′

i|log. Since|πα|log =
∑

i≤n |α
′
i|log, we conclude|α|log > |πα|log.

Let’s consider now the general case of an spsπ: supposeπ
log
−−→ π, then there is

a sliceα ∈ π and a multisetπα ⊆ π s.t.α
log
−−→ πα andπ\[α] = π\πα

19. We have
already proved that|α|log > |πα|log, so:

|π|log = |π\[α]|log + |α|log
= |π\πα|log + |α|log
> |π\πα|log + |πα|log
= |π|log

�

Notice that the proof above uses the property that after a
log
−−→ step the number of

elements of the multiset ofsgth of an sps cannot increase: ifπ
log
−−→ π, thensgth(π) has

at most the same cardinality assgth(π). It is remarkable that this property fails under
str
−−→: for example, ifπ

str
−−→ π is obtained by a(!/?c) step thensgth(π) might have

more elements thansgth(π), since we have duplicated the possible choices one has to
do on the duplicated!-link in order to obtainsgth(π). The increase of the number of
sgth in π entails the increase of thelog-measure: in the(!/?c) case, we can very well
have|π|log < |π|log.

3.2. The strong normalization of
str
−−→

We now want to prove that
str
−−→ enjoysSN on sps satisfyingAC (Prop.3.10). As

already mentioned in the Introduction, the delicate point behind Prop.3.10is that the
reduction of a cutt may affect the reduction of other cuts, even at the same exponential
depth ast. The critical pairs presented in the proof of Lemma4.14of Section4 are
examples of this “meddling” of astr-reduction step in anotherstr-reduction step, the
most evident example being the sliceα of case 2 of the mentioned proof: in that case
the reduction of the cutt even changes the type of the cutr from (!/!) to (!/?c).

18This case motivates our variant Definition3.2 of sgth: if exactly one slice were associated with every
!-link, in this case we would havesgth(π) = sgth(π) = ∅ and nothing would decrease.

19We use here the standard set notation for multisets of slices: for exampleπ\[α] is the multisetπ of
slices without one occurrence of the sliceα.

27

? !

cut · · ·
?c ?w

Figure 14: Behaviour of an exponential path meeting structural links (i.e.!-, ?w-, ?c-
links) and cuts (it stops on all the other links); on?c-links a path can choose which
premise to follow

The key ingredient we found to tame this meddling of cuts in the life of their fellows
with the same exponential depth is the following notion ofexponential dependence
(Definition3.5).

• given two cuts at the same exponential deptht and r, the str-reduction oft
affects thestr-reduction ofr only if the premises ofr “depend exponentially”
on the premises oft;

• exponential dependence is (in some sense) stable understr-reduction.

Definition 3.5 (Exponential dependence).Let π be an sps, and letφ be an oriented
path in a flat ofπ. We say thatφ is exponentialwhen (see Figure14):

• φ crosses only structural links (i.e. links of type!, ?w or ?c) and cuts;

• if φ crosses an edgec upwards, thenc is an edge (conclusion or premise) of a
structural?-link (i.e. a link of type?w or ?c) or an auxiliary conclusion of a
!-link;

• if φ crosses an edgec downwards, thenc is the main conclusion of a!-link which
is also premise of a cut link.

Given two edgesa andb, we say thata exponentially depends onb, whenever there
is an exponential path froma to b. Given an edgea, we denote bypred(a) the set
of the immediate predecessors ofa, i.e. the set of those edgesb such that there is an
exponential path froma to b crossing exactly one node.

The following fact allows to make induction on the maximal length of the expo-
nential paths starting from a given edge20:

Fact 3.6. If π satisfiesAC, then every exponential path ofπ is finite.

20One could also make induction on the following well-foundedpartial order on the edges of an sps
satisyingAC: a ≥exp b whenever there is an exponential path froma to b. However, the proof that≥exp

is indeed a partial order is not immediate, and this paper does not lack delicate proofs...

28

PROOF. Immediate consequence of the fact that every exponential path ofπ is a path
of some switching ofπ (remember Definition2.15): hence ifπ satisfiesAC, thenπ
has no exponential cycle. �

Given an spsπ satisfyingAC, we define two functions (wdπ andlnπ) associating
an integer with every edgea (resp.!-link o) of π. What happens (as the reader will see
during the proof of Proposition3.10), is that for every!-link o at depth0 of π, on the
one handwdπ(o) is an upper bound for the number of timeso can be copied during
a str-reduction sequence starting fromπ, and on the other handlnπ(o) is an upper
bound for the depth ofo’s residues during astr-reduction sequence starting fromπ.
A first evidence that the length of thestr-reduction sequences starting from an spsπ
is bounded, is the existence of these two functions: the function wdπ “measures” the
maximal “width” of π’s reducts while the functionlnπ “measures” the maximal depth
of π’s reducts.

Definition 3.7. Let π be an sps satisfyingAC and leta be an edge ofπ, at any depth.
We definewdπ(a), thewidth of a in π, andlnπ(a), the lengthof a in π, by double
induction: the first parameter isdepth(π), the second one is the maximal length of
the exponential paths ofπ starting froma.

lnπ(a) :=

1 + sup
γ∈ρ

(

lnγ(aγ)
)

+ lnπ(b) if a is an auxiliary conclusion of a!-link
with main conclusionb, boxρ andaγ is the
conclusion corresponding toa of the slice
γ ∈ ρ,

1 + sup
b∈pred(a)

(

lnπ(b)
)

otherwise.

wdπ(a) :=

1 if pred(a) = ∅,
(

1 +
∑

γ∈ρ

wdγ(aγ)
)

wdπ(b) if a is an auxiliary conclusion of a!-link
with main conclusionb, boxρ andaγ is the
conclusion corresponding toa of the slice
γ ∈ ρ,

∑

b∈pred(a)

wdπ(b) otherwise.

We extendwdπ and lnπ to the !-links of π, by setting for a!-link o with main
conclusionb: lnπ(o) = lnπ(b) andwdπ(o) = wdπ(b).

We will often simply writeln(a) or wd(a) (resp.ln(o) or wd(o)), when there is no
ambiguity on the spsπ we refer to.

If a is an auxiliary conclusion of a!-link o of an sps satisfyingAC, theno’s main
conclusion is the unique immediate predecessor ofa, so thatpred(a) 6= ∅: this is
used in the previous definition ofwd. Notice also that by definitionln(a) > 0 and
wd(a) > 0. Finally the long-awaited definition ofstr-measure:

Definition 3.8 (str-measure). Thestr-measure of an spsπ satisfyingAC is a natural
number, denoted by|π|str and defined by induction ondepth(π), as follows:

29

|π|str :=
∑

o∈!0(π)

(

wdπ(o)(lnπ(o) + |πo|str)
)

where!0(π) denotes the set of!-links at depth0 of π, andπ0 denotes the sps associated
with the!-link o (see Definition2.2).

Consider for example the sliceδ of Fig.9, we havelnδ(b) = 1, lnδ(a) = 1+1+1 =
3 and lnδ(d) = 1 + sup{1, 3} = 4; as for the width,wdδ(b) = 1, wdδ(a) = 2,
wdδ(d) = 3. Thus|δ|str = wdδ(b) ·

(

lnδ(b) + 0
)

= 1. Then consider the sliceδδ of
Fig. 9, we havelnδδ(e) = 1 + lnδδ(d) = 1 + lnδ(d) = 5 andwdδδ(e) = wdδδ(d) =
wdδ(d) = 3. So that|δδ|str = 1 + wdδδ(e)

(

lnδδ(e) + |δ|str
)

= 1 + 3(5 + 1) = 19.
The reader can check that thestr-reducts ofδδ (i.e. the slices pictured in the above
line of Fig.10) have astr-measure striclty less than|δδ|str. Moreover, notice that the

reductionδδ
cut+
−−−→ δδ containslog-steps (the3 ones represented in the lower part of

Fig. 10).
The following fact shows some kind of “modularity” and of “monotonicity” of the

functionsln andwd, two ingredients of Proposition3.10. Recall the notion of module
of Definition2.11.

Fact 3.9 (Modularity). Letα = ω[β] andα′ = ω[β′] be two switching acyclic slices,
where the moduleβ′ replaces the moduleβ in α′. For every pending edge (i.e. con-
clusion or hypothesis)b of β, denote byb′ the corresponding pending edge ofβ′. The
following properties hold:

1. let b be a pending edge ofβ and suppose thatb exponentially depends inω[β]
only on edges ofω[], i.e. if b depends onc 6= b, thenc is not an edge ofβ. Then
lnα(b) = lnα′

(b′) andwdα(b) = wdα′

(b′);
2. if d is an edge ofα which is not an edge ofβ and if for every pending edgeb of

β we havelnα(b) = lnα′

(b′) (resp. lnα(b) ≥ lnα′

(b′)), thenlnα(d) = lnα′

(d)

(resp.lnα(d) ≥ lnα′

(d)); the same holds forwd.

PROOF. It is a consequence of Definition3.7. �

As for thelog-measure, thestr-measure ofπ is the sum of thestr-measures of
the slices ofπ, i.e. |π|str =

∑

α∈π |α|str.

Proposition 3.10. The reduction
str
−−→ is SN on the sps satisfyingAC.

PROOF. Forπ satisfyingAC, we prove thatπ
str
−−→ π implies |π|str > |π|str. We re-

strict to the caseπ has exactly one sliceα: the extension to the general case is obtained
exactly as in the proof of Proposition3.4.

So letα be a switching acyclic slice andα
str
−−→ πα. First remark thatπα contains

a unique slice (a glance at Figure5 will convince the reader). Let thenπα = {α′} and

let t be the cut link ofα reduced during the
str
−−→ step under consideration. Our goal is

to show|α|str > |α′|str. Actually we prove a stronger statement, by induction on the
depth oft:

30

l
?c

cut

!

πo

t

o

b

a1 a2

.

d
a

!/?c
−−→

. . .

cut

cut

!

?c ?c ?c

!
−→a1

π
−→o 1

t2

. . .
−→
d

t1

−→o1

−→a2

−→
d1

−→
b1

.

π
−→o 2

.

−→
d2

−→
b2

−→o2

Figure 15: The(!/?c) case of the proof of Proposition3.10

(1) |α|str > |α′|str,

(2) for every conclusiond of α, let
−→
d be the conclusion ofα′ corresponding tod, one

haslnα(d) ≥ lnα′

(
−→
d) andwdα(d) ≥ wdα′

(
−→
d).

Base of induction. If t has depth0, then we have three cases, depending on the
type oft.

Case(!/?c). If t is a cut of type(!/?c), then (see Figure15) let l (resp.o) be the
?c-link (resp.!-link) whose conclusiona (resp. whose main conclusionb) is a premise
of t, let a1, a2 be the premises ofl, and let−→o1 ,−→o2 be the two copies ofo in α′:

−→
bi and

−→ai , i ∈ {1, 2}, are premises of a cut linkti.
LetS be the set of!-links at depth0 of α different fromo, i.e. !0(α) = {o}∪S (and

the union is actually a disjoint union). Observe that every!-link v ∈ S has a unique
residue−→v in α′: we have!0(α′) = {−→o1 ,

−→o2}∪
−→
S . We use in the sequel the notationπv

for the box associated with the!-link v (see Definition2.2). Let us define:

|S|str :=
∑

v∈S

(

wdα(v)(lnα(v) + |πv|str)
)

|
−→
S |str :=

∑

−→v ∈
−→
S

(

wdα′

(−→v)(lnα′

(−→v) + |π
−→v |str)

)

.

Then by definition we have:

|α|str = wdα(o)(lnα(o) + |πo|str) + |S|str

|α′|str = wdα′

(−→o1)
(

lnα′

(−→o1) + π
−→o1

)

+ wdα′

(−→o2)
(

lnα′

(−→o2) + π
−→o2

)

+ |
−→
S |str.

Consider any conclusiond of o in α different from b, denote as
−→
d the conclusion

of the ?c-link created inα′ and corresponding tod, and denote as
−→
d1,
−→
d2 the two

premises of this?c-link, one being an auxiliary conclusion of−→o1 , the other one be-
ing an auxiliary conclusion of−→o2 (see Figure15). We provelnα(d) = lnα′

(
−→
d) and

wdα(d) = wdα′

(
−→
d).

31

Sinceα satisfiesAC, the edgeai, i ∈ {1, 2}, does not exponentially depend on
any edge involved in the reduction oft, so by Fact3.9-1, one hasln(−→ai) = ln(ai)
andwd(−→ai) = wd(ai). Then the following equalities hold, where forγ ∈ πo (resp.
γ ∈ π

−→oi) we denote bydγ the conclusion ofγ corresponding to the auxiliary conclusion
d of o (resp. of−→oi):

lnα(d) = 1 + supγ∈πo

(

lnγ(dγ)
)

+ lnα(b)
= 2 + supγ∈πo

(

lnγ(dγ)
)

+ lnα(a)
= 3 + supγ∈πo

(

lnγ(dγ)
)

+ sup{ln(a1), ln(a2)}

= 1 + sup

{
(

supγ∈π
−→o1

(

lnγ(dγ)
)

+ ln(−→a1) + 2
)

,
(

supγ∈π
−→o2

(

lnγ(dγ)
)

+ ln(−→a2) + 2
)

}

= 1 + sup{lnα′

(
−→
d1), ln

α′

(
−→
d2)}

= lnα′

(
−→
d).

As for wdα(d) = wdα′

(
−→
d):

wdα(d) =
(

1 +
∑

γ∈πo wdγ(dγ)
)

wdα(b)

=
(

1 +
∑

γ∈πo wdγ(dγ)
)

wdα(a)

=
(

1 +
∑

γ∈πo wdγ(dγ)
)(

wd(a1) + wd(a2)
)

=
(

1 +
∑

γ∈π
−→o1

wdγ(dγ)
)

wd(−→a1) +
(

1 +
∑

γ∈π
−→o2

wdγ(dγ)
)

wd(−→a2)

=
(

1 +
∑

γ∈π
−→o1

wdγ(dγ)
)

wd(
−→
b1) +

(

1 +
∑

γ∈π
−→o2

wdγ(dγ)
)

wd(
−→
b2)

= wd(
−→
d1) + wd(

−→
d2)

= wdα′

(
−→
d).

This implies by Fact3.9-2, that for everyv ∈ S one hasln(v) = ln(−→v) and

wd(v) = wd(−→v), and that for every conclusiond of α, lnα(d) = lnα′

(
−→
d) and

wdα(d) = wdα′

(
−→
d): in particular (2) holds.

As for (1), notice that ln(o) = 1 + sup {ln(−→o1), ln(−→o2)}, so thatln(o) > ln(−→oi)
(i ∈ {1, 2}). Notice also thatwd(o) = wd(−→o1) + wd(−→o2), as well asπo = π

−→oi

(i ∈ {1, 2}). We can then deduce21

wd(o)(ln(o) + |πo|str) > wd(−→o1)(ln(−→o1) + |π
−→o1 |str)

+ wd(−→o2)(ln(−→o2) + |π
−→o2 |str).

On the other hand, for everyv ∈ S the box associated withv in π is the same
sps as the box associated with−→v in α′, so that|πv|str = |π

−→v |str. This means that

|S|str = |
−→
S |str. This equality and the inequality above yield|α|str > |α′|str.

Case(!/!). If t is of type(!/!), then (see Figure16) let o (resp.u) be the!-link of
which the main (resp. an auxiliary) conclusiona (resp.b) is a premise oft, let c be the

21We use here the fact that for every edgea of π, one haswd(a) > 0, as already mentioned after
Definition 3.7.

32

β∈πu

!

cut

!
. . .

t

. . .o

πo

u

c a

b

β

. . .
bβ

∑

!/!
−→

∑

!

β

. . .
!

.−→c

cut

πo
−→
β

. . .
b
−→
β t

−→
β

−→u

−→
β

o
−→
β

a
−→
β

β∈πu

Figure 16: The(!/!) case of the proof of Proposition3.10

main conclusion ofu, let−→u be the residue ofu in α′ and for every slice
−→
β ∈ π

−→u (if

any) leto
−→
β be the copy ofo which “entered” the!-link u during the reduction oft and

finally let t
−→
β be the cut created in

−→
β by the reduction oft.

We set!0(α) = {u, o} ∪ S, i.e. S is the set of!-links at depth0 of α different
from u ando. Observe that each!-link v ∈ S has a unique residue−→v in α′, so that
!0(α′) = {−→u } ∪

−→
S . Let us define:

|S|str :=
∑

v∈S

(

wdα(v)(lnα(v) + |πv|str)
)

|
−→
S |str :=

∑

−→v ∈
−→
S

(

wdα′

(−→v)(lnα′

(−→v) + |π
−→v |str)

)

.

Then by definition we have:

|α|str = wd(u)
(

ln(u) + |πu|str
)

+ wd(o)
(

ln(o) + |πo|str
)

+ |S|str
|α′|str = wd(−→u)

(

ln(−→u) + |π
−→u |str

)

+ |
−→
S |str.

Consider any conclusiond of u in α different fromb, and denote as
−→
d the conclusion

of −→u in α′ corresponding tod. If d = c, thend does not exponentially depend on
any edge involved in the reduction oft: so by Fact3.9-1, one haslnα(d) = lnα′

(
−→
d)

andwdα(d) = wdα′

(
−→
d). If d 6= c, let πu (resp.π

−→u) be the box ofu (resp.−→u). By
Definition3.7(with the same notations), one has:

lnα(d) := 1 + supγ∈πu

(

lnγ(aγ)
)

+ lnα(c)

lnα′

(
−→
d) := 1 + sup−→γ ∈π

−→u

(

ln
−→γ (a

−→γ)
)

+ lnα′

(−→c).

Notice that every edgeg conclusion ofπu exponentially depends only on edges which

are not involved in the reduction oft, so by Fact3.9-1 we havelnπu

(g) = lnπ
−→u

(−→g).22

Since we already noticed thatlnα(c) = lnα(−→c), we can eventually conclude that for

22Notice that we are actually using a slight variant of Fact3.9-1: with the notations of Fact3.9, some
pending edges ofβ andβ′ do not coincide. These edges are conclusions ofα andα′ and it is easy to check
that Fact3.9-1 holds in this case too.

33

every conclusiond of u in π different fromb one hasln(d) = ln(
−→
d), and in the same

way one obtains the equalitywd(d) = wd(
−→
d). In particular,ln(u) = ln(−→u) and

wd(u) = wd(−→u).

Then, consider any auxiliary conclusiond of o in α, and denote by
−→
d the conclu-

sion of−→u in α′ corresponding tod. Also in this case we will provelnα(d) = lnα′

(
−→
d)

andwdα(d) ≥ wdα′

(
−→
d). Still by Fact3.9-1 we have thatlnβ(bβ) = ln

−→
β (b

−→
β) and

wdβ(bβ) = wd
−→
β (b

−→
β).23 The following equalities hold (where, like in the(!/?c)-case,

dγ denotes the conclusion of the sliceγ corresponding tod):

lnα(d) = 1 + supγ∈πo

(

lnγ(dγ)
)

+ lnα(a)
= 2 + supγ∈πo

(

lnγ(dγ)
)

+ lnα(b)

= 3 + supγ∈πo

(

lnγ(dγ)
)

+ supβ∈πu

(

lnβ(bβ)
)

+ lnα(c)

= 3 + supγ∈πo

(

lnγ(dγ)
)

+ sup−→
β ∈π

−→u

(

ln
−→
β (b

−→
β)
)

+ lnα′

(−→c)

= 3 + sup−→
β ∈π

−→u

(

sup
γ∈πo

−→
β

(

lnγ(dγ)
)

+ ln
−→
β (b

−→
β)
)

+ lnα′

(−→c)

= 2 + sup−→
β ∈π

−→u

(

sup
γ∈πo

−→
β

(

lnγ(dγ)
)

+ ln
−→
β (a

−→
β)
)

+ lnα′

(−→c)

= 1 + sup−→
β ∈π

−→u

(

ln
−→
β (d

−→
β)
)

+ lnα′

(−→c)

= lnα′

(
−→
d).

In a similar way we prove thatwdα(d) ≥ wdα′

(
−→
d):

23See footnote22.

34

wdα(d) =
(

1 +
∑

γ∈πo

wdγ(dγ)
)

wdα(a)

=
(

1 +
∑

γ∈πo

wdγ(dγ)
)

wdα(b)

=
(

1 +
∑

γ∈πo

wdγ(dγ)
)(

1 +
∑

β∈πu

wdβ(bβ)
)

wdα(c)

=
(

1 +
∑

γ∈πo

wdγ(dγ)
)(

1 +
∑

−→
β ∈π

−→u

wd
−→
β (b

−→
β)
)

wdα′

(−→c)

=

(

1 +
∑

γ∈πo

wdγ(dγ) +
∑

−→
β ∈π

−→u

wd
−→
β (b

−→
β) +

∑

−→
β ∈π

−→u

γ∈πo

wdγ(dγ)wd
−→
β (b

−→
β)

)

wdα′

(−→c)

≥

(

1 +
∑

−→
β ∈π

−→u

wd
−→
β (b

−→
β) +

∑

−→
β ∈π

−→u

γ∈πo
−→
β

wdγ(dγ)wd
−→
β (b

−→
β)

)

wdα′

(−→c)

=

(

1 +
∑

−→
β ∈π

−→u

(

1 +
∑

γ∈πo
−→
β

wdγ(dγ)
)

wd
−→
β (b

−→
β)

)

wdα′

(−→c)

=
(

1 +
∑

−→
β ∈π

−→u

wd
−→
β (d

−→
β)
)

wdα′

(−→c)

= wdα′

(
−→
d).

Like in the(!/?c)-case, all this implies by Fact3.9-2, that for everyv ∈ S one has
ln(v) = ln(−→v) andwd(v) ≥ wd(−→v), and that for every conclusiond of α, lnα(d) =

lnα′

(
−→
d) andwdα(d) ≥ wdα′

(
−→
d): in particular (2) holds.

As for (1), we first prove that

wd(−→u)
(

ln(−→u) + |π
−→u |str

)

< wd(u)
(

ln(u) + |πu|str
)

+ wd(o)
(

ln(o) + |πo|str
)

.

In caseπu is the empty set of slices, the inequality holds:|π
−→u |str = |πu|str = 0,

so thatwd(−→u)
(

ln(−→u) + |π
−→u |str

)

= wd(u)
(

ln(u) + |πu|str
)

< wd(u)
(

ln(u) +

|πu|str
)

+ wd(o)
(

ln(o) + |πo|str
)

(sincewd(o), ln(o), |πo|str > 0). In caseπu is

not empty, forβ ∈ πu (resp.
−→
β ∈ π

−→u), defineHβ = 2 + lnβ(bβ) + |πo|str (resp.

H−→
β

= 2 + lnβ(b
−→
β) + |πo

−→
β

|str): notice thatHβ = H−→
β

> 0 (we are usingπu 6= 0),
and this will be used in the following sequence of equalitiesand inequalities. By
definitionln(o) = 2 + ln(u) + supβ∈πu

(

lnβ(bβ)
)

, so we have (using Fact3.9):

35

wd(o)(ln(o) + |πo|str) ≥ wd(o)
(

2 + sup
β∈πu

(

lnβ(bβ)
)

+ |πo|str
)

= wd(u)
(

1 +
∑

β∈πu

wdβ(bβ)
)(

sup
β∈πu

Hβ

)

≥ wd(u)
(

sup
β∈πu

Hβ

)

+ wd(u)
(

∑

β∈πu

wdβ(bβ)Hβ

)

= wd(−→u)
(

sup
−→
β ∈π

−→u

H−→
β

)

+ wd(−→u)
(

∑

−→
β ∈π

−→u

wd
−→
β (b

−→
β)H−→

β

)

= wd(−→u)
(

sup
−→
β ∈π

−→u

H−→
β

)

+ wd(−→u)
(

∑

−→
β ∈π

−→u

wd
−→
β (o

−→
β)H−→

β

)

> wd(−→u)
(

∑

−→
β ∈π

−→u

wd
−→
β (o

−→
β)H−→

β

)

= wd(−→u)
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)
(

2 + ln
−→
β (b

−→
β) + |πo

−→
β

|str
)

)

=
(

wd(−→u)
∑

−→
β ∈π

−→u

wd
−→
β (o

−→
β)
)

+ wd(−→u)
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)
(

1 + ln
−→
β (b

−→
β) + |πo

−→
β

|str
)

)

=
(

wd(−→u)
∑

−→
β ∈π

−→u

wd
−→
β (o

−→
β)
)

+ wd(−→u)
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)
(

ln
−→
β (o

−→
β) + |πo

−→
β

|str
)

)

> wd(−→u)
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)
(

ln
−→
β (o

−→
β) + |πo

−→
β

|str
))

.

Moreover, since|πu|str =
∑

β∈πu |β|str, we have:

|π
−→u |str =

∑

−→
β ∈π

−→u

(

|β|str + wd
−→
β (o

−→
β)
(

ln
−→
β (o

−→
β) + |πo

−→
β

|str
))

= |πu|str +
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)
(

ln
−→
β (o

−→
β) + |πo

−→
β

|str
))

.

Now remember thatwd(u) = wd(−→u) andln(u) = ln(−→u). Thus:

36

wd(−→u)(ln(−→u) + |π
−→u |str) = wd(u)(ln(u) + |π

−→u |str)

= wd(u)

(

ln(u) + |πu|str

+
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)
(

ln
−→
β (o

−→
β) + |πo

−→
β

|str
)

)

)

= wd(u)
(

ln(u) + |πu|str
)

+ wd(−→u)
∑

−→
β ∈π

−→u

(

wd
−→
β (o

−→
β)(ln

−→
β (o

−→
β) + |πo

−→
β

|str)
)

< wd(u)
(

ln(u) + |πu|str
)

+ wd(o)
(

ln(o) + |πo|str
)

.

On the other hand, for everyv ∈ S the box associated withv in α is the same sps
as the box associated with−→v in α′, so that|S|str = |

−→
S |str. The previous inequation

allows then to conclude|α|str > |α′|str.

Case(!/?w). If t is of type(!/?w), then the case is simple and left to the reader.
Notice that in this case the values of length and width can decrease, since the reduction
of t erases a!-link.

Inductive step. If t is a cut in a!-link o of α′, thenα′ is obtained by replacing
the boxπo associated witho with a boxπo s.t. πo str

−−→ πo. By induction hypothesis
we know that (1) |πo|str < |πo|str, and (2) for every conclusiond of πo, lnπo

(d) ≥

lnπo

(
−→
d), wdπo

(d) ≥ wdπo

(
−→
d).

By Fact3.9-2, this implies both (1) and (2) for α, α′. �

We conclude the subsection by noting that (in a perfectly symmetric way w.r.t. the

log-measure) thestr-measure may increase under
log
−−→: indeed, the reduction

log
−−→

can change the exponential paths of an sps and their lengths may increase (think for
example of the main conclusion of a!-link o which is the premise of a?d-link itself cut
with a !-link u: after the reduction of the(!/?d) cut, some exponential paths disappear
and some new ones starting fromo and crossing edges ofu’s box might appear and
might be longer than the erased ones: this is exactly what happens in the last reduction
step of Fig.10). If the length of exponential paths grows, so do also the values of the
functionsln andwd, and consequently thestr-measure.

37

4. Standardization for sliced pure structures

In this section we prove our main result: the standardization theorem for sps (The-
orem 4.2). Basically, the standardization theorem reduces the problem of SN to a
problem ofWN w.r.t. a subreduction of

cut
−−→, callednon-erasing reduction. The non-

erasing reduction steps have a key property: they never erase cuts different from the
reduced one. In fact, the notion of non-erasing reduction has to be definedverycare-
fully: not only a non-erasing reduction step does not erase cuts, but also it does not
erase (nor change the non-erasing nature of) “future cuts”,that is of cuts which can be
created during any reduction sequence.24.

Definition 4.1 (Erasing cut). Theerasingreduction steps are the following:

• (⊕i/&j) for i 6= j, (!/?w) and(⊤/cc),

• (!/?d) (resp.(!/!)) in the case the empty sps is associated with the!-link whose
main conclusion (resp. auxiliary conclusion) is a premise of the cut to be reduced.

The other reduction steps are callednon-erasing.
The erasing (resp. non-erasing) reduction, denoted by

e
−→ (resp. by

¬e
−→), is the

context closure of the union of the erasing (resp. non-erasing) reduction steps. A cut is
erasing (resp. non-erasing) when so is its reduction.

Theorem 4.2 (Standardization for sps).Let π be an sps which satisfiesAC. If π ∈
WN¬e, thenπ ∈ SN.

With respect to the description of Gandy’s method given in the Introduction, the
standardization theorem achieves all the tasks except the proof of WN¬e. We split the
proof of Theorem4.2in two parts: in Subsection4.1we prove thatSN is a consequence
of SN¬e (Proposition4.5), in Subsection4.2we prove the equivalence betweenSN¬e

andWN¬e (Proposition4.10). This last step is the most delicate one, and uses the key
notion of labelled sps and labelled reduction (Definition4.6and Definition4.7).

4.1. SN is a consequence ofSN¬e

In this subsection we prove Proposition4.5: SN is a consequence ofSN¬e. The
proof is based on two simple facts: (i) erasing steps can always be postponed after
non-erasing ones (Lemma4.4); (ii) there is no infinite sequence of erasing steps (the
e
−→ reduction clearly decreases the size of an sps). Then suppose there exists an infinite
sequence of

cut
−−→ steps starting from an spsπ (i.e. supposeπ /∈ SN). This sequence

should contain an infinite number of non-erasing steps: by iterating Lemma4.4we then
obtain an arbitrarily long sequence of non-erasing steps starting fromπ, i.e.π /∈ SN¬e.

Lemma 4.3. Let π andπ′ be two sps. Ifπ
e
−→ π′, then every cut linkt′ of π′ has an

ancestor
←−
t′ in π. If t′ is non erasing, the two cutst′ and

←−
t′ have the same type.

24This might sound a bit mysterious by now, but it will appear infull light in Subsection5.2.

38

PROOF. The only links which might be created by an erasing reduction step are?w-

links (see Definition2.14): t′ and
←−
t′ might have a different type only ift′ is erasing.

�

Lemma 4.4 (Postponement ofe−→). The reduction
e
−→ can be postponed w.r.t. the re-

duction
¬e
−→ (see Figure4(e)).

PROOF. Supposeπ
e
−→ π1

¬e
−→ π2. Let u (resp.t) be the cut reduced inπ

e
−→ π1 (resp.

in π1
¬e
−→ π2). By Lemma4.3 and by the hypothesis thatu is erasing, we deduce

thatt has an ancestor
←−
t in π and thatt and

←−
t have the same type: in particular

←−
t is

non-erasing.
We defineπ3 as the result of reducing

←−
t in π (so π

¬e
−→ π3). By inspection of

cases one can check that reducing the residues ofu (which are all still erasing) inπ3

yieldsπ2, i.e.π3
e∗
−→ π2. �

Proposition 4.5. Letπ be an sps. Ifπ ∈ SN¬e thenπ ∈ SN.

PROOF. Suppose thatπ /∈ SN and consider an infinite reduction sequence starting
from π: R := π

cut
−−→ π1

cut
−−→ π2

cut
−−→ Observe first thatR has no infinite suffix of

erasing steps, since the number of links strictly decreasesat each erasing step.
We will define for any numbern a sequenceQ of

¬e
−→ steps of lengthn starting from

π, hence proving thatπ /∈ SN¬e. Let k be the least number (if any) s.t.πk
e
−→ πk+1.

We defineQ by induction onn− k.
If k ≥ n or k does not exist, then simply takeQ as the prefix ofR of lengthn. If

k < n, letm be the least integer s.t.m > k andπm
¬e
−→ πm+1 (thism does exist since

R has no infinite suffix of erasing steps). Applym− k times Lemma4.4, for obtaining
an (infinite) sequence of reductionsR′ which has a prefix of lengthk + 1 of

¬e
−→ steps.

We obtainQ by applying the induction hypothesis toR′. �

4.2. SN¬e is a consequence ofWN¬e

This subsection is devoted to prove Proposition4.10: the weak and strong normal-
ization of

¬e
−→ are the same property for sps satisfyingAC. Our proof is quite delicate

and it is based on a confluence theorem (Theorem4.18), following a method proposed
by Gandy in the framework of Gödel’s system T [5].

The basic idea is to find a measure|π|ℓ on sps which is a natural number and to
prove that:

(i) |π|ℓ strictly increases under
¬e
−→,

(ii)
¬e
−→ is confluent.

Then if an spsπ has a normal formπ′ (i.e. if π ∈ WN¬e), we can deduce that the
number|π′|ℓ maximizes the length of every

¬e
−→ reduction sequence starting fromπ

(and thusπ ∈ SN¬e).
In order to define this increasing measure, we change a bit thesyntax of sps, defin-

ing the labelled sps (Definition4.6) and the labelled cut-elimination (Definition4.7).
The labelling plays the role of “counting” the number of steps applied to an sps, thus
allowing the definiton of an increasing measure (Definition4.8).

Our guidelines in the definition of labelled sps and of their cut-elimination are the
following:

39

(i) labels will be used to define the measure which has to increase under cut-elimination
(ii) to apply Gandy’s method we need confluence forlabelledsps.

We then introduce “new” links (actually dummy links) whose unique role is to partic-
ipate (by means of their labels) to the measure of the sps: we call them∗-links. These
dummy links are the only labelled ones. The idea is to associate with every flat of an
sps a unique∗-link, whose label is actually “the label of the flat”.

Definition 4.6 (Labelled sps).The∗-link is a link without premises nor conclusions.
A labelled sliced pure structure, sℓps for short, is a couple〈π, ℓ〉 s.t.π is an sps with
exactly one occurrence of the∗-link in every flat ofπ, andℓ is a function from the
occurrences of∗-links of π to the natural numbers, which is thelabelling of〈π, ℓ〉.

Thedegree of the labelling of〈π, ℓ〉, denoted by|ℓ|, is the sum ofℓ’s values on the
occurrences of∗-links of π25.

Definition 4.7 (Cut elimination for sℓps). Let t be a cut of〈π, ℓ〉. We allow to reduce
t only in case it is non erasing. The result of the reduction oft is the sℓps 〈π′, ℓ′〉
defined as follows:

1. π′ is the result of the reduction oft in π defined as in Definition2.12, except ift
is of type(!/?d): in that case, first erase the∗-link of the flat oft and then proceed
like in Definition2.12; in such a way, every flat ofπ′ contains exactly one∗-link;

2. letr be a∗-link of π′, we defineℓ′(r). Let←−r be the ancestor ofr in π26. There are
three possible cases:

(a) in caset is of type(ax), (1/⊥), (⊗/`) or (⊕i/&i), if the flat of←−r is the same
as the flat oft, setℓ′(r) = ℓ(←−r) + 1; otherwise setℓ′(r) = ℓ(←−r);

(b) in caset is of type(!/?d), let v (resp.o) be the∗-link (resp. !-link) in π erased
by the reduction oft. If ←−r has depth0 in the sps associated witho, then set
ℓ′(r) = ℓ(←−r) + ℓ(v) + 2; otherwise setℓ′(r) = ℓ(←−r);

(c) in caset is of type(!/?c) or (!/!), setℓ′(r) = ℓ(←−r).

We introduce the notationt(〈π, ℓ〉) and
ℓ
−→, as usual.

Definition 4.8 (ℓ-measure). Let 〈π, ℓ〉 be an sℓps, c be the number of!-links of π, d
be the sum of the depths of the!-links of 〈π, ℓ〉. Theℓ-measure of〈π, ℓ〉 is a natural
number, denoted by| 〈π, ℓ〉 |ℓ and defined as follows:

| 〈π, ℓ〉 |ℓ := (|ℓ|+ c)2 + d

25Notice that with two different occurrences of the same flat of〈π, ℓ〉 are associated two different occur-
rences of the∗-link: this entails that our definition of|ℓ| has taken into account the multiplicities of a given
flat in the sps associated with a given!-link. We will as usual write in the sequel “a∗-link” always meaning
“an occurrence of the∗-link”.

26The definition of ancestor/residue of a∗-link is straightforward, from the definition ofπ′ given in step
1: every∗-link of π′ has exactly one ancestor inπ.

40

We now prove the first key property of the reduction
ℓ
−→, namely that it strictly

increases theℓ-measure:

Lemma 4.9. Let 〈π, ℓ〉 be an sℓps: if 〈π, ℓ〉
ℓ
−→ 〈π′, ℓ′〉, then| 〈π′, ℓ′〉 |ℓ > | 〈π, ℓ〉 |ℓ.

PROOF. In case〈π′, ℓ′〉 is the result of an(ax), (1/⊥), (⊗/`) or (⊕i/&i) step, then
|ℓ′| = |ℓ|+ 1, c′ = c, d′ = d, hence| 〈π′, ℓ′〉 |ℓ > | 〈π, ℓ〉 |ℓ.
In case〈π′, ℓ′〉 is the result of a(!/?c) step, then|ℓ′| ≥ |ℓ|, c′ ≥ c + 1, d′ ≥ d, hence
| 〈π′, ℓ′〉 |ℓ > | 〈π, ℓ〉 |ℓ.
In case〈π′, ℓ′〉 is the result of a(!/!) step, then|ℓ′| ≥ |ℓ|, c′ ≥ c, d′ ≥ d + 1, hence
| 〈π′, ℓ′〉 |ℓ > | 〈π, ℓ〉 |ℓ.
In case〈π′, ℓ′〉 is the result of a(!/?d) step, then|ℓ′| ≥ |ℓ|+2, c′ ≥ c−1, d′ ≥ d−c+1.
We deduce:| 〈π′, ℓ′〉 |ℓ ≥ (|ℓ|+ c + 1)2 + d− c + 1 ≥ | 〈π, ℓ〉 |ℓ + c + 1. �

The second key property of the reduction
ℓ
−→ is confluence (Thereom4.18), which

is proven in the next subsection. We prove now that the two mentioned key properties

of
ℓ
−→ entail the equivalence ofWN¬e andSN¬e for sps satisfyingAC:

Proposition 4.10. Letπ be an sps which satisfiesAC. If π ∈WN¬e thenπ ∈ SN¬e.

PROOF. Supposeπ is an sps satisfyingAC and s.t.π ∈ WN¬e. For everyℓ, 〈π, ℓ〉
satisfiesAC and〈π, ℓ〉 ∈ WNℓ. We prove that〈π, ℓ〉 ∈ SNℓ, which clearly implies
thatπ ∈ SN¬e.

Let 〈π′, ℓ′〉 be a normal form of〈π, ℓ〉: we prove that the length of every reduction
sequence starting from〈π, ℓ〉 is bounded by| 〈π′, ℓ′〉 |ℓ.

Suppose〈π, ℓ〉
ℓ
−→ 〈π1, ℓ1〉

ℓ
−→ . . .

ℓ
−→ 〈πn, ℓn〉. By Lemma4.9we have| 〈πn, ℓn〉 |ℓ ≥

| 〈π, ℓ〉 |ℓ + n. Since〈π, ℓ〉 satisfiesAC we deduce by confluence (Theorem4.18) that

〈πn, ℓn〉
ℓ∗
−→ 〈π′, ℓ′〉, hence by Lemma4.9, | 〈π′, ℓ′〉 |ℓ ≥ | 〈πn, ℓn〉 |ℓ. We then con-

clude that| 〈π′, ℓ′〉 |ℓ ≥ n. �

4.2.1. Confluence of
ℓ
−→

The rest of this section is devoted to the proof of confluence of ℓ-reduction (Theo-
rem4.18). Ourℓ-reduction (as well as usual LL cut-reduction) is locally confluent but
not strongly confluent (recall Figure4(c)). The reader can find counter-examples to the
strong confluence property in the proofs of Lemma4.12and Lemma4.14.

We thus prove the confluence ofℓ-reduction (Theorem4.18) by decomposing
ℓ
−→

into its logical and structural subreduction,
logℓ
−−→ and

strℓ
−−→, exactly as we did for

cut
−−→ in

Definition3.1. Then we show that both
logℓ
−−→ and

strℓ
−−→ are confluent (Proposition4.13

and Proposition4.15) and that they commute (Lemma4.17). We conclude that
ℓ
−→ is

confluent since it is the union of two confluent reductions which commute (Hindley-
Rosen Lemma, here Lemma2.8).

Definition 4.11. The ℓ-logical reduction, denoted by
logℓ
−−→, is the context closure of

the followingℓ-reduction steps:(ax), (⊗/`), (1/⊥), (⊕i/&i), (!/?d); theℓ-structural

reduction, denoted by
strℓ
−−→, is the context closure of the followingℓ-reduction steps:

(!/!) and(!/?c).

41

Of course we have
ℓ
−→ =

logℓ
−−→ ∪

strℓ
−−→. Notice that

strℓ
−−→ is defined precisely by

thoseℓ-steps which leave unchanged the labels of the∗-links.

In what follows we prove that
logℓ
−−→ and

strℓ
−−→ are confluent and commute. The

difficult part of the proof is already achieved: it consists in establishing that both
logℓ
−−→

and
strℓ
−−→ areSN, which is an immediate consequence ofSN of

log
−−→ (Proposition3.4)

and of
str
−−→ (Proposition4.13): the labelling of sℓps plays no role w.r.t.SN.

Confluence of
logℓ
−−→. We prove the confluence of

logℓ
−−→ (Proposition4.13) by applying

the Newman Lemma (here Lemma2.7): a relation which is locally confluent andSN

is confluent. The local confluence of
strℓ
−−→ is proven by Lemma4.12, and theSN of

logℓ
−−→ is an immediate consequence of Proposition3.4.

Neither in the proof of Proposition3.4nor in the one of Lemma4.12theAC con-

dition is used, so that the confluence of
logℓ
−−→ is established for the whole set of sℓps.

Lemma 4.12. The reduction
logℓ
−−→ is locally confluent on sℓps.

PROOF. We prove that for every slice〈α, ℓ〉 the following diagram holds:

〈α, ℓ〉
logℓ

//

logℓ

��

〈π2, ℓ2〉

logℓ∗

��
〈π1, ℓ1〉

logℓ∗
// 〈π3, ℓ3〉

This immediately entails local confluence for general sℓps.
Establishing that the previous diagram holds is not immediate only when at least

one reduction is of type(!/?d): in this case27 the slice〈α, ℓ〉 is duplicated a number
of times equal to the number of slices of the box opened by the(!/?d) reduction. Let

us consider for example the case〈α, ℓ〉
log
−−→ 〈π1, ℓ1〉 is a (!/?d) step and〈α, ℓ〉

log
−−→

〈π2, ℓ2〉 is a (⊗/`) step (the other cases are similar and left to the reader). We have,
for somen > 0:

〈α, ℓ〉 =
?d !

cut

∑

αi

. . .i ≤ n
∗ xi

⊗ `

cut

∗
x

t
. . .o

r

the reduction of the cutt opens the box of the!-link o and duplicates the slice〈α, ℓ〉
n times, giving as result the following sℓps (notice that the labelling of the∗-links
changes):

27We can suppose without loss of generality that the reduced cut link has depth0 in α.

42

〈π1, ℓ1〉 =
−→ri

cut
⊗

cut

` ∗
x + xi + 2

∑

i ≤ n

αi

. . .

Instead, by reducting the cutr in 〈α, ℓ〉, one obtains the following slice:

〈π2, ℓ2〉 =
?d !

cut

cut

cut

∗
x + 1

∗ xi

∑

αi

. . .i ≤ n

−→
t

. . .o

If we reduce the cut
−→
t in 〈π2, ℓ2〉, we obtain the following sℓps (again notice that the

labelling of the∗-links changes):

〈π3, ℓ3〉 = . . .cut
cut

cut

∗
x + xi + 3

∑

i ≤ n

αi

The same sℓps can be obtained by reducing the residues−→r1 , . . . ,−→rn of the cutr in

〈π1, ℓ1〉. We conclude that〈π1, ℓ1〉
logℓ
−−→

∗

〈π3, ℓ3〉 and〈π2, ℓ2〉
logℓ
−−→ 〈π3, ℓ3〉. �

Notice that the critical pair analysed in the proof of Lemma4.12 is a counter-

example to the strong confluence of
logℓ
−−→.

Proposition 4.13. The reduction
logℓ
−−→ is confluent on the sℓps.

PROOF. Consequence of Lemma4.12, Proposition3.4and the Newman Lemma (here
Lemma2.7). �

Confluence of
strℓ
−−→. As for

logℓ
−−→, the confluence of

strℓ
−−→ (Proposition4.15) is ob-

tained using the Newman Lemma. The local confluence is deduced by Lemma4.14,

and theSN of
strℓ
−−→ is an immediate consequence of Proposition3.10. In sharp contrast

with the case of the
logℓ
−−→ rewriting rule, the reader should remark that theAC condi-

tion plays a crucial role both for Lemma4.14and Proposition3.10: in Subsection2.4
we have given counter-examples (see Fig.11and Fig.12) both to the local confluence
and theSN of

str
−−→ for sps which do not satisfyAC.

Remark that the labelling of the∗-links does not play any role in the confluence of
strℓ
−−→, since theℓ function is invariant under

strℓ
−−→. We nevertheless picture explicitely

the∗-links in the figures illustrating the following lemma, in order to stress that con-
fluence holds forlabelledsps.

43

Lemma 4.14. The reduction
strℓ
−−→ is locally confluent on the sℓps satisfyingAC.

PROOF. The local confluence of
strℓ
−−→ is quite a standard result, the proof is essentially

the same as that of the local confluence of the exponential reduction in MELL given

by V. Danos in his PhD thesis [2]. The local confluence of
strℓ
−−→ can be reduced to the

following diagram:

〈α, ℓ〉
strℓ //

strℓ

��

〈π2, ℓ2〉

strℓ∗

��
〈π1, ℓ1〉

strℓ∗ // 〈π3, ℓ3〉

This immediately entails local confluence for general sℓps.
The proof is by inspection of all possible cases, we treat in detail only the following

two critical pairs (the considered cuts have depth0 in α).

1. If 〈α, ℓ〉
strℓ
−−→ 〈π1, ℓ1〉 is the reduction of a cutt of type (!/!) and〈α, ℓ〉

str
−−→

〈π2, ℓ2〉 is the reduction of a cutr of type(!/!) and if the two cuts are in opposi-
tion as pictured below:

〈α, ℓ〉 =
γ ∈πv

!

cutcut

! !
∗ x

∗ y

. . .

β
z∗

. . .

γ

. . .

πu

u

t
. . .

o a

b . . .
v drc

∑

β∈πo

∑

then the reduction oft will bring a copy ofv in each sliceβ of the sℓps associated
with o and it will transform the premisec of the cutr in an auxiliary conclusion
of the residue of the!-link o in 〈π1, ℓ1〉. On the other hand the reduction ofr
in 〈α, ℓ〉 will bring a copy ofu in each sliceγ of the sℓps associated withv.
The sℓps 〈π3, ℓ3〉 is obtained from〈π2, ℓ2〉 by reducing the (unique) residue of
t in 〈π2, ℓ2〉, which results in bringingv, and henceu, in each slice of the sℓps
associated witho:

〈π3, ℓ3〉 =

. . .
!

cut

!

∗ x

∗ y cut

∗ z

!

. . .

γ . . .

πu

u∑

γ∈πv

∑

β∈πo

. . .

. . .

β

o

. . .
v

. . .

. . .

44

The sℓps〈π3, ℓ3〉 can also be obtained from〈π1, ℓ1〉 in two steps (recall we are

proving only local confluence of
strℓ
−−→): first, we reduce the residue ofr in

〈π1, ℓ1〉 thus obtaining for each sliceβ in the box ofo a cut between an aux-
iliary conclusion of a copy ofv and a copy ofu, and then we reduce every such
cut, thus bringing a copy ofu in every sliceγ in the boxes of the various copies
of v, as sketched in the above figure.

2. If 〈α, ℓ〉
strℓ
−−→ 〈π1, ℓ1〉 is the reduction of a cutt of type(!/?c) and〈α, ℓ〉

strℓ
−−→

〈π2, ℓ2〉 is the reduction of a cutr of type(!/!) and if the two cuts are in opposi-
tion as pictured below:

〈α, ℓ〉 =
β∈πo

!!

cutcut

?c

∗ x

. . .

β∗ y

.
o

b

c

u
d

rt
a

a1 a2 πu

∑

then the reduction oft will duplicateo in 〈π1, ℓ1〉 and will transform the cutr
in a cut of type(!/?c) between the residue of the!-link u and a created?c-link
with premises the auxiliary conclusions corresponding toc of the two copies of
o. On the other hand, the reduction ofr in 〈α, ℓ〉 will bring a copy ofu in each
sliceβ of the sℓps associated witho. The sℓps〈π3, ℓ3〉 is obtained from〈π2, ℓ2〉
by reducing the (unique) residue oft in 〈π2, ℓ2〉, which duplicateso, and hence
u:

〈π3, ℓ3〉 =

. . .

!

cut

cut ?c ?c ?c ?c ∗ x
.

!

∗ y

cut

!

∗ y

cut

!

. . .

β

u
πu

. . .

∑

β∈πo

∑

β∈πo

o1 o2

u

. . .

β

πu

The sℓps 〈π3, ℓ3〉 can also be obtained from〈π1, ℓ1〉 in three steps (also in this
case we have only local confluence and not strong confluence):first, we reduce
the residue ofr in 〈π1, ℓ1〉, which is a cut of type(!/?c); this duplicatesu and
creates two cuts of type(!/!), one between the first copies ofo andu and the
other one between the second copies ofo andu. We obtain〈π3, ℓ3〉 by further
reducing the two(!/!) cuts.

�

45

The critical pairs treated in the proof of Lemma4.14are counter-examples to the

strong confluence of
strℓ
−−→.

Proposition 4.15. The reduction
strℓ
−−→ is confluent on the sℓps satisfyingAC.

PROOF. Consequence of Lemma4.14, Proposition3.10 and the Newman Lemma
(Lemma2.7). �

Commutation of
logℓ
−−→ and

strℓ
−−→. The last step allows to merge

logℓ
−−→ and

strℓ
−−→ to-

gether, proving that the two reductions commute (Lemma4.17): this is achieved by
applying a lemma by Di Cosmo, Piperno and Geser (here Lemma2.9) which reduces

the commutation of
logℓ
−−→ and

strℓ
−−→ to the diagram(1) of Lemma2.9.

Like in the proof of confluence for
logℓ
−−→ (and contrary to the proof of confluence for

strℓ
−−→) theAC condition is not needed in this paragraph.

Lemma 4.16. For every sℓps the following diagram holds:

〈π, ℓ〉
logℓ

//

strℓ

��

〈π2, ℓ2〉

strℓ∗

��
〈π1, ℓ1〉

logℓ+
// 〈π3, ℓ3〉

PROOF. Also for this lemma we restrict ourselves to the case〈π, ℓ〉 is a slice〈α, ℓ〉:
the general case follows immediately.

Let t (resp.r) be the cut link ofα reduced in〈α, ℓ〉
strℓ
−−→ 〈π1, ℓ1〉 (resp. in

〈α, ℓ〉
logℓ
−−→ 〈π2, ℓ2〉). The proof is by induction on the depth ofr. We split the proof

in three cases.

Case (i).The cutr is at depth0 in 〈α, ℓ〉: this case is immediate, since the reduction
of t does not affectr. The only slightly delicate case is whenr is of type(!/?d) (so
that its reduction duplicates〈α, ℓ〉) andt is duplicated a number of times equal to the
number of slices, sayn, of the opened exponential box:π2 =

∑n
i=1 αi. Sincer is a

non erasing cut link, we haven ≥ 1. In particular, let
−→
t1 , . . . ,

−→
tn be then residues

of t in 〈π2, ℓ2〉. We first prove that the diagram holds without labels, by distingushing
two subcases: (i) ift is of type(!/!) and one of the two premises oft is an auxiliary
conclusion of the!-link opened by the reduction ofr, then we do not need to reduce
the residues oft to close the diagram:π3 = π2

28; (ii) otherwise the reduction of the
residues oft in π2 gives as result the same sps as the one given by the reduction of the
(unique) residue ofr in π1. Notice thatπ3 has exactlyn slices:π3 =

∑n
i=1 βi.

Concerning the labels, let’s callvi the∗-link at depth0 of the sliceαi of π2 andv
the∗-link of α. Similarly, let us callv′i the∗-link at depth0 of the sliceβi of π3. The

28Notice that in this case (and only in this case) theset’s residues might also be non reducible cuts.

46

computation of the label ofv′i yields (for both the considered reductions fromπ to π3)
ℓ(v) + ℓ(←−vi) + 2. Since the label of every∗-link of π3 different fromv′i is the same as
the one of its ancestor inπ, the diagram holds also with labels.

Case (ii).Both t andr are cuts in boxes ofα. Let o (resp.u) be the!-link at depth
0 of α containingt (resp. r). If o andu are different!-links, then this case is imme-
diate; if they are the same!-link o, let 〈πo, ℓo〉 be the box associated witho. We have

〈πo, ℓo〉
strℓ
−−→ 〈πo

1 , ℓo
1〉 and〈πo, ℓo〉

logℓ
−−→ 〈πo

2 , ℓo
2〉. We apply the induction hypothesis

and we obtain an sℓps〈πo
3 , ℓo

3〉 s.t.〈πo
1 , ℓ

o
1〉

logℓ+
−−−−→ 〈πo

3 , ℓ
o
3〉 and〈πo

2 , ℓ
o
2〉

strℓ∗
−−−→ 〈πo

3 , ℓ
o
3〉.

The sℓps〈π3, ℓ3〉 is then obtained from〈π, ℓ〉 by associating witho the sℓps〈πo
3 , ℓ

o
3〉.

Case (iii). The cutt is at depth0 andr is contained in a!-link o at depth0 of α:
then we can have two critical pairs, since the!-link o may be involved in the reduction
of t.

One critical pair is whent is of type(!/?c) ando is the!-link which is duplicated
by the reduction oft:

〈α, ℓ〉 =
β∈πo

!

cut

?c

∗ x

. . .

β
∗ y

. . .
ot

∑

The reduction oft duplicateso, hencer, in 〈π1, ℓ1〉, but does not change the content of
the box nor the labels of the∗-links. On the other hand, the reduction ofr changes the
sℓps associated witho, without affecting the cutt nor the label of the∗-link at depth
0 of α, but possibly changing the labels of the∗-links insideo. Reducing the two
residues ofr in 〈π1, ℓ1〉 gives the same result〈π3, ℓ3〉 as reducing the residue oft in

〈π2, ℓ2〉. By the way notice that the reduction〈π1, ℓ1〉
logℓ+
−−−−→ 〈π3, ℓ3〉 costs two steps,

due to the duplication ofr.
The other critical pair is whent is of type(!/!) ando (the!-link whose box contains

r) is one of the two!-links involved in the reduction oft (i.e. in the figure belowo = u
or o = v):

〈α, ℓ〉 =
β∈πv

!

∗ x
cut
t

!

∗ y

. . .

β

. . .
v . . .

πu

u

∑

The reduction oft brings one copy ofu in each slice of the box associated withv

(notice thatv contains at least one slice, since
strℓ
−−→ is a non-erasing reduction step):

however, this reduction does not change the sℓps associated withu nor the labels of the
∗-links. On the other hand the reduction ofr in 〈α, ℓ〉 changes the sℓps associated with
u or that associated withv, depending on whethero = u or o = v.

47

The caseo = u is simple: let−→r 1, . . . ,
−→r n (wheren ≥ 1, as we noticed above) be

the residues ofr in 〈π1, ℓ1〉. Reducing thesen cuts gives the same result as reducing
the unique residue oft in 〈π2, ℓ2〉.

If o = v, then one has to notice that even if the reduction oft changes the box
πv associated withv (bringing “insidev” the !-link u), cuts and∗-links of πv are not
affected by this reduction. In particular we can reduce the residue ofr in 〈π1, ℓ1〉 like

the reduction step〈α, ℓ〉
logℓ
−−→ 〈π2, ℓ2〉 does, thus obtaining the sℓps〈π3, ℓ3〉 which is

also the result of reducing the residue oft in 〈π2, ℓ2〉. �

Lemma 4.17. The reductions
strℓ
−−→ and

logℓ
−−→ commute (see Figure4(d)).

PROOF. It is a consequence of Lemma4.16, Prop.3.4 and a Lemma by Di Cosmo,
Piperno and Geser (here Lemma2.9). �

Theorem 4.18.The reduction
ℓ
−→ is confluent on sℓps satisfyingAC.

PROOF. Consequence of Prop.4.13, Prop.4.15, Lemma4.17and the Hindley-Rosen
Lemma (Lemma2.8). �

Remark 4.19. One can easily adapt Theorem4.18and prove the confluence of
cut
−−→

for⊤-free sps satisyingAC: just check that
log
−−→ and

str
−−→ are locally confluent (i.e. add

the erasing steps to the proof of Lemma4.12and Lemma4.14) and that they commute.

48

F := a | 1 | F ⊗ F | 0 | F ⊕ F | !F | ∃a.F
a⊥ | ⊥ | F ` F | ⊤ | F & F | ?F | ∀a.F

Figure 17: Grammar of LL formulas

5. Strong Normalization for Linear Logic

We now want to apply our (rather general) main result (Theorem 4.2) in order to
prove strong normalization for full second order LL (Theorem 5.12). As proof-nets,
we take here the most general currently used notion, obtained by combining [7], [9]
and [2], and by generalizing the(ccad) and the(⊤/cc) reduction steps (see below).
These proof-nets are defined in [24]: let’s call them simplynets, and denote them with
initial Greek lettersα, β . . .

This last section requires some knowledge on nets, mainly some acquaintance with
the additive and second order cut-elimination and the notion of sequentialization: all
the precise definitions are in [24].

5.1. The syntax of nets

There are two main differences between nets and sps: (i) netsare typed by second
order LL formulas (Figure17 recalls the grammar of LL) and (ii) nets use additive
boxes to handle the& rule. Let us comment this last feature.

In the framework of nets,&-links behave like!-links (see Figure18): they have0
premises andn + 1 conclusions, a distinguished one (the main conclusion, typed by
a &-formula, sayA & B) and possibly others (the auxiliary conclusions); with every
&-link with n + 1 conclusions are associated two netsβ1 andβ2, calledfirst (or left)
andsecond (or right)component of the&-link. The netsβ1 andβ2 have the samen
conclusions as the auxiliary conclusions of the&-link (called the auxiliary conclusions
of the component of the&-link) and one distinguished conclusion (of type respectively
A andB, and called the main conclusion of the component of the&-link).

The presence of additive boxes has two main consequences in the definition of the
cut-elimination steps: (1) there is a unique additive step(&/⊕i) which combines an
erasing feature (like the step(&i/⊕j) with i 6= j, in sps) and a non-erasing feature (like
the step(&i/⊕i) in sps); (2) it yields a new type of reduction step, called(ccad), which

· · ·
&

A B
· · ·

Cn CnC1 C1

· · ·
β1 β2

A & B CnC1

Figure 18: An example of additive box

49

A⊥
i

⊕i

cut
t

· · · · · ·
A1 A2

l
· · ·

A1 & A2

A⊥
1 ⊕A⊥

2

β1 β2

&

&/⊕i
−−−→

Ai

βi

· · ·A⊥
i

cut

C

A1

· · ·

C

β1

cutA1 & A2 l

A2

· · ·

C

β2

· · · a t

· · ·

α

C⊥
&

ccad
−−−→

· · ·

cut · · ·

α

cut · · ·

α

· · ·

C

β2

C⊥A1

· · ·

C

β1

C⊥ A2

A1 & A2 l · · ·

&

Figure 19: The reduction steps associated with the additivebox

is the nightmare of this way of representing proofs (the sameholds for the(⊤/cc) step
of Definition2.12).

The step(&/⊕i). A redex of type(&/⊕i) is made of a cutt, a&-link and a⊕i-link
such that one premise oft is the main conclusion of the&-link and the other premise of
t is the conclusion of the⊕i-link (see Figure19). The contractum is defined by erasing
the⊕i-link, by substituting the&-link with its ith component and cutting the premise
of the erased⊕i-link and the main conclusion of theith component of the&-link. As
already mentioned, this reduction step is both erasing (it erases one component of the
&-link) and non-erasing (it modifies the cut formula like for example the(⊗/`) step).
This mix is critical with respect to standardization, as we will discuss in details in the
next Subsection5.2.

The step(ccad). A redex of type(ccad) is made of a cutt, a&-link l and a netα not
containingl; moreover, one premise oft, call it a, is an auxiliary conclusion ofl, and
the other premise oft is conclusion ofα (see Figure19). The contractum is defined as
follows. We substitutel, the cut linkt andα by a new&-link (which we still call l),
having the same conclusions as the originall where we have substituted the edgea by
the conclusions ofα (different fromt’s premise). Theith component of the new linkl
is obtained by cutting the conclusion corresponding to the edgea of theith component
of the originall and the conclusion ofα which is a premise oft. Notice that a cut of
type (ccad) of a netβ can be associated with different redexes, since it is not clear
which subnetα of β should be selected (for example, in [7] α is theempire ofa, in
[24] α is any subnet havinga among its conclusions). We take here the (more general)
option of [24], which is also applied to the(⊤/cc) step. Notice that, as for(⊤/cc)
(Remark2.13), the presence of(ccad)-reduction steps entails the failure of confluence.

50

p

!

?w

!

δ

cut cut

?w
δ

q

(a) example in MELL

q

&

⊥

!

?w

1

⊕1

cut
p !

?w

⊥

!

δ

⊕1&

cut

δ

(b) example with additive boxes

Figure 20: Untyped nets which areWN but notSN (δ is defined in Figure9)

Despite these differences, the cut-elimination procedurefor sps is the key tool to
proveSN for nets. We associate (Subsection5.3) with every netβ its set of slices
sl(β) (which is an sps), and we prove thatβ ∈ SN by proving thatsl(β) ∈ SN. More
precisely, we prove that for every netβ:

(i) sl(β) satisfiesAC,
(ii) β ∈ SN if sl(β) ∈ SN,
(iii) sl(β) ∈ SN if sl(β) ∈WN¬e,
(iv) sl(β) ∈WN¬e.

Point (i) is trivial (Proposition5.1); point (ii) is Proposition5.6; point (iii) is a
consequence of point (i) and of our standardization theorem(Theorem4.2), this is the
real missing point in Girard’s original proof; point (iv) isthe “difficult” part of theSN
proof (which is outside Peano arithmetic): one uses Girard’s reducibility candidates
to provesl(β) ∈ WN¬e. It is well known that this kind of tool is very powerful and
can be adapted to a lot of different situations. Indeed, Girard’s proof of [7] works per-
fectly well if one substitutes “strong normalization” with“weak normalization”, and
the reader acquainted with reducibility candidates is probably already convinced that
the changes needed to provesl(β) ∈ WN¬e (instead ofβ ∈ WN) present no major
difficulty. We nevertheless give the precise definition of reducibility candidate (Def-
inition 5.10) that we need in order to prove Theorem5.11 (that is point (iv)), thus
concluding with the strong normalization theorem for second order LL nets (Theo-
rem5.12).

At first sight, an alternative solution was to use Theorem4.2 in order to prove the
original Girard’s standardization theorem (Theorem 4.25 p.72 of [7]). We explain in
the next Subsection5.2why this alternative fails.

5.2. A digression on standardization

51

Before proving the points (i)-(iv) stated in Subsection5.1, let us discuss the alter-
native solution mentioned, namely to use Theorem4.2 in order to prove the original
standardization theorem (Theorem 4.25 p.72 of [7]). We claim that this approach fails,
since the original standardization is based on a “wrong” definition of standard reduc-
tion. To help the reader, we reproduce verbatim Definition 4.24 and Theorem 4.25 p.72
of [7].

4.24. Definition. A contraction isstandardwhen it does not erase any
symbolCUT besides the one explicitly considered. Concretely, this means
that some parts of the configuration we replace have to be cut-free, namely:

- in (&/⊕1 −SC), β2 must be cut-free,

- in (&/⊕2 −SC), β1 must be cut-free,

- in (!/?w − SC), β1 must be cut-free,

- in (⊤ − SC), eA⊥ must be cut-free.

A reduction is standard when made of standard contractions.

4.25 Theorem (Standardization Lemma).Letβ be a proof-net and assume
that there is a standard reduction fromβ to a cut-freeβ′. Thenβ is SN.

The problem with the above definition of standard reduction (contractionin the
language of [7]) was already pointed out in [2] in the restricted MELL framework:
recall the sliceδδ of Figure9, which can be considered an “untyped MELL net”29.

As we pictured in Figure10, we haveδδ
cut+
−−−→ δδ. Now consider the untyped net

β of Figure 20(a). By reducing the cutp of β one obtains a strongly normalizing
untyped net; howeverβ is not strongly normalizing (reduce the cutq and you will
get a net having the netδδ of Figure9 as subnet), despite the fact that the reduction
step associated withp is standard in Girard’s sense (Definition 4.24 p.72 of [7]). From
our point of view, this means that Theorem 4.25 p.72 of [7] is “morally wrong”, even
though it is “technically correct” (it deals only with typednets, so its conclusion is
true...). The solution proposed in [2] was to freeze the cut linkp and consider “strict”
reductions, that is the rewriting rule obtained by forbidding(!/?w) reduction steps: this
leads to théorème 8.31 p.64 of [2], allowing to proveSN for MELL nets.

In presence of the additives, the same phenomenon occurs, but the solution cannot
be that simple, as we now explain. Consider the untyped netβ of Figure20(b). Again,
by reducing the cutp one obtains a strongly normalizing untyped net; howeverβ is
not strongly normalizing (reduce the cutq and the(ccad) created by the reduction
of q), despite the fact that the reduction step associated withp is standard in Girard’s
sense. Following Danos, one would be tempted to freezep, but this wouldn’t be correct.
Indeed, we should then freeze all the cuts of type(&/⊕i), and such a freezing hides
infinite reduction sequences. For instance, the untyped netβ of Figure20(b)would be

29In this short discussion, we use the expression “untyped net”, referring to the untyped version of the
nets considered in this Subsection5.1. An untyped net is not necessarily an sps because of the presence of
additive boxes.

52

in normal form w.r.t. the rewriting rule induced by this freezing, despite the fact that
β 6∈ SN. The difference between the reduction steps(!/?w) and(&/⊕i) is that while
the first one is purely erasing, the second one is both erasingand non erasing. A key
feature of the introduction of slices is precisely to separate the erasing aspect of the
(&/⊕i) reduction step (taken into account by the(&j/⊕i) steps withi 6= j) from its
non erasing aspect (taken into account by the(&i/⊕i) steps).

For this reason the standardization theorem for full LL can be correctly stated only
for sliced pure structures (as we did in Theorem4.2) and not for nets.

Another attempt to prove SN for LL (in presence of the additives) is contained in
Okada’s work [18]. The method proposed is to use phase semantics, which workswell
for WN, but for SN the same problem as in [7] arises (the proof of the standardization
theorem), and we have to mention here that (like for [7]) the way Okada argues on
this point cannot be considered as convincing (the author himself uses the expression
“Sketch of proof”). Indeed:

1. Okada claims that (in certain circumstances) ifβ
cut
−−→ β′ and the reduced cut is

of type(!/!) and ifβ′ ∈ SN, thenβ ∈ SN (“Sketch of Proof” of lemma 6.6 p.364
case (4) of [18]). Of course (like Theorem 4.25 p.72 of [7]) the statement above
is true since eventually all nets turn out to be strongly normalizable. However,
the author claims that it is possible to “simulate” any reduction sequence ofβ by
a reduction sequence ofβ′. This is as difficult as proving standardization, and
it is the motivation for théorème 8.31 p.64 of [2]: in order to solve the problem
Danos had to make the first very sharp analysis of the rewriting rule induced by
LL cut-elimination (in particular he had to prove confluencefor MELL);

2. in presence of the additives avery “restricted” cut-elimination procedure is de-
fined (see the “&-box entering rule” of p.373 of [18])30, so that even in case
the proof were considered convincing (and we believe it shouldn’t be) it would
still be incomplete. With respect to this restricted procedure the extension to the
additives is analysed (“Sketch of Modified Proof of lemma 6.6” p.379 of [18]).
Actually, Okada’s restriction is a way to eliminate the intrinsic difficulty of the
(ccad) reduction step: in the present paper we found a way to keep control on
this step in presence of all the other LL connectives.

5.3. Slicing nets

Let us come back to the proof ofSN for nets. We hinted in Subsection5.1 that
theSN of a net is related to theSN of the sps “associated with” that net. Indeed, a
net β can besliced in an spssl(β) which has the same number of conclusions asβ
(an example is given in Figure21). Following [7] we definesl(β) by induction on a
sequentialization ofβ:31

30Okada’s procedure does not always allow to reduce all cuts: there are proof-nets with cuts to which the
procedure cannot be applied.

31The procedure ofslicing is actually independent from the chosen sequentializationand it can be applied
also to non-sequentializable proof-structures (see [10]).

53

cut

!

a a⊥

ax
a a⊥

ax

&

?d

∃a.a

?∃a.a

& 1

?d

∃a

⊕1

1

1⊕⊥

?(1⊕⊥)

∃a.?(a⊕a⊥)

ax

∃a.a

a⊥

a∃a

!(a⊥&a)

?∃a.a

∃a

a&a

∃a.a
a⊥

a⊥&a

∀a.!(a⊥&a)

∀a

sl
=⇒

+

!

?d

&2

ax

&1

⊕1

?d

1

&1
?d

&1

ax

?d
&2

ax

cut

+

Figure 21: An example of slicing a net

• if β is anax-link (resp.1-link, ⊤-link), thensl(β) has only one slice, consisting
of anax-link (resp.1-link, ⊤-link);

• if β is a&-link l with associated left (resp. right) componentβ′ (resp.β′′), then
sl(β) is obtained by adding a&1-link (resp.&2-link) to every slice ofsl(β′)
(resp.sl(β′′)) and by taking the union of these multisets of slices (with the ap-
propriate equivalence on the conclusions, see Definition2.2);

• if β is a !-link l with associated netβ′, thensl(β) has only one slice consisting
of a !-link corresponding tol and s.t. with that link is associatedsl(β′);

• if a conclusion ofβ is conclusion of à -link (resp. of a⊥-, ⊕i-, ?w-, ?d-, ?c-
link) l, let β′ be the subnet ofβ obtained by erasingl (and its conclusion), then
sl(β) is obtained by adding to every slice ofsl(β′) the`-link (resp. ⊥-, ⊕i-,
?w-, ?d-, ?c-link) corresponding tol;

• if a conclusion ofβ is conclusion of a∀- or ∃-link l, let β′ be the subnet ofβ
obtained by erasingl (and its conclusion), thensl(β) = sl(β′);

• if β is the union of two disjoint subnetsβ′, β′′ and of a⊗-link (resp. cut)l, then
sl(β) is obtained by connecting every slice ofsl(β′) and every slice ofsl(β′′) by
means of the⊗-link (resp. cut) corresponding tol (and by defining the appropri-
ate equivalence on the conclusions, see Definition2.2).

We first note that the slicing of a net is switching acyclic:

Proposition 5.1. If β is a net, thensl(β) satisfiesAC.

54

PROOF. By the correctness criterion for nets (see [7],[24]) and the definition ofsl. �

Remark 5.2. If β is a net, then by Proposition5.1sl(β) is deadlock free. Furthermore,
a net is typed by second order LL formulas (remember Figure17), which implies that
sl(β) is also clash free. This means that every cut ofsl(β) is reducible, and thatsl(β)
is a normal sps iffsl(β) is cut free (which is not the case for general sps).

Then we turn to the crucial point: the cut-elimination of nets can be simulated by
that of its slicing, i.e. the following diagram commutes

β

sl

��

cut // β′

sl

��

sl(β)
cut∗ // sl(β)

An example of this simulation is given in Figure22. The reader should notice that

a sequence of steps of type(ccad) or (∀/∃) (denoted by
ccad∀/∃∗
−−−−−−→) is “invisible” in

sps: this might be a problem to deriveβ ∈ SN from sl(β) ∈ SN, but actually it isn’t
thanks to Lemma5.5.

We actually have something more than a simulation property (recall thatt(β′) refers
to the result of reducing a cutt in β′, Definition2.12):

Lemma 5.3 (Simulation). Let t be a cut link of a netβ. If t is of typeccad or ∀/∃,

thensl(β) = sl
(

t(β)
)

; otherwise,sl(β)
+
−→ sl

(

t(β)
)

.

PROOF. Straightforward, by inspection of cases. �

We now want to prove that there is no infinite sequence of reduction steps of type
(ccad) or (∀/∃), and we use for this purpose (a straightforward variant of) the separa-
tion property proven in [24]:

Lemma 5.4. Letβ be a net. Ifβ
(ccad)∀/∃∗
−−−−−−−→ β′ andl′1, l

′
2 are two (different) residues32

in β′ of a &-link l of β, then there exists a&-link m′ of β′ whichseparatesl′1 and l′2,
i.e. l′1 (resp.l′2) is a link of the componenti (resp.j) of m′ andi 6= j (in particular, l′1
cannot be a link of a component ofl′2, nor the converse).

PROOF. By induction on the length of the reduction sequenceβ
(ccad)∀/∃∗
−−−−−−−→ β′, see [24].

�

Lemma 5.5. There is no infinite sequence of reduction steps of type(ccad) or (∀/∃)
starting from a net.

32We refer here to the obvious adaptation to nets of the notion introduced in Definition2.14for sps.

55

PROOF. Let us define theadditive depthof a link l of a netβ as the number of&-
components ofβ containingl, and the additive depth ofβ as the maximal additive
depth of its links.

The separation property (Lemma5.4) implies that for every netβ which contains

n &-links, if β
(ccad)∀/∃∗
−−−−−−−→ β′, then the additive depth ofβ′ is at mostn. This allows

to define a size on every(ccad), (∀/∃)-reduct ofβ: consider then-tuple whoseith

component is the number of links of the net having additive depth i, and order these
n-tuples lexicographically. It is easy to show that this sizeshrinks at every(ccad) or

(∀/∃) step: suppose thatβ
ccad∀/∃∗
−−−−−−→ β′ x

−→ β′′. If x is (∀/∃), then at some (additive)
depth0 ≤ i ≤ n the number of links ofβ′′ is strictly less than the number of links of
depthi of β′, and for every0 ≤ j 6= i ≤ n the number of links of depthj in β′ andβ′′

is the same. Ifx is (ccad), then leti be the depth of the&-link l′ of β′ playing the role
of the link l in the(ccad) step of Figure19: at depthj < i the number of links ofβ′

andβ′′ is the same, at depthi there are strictly less links inβ′′ than inβ′, so that also
in this case the previously defined size shrinks. �

We can conclude the subsection with the expected result:

Proposition 5.6. Letβ be a net. Ifsl(β) ∈ SN thenβ ∈ SN.

PROOF. Immediate consequence of lemmata5.3and5.5. �

5.4. Strong normalization for nets

Finally we prove thatsl(β) ∈ WN¬e, for every netβ (Theorem5.11). Here we
need Girard’s reducibility candidates. We give the particular definition of reducibility
candidates (Definition5.10) required to prove Theorem5.11, and then we just sketch
the proof of the theorem, which is standard after [7].

Definition 5.7. A term of typeA is a netβ together with a distinguished conclusion
which is labelled byA. If β (resp.β′) is a term of typeA (resp.A⊥), we denote by
CUT(β, β′) the net obtained by connectingβ andβ′ by means of a cut with premises
the two distinguished conclusionsA, A⊥.

Definition 5.8 (duality). Let X be a set of terms of typeA; we defineX⊥ as follows:

X⊥ =
{

β′ s.t.β′ term of typeA⊥ and sl(CUT(β, β′)) ∈WN¬e for everyβ ∈ X
}

Proposition 5.9. LetX be a set of terms of typeA:

1. if X contains the axiom link with conclusionA, A⊥, then for everyβ ∈ X⊥ one
hassl(β) ∈WN¬e;

2. if for everyβ ∈ X one hassl(β) ∈ WN¬e, thenX⊥ contains the axiom link
with conclusionA, A⊥.

PROOF. Immediate from the definitions. �

56

nets:

cut

!

a a⊥

ax
a a⊥

ax

&

?d

∃a.a

?∃a.a

& 1

?d

∃a

⊕1

1

1⊕⊥

?(1⊕⊥)

∃a.?(a⊕a⊥)

ax

∃a.a

a⊥

a∃a

!(a⊥&a)

?∃a.a

∃a

a&a

∃a.a
a⊥

a⊥&a

∀a.!(a⊥&a)

∀a

∀/∃
−−→

ax

!

&

?d

∃a.a

?∃a.a

&

ax

∃a.a

⊥

1∃a

1

?d

⊕1

cut

!(⊥&1)

?∃a.a

∃a

1&1

∃a.a

⊥&1
1

1⊕⊥

?(1⊕⊥)

⊥

⊥

ax
1 1 ⊥

!/?d
−−→

?∃a.a

&

&

ax

∃a.a

⊥

1∃a

1

⊕1

cut

∃a

1&1

∃a.a

⊥&1
1

1⊕⊥

⊥

⊥

ax
1 1 ⊥

ax

?d

∃a.a

&/⊕1

−−−−→

sl
��

sl
��

sl
��

sps:

+

!

?d

&2

ax

&1

⊕1

?d

1

&1
?d

&1

ax

?d
&2

ax

cut

+

=

+

!

?d

&2

ax

&1

⊕1

?d

1

&1
?d

&1

ax

?d
&2

ax

cut

+

!/?d
−−→ +

?d

&2

ax

&1 ⊕1

1

&1

cut

?d

&1

ax

⊕1

1

?d
&2

ax

cut

⊕1

1

cut

+ &2/⊕1

−−−−→
&1/⊕1+
−−−−−→

nets:
⊥

&

?d
?∃a.a

cut

1

1∃a

1&1

∃a.a

⊥

ax
1 1 ⊥

ax

ccad
−−−→

∃a.a

&

?d

∃a

ax
1

cut
ax

1

cut
ax
⊥

11
ax
⊥

11

?∃a.a

1 & 1 ax
−→

1

&

?d

∃a

1
ax

1

cut

?∃a.a

1 & 1

∃a.a

1
ax
⊥

1

ax
−→

1

&

?d

∃a

1 1

1

?∃a.a

1 & 1

∃a.a

sl
��

sl
��

sl
��

sl
��

sps:
+

cut

1

cut

?d

&1

ax ax 1

?d

&2 =
+

cut

1

cut

?d

&1

ax ax 1

?d

&2 ax
−→ +

cut

1

?d

&1

ax 1

?d

&2 ax
−→ +

11

?d

&1

?d

&2

5
7

Definition 5.10 (reducibility candidate). A reducibility candidate of typeA is a set
X of terms of typeA s.t.:

1. X 6= ∅;
2. for everyβ ∈ X , one hassl(β) ∈WN¬e;
3. X = X⊥⊥.

Theorem 5.11 (WN¬e theorem). If β is a net, thensl(β) ∈WN¬e.

PROOF. Girard’s proof of Theorem 4.26 ([7]) works perfectly if one substitutes “β is
SN” with “ sl(β) ∈ WN¬e”. We just give here the idea of how to adapt the original
proof. In what follows we use the notations and definitions of[7].

Let β be a net with conclusionsC (whereC = C1, . . . , Cn is a sequence of LL
formulas), we prove thatβ is reducible, which means that the following holds (see Def-
inition 4.26.8 of [7]): let a (= a1, . . . , am) be the list of all free variables ofC, then for
every sequence of formulasB (= B1, . . . , Bm), every sequenceX (= X1, . . . , Xm)
of reducibility candidates of typesB and every sequence of termst (= t1, . . . , tn)
in RED(C⊥ [X/a]) (see Definition 4.26.6 of [7]), one hassl(CUT(β [B/a] ; t)) ∈
WN¬e. The netCUT(β [B/a] ; t) is obtained by:

• substituting inβ the free variablesa1, . . . , am with the formulasB1, . . . , Bm:
this yieldsβ [B/a]

• given a termti ∈ RED(Ci
⊥ [X/a]) for every conclusionCi [B/a] of β [B/a],

cutting all theti with β [B/a].

The proof thatsl(CUT(β [B/a] ; t)) ∈ WN¬e is by induction on a sequential-
ization of β, hence it splits in16 cases (the number of rules of LL:ax, cut, ⊗,
1, `, ⊥, &, ⊤, ⊕1, ⊕2, !, ?w, ?d, ?c, ∀2, ∃2). In every case, we have to prove
that sl(CUT(β [B/a] ; t)) ∈ WN¬e whateverti ∈ RED(Ci

⊥ [X/a]) has been se-
lected. However, a simplification is often useful (and possible): for example in case
Ci

⊥ = A ⊗ B one needs to provesl(CUT(β [B/a] ; t)) ∈ WN¬e only for thoseti
belonging toRED(Ci

⊥ [X/a]) and such thatti can be obtained by performing a⊗-
link between somet1i ∈ RED(A [X/a]) and somet2i ∈ RED(B [X/a]). We shall
use this simplification in the sequel of the proof. We consider only two cases: the&-
and!-cases, which show how works our version of reducibility candidates. Since the
substitutions play no active role but make everything hard to read (and to write), we
shall not indicate them (thus working withRED(C⊥), etc...). We also use the fact that
by definition ofRED (see Definition 4.26.6 of [7]), one hasRED(C⊥) = RED(C)⊥.

&-case: β is obtained fromβ1 and β2 by the&-box in Figure18. After simplifi-
cation, we see that we have to check thatsl(CUT(β; c,⊕1t)) ∈ WN¬e and
sl(CUT(β; c,⊕2u)) ∈ WN¬e for any c ∈ RED(C)⊥, t ∈ RED(A)⊥, and
u ∈ RED(B)⊥. By induction hypothesissl(CUT(β1; c, t)) ∈ WN¬e and
sl(CUT(β2; c, u)) ∈ WN¬e for any c ∈ RED(C)⊥, t ∈ RED(A)⊥, and
u ∈ RED(B)⊥. Sinceu can be chosen as an axiom, by Proposition5.9we de-
duce thatsl(CUT(β2; c)) ∈WN¬e. Since by Definition5.10the slicing of every
element of a reducibility candidate isWN¬e, we also havesl(⊕1t) ∈WN¬e.

58

Consider nowsl(CUT(β; c,⊕1t)) = σ = σ1 + σ2, whereσ1 (resp.σ2) is
the multiset of the slices ofCUT(β; c,⊕1t) which contain the componentβ1

(resp.β2) of the&-box. Notice thatσ1
&1/⊕1

−−−−→ sl(CUT(β1; c, t)), henceσ1 ∈
WN¬e. But pay attention that we cannot yet infer that alsoσ ∈ WN¬e, be-
cause for reducingσ to sl(CUT(β1; c, t)) we should perform several(&2/⊕1)
reductions, which are erasing. Nevertheless we deduce thatσ2 is WN¬e since
sl(CUT(β2; c)) ∈ WN¬e and sl(⊕1t) ∈ WN¬e andσ2 is obtained by con-
necting every slice ofsl(CUT(β2; c)) and every slice ofsl(⊕1t) by means of a
(&2/⊕1) cut link. We conclude thatsl(CUT(β; c,⊕1t)) ∈WN¬e.

For symmetric reasons,sl(CUT(β; c,⊕2u)) ∈WN¬e.

!-case: β is a !-link with conclusions!A, ?C1, . . . , ?Cn whose associated box is the
netβ′. The induction hypothesis is thatsl(CUT(β′; c, t)) ∈ WN¬e for all c ∈
RED(?C)⊥ andt ∈ RED(A)⊥; and we want to conclude thatsl(CUT(β; c, u))
∈WN¬e for all c ∈ RED(?C)⊥ and for allu in RED(!A)⊥. Now, it is easy to
show that we can make a simplification on the whole sequencec, namely thatc
is of the form!d, for d ∈ RED(C)⊥. By several(!/!) reduction steps we reduce
CUT(β; c, u) to CUT(! CUT(β′; c), u), where! CUT(β′; c) is the net consist-
ing in a !-link with conclusion!A, whose associated box is the netCUT(β′; c)
with conclusionsA. Now, by induction hypothesisCUT(β′; c) ∈ RED(A),
hence! CUT(β′; c) ∈ ! RED(A) ⊂ RED(!A). Sosl(CUT(! CUT(β′; c), u)) ∈

WN¬e. Finally, sincesl(CUT(β; c, u))
!/!∗
−−→ sl(CUT(! CUT(β′; c), u)), we

conclude thatsl(CUT(β; c, u)) ∈WN¬e.

�

We can eventually conclude:

Theorem 5.12 (SN theorem). If β is a net, thenβ ∈ SN.

PROOF. If β is a net, thensl(β) satisfiesAC (Proposition5.1) and sl(β) ∈ WN¬e

(Theorem5.11). We can then apply Theorem4.2 and prove thatsl(β) ∈ SN, from
which we conclude thatβ ∈ SN (Proposition5.6). �

Aknowledgements

We thank Jean-Yves Girard for his course on proof-theory given in Roma Tre in
fall 2004, where he presented Gandy’s method for natural deduction. We also thank
Paolo Tranquilli, Olivier Laurent and Michele Abrusci for several discussions on the
subject.

59

References

[1] Barendregt, H., 1984. The lambda calculus, its syntax and semantics, 2nd Edition.
No. 103 in Studies in Logic and the Foundations of Mathematics. North-Holland.

[2] Danos, V., 1990. La logique linéaire appliquée à l’étude de divers processus de
normalisation (principalement duλ-calcul). Thèse de doctorat, Université Paris
VII.

[3] Danos, V., Joinet, J.-B., Schellinx, H., Sep. 1997. A newdeconstructive logic:
linear logic. Journal of Symbolic Logic 62 (3), 755–807.

[4] Di Cosmo, R., Kesner, D., Polonovski, E., Jun. 2003. Proof nets and explicit
substitutions. Mathematical Structures in Computer Science 13 (3), 409–450.

[5] Gandy, R. O., 1980. Proofs of strong normalization. In: Seldin, J., Hindley, J.
(Eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism. Academic Press Limited, pp. 457–477.

[6] Girard, J.-Y., 1972. Interprétation fonctionnelle etélimination des coupures de
l’arithmétique d’ordre supérieur. Thèse de doctorat d’etat, Université Paris VII.

[7] Girard, J.-Y., 1987. Linear logic. Theoretical Computer Science 50, 1–102.

[8] Girard, J.-Y., 1987. Proof Theory and Logical Complexity. Studies in Proof-
theory. Bibliopolis, Napoli.

[9] Girard, J.-Y., 1991. Quantifiers in linear logic II. In: Corsi, Sambin (Eds.), Nuovi
problemi della logica e della filosofia della scienza. CLUEB,Bologna, pp. 79–90.

[10] Girard, J.-Y., 1996. Proof-nets: the parallel syntax for proof-theory. In: Ursini,
A., Agliano, P. (Eds.), Logic and Algebra. Vol. 180 of Lecture Notes In Pure and
Applied Mathematics. Marcel Dekker, New York, pp. 97–124.

[11] Hughes, D., van Glabbeek, R., Jun. 2003. Proof nets for unit-free multiplicative-
additive linear logic. In: Proceedings of the eighteenth annual symposium on
Logic in Computer Science. IEEE, IEEE Comp. Soc. Press, Ottawa, pp. 1–10.

[12] Klop, J. W., Jun. 1992. Term rewriting systems. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (Eds.), Handbook of Logic in Computer Science. Vol. 2. IEEE, Ox-
ford University Press, pp. 1–116.

[13] Krivine, J.-L., 1990. Lambda-Calcul : Types et Modèles. Études et Recherches
en Informatique. Masson.

[14] Laurent, O., Mar. 2002.́Etude de la polarisation en logique. Thèse de doctorat,
Université Aix-Marseille II.

[15] Laurent, O., Quatrini, M., Tortora de Falco, L., Jul. 2005. Polarized and focalized
linear and classical proofs. Annals of Pure and Applied Logic 134 (2–3), 217–
264.

60

[16] Laurent, O., Tortora de Falco, L., Nov. 2004. Slicing polarized additive normal-
ization. In: Ehrhard, T., Girard, J.-Y., Ruet, P., Scott, P.(Eds.), Linear Logic in
Computer Science. Vol. 316 of London Mathematical Society Lecture Note Se-
ries. Cambridge University Press, pp. 247–282.

[17] Laurent, O., Tortora de Falco, L., 2006. Obsessional cliques: a semantic charac-
terization of bounded time complexity. In: Proceedings of the twenty-first annual
IEEE symposium on Logic In Computer Science (LICS ’06).

[18] Okada, M., 1999. Phase semantic cut-elimination and normalization proofs of
first- and higher-order linear logic. Theor. Comput. Sci. 227 (1-2), 333–396.

[19] Prawitz, D., 1965. Natural Deduction. A Proof.Theoretical Study. Almquist and
Wiksell, Stockholm, Sweden.

[20] Regnier, L., 1992. Lambda-calcul et réseaux. Thèse de doctorat, Université Paris
VII.

[21] Sørensen, M. H., 1997. SN from WN in typedλ-calculi. Information and Com-
putation 133 (1), 35–71.

[22] Terese, 2003. Term Rewriting Systems. Vol. 55 of Cambridge Tracts in Theoreti-
cal Computer Science. Cambridge University Press.

[23] Tortora de Falco, L., Jan. 2000. Réseaux, cohérence et expériences obsession-
nelles. Thèse de doctorat, Université Paris VII.

[24] Tortora de Falco, L., 2003. Additives of linear logic and normalization- part I:
a (restricted) church-rosser property. Theoretical Computer Science 294/3, 489–
524.

[25] Tranquilli, P., 2008. Intuitionistic differential nets and lambda calculus, to appear
in: Girard’s Festschrift, special issue Theoretical ComputerScience.

[26] Tranquilli, P., 2009. Confluence of pure differential nets with promotion, to ap-
pear in:Proceedings of Computer Science Logic 2009.

61

	Introduction
	Definitions
	Sliced pure structures
	Compendium of rewriting theory
	Cut-elimination
	Examples of reductions
	Switching acyclicity

	Two results of strong normalization
	The strong normalization of log
	The strong normalization of str

	Standardization for sliced pure structures
	SN is a consequence of SN not e
	SN not e is a consequence of WN not e
	Confluence of

	Strong Normalization for Linear Logic
	The syntax of nets
	A digression on standardization
	Slicing nets
	Strong normalization for nets

